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Abstract  

Convergent evolution is often reported in the mammalian order Carnivora. Their adaptations 

to particularly demanding feeding habits such as hypercarnivory and durophagy (consumption 

of tough food) appear to favour morphological similarities between distantly related species, 

especially in the skull. However, phylogenetic effect in phenotypic data might obscure such a 

pattern. We first validated the hypotheses that extant hypercarnivorous and durophagous large 

carnivorans converge in mandibular shape and form (=size and shape). Hypercarnivores 

generally exhibit smaller volumes of the multidimensional shape and form space than their 

sister taxa, but this pattern is significantly different from random expectation only when 

hunting behaviour categorisations are taken into account. Durophages share areas of the 

morphospace, but this seems to be due to factors of contingency.  Carnivorans that hunt in 

pack exhibit incomplete convergence while even stronger similarities occur in the mandible 

shape of solitary hunters due to the high functional demands in killing the prey. We identified 

a stronger phylogenetic signal in mandibular shape than in size. The quantification of 

evolutionary rates of changes suggests that mandible shape of solitary hunters evolved slowly 

when compared to the other carnivorans. These results consistently indicate that the need for 

strong bite force and robust mandible override sheer phylogenetic effect in solitary hunters. 

Keywords mandible shape; durophagy; hypercarnivory; morphological disparity; feeding 

adaptation; constraint  
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Introduction 

Members of the mammalian order Carnivora exhibit an extraordinary diversity of forms, both 

in extant and extinct clades (Ewer 1973; Goswami 2010). Although this diversity unfolds 

across a number of different ecomorphotypes, most carnivorans are basically meat eaters that 

share a common digestive physiology (Clauss et al. 2010). As such, it is not surprising that 

patterns of iterative evolution are reported over and over in describing the evolution of 

carnivore skull and dental morphologies (Van Valkenburgh 1991, 1999, 2007). The main 

factor sought to explain carnivoran skull shape differentiation is the adaptation to different 

feeding habits including hypercarnivory, herbivory and hard food consumption (Ewer 1973; 

Van Valkenburgh 1989, 1991; Holliday and Steppan 2004; Raia 2004; Goswami 2006; 

Figueirido et al. 2010, 2011, 2013). Meat and tough food consumption require extreme 

modifications of the skull apparatus (cranium and the mandible) to withstand the high 

biomechanical loads imposed by catching and holding live prey and crushing and cracking 

hard food items such as bones. Through evolutionary time, these mechanisms favoured 

ecomorphological overlap between distantly related species (e.g. the giant and the lesser 

panda for feeding on bamboo, Figueirido et al. 2010) so that convergence (sensu Futuyma 

2010) was repeatedly reported for the skull phenotype.  

Detecting convergence presents many methodological issues especially when analysing 

multivariate data. Usually, skull phenotypic variation is simplified by multiple measurable 

traits so that the empirical morphospace they define can be explored with a multiple 

combination of vectors, which in turn allow testing for convergence. To avoid spurious 

interpretation of morphospace overlap, morphological disparity (= volume of the multivariate 

morphospace) is tested for three different kinds of convergence as defined by Stayton (2006): 
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i. complete convergence implies overlap in the morphospace by the putatively convergent 

taxa; 

ii. incomplete convergence applies when putatively convergent taxa occur in different areas 

of the morphospace (i.e. they do not overlap) but are closer to each other than their 

relatives are. 

iii. parallel changes, implies taxa showing parallel phenotypic changes away from their sister 

groups. In this case convergent taxa do not share common areas of morphospace but they 

share similar pathways of phenotypic transformation. 

Our aim is to test for the presence of these three different kinds of convergence in mandibular 

size and shape (defined as morphospace, Bookstein 1989) of extant large carnivorans as due 

to previously identified adaptations (see Figueirido et al. 2011, 2013) that include: 

hypercarnivory (functionally defined as a diet including a high percentage of meat) or 

durophagy (a diet with substantial consumption of tough food, i.e. bamboo or bones). The 

mandible is favoured over the cranium here because this anatomical structure is entirely 

devoted to mastication and intimately linked with feeding habits in Carnivora (Raia 2004; 

Meloro 2011a; Meloro and O’Higgins 2011; Prevosti et al. 2012). Morphospace overlap 

between distantly related extant and fossil species have already been detected in the 

carnivoran mandible shape (Figueirido et al. 2011, 2013), yet no formal test for convergence 

was presented so far. We limited our data to large (body mass > 7 kg, Van Valkenburgh 1985, 

1988 – except the lesser panda Ailurus fulgens, a tough food consumer, cf. Meloro 2011a) 

extant species because there are unequivocal data about their feeding habits, and also because 

they represent a set of highly interacting species with similar metabolic requirements that 

share mandibular shape traits (Meloro and O’Higgins 2011). By using geometric 

morphometrics (Adams et al. 2004, 2013), we analyse both size and shape of the mandible 
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separately and in conjunction. Meloro and Raia (2010) found evidence for different rates of 

evolution in size and shape of the lower carnassial tooth (m1), and a similar pattern is 

expected for the mandible. If mandibular size and shape evolve at different rates, convergence 

might not be detected in the same way for size and shape space. Additionally, we included 

explicitly phylogenetic relationships into our analyses, in order to control for the impact of 

shared ancestry in patterns of morphospace occupation and functional differences.  

 

Materials and Methods 

We collected size and shape data for 307 mandibular specimens of 57 species of extant 

Carnivora from both suborders Caniformia and Feliformia (cf. sample in Meloro 2011a). 

Two-dimensional coordinates of 14 anatomical landmarks were digitised as described in 

Meloro, (2011a, 2012; Meloro and O’Higgins 2011). The landmarks describe relative tooth 

positioning in the corpus (canine, premolar area, slicing vs crushing molar area) and the 

ramus mandibulae (see Appendix for details). Size data were extracted using the natural log 

transformed centroid size from each landmark configuration (Bookstein 1989). Generalised 

Procrustes analysis was applied to extract shape coordinates (Rohlf and Slice 1990) on the 

overall sample and then averaged per species in order to generate an evolutionary 

morphospace that includes 57 data points (see Meloro et al. 2008). Averaged shape 

coordinates for the 57 carnivoran species were subjected to a Principal Component Analysis 

(PCA). We identified two distinct morphospaces: the shape space defined by PC axes of all 

shape variables, and the form space defined by a PCA of all shape coordinates and the natural 

log transformed centroid size. The form space has been rarely employed (see O’Higgins and 

Jones 1998) and it is here explored to identify the impact of mandible size on patterns of 

morphospace occupation. The two distinct morphospaces defined by PC scores were first 
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explored graphically to detect patterns of ecomorphological overlap between distantly related 

species (those belonging of different suborders) sharing similar feeding adaptations. 

Feeding adaptations were functionally identified according to previously suggested 

categorisations that were likewise applied to test for morphological convergence in the skull 

and the mandible of Carnivora (Van Valkenburgh 1991, 2007; Figueirido et al. 2011, 2013). 

Hypercarnivores include taxa adapted to high consumption (> 75%) of meat: large felids and 

hyenas (all except the aardwolf Proteles) and the fossa (among Feliformia), the polar bear, the 

wolverine (Gulo gulo) and the extant large canids (i.e. Canis lupus, Cuon, Lycaon and 

Speothos) among Caniformia. For consistency with previously identified convergence 

patterns, the hypercarnivores were subdivided also into pack hunters (all large wild canids and 

the spotted hyena, C. crocuta) and solitary hunters (all felids, the fossa, the polar bear and the 

wolverine, see Figueirido et al. 2011). Together with hypercarnivory, we also wanted to test 

for convergence due to the consumption of tough food. In keeping with findings of Figueirido 

et al. (2013) we here define durophages as all the specialised bone crackers and bamboo 

feeders including the spotted, the brown and the striped hyenas among the extant feliforms, 

and the giant and lesser panda among the caniforms. Although bamboo and bones are 

different in composition, they have similar biomechanical properties (e.g., Young module) 

hence they both require high bite forces to be broken down during chewing (see Figueirido et 

al. 2013). 

We formally tested for convergence due to hypercarnivory, pack or solitary hunting 

and durophagy by using morphological disparity test and ANCOVA models, in keeping with 

Stayton’s (2006) three types of convergence (see Fig. 3 in Stayton 2006, page 828). The 

disparity test was employed to check for either complete or incomplete convergence. 

ANCOVA models using permutation tests (with and without phylogenetic correction, Adams 
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and Collyer 2015) were applied to test for parallel changes in mandible shape between the 

putatively convergent feeding groups. The form data were not used for these analyses because 

the ANCOVA models are explicitly based on Procrustes distances.   

The disparity test is based on the multidimensional convergence index (MCI) 

computed as the ratio of morphological disparity of the sister taxa to the morphological 

disparity of the potentially convergent species (those belonging to 

hypercarnivore/pack/solitary or durophagous dietary groups). MCI > 1 implies convergent 

species to occupy an area of the morphospace much smaller than that defined by their sister 

groups (Stayton 2006).  

Significance in MCI was assessed by comparing the observed MCI vs randomly generated 

MCIs obtained by assigning the same number of species to convergent or non-convergent 

categories at random within clades (Stayton 2006). To test for the complete convergence the 

random draw is generated extracting species from the overall sample, whereas for the test of 

incomplete convergence the randomization is applied to the subsample of convergent plus 

their sister taxa only.  

In order to identify sister taxa of species in different feeding groups we generated a 

phylogenetic tree inclusive of the 57 large carnivoran species using the 10k tree project 

database (Arnold et al. 2010). The resulting topology and branch lengths (time of divergence 

in millions years) are based entirely on molecular datasets that were statistically treated using 

Bayesian phylogenetics (see Appendix).  

This phylogeny was also employed to test for the strength of phylogenetic signal in 

both mandible size and shape using the K statistic and its multivariate extension (Adams 

2014a). K is a measure of phylogenetic signal that can vary between zero, one and more than 

one. K equal to zero occurs when the structure of phenotypic data fit a star phylogeny (i.e., no 
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phylogenetic signal), 0 < K < 1 suggests that phylogenetic signal is present in the data with 

closely related species resembling each other less than expected by Brownian motion model, 

and K > 1 support a strong phylogenetic structuring with close relatives being more similar 

than based on Brownian motion (Blomberg et al. 2003). Statistical significance of K was 

validated using randomization. Although K was designed for single continuous traits, Adams 

(2014a) recently developed a multivariate extension that we applied to mandibular size and 

shape data using the R package geomorph (Adams and Otárola-Castillo 2013).  We also wrote 

an R script (available from the authors on request) to calculate MCI based on the disparity 

metric defined as averaged squared distances of multivariate data (Harmon et al. 2003) and to 

compare the observed MCI to the random MCIs computed in 2,000 permutations. 

ANCOVA models were applied to test for significant interaction in mandible shape 

data between the factors taxonomy (suborders Caniformia vs Feliformia) and diet 

(hypercarnivores/pack/solitary or durophages vs others). Adams and Collyer (2015) recently 

presented a way to apply this model to high dimensional shape data by providing a 

permutation test for significance. Essentially, the ANCOVA model is based on procrustes 

distances rather than on PC scores of the shape space (Goodall 1991). The permutation test 

for significance (9,999 runs) was applied before and after phylogenetic correction to take the 

phylogenetic covariance matrix explicitly into account as an error term (D-PGLS). Non-

significant interaction between taxonomy and diet categories supports parallel evolution 

according to Stayton (2006) definition.     

The impact of size on mandibular shape was also tested using linear and phylogenetic 

generalised least square models to detect the degree of association between the two traits 

(again shape was quantified as procrustes distances with this model being equivalent to the 
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multivariate regression of shape scores as dependent variables vs natural log centroid size as 

independent, cf. Meloro et al. 2008; Figueirido et al. 2010, 2013; Prevosti et al. 2012).  

To provide an evolutionary interpretation of the dynamics of morphospace occupation 

by putatively convergent species we, finally, computed phylogenetic evolutionary rates for 

shape data according to Adams (2014b). Phylogenetic evolutionary rates are described by the 

σ
2 

statistic that quantifies the rate of accumulation of variance in a trait over time while 

accounting for the phylogenetic relationships among species. Adams (2014b) developed a 

multivariate extension of σ
2 

that is relatively independent of sample size. To test for 

significant differences in the rates observed by two hypothetical groups, σ
2

multiv is computed 

independently for both of them and combined into a ratio. The observed ratio is compared to 

simulations that randomise the data on the phylogeny. If the observed ratio is greater than 1, it 

means that groups show distinct evolutionary rates (e.g. hypercarnivores evolve faster/slower 

than the other taxa). We applied this procedure to feeding groups and mandible data that 

showed evidence for convergence. 

 

Results  

Mandible shape 

The first two Principal Components (PC1 = 39.96% and PC2 = 27.34% variance) of 

mandibular shape data clearly show a separation between Caniformia and Feliformia related 

to relative elongation and thickening of the corpus and the ratio of molar slicing vs crushing 

area (Fig. 1a). Along PC1 hypercarnivore taxa tend to occupy more positive scores while 

durophages caniforms and feliforms are clearly at opposite sides of PC2. 



10 

 

Within the hypercarnivores we also note a separation between pack hunters, which seem to 

occupy smaller region of PC1 vs PC2 morphospace, and solitary hunters.  

A combination of PC2 vs PC3 (10.61% of variance) reveals little separation among the 

feeding categories although durophages exhibit much higher scores in PC3 than all the other 

species. This axis describes changes in premolar row and relative height of the ramus (Fig. 

1b).   

MCI values based on all shape PC scores are generally much larger than 1 when looking at 

hypercarnivores vs their sister taxa, while values smaller than 1 occur for durophages. The 

permutation tests yield significance in the hypercarnivorous solitary hunters while pack 

hunters have significantly smaller volumes than their sister taxa only when randomization test 

is computed using a sub-sample that includes them and their sister taxa (Table 1). This 

supports complete convergence only in solitary hunters, and incomplete convergence in pack 

hunters. Both the broad category of hypercarnivores (inclusive of all hunting types) and 

durophages exhibit no convergence.  ANCOVA models show in some cases substantial 

changes in P values with and without phylogenetic correction (Table 2). In general, parallel 

shape changes between caniforms and feliforms occur among solitary hunters (in all cases 

ANCOVA shows no interaction between this feeding categorization and suborder). For pack 

hunters, ANCOVA supports a non-significant impact of this factor on mandible shape data 

while in both hypercarnivore and durophages the interaction term between diet and suborder 

remains significant after phylogenetic correction.    

  

Mandible form 
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When size is associated to shape data, the empirical morphospace changes patterns of 

specimen distributions (Fig. 2). The first two PC axes (PC1 = 30.00% of variance and PC2 = 

20.15%) identify significant overlap between Caniformia and Feliformia that are better 

separated by a combination of PC1 vs PC3 (15.17% of variance). The PC1 describes shape 

changes related to the shortening or enlargement of the premolar area with small canids and 

viverrids occupying positive scores. On PC2 major shape deformations occur in slicing vs 

crushing molar areas with hypercarnivores occupying positive scores while the giant panda is 

at the extreme negative. The PC1 vs PC2 plot indicates strong clustering among solitary 

hunters while durophages are evenly distributed. This pattern changes when PC3 is also 

considered. PC3 is loaded on changes in the crushing area and the diastema/premolar area and 

the relative height of the ramus. In the PC2 vs PC3 morphospace durophages occupy higher 

PC3 scores while the clustering of the other feeding categories is not evident (Fig. 2). 

MCI values are generally smaller than 1, except for solitary and pack hunters and never 

statistically significant supporting no type of convergence (either complete or incomplete, 

Table 1).  

 

Phylogenetic patterns 

The phylogenetic signal was significant in both size and shape data. Size has a much lower K 

(K = 0.385, P < 0.0001) than shape (Kmultiv = 0.631, P < 0.001) showing that closely related 

carnivorans might vary considerably in their mandibular size but not to the same extent in 

their shape. Goodall’s ANOVA test showed a weak but significant impact of size on 

mandibular shape (R
2
 = 0.046, F=2.6739, P = 0.032) that was not significant when phylogeny 

was accounted for (F = 2.0823, P = 0.221).  
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The test for rate of evolution using convergent feeding categories as factor showed 

that the mandible shape of solitary hunters evolved at much slower rate (σ = 9.19
e-6

) than that 

of the rest of Carnivora (σ = 1.10
e-5

), and this pattern is significantly different from random (σ 

ratio = 1.19, P = 0.017). For pack hunters, the same test showed a non-significant pattern for 

the σ ratio that was not different from 1 (σ ratio = 1.065, p = 0.601). This means that pack 

hunter carnivorans did not evolve their mandible shape at a different rate than the rest of 

carnivorans. Comparing suborders also showed different rates of evolution in mandible shape, 

with a faster evolution in caniforms (σ = 1.29
e-5

) than feliforms (σ = 7.34
e-6

; σ ratio = 1.752, P 

= 0.001). 

For mandibular size the same test showed a significant difference in the rate of evolution only 

for solitary hunters, which again evolved size variation at a much slower rate (σ = 0.006) than 

the other taxa (σ = 0.002; σ ratio = 2.358, P = 0.032).      

 

Discussion 

Detecting phenotypic convergence in multivariate traits such as those generated by geometric 

morphometrics is challenging. Multiple landmark coordinates can be reduced by factorial 

analyses such as principal component as to generate an empirical morphospace, but graphical 

representation of PCA might be misleading due to its high dependence on sample size and 

distribution (i.e., altering number of cases might alter the structure of the co-variance matrix 

hence the PC scores, Adams et al. 2011). This can result in a wrong interpretation of 

functional convergence.  

Using morphological disparity we identified convergence to occur in the mandible 

shape of solitary hunter carnivorans. Incomplete convergence was also identified in pack 
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hunters, yet non-behavioural ecological characterisations based on feeding style, such as 

hypercarnivory or durophagy, are not associated with convergence in the mandible of large 

carnivorans. This result suggests that sharing phenotypic morphospace might not be a solid 

indication of convergence when compared to methods based on morphospace volume and 

direct comparison with random models (Stayton 2006). In all of our analyses, 

hypercarnivorous taxa exhibit smaller morphological disparity than other species or their 

sister groups (Table 1), thus strongly confirming previous assertions on carnivoran 

ecomorphology (Holliday and Steppan 2004), although this pattern is not statistically distinct 

from randomness. In Holliday and Steppan’ study, discrete skull characters were analysed in a 

sample including both fossil and extant Carnivora. We analysed only mandibular size and 

shape, and only extant species for which a more field observation-oriented definition of 

hypercarnivory applies (i.e., diet including > 75% of meat).  

Our results only partially support a previous investigation by Figueirido et al. (2011) 

where hypercarnivores strongly overlapped in mandibular morphospace due to shared traits: 

shortening of the molar crushing area, elongation of the slicing area, enlarged canine area, 

relatively shorter corpus and posteriorly projected coronoid (cf. Fig. 1a). These traits 

represent functional adaptation to a range of biomechanical loadings imposed by the necessity 

of dealing with a food that is not easy to catch - live prey (cf. Meloro et al. 2011), and they 

consistently occur in solitary hunters. This group is the only one showing complete 

convergence. Our interpretation is that mandibular design must be optimized in order to cope 

with the high functional demands of subduing and killing a prey alone, especially since 

applying killing bites imposes high biomechanical loading on the canines (cf. Prevosti et al. 

2012). This killing behaviour occurs consistently in all extant large felids and is present also 

in the fossa and in two large caniforms: the wolverine and the polar bear. For the polar bear, 
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the idea that solitary hunting imposes a functional constraint on skull morphology was 

advanced by Slater et al. (2010), who identified a rapid phenotypic change in this species 

relative to other omnivorous bears. Field studies on the wolverine support the notion that 

these species individuals are capable of killing prey as large as caribou and moose, which 

greatly outweigh them (Ewer 1973; Lofroth et al. 2007).  

The evolution of adaptations to killing prey as lonely hunters appears to occur in 

parallel in caniforms and feliforms, as evidenced by ANCOVA statistical models (Table 2). 

On the other side, the incomplete convergence detected for pack hunters is possibly the result 

of little variation among clades since only large canids and one feliform (the spotted hyena) 

exhibit this behaviour. With incomplete convergence in these taxa, one might argue that pack 

hunting can be less biomechanically demanding than solitary hunting, and is hence less 

functionally constrained. Cooperative behaviour might sometimes occur also in felids (e.g., 

the lion, Schaller 1972) although their killing technique is clearly distinct from that of wild 

canids and hyenas (Bicknevicius and Van Valkenburgh 1996). While prey killing is operated 

by a single individual even in a pride of lionesses, the usual killing technique in pack hunters 

such as hunting dogs, spotted hyenas and wolves involves repeated bites to the gonads and the 

bellies delivered by different individuals (Kruuk 1972; Mech 1980; Creel and Creel 2002).  

A broader taxonomic overview including also small carnivorans might possibly alter 

the pattern of convergence detected in relation to social hunting behaviour. Yet, it’s clear that 

rapid, repeated bites aimed to kill prey by bleeding as in typical pack hunters are not as 

demanding as single prolonged bites aiming to kill prey by suffocation as in the lion. Still, 

small carnivores rarely focus on prey larger than themselves when in groups (see Friscia et al. 

2007).  



15 

 

We note that previous attempts to detect convergence in Carnivora generally restricted 

the sample to large taxa inclusive of fossil species (cf. Werdelin 1989; Figueirido et al. 2011, 

2013). Since ecological categorisation of fossil species is generally inferred by 

ecomorphology, extinct taxa should be considered with caution because this might generate 

circular arguments in testing convergence unless other methods (“morphology-free”) are 

employed to categorise them (e.g., geochemical dietary proxies or tooth microwear). This is 

particularly relevant given the huge importance of killing behaviour on convergence the 

present study suggests. 

High biomechanical demands apparently favour convergence in the carnivoran 

mandible. If this was the case for solitary hunters, why was no convergence been detected in 

durophagous species? Our analyses always support, for this category, a similar or even larger 

morphological disparity than sister or remaining clades in mandible shape. In keeping with 

recent findings of Figueirido et al. (2013), we also detected shared morphospace along the 

first and the third PC axes (Fig. 1b) that describe a suite of shared traits in the mandible for 

durophagous species: enlargement of the coronoid region and premolar area, higher curvature 

at the posterior area of the molars, shortening of diastema and canine (Fig. 1b). There are 

different possible explanations to support the lack of convergence in durophages:  

1. durophagy does not impose a common “environmental” selective regime (sensu 

Futuyma 2010); although tough food such as bamboo and bones might share similar 

material properties, they are chewed differently and constitute different fraction of a 

carnivoran diet [bamboo constitute more than 99% of pandas diet in the wild (Johnson 

et al. 1988; Wei et al. 1999) while bones account for some 20% of the spotted hyena 

diet (Van Valkenburgh 1996)]; 
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2.  durophagy is not an obligatory feeding behaviour; pandas experience hour-long cyclic 

loading on their cheek teeth during mastication because they are selective bamboo 

feeders, whereas hyenas (and any other bone-chewing carnivorans) have to withstand 

high loadings that occur rather episodically. Additionally hyenas generally kill 

relatively large prey that fight for their life once grappled (Kruuk 1972; Schaller 1972) 

and hence require also traits of the hypercarnivory morphospace; 

3. if durophagy is defined as bone crushing, it might be more widespread across 

Carnivora than usually assumed. All carnivorans require a supply of calcium in their 

diet, which they generally obtain from the bones of their prey (Allen et al. 1996), 

without any distinction to consumers of both large and small prey. Even small cats, the 

alleged ‘non-bone consumers’ par excellence, consume bones when eating mice or 

other small prey as a whole (for a detailed discussion see Meloro 2011a [430-431] and 

Meloro 2012). 

The non-convergence pattern identified for mandibular form space (Fig. 2) supports size 

changes between species as a primary mechanism of niche differentiation in Carnivora 

(Carbone et al. 1999, 2007). Meloro and Raia (2010) already identified this pattern by looking 

at lower carnassial length, and our findings confirm a trend observed also in fossil species. 

PGLS does not support interspecific allometry in the dataset employed, but this appears to be 

a trend that might change depending on taxa included (cf. Meloro et al. 2008; Figueirido et al. 

2011; Meloro & O’Higgins 2011; Prevosti et al. 2012). As a generalisation confirmed also by 

previous studies, interspecific allometry explains only a small portion of mandibular shape 

changes in Carnivora suggesting that shape change might be related to different ecological 

factors.  
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 The tests for phylogenetic signal and evolutionary rate provide stronger support for a 

lack of convergence in form space and size-shape differences. We confirmed mandible size to 

be less conservative within carnivorans than its shape. This pattern contrasts with recent 

findings on primates (Meloro et al. in press) that show exactly the opposite trend, thus 

suggesting that mammals might exhibit distinct patterns of evolutionary allometry in relation 

to feeding adaptations. With size being more evolutionary malleable in Carnivora, it allows 

rapid diversification to be tightly linked to environmental adaptations (Davies et al. 2007; 

Meiri et al. 2009). Evolutionary rates indicate morphological stasis in solitary hunters, whose 

size and shape evolved consistently slower than other taxa. Once an optimal design to deal 

with such high functional demands is in place, it changes little within clades: that is the case 

especially of felids, which represent the highest percentage of solitary carnivoran hunters. In 

relation to this, it is also not surprising to find feliforms generally evolving at much lower rate 

in mandibular shape than caniforms. The early establishment of some particular morphology 

was also identified in previous studies on the mandible and it supports the tight link between 

feeding adaptation and mandible shape in groups with limited dietary variation (e.g., felids, 

Meloro and O’Higgins 2011; Prevosti et al. 2012; perissodactyls, Raia et al. 2010). This does 

not preclude convergence to occur on a broader taxonomic scale, but confirms the importance 

of attaining certain optimal designs.          

   

Conclusions 

The interpretation of morphological disparity allowed us to identify convergence in the 

mandible shape of solitary large carnivorans. This metric represents a feasible way to deal 

with multivariate shape data and already provided support to patterns of macroevolutionary 

diversification within carnivorans and other meat eating mammalian groups (Holliday and 
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Steppan 2004; Meloro 2011b; Prevosti et al. 2012; Bennett and Goswami 2013; Echarri and 

Prevosti 2015). We emphasized the strong functional demands on the mandibular design 

required to kill prey alone for terrestrial carnivorans, while consumption of bamboo and bones 

is not statistically associated with convergence among distantly related taxa (the pandas and 

hyenas).   
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Figure legends 

Fig. 1 Scatter plot of the first vs second Principal Component (=PC) (a) and the second vs the 

third PC (b) derived from a sample of 57 carnivoran mandible shape coordinates. 

Transformation grids visualize shape deformations relative to the mean at the positive and 

negative extremes of PC axes. Specimens are labelled according to suborder (circle = 

Caniformia; triangle = Feliformia). The extreme feeding categories are coloured in black 

(solitary hypercarnivores) ; dark grey (pack hunters) or light grey (durophages) and the area 

hypercarnivores occupy is highlighted..  

 

Fig. 2 Scatter plot of the first vs second mponent (=PC) (a) and the first vs the third PC (b) 

derived from a sample of 57 carnivoran mandibular form (size+shape) coordinates. 

Transformation grids visualize form deformations relative to the mean at the positive and 

negative extremes of PC axes. Specimens are labelled according to suborder (circle = 

Caniformia; triangle = Feliformia).  

The extreme feeding categories are coloured in black (solitary hypercarnivores) ; dark grey 

(pack hunters) or light grey (durophages) and the area hypercarnivores occupy is highlighted..  



27 

 

Tables 

Table 1 Morphological Disparity values (MD), Multidimensional Convergence Index (MCI) and probability values after 10,000 data 

permutation accounting for different hypotheses of convergence based on species averaged sample (N = 57) of mandible shape. Significance 

(P<0.005) is highlighted. 

 

Shape Form 

  MD MCI Compl. P Incompl. P MD MCI Compl. P Incompl. P 

Hypercarnivores (N = 28) 0.013 
   

53.491 
   

Sister taxa  (N=16) 0.0161 1.241 0.615 0.221 51.433 0.961 0.937 0.706 

Pack (N = 5) 0.0088 
   

46.415 
   

Sister taxa (N=5) 0.0162 1.828 0.084 0.008 59.673 1.286 0.076 0.116 

Solitary (N=21) 0.0086 
   

53.441 
   

Sister taxa (N=9) 0.0267 3.105 <0.0001 <0.0001 55.098 1.031 0.491 0.541 

Durophages (N = 5) 0.0243 
   

66.679 
   

Sister taxa  (N=14) 0.0221 0.912 0.657 0.657 66.213 0.993 0.698 0.809 

 

 

 

 



28 

 

Table 2 Summary statistics for different ANCOVA models with shape as dependent variable. Dependent variables are listed in first column 

together with their interaction terms. PGLS represent the models including phylogenetic covariance matrix into account. Significance (P<0.005) 

is highlighted. 

 
Non-phylogenetic PGLS 

  SS MS R
2
 F P value SS MS R

2
 F P value 

Hypercarnivory 0.150 0.150 0.229 18.685 0.001 0.001 0.001 0.067 3.898 0.356 

Hypercarnivory*suborder 0.023 0.023 0.035 2.875 0.108 0.000 0.000 0.009 0.523 0.019 

Pack 0.014 0.014 0.022 1.627 0.301 0.001 0.001 0.071 4.179 0.161 

Pack*suborder 0.006 0.006 0.010 0.731 0.773 0.000 0.000 0.021 1.214 0.189 

Solitary 0.174 0.174 0.266 22.632 0.001 0.002 0.002 0.104 6.269 0.228 

Solitary*suborder 0.008 0.008 0.012 0.995 0.640 0.000 0.000 0.009 0.526 0.333 

Durophagy 0.038 0.038 0.057 4.766 0.015 0.001 0.001 0.035 1.944 0.001 

Durophagy*suborder 0.026 0.026 0.039 3.241 0.057 0.000 0.000 0.012 0.683 0.001 
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FIGURE 1 
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FIGURE 2 

 


