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Abstract—New protocols such as WebRTC promise seamless
in-browser peer-to-peer communications that in theory remove
the need for third-party services. In practice, widespread use of
Firewalls, NATS and dynamic IP addresses mean that overlay
addressing or use of some fixed rendezvous point is still needed.
In this paper we describe a proximity-based pairing scheme that
uses a signalling service to minimise the trust requirements on the
third party, achieving anonymity and avoiding the need for PKI,
while still requiring only a simple asymmetric pairing protocol.

I. INTRODUCTION

Although the Internet was originally designed to allow
seamless point-to-point communication using just IP addresses
as a universal addressing scheme, the simplicity of this ap-
proach rarely applies in practice. Internet engineers introduced
Network Address Translation (NAT) to allow multiple devices
to share a single IP address. This also had the effect of restrict-
ing links to only those initiated through outbound connections.
Ingress-filtering firewalls introduce similar restrictions, aiming
to prevent externally initiated threats while minimising the
restrictions imposed on those inside the firewall.

To a large extent the Web has been unaffected by this,
given its firm adherence to a client-server design philosophy.
However, as a result Web-based services tend to be highly
centralised and users are therefore heavily reliant on trust in
the organisations that run them.

Many current projects aim to offer a more federated and
distributed approach to communications, attempting to avoid
the need to rely on monolithic trusted intermediaries. Web-
based examples such as diaspora* [4], ownCloud [15] and
pump.io [19] offer federated Web-based alternatives to the
likes of Facebook, Dropbox and Twitter respectively [16].

While these approaches focus on federation, there have also
been attempts to introduce a peer-to-peer approach to the Web
in general. In June 2009 Opera released Opera Unite, giving
users the ability to publish their own Web-content directly
from their browser, hosted locally. Effectively it integrated a
Web server into the browser, using UPnP for local connections
and an Opera-hosted proxy for NAT traversal. Opera Unite
failed to gain traction however, and was disabled as a default
feature of the Opera browser in June 2012 [14].
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One of the most recent and successful attempts to introduce
direct browser-to-browser communications has been WebRTC
(Web Real Time Communications) protocol. Currently a draft
W3C standard [3], WebRTC is already being deployed in Fire-
fox, Chrome, Opera and Edge. WebRTC uses the Interactive
Connectivity Establishment (ICE) protocol [21], which uses
other techniques such as Session Traversal Utilities for NAT
(STUN) and Traversal Using Relays around NAT (TURN), to
negotiate NAT boundaries. We describe the WebRTC protocol
more fully in the next section.

WebRTC can be a fully point-to-point protocol between
Web browsers. However, the specification does not include any
means of determining or authenticating endpoints; it assumes
this step has already taken place. As a result, there is a need
for a method of securely determining the end points for a
communication session.

In this paper we present such a method using a proximity-
based identity pairing mechanism. There are three important
elements to this. The first is the use of unidirectional proximity
pairing (using a QR code) as a means of authentication for
tying users to devices. The second is the use of an untrusted
signalling service for matching devices to IP addresses. The
third is the combining of certificate fingerprints with iden-
tities. The novelty of this work derives from the dual use
of fingerprint and ID, as a means of providing anonymous
communications via an untrusted signalling server, which also
provides robust authentication for the end-points without the
need for any pre-trusted architecture such as Public Key
Infrastructure (PKI).

II. THE WEBRTC PROTOCOL

Although still only at draft W3C stage, the fact of its
integration into the most popular Web browsers has set up
WebRTC as a de facto standard for real-time communications.
In theory the media format is unrestricted, but in practice
WebRTC is primarily used for video and voice calls between
pairs of individuals. Google Hangouts, amongst many other
services, already makes use of WebRTC.

WebRTC builds on numerous other standards such as ICE
for NAT traversal, Datagram Transport Layer Security (DTLS)
for establishing a secure session, Secure Real-time Transport
Protocol (SRTP) for real-time streaming and Secure Real Time



Fig. 1: Overview of WebRTC protocol

Control Protocol (SRTCP) for protecting control messages.
DTLS-SRTP is a key exchange mechanism that is made
mandatory in WebRTC where DTLS is used to establish
keying material and algorithms for the SRTP session. SRTP
then protects the application data sent over the WebRTC
data channels. Figure 1 provides a high-level overview of
how WebRTC leverage existing standards. Although WebRTC
defines Javascript methods for generating the offer and answer
messages used to negotiate the session, the means of relaying
these between browsers is left unspecified. The SRTP com-
munication is protected using a key derived from the master
secret key established during the DTLS stage.

DTLS will commonly use a trust chain to authenticate the
server’s certificate, relying on the established PKI for this.
However for client-client communications, WebRTC certifi-
cates are generated on-the-fly. Consequently it’s infeasible
to have them signed by an infrastructure CA. The WebRTC
draft does not propose any mechanism for validating these
certificates. It also defines no signalling channel for initiating
a session. However, the WebRTC defines the WRTCoffer and
WRTCanswer data structures that are assumed to be shared
between two clients as a precursor to communication, shown
as step 1 in Figure 1 during the session negotiation process.
The session negotiation process is carried out using the Session
Description Protocol (SDP). The WRTCoffer data type can
include a certificate fingerprint field, which can be SHA-128
or SHA-256 in some browsers (e.g. Chrome). The WebRTC
standard itself does not specify the hash function type. We
utilise this field as a critical part of our proposed protocol.
Without PKI or other validation mechanisms WebRTC would
be vulnerable to a man-in-the-middle (MitM) attack, since the
end-points do not know the certificates in advance.

We prevent the attack by pre-sharing the fingerprints using
the Westhawk protocol defined in Section IV. Any alteration
to the certificates can then be immediately identified as shown
in Section VI, allowing any MitM attack to be identified and
the session aborted.

III. LITERATURE REVIEW

As the WebRTC standards are still in the draft stage [3],
there are currently no definitive authentication requirements.
Therefore, various solutions are being considered for We-
bRTC, presently the most popular is DTLS-SRTP [9]. This

uses the DTLS handshake to establish keying material, al-
gorithms and parameters to secure RTP packets (becoming
SRTP) [8]. There are both non-PKI and PKI versions of DTLS-
SRTP but it depends upon a PKI to prevent MiTM attacks.

An alternative method being considered is ZRTP [18],
which uses the Diffie-Hellman key exchange during the call
setup to generate a shared secret, used to generate the keys
and salt for the SRTP session. However, this does not protect
against MiTM attacks, so to ensure the attacker is not present
in the first encounter (i.e. when no shared secrets exist),
ZRTP uses the short authentication string method, which
involves both parties verbally cross-checking a shared value
displayed at both end-points. Unlike DTLS-SRTP, ZRTP does
not depend on a PKI to prevent MiTM attacks but is not
considered as secure as a PKI version of DTLS-SRTP.

Bell Labs have also proposed a secure and lightweight
authentication mechanism that could be used within WebRTC
[8]. It involves the use of an extra key in the SIP setup, and the
evaluation of a pseudo-random permutation (e.g. AES). Their
protocol claims to be a trade-off between security, costs and
deployment complexity. Therefore bridging the gap between
the complexity of DTLS-SRTP and ZRTP, and the insecurity
of Session Description Protocol Security Descriptions (SDES).
Coincidently, SDES has largely been dropped from WebRTC
due to its inadequate security capabilities [11].

The other main proposed method of authentication for
WebRTC involves the use of Web-based identity management
providers (IdM). The WebRTC draft standards propose the use
of IdMs [9] but no mechanisms are specified [2]. The idea is
that two parties can circumvent trusted signalling servers, by
authenticating against a mutually-trusted third party (e.g. social
networks), which can be accomplished browser-to-browser.
The main solutions being considered include OpenID [1],
oAuth [7] and BrowserID [2].

As WebRTC is entirely browser-based, it is important that
authentication schemes are widely compatible, particularly
with computationally-limited devices. It is for this reason that
we have also examined the latest IoT, proximity-based and
out-of-band authentication research.

An emerging trend in authentication is the use of mobile
devices. For example, Sun et al. [24] propose a novel two-
factor multi-touch authentication scheme in which users draw
on a mobile touch-screen with one or multiple fingers. Users
are authenticated based on the geometric properties of the
drawn shape as well as the physiological characteristics (e.g.
velocity, acceleration, pressure and finger size). Similarly, Li et
al. [12] propose a near field proximity authentication scheme
for smartphones. This scheme involves the user simultane-
ously drawing a zigzag pattern on the screens of two mobile
phones placed next to each other, using two fingers from
the same hand. The extracted datasets have many features
(e.g. curvature, curvature distance, moving time), which are
used to generate a cryptographic key using a private set
intersection protocol. Additionally, Lu et al. [13] propose
a two-factor mutual authentication scheme for smart-living
devices, with a session key agreement mechanism. It uses the



Fig. 2: Interactions between devices when pairing

devices’ international mobile subscriber identities (IMSIs) and
an identity-based remote mutual authentication scheme based
on elliptic curve cryptography (ECC).

Another trending focus is ensuring authentication schemes
remain lightweight, such as the work by Petrov et al. [20],
which presents a many-to-many authentication scheme, based
on passive NFC tags which store encrypted passphrases for
each service used. The scheme ensures the passphrases can
only be decrypted by the service for which it was intended
to be used with. Another example is by Shivrav et al. [22],
who propose a two-factor One Time Password (OTP) authen-
tication scheme for IoT. It uses a lightweight identity-based
elliptic curve cryptography scheme, which does not require
key storage or depend on previous keys.

Finally, another trending focus is to attempt to integrate
forms of user identity assurance into authentication schemes.
For example, Shone et al. [23] present a two-factor mobile
IoT device authentication scheme, one factor uses challenges
derived from users’ own digital memories. Durmus et al.
[6] propose EAP-SocTLS, which is a decentralized approach
for Wi-Fi access point authentication using embedded trust
relations. It uses social networks to identify the trust relations
between people and devices, and it claims to provide a more
secure mechanism. Although this is for Wi-Fi, the concept of
combining spatio-temporal and social network authentication
could easily be applied to WebRTC.

While there are a large number of generalised pairing proto-
cols to be found in the literature [17], in contrast the protocol
presented here focusses on the combined use of certificate
fingerprints and identities as a means of avoiding the need for
a trusted intermediary. By integrating this into the proximity
pairing protocol described in the next section to bootstrap the
WebRTC session, we are able to replace the identity provider
with an untrusted signalling service, thereby increasing privacy
without compromising mutual authentication.

IV. PAIRING PROTOCOL

The Westhawk protocol involves a process of pairing two
devices, followed by the establishment of a call using We-
bRTC. The WebRTC portion is largely unchanged, apart from
the addition of some new authentication checks that can
be performed locally and individually by the two devices
(hence not altering the protocol itself). In this section we’ll

concentrate on the pairing protocol, which therefore represents
the main contribution of this work.

We assume the use of two devices, one of which has camera
capabilities (e.g. a phone) and the other has a screen (e.g. a
tablet). Let’s suppose Alice is using the phone and Bob the
tablet, as shown in Figure 2.

The broad stages of the pairing protocol are that the
two devices register their identities with a signalling service.
These identities are generated as the hashes of the certificates
(essentially the public keys) that will be used by the WebRTC
protocol. Since they are not dependent on one another, the
certificates can be generated in advance.

The phone and tablet are both able to connect via the
Internet to the signalling service, and the service itself has been
chosen in advance. However, Alice and Bob don’t necessarily
trust the signalling service.

Bob concatenates his identity (the same certificate hash)
with a challenge nonce, which he then transfers to Alice using
an out-of-band channel. In our case we use a QR code for this:
Bob encodes his identity and the nonce in the QR code and
displays it on screen. Alice captures a photograph of the screen
and decodes it to reveal Bob’s identity.

Alice can then send her WRTCoffer message to the sig-
nalling service, which the signalling service then passes on to
Bob. Bob replies with an WRTCanswer message, sent via the
signalling service to Alice.

At this stage both Alice and Bob then have the information
they need to continue the standard WebRTC protocol without
the need for the signalling service (although a separate inter-
mediary may potentially be needed for the ICE exchange, but
which we omit here for brevity).

The sequence diagram for this process is shown in Figure
3. From the user’s point of view, both Alice and Bob press a
‘pairing’ button on their device (or an app or webpage button).
Bob’s device will then display a QR code that Alice scans,
which from their point of view will complete the process.

Having done this, at any time in the future, either Alice or
Bob can then initiate a call to the other without needing to
repeat the process.

V. IMPLEMENTATION

An implementation of the pairing protocol has been de-
ployed by the YoPet website [25], a service that allows owners
to communicate with their pets while away from home. Figure
4 shows the pairing process using the QR code to transmit the
ID of a laptop B to a phone A. The laptop is then positioned
to allow Alice’s pet (who happens to be called Bob) to view
the screen and be seen by the laptop camera.

Having established this pairing, Alice can then remotely
activate her laptop while away from home using her phone to
‘videochat’ with her pet, as shown in Figure 5.

VI. SECURITY ANALYSIS

Numerous potential security vulnerabilities could manifest
themselves in a protocol along these lines. Hence, the fol-
lowing sections consider such cases and discuss the potential
strengths and weaknesses of the protocol in relation to them.



Fig. 3: Protocol sequence diagram using asymmetric pairing

We premise this discussion on an active attack model (infor-
mally the Dolev-Yao security model [5]), with the exception of
the QR code visual channel. The proposed approach assumes
this step to be taken by a human bringing together two trusted
devices. While we discuss some possible attacks related to this
in the text below, our default assumption is that this provides
a secure channel (no interception, no chance of alteration, no
spoofing), in contrast to the insecure network.

A. Mutual Authentication

Authentication is achieved by transferring identities between
the two devices. As noted above, these identities fulfil a dual
purpose. First they represent the means for the two devices to
bootstrap the call routing process via the signalling service.
Second they represent the means for verifying each others’
identities, since they are generated as the hash of the public
keys used to encrypt and authenticate. The associated private
keys never leave their respective devices.

The authentication process from Bob to Alice is therefore
straightforward, since it’s achieved by transferring the QR

Fig. 4: YoPet device pairing using visual channel

code through the visual channel (step 3 in Figure 3). At this
point B’s identity isn’t secret (it’s sent in the clear at step
2). However, the only way for an attacker to capitalise on
this would be to present B’s identity as its own in step 3,
which would require the compromise of one of the devices,
the browser or the Javascript served to the browser. While any
of these would render the protocol insecure, our assumption
for the visual channel, using two trusted devices, leaves this
outside the scope of our threat model.

The reverse authentication is less straightforward, since this
is sent over the Internet in step 5 without the benefit of a
secure proximity-based channel. We must check that if a MitM
were to intercept and alter this message, or replay a previous
message, that Bob would be able to identify this. This is
particularly important at this stage given the signalling service
is still acting as a forwarder, so is in an ideal position to
perform such a MitM attack.

The integrity of the message is achieved through the use
of the challenge nonce N transferred from B to A in step
3, and used to generate the hash value H(H(PkA), H(PkB),

Fig. 5: YoPet video communication using WebRTC



{"type":"answer","sdp":"
v=0
o=mozilla...THIS_IS_SDPARTA-41.0.1 4104634441...
s=-
t=0 0
a=sendrecv
a=fingerprint:sha-256 BF:3E:50:AE:15:FF:5E:D8...
a=group:BUNDLE sdparta_0
a=ice-options:trickle
..."}

Fig. 6: Example WebRTC answer structure

N) transmitted in step 5. An attacker is unable to generate
this hash, or a version containing any changes, since they
will be unaware of the value N . Similarly, given that N is
freshly generated for each run of the protocol, any attempt to
replay an old message will be immediately identifiable by B
on regenerating the hash locally with the correct N (step 7).

It’s worth noting that as long as N is sufficiently random,
neither A nor B need to remember previous values, since the
transfer of N from B to A in step 3 cannot be intercepted,
altered or replayed (by virtue of the channel used to perform
the transfer). However, it is crucial that the values of N are
unpredictable and with sufficiently high entropy to ensure an
attacker, replaying an old message at step 6, will chance upon
the same value N with sufficiently low probability.

Having performed the check at step 7, B can be sure that
the identity H(PkA) is indeed that of A, thereby achieving
the authentication result. This then allows the certificates used
during the call itself to be authenticated, by comparing their
hashes against these identity values.

B. Man in the Middle Attacks
In the previous section we discussed the potential for a

MitM attack to subvert the authentication process, and saw
why an attempt up to and including step 7 wouldn’t be
successful. In steps 8 and 9 the WebRTC answer is returned
from B to A in the form of an SDP response. Although this
structure includes B’s identity, this isn’t tied cryptographically
to the rest of the data. As such, it’s important to be aware
that the integrity of the answer can’t be checked directly.
The connection between Alice/Bob and the Signalling Service
may be TLS-encrypted, but with the Signalling Service as an
intermediary this doesn’t represent end-to-end encryption.

The WebRTC answer contains details of the audio and video
streams that will be transmitted in SDP format wrapped in a
JSON structure, an excerpt of which is shown in Figure 6.

In practice, were a MitM attacker to change the contents of
the SDP answer, this would cause the session to fail. Moreover,
the fingerprint sent in the answer was already received by A
in step 3, so this doesn’t afford an attacker the opportunity
to perform an impersonation attack, or to compromise the
security of the later DTLS-SRTP session.

C. Visual Channel Attacks
A particular challenge when using visual channels such as

QR codes is the danger of a replay attack [10], whereby an

attacker captures an image of the QR code and displays this on
a device elsewhere. The danger increases if the authentication
mechanism is used for multiple services, since the QR code
itself gives no indication about which service the user is
logging in to. As a malicious service provider, I can therefore
switch the QR code for my service with the QR code of some
other service the user has an account with during the login
process (potentially replaying it in realtime). The user thinks
they’re logging in to my service, but in reality are allowing
me to log in to the user’s account with the other service.

The equivalent in the case of our protocol would be to have
Bob’s browser display the QR code of some other service at
step 3. The fact that Bob’s device is trusted mitigates the risk
compared to the classic case. Since the QR code is generated
by the Javascript loaded in the browser, the attack requires the
attacker to have control of this Javascript. This could happen in
a number of ways: the device/browser could be compromised,
the serving site could be compromised 1, or a phishing attack
might cause the user to go to the wrong site.

These fall outside our attacker model, since we assume the
device – including the browser and Javascript – to be trusted.
Nevertheless, approaches for mitigating these attacks might
include careful sandboxing and user care (e.g. checking the
serving site’s TLS certificate in the case of phishing).

Another related attack on the visual channel would be for
an attacker to capture an image of the QR code displayed by
B at step 3 and use it to pair with A before B is able to
complete the process. Using this technique (e.g. by capturing
the QR code using a long-distance camera) would provide
the attacker the identity H(PkA) and challenge N needed to
complete the pairing process without suspicion.

The attack effectively challenges our assumption that the
out-of-band visual channel is secure. Careful pairing by the
user can reduce the likelihood of this (e.g. by avoiding pairing
in public), as long as they are aware of the possibility.

D. Signalling Server Trust

One of the attractive features of WebRTC is it’s peer-to-
peer (browser-to-browser) nature, minimising the need to rely
on intermediate services. Depending on the network structure,
once the WebRTC SRTP connection has been established, the
call can potentially be routed without the need to go through
a centralised service. Our intention has been to retain this for
the pairing protocol. However, the lack of universal addressing
for browser-to-browser communication (e.g. due to the use of
NATs) means that a rendezvous point of some sort is needed.
This is provided by the signalling service.

Apart from the step 3 sent on the visual channel and the
WebRTC call itself, all other pairing messages are sent through
the Signalling Server, S. A natural question is therefore “to
what extent must S be trusted”. Ideally there should be no
trust requirement, but this deserves closer inspection.

There are no secrets shared between A and S or B and S.
The Signalling Service takes the same role as a potentially

1The required Javascript could be served locally to avoid this.



malicious MitM attacker and therefore introduces identical
risks to those discussed in Section VI-B. It can alter the
contents of messages which will result in the termination of the
protocol. It can view the SDP offer/answer structures which
are sent in the clear.

The identities H(PkA) and H(PkB) must be generated
fresh for each pairing, since separate certificates will be used
in each case, reducing the ability of S to correlate device
pairings. However, fixed IP addresses could potentially be used
to correlate device pairings. It has no opportunity to correlate
calls since these are conducted peer-to-peer.

In practice then, S has minimal opportunity to compromise
the process, having no more knowledge or access than any
other potential MitM attacker.

VII. CONCLUSION

WebRTC has the potential to drive the development of
many new browser-based realtime communication applica-
tions. While direct browser-to-browser communications and
security are deeply embedded in the standard, the initial
pairing process has been left intentionally unspecified.

While existing pairing mechanisms invariably rely on
trusted intermediaries, such as identity providers, we remove
this requirement using a novel repurposing of the certificate
fingerprints as transient identity tokens. These can then be
used by an untrusted signalling service to initiate a pairing.
Moreover, we make use of a visual QR code to transfer the
identity and challenge data needed to bootstrap the authentica-
tion process, particularly applicable to scenarios using trusted
devices that minimise the potential for replay attacks. The
handover to WebRTC that allows direct browser-to-browser
streaming prevents the signalling service from tracking or
associating future communication sessions.

Our security analysis demonstrates that the reliance on a
trusted identity provider can be safely removed through the
use of an untrusted signalling service combined with a careful
pairing mechanism. Integrated with the direct communications
supported by WebRTC our system provides particularly attrac-
tive properties from a privacy perspective.

The current approach assumes the use of trusted devices
and a secure visual communications channel. In future work
we intend to consider other mechanisms that may allow for
more remote pairing. We also hope to consider the use of the
protocol in the context of the Internet of Things, especially
in scenarios where scope for visual input/output may be more
limited. We are also interested in the potential for the security
properties of the protocol to be validated formally.
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