
Barrett, JS, Strauss, JA, Chow, LS, Shepherd, SO, Wagenmakers, AJM and 
Wang, Y

 GLUT4 localisation with the plasma membrane is unaffected by an increase in 
plasma free fatty acid availability

http://researchonline.ljmu.ac.uk/id/eprint/22980/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Barrett, JS, Strauss, JA, Chow, LS, Shepherd, SO, Wagenmakers, AJM and 
Wang, Y (2024) GLUT4 localisation with the plasma membrane is unaffected 
by an increase in plasma free fatty acid availability. Lipids in Health and 
Disease, 23 (1). pp. 1-13. ISSN 1476-511X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Barrett et al. Lipids in Health and Disease           (2024) 23:94  
https://doi.org/10.1186/s12944-024-02079-z

RESEARCH

GLUT4 localisation with the plasma 
membrane is unaffected by an increase 
in plasma free fatty acid availability
J. S. Barrett1, J. A. Strauss1, L. S. Chow2, S. O. Shepherd1*, A. J. M. Wagenmakers1† and Y. Wang3† 

Abstract 

Background Insulin-stimulated glucose uptake into skeletal muscle occurs via translocation of GLUT4 from intracel-
lular storage vesicles to the plasma membrane. Elevated free fatty acid (FFA) availability via a lipid infusion reduces 
glucose disposal, but this occurs in the absence of impaired proximal insulin signalling. Whether GLUT4 localisation 
to the plasma membrane is subsequently affected by elevated FFA availability is not known.

Methods Trained (n = 11) and sedentary (n = 10) individuals, matched for age, sex and body mass index, received 
either a 6 h lipid or glycerol infusion in the setting of a concurrent hyperinsulinaemic-euglycaemic clamp. Sequential 
muscle biopsies (0, 2 and 6 h) were analysed for GLUT4 membrane localisation and microvesicle size and distribution 
using immunofluorescence microscopy.

Results At baseline, trained individuals had more small GLUT4 spots at the plasma membrane, whereas seden-
tary individuals had larger GLUT4 spots. GLUT4 localisation with the plasma membrane increased at 2 h (P = 0.04) 
of the hyperinsulinemic-euglycemic clamp, and remained elevated until 6 h, with no differences between groups 
or infusion type. The number of GLUT4 spots was unchanged at 2 h of infusion. However, from 2 to 6 h there 
was a decrease in the number of small GLUT4 spots at the plasma membrane (P = 0.047), with no differences 
between groups or infusion type.

Conclusion GLUT4 localisation with the plasma membrane increases during a hyperinsulinemic-euglycemic clamp, 
but this is not altered by elevated FFA availability. GLUT4 appears to disperse from small GLUT4 clusters located 
at the plasma membrane to support glucose uptake during a hyperinsulinaemic-euglycaemic clamp.

Keywords Lipid infusion, GLUT4 translocation, Skeletal muscle

Introduction
In healthy individuals, the physiological increase in insu-
lin following a meal is a potent stimulus for plasma glu-
cose uptake into skeletal muscle [1]. Four hours following 
oral ingestion of 92  g of glucose, leg glucose uptake is 
reported to increase three-fold [2], and during a hyperin-
sulinaemic-euglycaemic clamp leg glucose uptake is ele-
vated approximately five-fold [3]. Approximately ~ 80% of 
glucose removed from the circulation during a hyperin-
sulinaemic-euglycaemic clamp in insulin sensitive indi-
viduals enters skeletal muscle [4, 5]. This makes skeletal 
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muscle a key determinant of glucose homeostasis, with 
dysregulation of glucose uptake into muscle having 
implications for the development of insulin resistance.

Glucose uptake into skeletal muscle occurs predomi-
nantly through facilitated diffusion, where glucose trans-
porter proteins play a fundamental role. In total, there are 
14 identified glucose transporter isoforms [6], of which, 
glucose transporter 4 (GLUT4) is the predominant insu-
lin-responsive isoform required for glucose uptake into 
skeletal muscle [7]. At rest, GLUT4 resides in intracel-
lular cytosolic micro-vesicles (GLUT4 storage vesicles; 
GSV), but in response to increases in plasma insulin 
concentrations or muscle contraction an increased num-
ber of subsarcolemmal GSV’s merge with the plasma 
membrane. Early studies used density gradient centrifu-
gation methods to isolate pure plasma membrane frac-
tions and subsequently measure the protein expression 
of GLUT4. Using this approach, Guma et al. [8] reported 
a 60% increase in plasma membrane GLUT4 content 
30–40  min after the start of a hyperinsulinaemic-eugly-
caemic clamp.

However, fractionation methods (aside from the 
potential cross-contamination issues) preclude the abil-
ity to understand the cellular distribution of GLUT4. 
To overcome these issues, electron microscopy or 
fluorescence microscopy of immuno-stained GLUT4 
in muscle fibres have provided both quantitative and 
spatial information regarding the location of GLUT4 
vesicles during basal, insulin-stimulated, and contrac-
tion-stimulated states [9]. Studies using both confocal 
immunofluorescence microscopy and electron micros-
copy combined with immuno-gold labelling in whole 
single fibres of rat soleus muscle have shown that 
GLUT4 is present in the trans-Golgi network (TGN) 
membranes, endosomal membranes and GSV’s [9–12]. 
Studies using immunofluorescence microscopy in mus-
cle fibres of rodents have defined GSV’s in the TGN as 
having a diameter > 1  µm [11]. Interestingly, electron 
microscopy images have shown that endosomes appear 
smaller than TGN stores [9], but larger than GSV’s that 
are reportedly as small as 40 nm [12]. In mice, in vivo 
methods have been developed where mice express 
GLUT4-HA that can confirm GLUT4 insertion into 
the plasma membrane [13, 14], however the chronic 
expression of tagged-GLUT4 in human models is not 
possible. Bradley et  al. [15], developed an immuno-
fluorescence microscopy method to visualize changes 
in the subcellular distribution and content of GLUT4 
in response to oral glucose ingestion and exercise. This 
study demonstrated a measurable increase in GLUT4 
co-localisation with the plasma membrane in response 
to both glucose ingestion and exercise, alongside a 

reduction of GLUT4 from large and small clusters 
[15]. Thus, using this immunofluorescence microscopy 
method it appears that both exercise and glucose inges-
tion (separately) stimulate net GLUT4 translocation to 
the plasma membrane. Missing from this work, how-
ever, was whether fibre type differences in GLUT4 dis-
tribution and translocation exist.

Elevated plasma free fatty acid (FFA) and triglyceride 
concentrations give rise to lipid accumulation in skel-
etal muscle (intramuscular triglyceride; IMTG) in obe-
sity and type 2 diabetes, which is subsequently linked 
to the development of insulin resistance [16]. More 
specifically, it is the accumulation of lipid metabolites, 
such as diacylglycerols and ceramides, which directly 
impact insulin signalling leading to impaired insulin-
stimulated glucose uptake in obese individuals and 
type 2 diabetes patients [17, 18]. Lipid infusion is a 
well-established model of lipid-induced insulin resist-
ance, and specifically causes a reduction in peripheral 
glucose uptake when lipid is infused alongside a hyper-
insulinaemic-euglycaemic clamp [19, 20]. Importantly, 
2  h of lipid infusion does reduce glucose disposal, but 
continuing the lipid infusion for 4 to 6 h does eventu-
ally lead to a decrease in glucose disposal rates which 
is similar in trained and sedentary individuals [19, 21, 
22]. In response to a 6 h lipid infusion, IMTG content 
increases independent of training status [22]. How-
ever, in the same samples Chow et  al. [22], reported 
that sedentary individuals also accumulated diacylg-
lycerol. Interestingly, despite reduced glucose disposal, 
no changes in the phosphorylation or activation of 
key insulin signalling components, including insulin 
receptor substrate (IRS)-1 tyrosine, IRS-1–associated 
phosphatidylinositol (PI) 3-kinase, Akt, and AS160 
was observed [21]. This leads us to question whether 
the suppression of glucose disposal in response to a 
lipid infusion impacts the availability of GLUT4 at the 
plasma membrane.

The aim of the present study was to visualize the 
co-localisation of GLUT4 to the plasma membrane in 
human skeletal muscle in response to an Intralipid™ 
infusion that has previously been shown to reduce 
glucose uptake [21, 23]. Specifically, we investigated 
the changes in GLUT4 colocalization to the plasma 
membrane marker dystrophin and the changes in loca-
tion and number of both large and small GLUT4 spots 
that occurs following 2  h and 6  h of either a glycerol 
or an Intralipid™ infusion alongside a concomitant 
hyperinsulinaemic-euglycaemic clamp. We tested the 
hypothesis that GLUT4 colocalization to the plasma 
membrane would increase at 2 h of either a glycerol or 
Intralipid™ infusion but would be reduced after 6 h of 
the Intralipid™ infusion only.
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Methods
Participants and ethical approval
The muscle samples used in the present study were col-
lected as part of a previous study and therefore the pro-
cess of recruitment and study protocol have already been 
described in detail [21, 22]. The current study included 
11 healthy lean trained individuals and 10 sedentary 
individuals that were recruited and matched for sex, age 
(± 5 years) and BMI (± 1.5 kg/m2). Subject characteristics 
for each group are presented in Table 1. The viability of 
the samples from two participants (both trained individ-
uals; one from the lipid infusion group and one from the 
glycerol group) were compromised (due to frost damage) 
and were not included in the final analysis (9 trained, 10 
untrained). Sedentary individuals participated in 30 min 
or less of active exercise per week, whereas trained 
individuals participated in a regular running program 
(≥ 45  min/day, ≥ 5  days/wk). Training was self-reported 
using the short form International Physical Activity 
Questionnaire, a validated physical activity question-
naire [24], and fitness level was documented by VO2max 
testing [21]. The study protocol was approved by the 
University of Minnesota Institutional Review Board and 
informed consent was obtained from all participants.

Study protocol
The study protocol has been described in detail previ-
ously [21, 22]. Briefly, pre-screening assessments were 
carried out of body composition (dual-energy X-ray 
absorptiometry), maximal aerobic fitness  (VO2max) and 
insulin sensitivity (3  h hyperinsulinaemic euglycemic 
clamp). For the hyperinsulinaemic enuglycaemic clamp, 
insulin was infused [1.5  mU.kg  FFM−1.min−1] alongside 
a potassium infusion (KPO4 at 50  ml.h−1). At the same 

time a glucose infusion was started (dextrose 20%), and 
blood glucose was measured every 10 min using a bed-
side monitor (Analox model GM9D; Analox Instru-
ments, Lunenburg, MA) with the glucose infusion rate 
subsequently titrated to maintain blood glucose in the 
range 4.7–5.3 mmol.L−1. On a separate day, participants 
attended the Masonic Clinical Research Unit (MCRU) 
at the University of Minnesota and consumed a stand-
ard evening meal (41% carbohydrate, 32% fat and 27% 
protein) before remaining on bed rest at the unit over-
night until study completion the following day. After an 
overnight fast, participants underwent either a 6 h lipid 
infusion (20% Intralipid® at 90 ml.h−1 [Baxter, Deerfield, 
IL, USA]) or 6  h glycerol infusion (2.25  g. 100   ml−1 at 
90  ml.h−1) concurrent with a hyperinsulinemic eugly-
cemic clamp (insulin, 1.5 mU.kg  FFM−1.min−1; KPO4 at 
50 ml.h−1; dextrose 20% titrated to keep glucose at 4.7–
5.3  mmol.L−1). Intralipid® was mainly comprised of the 
following fatty acids: linoleic acid (44–62%), oleic acid 
(19–30%), palmitic acid (7–14%), linolenic acid (4–11%) 
and stearic acid (1.4–5.55). The glycerol infusion matched 
the glycerol content of the lipid infusion to limit the effect 
of the lipid infusion on FFA elevation [22]. Muscle biop-
sies were obtained prior to the initiation of the infusion 
(Bx1), at 120 min (Bx2) and at 360 min (Bx3) of infusion. 
Each muscle biopsy was dissected free of fat and connec-
tive tissue before being embedded in Tissue-Tek OCT 
Compound (Sakura Finetek Europe, Alphen aan de Rijn, 
The Netherlands) and frozen in liquid nitrogen-cooled 
isopentane for immunohistochemical analyses.

Muscle analysis
The immunohistochemistry staining protocol has been 
previously reported by Bradley et al. (2014). Briefly, serial 
5  µm cryosections were cut at -30  °C and transferred 
to ethanol-cleaned glass slides and fixed and permea-
bilized in 75% acetone with 25% ethanol for 5 min [25]. 
Slides were then washed 3 times for 5 min in phosphate-
buffered saline (PBS, 137  mmol/L sodium chloride, 
3  mmol/L potassium chloride, 8  mmol/L sodium phos-
phate dibasic, 3 mmol/L potassium phosphate monoba-
sic). The primary antibody targeting GLUT4 (rabbit 
IgG, ab216661, Abcam, Cambridge, UK) was applied 
to the sections at a dilution of 1:200 in 5% normal goat 
serum (ThermoFisher) and was incubated at room tem-
perature for 2  h. The GLUT4 antibody was combined 
with an antibody targeting dystrophin (D8168, Sigma 
Aldrich, Dorset UK), to visualise the plasma membrane, 
and an antibody targeting myosin heavy chain for slow 
twitch fibres to visualise type I fibres (A4.840, MHC1; 
mouse IgM,). Following primary antibody incubation, 
slides were then washed 3 times for 5 min in PBS. Sec-
ondary antibodies were applied to the slides for 30 min 

Table 1 Baseline characteristics of trained and sedentary 
participants

Data are the mean ± SEM

FFM Free fat mass, GIR Glucose infusion rate

Trained (n = 11) Sedentary (n = 10) P value

Sex (males/females) 6/5 4/6 0.98

Age (years) 23 ± 1 21 ± 1 0.26

BMI (kg.  m−2) 22.2 ± 0.6 21.3 ± 0.6 0.31

FFM (kg) 50.8 ± 3.7 40.9 ± 2.3 0.04

Body fat (%) 19.9 ± 2.0 27.4 ± 3.5 0.07

VO2 max (ml.  kg−1.
min−1)

47.8 ± 2.0 38.0 ± 1.6  < 0.01

Baseline GIR (μmol 
glucose infused.
kg.FFM−1.min−1)

66.1 ± 4.7 48.3 ± 5.7 0.03

FFA at end of 6 h lipid 
infusion (μmol.  l−1)

600 ± 86 932 ± 105 0.03
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at room temperature. The GLUT4 antibody was targeted 
with goat anti-rabbit IgG 488 (A11008), dystrophin with 
goat anti-mouse  IgG2b 546 (A21145) and MHC1 with 
goat anti-mouse IgM 633 (A21046, Invitrogen, Paisley, 
UK). Following secondary antibody incubation, slides 
were washed 3 times for 5  min in PBS and coverslips 
were mounted with 20 µL mowiol mounting medium [6 g 
glycerol, 2.4 g mowiol 4–88, and 0.026 g 1,4-Diazabicyclo 
[2.2.2] octane (DABCO) dissolved in 18  mL 0.2  M Tris 
buffer (pH 8.5) (All reagents were purchased from Sigma 
Aldrich, St Louis, MO)] and sealed with nail varnish. 
Before any colocalization analysis was undertaken, sev-
eral control experiments were performed (as described 
previously [25]). These included confirmation of the 
absence of bleed-through of fluorophores in opposing 
channels when single staining with GLUT4 or dystrophin 
was performed, and checking for non-specific secondary 
antibody binding, and sample autofluorescence.

Image capture, processing, and analysis
Cross-sectional orientated images were captured using 
an inverted confocal microscope (Zeiss LSM710; Carl 
Zeiss AG, Oberkochen, Germany) with a 63 × 1.4 NA oil 
immersion objective at 1.1 digital zoom. The Alexa Fluor 
488 fluorophore was excited with an argon laser, whereas 
the Alexa Fluor 546 and 633 fluorophores were excited 
with a helium–neon laser. The objective and magnifica-
tion used ensured that a single fibre was captured per 
image, and each imaged fibre was chosen at random only 
considering the fibre type and not the GLUT4 stain.

Image analysis of GLUT4 content was undertaken 
using Image-Pro Plus 5.1 software (Media Cybernetics, 
Bethesda, MD, USA). For each participant, at least 30 
images per time-point were taken. Five participants out 
of the 19 individuals only had samples for two out of the 
three time points. Therefore, in total there was 204 type I 
fibres and 201 type II fibres analysed for the lipid infusion 
group, and 279 type I fibres and 307 type II fibres ana-
lysed for the glycerol lipid infusion group.

Fibre type specific GLUT4 content was determined by 
measuring the fluorescence intensity of the GLUT4 stain. 
When assessing fibre specific GLUT4 content, fibres 
stained positively for myosin heavy chain type I were 
classified as type I fibres, whereas those with no stain-
ing were classified as type II fibres. For image analysis of 
GLUT4 co-localisation to the plasma membrane, Pear-
son’s correlation coefficient was carried out between the 
GLUT4 stain and dystrophin border. For quantitation 
of GLUT4 in the plasma membrane layer (dystrophin-
stained region) and in the five 1  μm intracellular layers 
below the plasma membrane, image segmentation and 
measurements was carried out in MATLAB (R2020a, 
The MathWorks Inc., Natick, MA) using a same method 

as previously used by Bradley et  al. (2014). Briefly, the 
analysis algorithm separated the fibres in the dystrophin 
image using the active contour, or snake, approach [26] 
to approximately find the mid-point of the plasma mem-
brane. A distance map from the contour then generated 
a 3-pixel thick region to cover the dystrophin-stained 
region and was designated the plasma membrane layer. 
Subsequently, five 1 μm thick layers were generated inside 
the fibre, again using the distance map. To identify spots 
from background staining, we used Otsu’s thresholding 
for each participant. To then distinguish between large 
and small spots, threshold limits were set for the spot 
sizes detected (large spots: > 1 μm or small spots: < 1 μm 
diameter, as in [9–12, 15, 25].

Statistical analysis
Statistical analysis was carried out in SPSS All analyses 
were performed using statistical analysis software (SPSS 
for Mac version 26.0; SPSS, Chicago, IL, USA). Multiple 
group comparisons to assess GLUT4 protein expression, 
co-localization and clusters were performed: between: (i) 
lipid and glycerol infusion groups, (ii) trained and sed-
entary individuals, (iii) type 1 and type 2 fibres, (iv) time 
points, and (v) layers for cluster analysis. Linear mixed 
effects models, with random intercepts to account for 
repeated measurements within subjects, were used to 
examine group differences, as well as differences over 
time of the infusion and between fibre types. Pairwise 
differences between biopsies were performed using post 
hoc tests. P < 0.05 was considered statistically significant.

Results
Effect of lipid or glycerol infusion on glucose infusion rate
In response to the lipid infusion, both the sedentary and 
trained groups exhibited a decreased glucose infusion 
rate compared to the glycerol control (P < 0.05); -54% 
and -52%, respectively (Fig.  1a and b). In the sedentary 
group, the divergence in glucose infusion rate between 
the lipid and glycerol infusions became significant at 180 
min (Fig.  1b), whereas the divergence between the two 
infusions in the trained group became significant at 210 
min (Fig. 1a). The difference in the glucose infusion rate 
AUC between the glycerol and lipid infusion conditions 
was similar for the sedentary and trained groups (-44% 
and -38%, respectively; P < 0.05; Fig. 1c).

Protein content and location of GLUT4 in human skeletal 
muscle at baseline
Concurrent with previous findings [15, 25], GLUT4 
staining in human skeletal muscle revealed both large 
clusters and small spots throughout the cell (Fig. 2d and 
e). Both large GLUT4 clusters and small GLUT4 spots 
can be seen close to, and incorporated within the plasma 
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membrane (stained in red with dystrophin in Fig. 2b and 
c). However, in contrast to Bradley et al., (2014; 2015), we 
observed noticeably less spots within all images.

Using immunofluorescence microscopy, it was 
observed that at baseline total protein expression of 
GLUT4 was greater in type 2 fibres compared to type 1 
fibres (P = 0.011) but was not different between trained 
and sedentary individuals (P = 0.477; Fig.  3). Pearson’s 
correlation coefficient was used to determine the rela-
tive localisation of GLUT4 with the dystrophin stain 
(i.e., the plasma membrane), and was greater in trained 
individuals compared to the sedentary group at baseline 
(main training status effect; P = 0.020). Importantly, co-
localisation was not different between infusion groups 
(P = 0.909; Fig.  4). GLUT4 fluorescence intensity was 
used as a marker of GLUT4 protein expression in the 
plasma membrane and the 5 intracellular layers, and at 
baseline GLUT4 fluorescence intensity was greatest in 
the plasma membrane compared to all intracellular layers 
(main effect of layer; P < 0.001).

Visualisation of large and small GLUT4 spots at baseline
Using immunofluorescence staining we identified both 
larger spots of GLUT4 as well as small spots which are 
dispersed throughout the cell (Fig.  2d and e). To distin-
guish between large and small spots, threshold limits were 
used on all detected spots such that they were separated 
into large (defined as having a diameter of > 1  μm) and 
small spots (defined as having a diameter < 1 μm). These 
limits have been used previously in a number of studies by 
both ourselves and other research groups [11, 15, 25]. At 
baseline, the total number of GLUT4 spots in the plasma 
membrane was greater compared to all other intracel-
lular layers (P < 0.001; Fig.  7), and this was also true for 
both large GLUT4 clusters (P < 0.001) and small GLUT4 
spots (P < 0.001). Overall, the total number of GLUT4 
spots was significantly greater at the plasma membrane 
in trained compared to sedentary (P < 0.001). Interestingly 
though, sedentary individuals had a greater number of 
large GLUT4 clusters at the plasma membrane compared 
to trained individuals (layer × training status; P = 0.001; 
Fig.  7), whereas trained individuals had a greater num-
ber of small GLUT4 spots at the plasma membrane com-
pared to sedentary individuals (training status × layer; 
P < 0.001). Small GLUT4 spots made up ~ 97% of all 
GLUT4 spots in trained individuals, and at the plasma 
membrane ~ 99% of spots in the plasma membrane were 
categorised as small spots in trained individuals, whereas 
only ~ 95% of GLUT4 spots in the plasma membrane were 
small spots in sedentary individuals. Across both groups, 
more large spots were observed at the plasma membrane 
in type 1 fibres compared to type 2 fibres (layer × fibre 
type; P < 0.001, Fig. 7), but there was no fibre type differ-
ence in the number of small GLUT4 spots at the plasma 
membrane. Infusion group had no effect on the number 

Fig. 1 Glucose infusion rate during a 6-h hyperinsulinemic-euglycemic 
clamp with concurrent lipid or glycerol infusion. The glucose infusion 
rate needed to maintain euglycemia during the 6-h clamp was higher 
in the glycerol group compared to the lipid group in both the 
sedentary (A) and trained (B) individuals
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of large or small GLUT4 spots at baseline (small spots, 
P = 0.520; large spots, P = 0.590).

GLUT4 content and localization following a lipid or glycerol 
infusion
We next investigated whether there were time-depend-
ent changes in GLUT4 localization in response to 

either a lipid or glycerol infusion. First though, we 
checked for any time-dependent changes in protein 
expression (using immunofluorescence microscopy) 
and found that GLUT4 protein expression (measured 
as GLUT4 fluorescence intensity) did not change over 
time (P = 0.062; Fig.  5) and was not different between 
infusion groups (P = 0.389) or trained and sedentary 
individuals (P = 0.380) at any time point.

Fig. 2 Representative immunofluorescence microscopy image detailing the dystrophin border identification identified using the red dystrophin 
stain (A). Image B shows the dystrophin stain alone, which was used to identify the cell boarder carried out in MATLAB (C). Image D shows 
the GLUT4 stain (green) including the spots identified by MATLAB analysis in yellow, and this is replicated in E but with the inclusion of the 5 × 1 μm 
concentric rings that follow the contours of the PM as defined by dystrophin stain. The magenta staining within image A and F represents fibre type 
staining of MHC1. Scale bar represents 25 μm

Fig. 3 Total GLUT4 fluorescence intensity in type 1 (grey) and type 2 fibres (black) in the basal state. Data are mean ± SD. *Main fibre type effect; 
P = 0.001
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Using Pearson’s correlation coefficient, we observed a 
small but significant increase in colocalization of GLUT4 
with the plasma membrane from 0 to 2h of infusion 
(+ 2% in trained following both lipid and glycerol infu-
sions, + 9% in sedentary after lipid infusion and + 4% after 

glycerol infusion, main time effect; P = 0.039; Fig. 4) and 
this remained elevated from 2 to 6h (P = 0.557). Notably 
though, there was no significant difference in GLUT4 
colocalization with the plasma membrane between 0 and 
6h of infusion (P = 0.522). GLUT4 fluorescence intensity 

Fig. 4 Colocalization of GLUT4 with PM marker dystrophin, measured using the Pearson’s correlation coefficient using linear mixed model. * Main 
time effect P = 0.039, with greater PCC at 2 h vs 0 h of infusion. There was no difference between 2 and 6 h (P = 0.557) or 0 and 6 h (P = 0.522)

Fig. 5 Total GLUT4 fluorescence intensity following the lipid (grey) and glycerol infusion (black) in trained and sedentary individuals
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within the plasma membrane was greater compared to all 
intracellular layers (main layer effect; p < 0.001) at both 
2h and 6h of infusion, but GLUT4 fluorescence inten-
sity did not change significantly over time in the plasma 
membrane (P = 0.071). Importantly, there was no differ-
ence between the infusion groups or trained and seden-
tary individuals when examining GLUT4 localization to 
the plasma membrane, or GLUT4 fluorescence intensity 
in the plasma membrane or intracellular layers.

Changes in GLUT4 spots following a lipid or glycerol 
infusion
Changes in GLUT4 spots (see Fig.  2d and 2e for spot 
identification) were analysed within the plasma mem-
brane and all 5 intracellular layers at all three timepoints. 
When considering the number of small GLUT4 spots, 
we observed a similar pattern as described above in the 
plasma membrane and layer 1 (Fig.  6), where there was 
no change in the number of small GLUT4 spots from 0 to 
2h (PM; P = 0.486, layer 1; P = 0.669; Fig. 7), but a reduc-
tion in small GLUT4 spots from 2 to 6h (PM; P = 0.047: 
layer 1; P = 0.045). There was no difference between 0 and 
6h in these two layers for number of small spots (PM; 
P = 0.820, layer 1; P = 0.550). Again, the same pattern 
was seen in layer 3 for the number of small GLUT4 spots 
with a decrease from 0 to 6h (P = 0.038), but no difference 
between 0 to 2h (P = 1.000) or 2 to 6h (P = 0.066). In lay-
ers 2, 4 and 5, there was no effects of time on the average 
number of small GLUT4 spots (layer 2; P = 0.097, layer 4; 
P = 0.093, layer 5; P = 0.705).

In contrast, the number of large GLUT4 spots did not 
change over time in the plasma membrane (P = 0.809) or 
layer 1 (P = 1.000). However, layers 4 and 5 saw changes 

in the number of large GLUT4 spots. In layer 4 there 
was a significant decrease in the number of large GLUT4 
spots from 2 to 6h of infusion (P = 0.030), with no change 
between 0 to 2h (P = 1.000) or 0 to 6h (P = 0.287). In 
layer 5, there was a reduction in the number of large 
GLUT4 spots from 0 to 2h of infusion (P = 0.004), with 
no changes between 2 and 6h (P = 0.660) or 0 and 6h 
(P = 0.126).

Discussion
The aim of present study was to examine the effects of 
acute FFA elevation (via infusion of intralipid®) alongside 
a hyperinsulinaemic euglycemic clamp on fibre type spe-
cific subcellular GLUT4 distribution in human skeletal 
muscle of sedentary and trained individuals. The novel 
findings of the study are that 1) GLUT4 localisation with 
the plasma membrane is unaffected by an increase in 
plasma FFA availability induced by lipid infusion, and 2) 
changes in GLUT4 spot number occurs independent of a 
change in GLUT4 fluorescence intensity.

Training status dictates the number of small and large 
GLUT4 clusters
At baseline, we observed greater GLUT4 protein expres-
sion in type II fibres compared to type I fibres (~ 7% in 
trained individuals, ~ 12% in sedentary). Using the same 
technique, our laboratory has previously reported no 
difference in GLUT4 expression between fibre types, 
although this was only in well-trained individuals [25]. 
Notably, in the current study we also observed that total 
GLUT4 protein expression was comparable between 
trained and sedentary individuals. A well-known adap-
tation to exercise training is an increase in total skeletal 

Fig. 6 Representative immunofluorescence microscopy images demonstrating the GLUT4 stain (A, B and C are greyscale versions of D, E and F) 
from baseline (A and D), 2 h (B and E) and 6 h (C and F) following an intralipid infusion. Scale bar represents 25 μm
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muscle GLUT4 protein content [25, 27–37], and there-
fore we expected GLUT4 protein expression to be greater 
in trained compared to the sedentary individuals in the 
present study. It may be that the training status of our 
trained and sedentary participants was not sufficiently 
distinct to result in a significant difference in GLUT4 

protein expression between groups  (VO2max ~ 49  ml/kg/
min in the trained individuals vs. ~ 39  ml/kg/min in the 
sedentary individuals).

Concurrent with previous data from Bradley et  al., 
(2014 & 2015), GLUT4 in muscle was primarily located 
at the plasma membrane compared to all intracellular 

Fig. 7 Average number of small GLUT4 spots in the PM and 5 intracellular layers at baseline and after 2 & 6h of a lipid (A, B, E, F) or glycerol (C, D, 
G, H) infusion in type 1 (A-D) and type 2 fibres (E–H) and in trained (right column) and sedentary individuals (left column). M = Linear mixed model 
* represents a decrease in the number of GLUT4 spots from 2 to 6h (PM; P = 0.047, layer 1; P = 0.045). # Represents greater number of GLUT4 spots 
at 0h compared to 6h in layer 3 (P = 0.038)
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layers (Fig. 6). GLUT4 exists in clusters, which have pre-
viously been characterized as being small (< 1  μm) or 
large (> 1  μm) by ourselves [15, 25] and others [9–12]. 
Interestingly, trained individuals had a greater number 
of small GLUT4 spots in the plasma membrane, whereas 
sedentary individuals had more large GLUT4 spots. 
Small GLUT4 spots made up ~ 97% of all GLUT4 spots 
in trained individuals, and this explains why trained indi-
viduals had a greater total number of GLUT4 spots com-
pared to sedentary individuals. Small GLUT4 spots have 
been identified as endosomal stores or glucose storage 
vesicles and are more mobile than the large GLUT4 spots 
[11] that are present in the membrane of the Trans-Golgi 
network [9, 10]. Thus, a greater number of small GLUT4 
spots means that trained individuals have a larger pool 
of more mobile GLUT4. This difference in the number 
of small GLUT4 spots likely has implications for the 
translocation and cycling of GLUT4 at the plasma mem-
brane, and subsequently support the greater rates of glu-
cose uptake into muscle that are characteristic of trained 
individuals.

GLUT4 localisation following lipid or glycerol infusion
When a hyperinsulinaemic euglycemic clamp is com-
bined with infusion of lipid-heparin, both classical and 
contemporary research has demonstrated that insulin-
stimulated glucose uptake is normal following 2  h of 
lipid infusion compared to a non-lipid control [38–40]. 
By 6  h of a lipid-heparin infusion though, insulin-stim-
ulated glucose uptake is reduced compared to the con-
trol condition [38, 39]. On this basis, we hypothesized 
that increased GLUT4 co-localisation with the plasma 
membrane would be apparent at 2 h of infusion of either 
lipid or glycerol, but at 6 h of infusion there would be a 
divergence where GLUT4 co-localisation at the plasma 
membrane would be maintained following the glycerol 
infusion but reduced following the lipid infusion. Con-
sistent with the first part of this hypothesis, we observed 
a significant increase in Pearson’s Correlation Coef-
ficient following 2 h of both the lipid and glycerol infu-
sion, which we interpret as increased insulin-stimulated 
GLUT4 localisation to the plasma membrane.

The increase in GLUT4 localisation at the plasma 
membrane was maintained at 6  h of glycerol infusion, 
as evidenced by the similar Pearson’s correlation coeffi-
cient values. Interestingly though, and in contrast to the 
second part of our hypothesis, we observed no change in 
GLUT4 co-localization with the plasma membrane from 
2 to 6 h of the lipid infusion. We expected a decrease in 
GLUT4 at the plasma membrane at 6 h of lipid infusion 
to explain the previously reported reduction in glucose 
disposal [21]. Since there was no difference in GLUT4 
co-localisation between 0 and 6  h of infusion, we could 

speculate that there may have been a small but non-sig-
nificant reduction in GLUT4 localisation with the plasma 
membrane from 2 to 6  h. Nevertheless, we would only 
expect any reduction to occur in the lipid infusion group, 
but we observed the same effect in the glycerol infusion 
group. Taken together, our results suggest that GLUT4 
localisation with the plasma membrane was unaffected 
by an increase in plasma FFA availability induced by lipid 
infusion. Insulin-stimulated glucose uptake is dependent, 
in part, on the insulin signalling cascade where activa-
tion of IRS-1 and Akt are critical. However, lipid infusion 
does not appear to decrease IRS-1 and Akt phosphoryla-
tion compared to control conditions over the same time-
course [21, 22]. Therefore, it is perhaps not surprising 
that GLUT4 localisation to the plasma membrane was 
unchanged from 2 to 6 h of a lipid infusion. This suggests 
that the mechanisms by which increased FFA availability 
leads to a reduction in glucose infusion rate are unrelated 
to activation of the insulin signalling cascade and GLUT4 
localisation at the plasma membrane.

It should be acknowledged that GLUT4 localisation to 
the plasma membrane was possibly stimulated by other 
factors independent of insulin signalling. For example, 
in cultured myotubes IL-6 stimulates GLUT4 transloca-
tion to the sarcolemma via AMP-activated protein kinase 
activation [41], and circulating IL-6 concentrations 
are increased during a hyperinsulinaemic euglycaemic 
clamp [42]. Therefore, it is possible that GLUT4 localisa-
tion with the sarcolemma could have been induced via 
an insulin-independent mechanism, even in the face of 
elevated FFA availability. Unfortunately, we do not have 
plasma samples remaining to measure IL-6 concentra-
tions. It is also important to note that there was no fibre 
type difference in the co-localisation of GLUT4 to the 
plasma membrane. This corresponds with previous lit-
erature concluding no significant relationship between 
GLUT4 protein content and fibre type [43]. Very recent 
data from Koh et  al., (2021) further solidifies this with 
significant differences in glucose disposal during a hyper-
insulinemic euglycemic clamp between lean and obese 
individuals, yet no relationship with fibre type composi-
tion [44]. Even the post-exercise insulin sensitizing effect 
is shown to be similar between fibre types [45].

Changes in GLUT4 spots following lipid or glycerol infusion
Beyond the use of co-localisation analysis to examine 
changes in GLUT4 localisation with the plasma mem-
brane, confocal immunofluorescence microscopy also 
enables the identification and quantitation of GLUT4 
clusters (spots). Our laboratory has previously shown 
that these GLUT4 clusters are present at both the plasma 
membrane and intracellular locations [15, 25]. Here, we 
report that the number of GLUT4 spots at the plasma 
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membrane or the 1  µm below the membrane (layer 1) 
did not change following 2 h of either the lipid or glyc-
erol infusion compared to baseline. However, from 2 to 
6  h of either infusion there was a significant decrease 
in the number of GLUT4 spots at the plasma mem-
brane and layer 1. More specifically, the reduction in 
total GLUT4 spots in the plasma membrane and layer 1 
from 2 to 6 h of infusion could be entirely accounted for 
by a decrease in small GLUT4 spots (< 1  μm diameter). 
The decrease in GLUT4 spots occurred independent of 
a change in GLUT4 fluorescence intensity (and there-
fore total GLUT4 protein) within the plasma membrane, 
and therefore we speculate that in response to prolonged 
insulin infusion GLUT4 disperses from the storage vesi-
cles (spots) in the plasma membrane. This proposed 
mechanism has similarities to that previously observed 
within adipocytes, whereby under basal conditions 
GLUT4 is retained in clusters at, or in close proximity 
to the plasma membrane, but upon insulin stimulation 
GLUT4 is then dispersed into the plasma membrane 
[46]. Although in our study this dispersal of GLUT4 is 
occurring in response to continuous insulin stimula-
tion, it has previously been shown this is not sufficient to 
maintain glucose uptake into skeletal muscle when lipid 
is infused [21]. It appears that the suppression of glucose 
uptake in response to a lipid infusion is therefore not due 
to GLUT4 availability at the plasma membrane.

It is noteworthy that we also report a reduction in the 
number of large GLUT4 spots in layers 4 and 5. One 
possibility is that these reductions in large GLUT4 clus-
ters at the more intracellular layers could suggest that 
this pool of GLUT4 is moving towards the membrane 
or layers 1, 2 and 3. However, no change in the number 
of large GLUT4 spots in these layers close to, or at the 
plasma membrane, were observed. It may be that these 
large GLUT4 clusters are dispersing and becoming small 
GLUT4 spots, in the same or different layers and may 
explain why we do not see a difference in the number of 
small GLUT4 spots in layers 3 and 4. Alternatively, these 
large spots may be reducing in size and at the same time, 
what were identified as small spots may be reducing in 
size beyond the limits of our detection, explaining a 
reduction in the number of large spots with no change in 
the number of small spots.

Potential alternative mechanism for reduced glucose 
uptake
The long chain acyl-CoA’s palmitoyl-CoA, oleoyl-CoA 
and linoleoyl-CoA have been shown to inhibit hexoki-
nase activity in rat and human skeletal muscle [47]. The 
impact of this inhibition is potentially a reduction in G6P 
concentrations, a reduction in glycogen synthesis and 
glycolysis, and ultimately a lower flux through hexokinase 

at lower G6P concentrations previously observed in insu-
lin-resistant skeletal muscle (Rotheman et al., 1992; Roth-
man et  al., 1995; Roden et  al., 1996; Jucker et  al., 1997; 
Petersen et al., 1998; Roden et al., 1999). The well known 
Randle cycle demonstrates how increased lipid oxida-
tion can result in reduced glucose uptake through pyru-
vate dehydrogenase and phosphofructokinase inhibition 
increasing G6P concentrations and inhibiting hexokinase 
[48]. LCA-CoA inhibition of hexokinase likely occurs 
simultaneously to the glucose-fatty acid cycle interac-
tion and reduces insulin-stimulated glucose uptake 
producing an insulin-resistant state [47], often seen fol-
lowing lipid infusion in previous research [21, 22]. There-
fore, continuous insulin stimulation likely supports the 
increased GLUT4 co-localisation and subsequent disper-
sal of GLUT4 at the plasma membrane in both the lipid 
and glycerol infusion conditions. However, when lipid is 
infused, the elevated FA availability will suppress glucose 
uptake via the inhibition of hexokinase explaining the 
reduction in glucose infusion rate previously reported 
[47]. Without the increase in FA, the glycerol infusion 
sees the same level of insulin stimulation, without the 
inhibition of hexokinase, and so GLUT4 can support glu-
cose uptake.

Strengths and limitations
In the present study, participants within each training sta-
tus group were matched for BMI for the infusion group 
allocations, and importantly, trained and sedentary indi-
viduals were discrepant in  VO2max. All fibres imaged were 
selected at random and not by inspection of GLUT4 stain. 
The membrane stain is used to isolate the cell, which may 
risk missing some of the GLUT4 that is at the plasma 
membrane from analysis. Previously, GLUT4 protein con-
tent had been measured in whole muscle samples and does 
not change over time in response to lipid infusion in men 
or women [49]. Whilst image analysis of individual muscle 
fibres is useful for changes in GLUT4 within the cell, using 
the border to isolate the cell from the rest of the image may 
lead to missing information at the plasma membrane.

The analysis method utilised in the present study limits 
our ability to make a comprehensive exploration of the dif-
ferent subcellular GLUT4 pools as seen in recent research 
[50]. Knudsen et al. utilised a technique they termed Sam-
ple Thinning Enhanced Resolution Microscopy (STERM), 
to visualise GLUT4 distribution throughout the endo-
membrane. This method required cutting ultra-thin biopsy 
sections to allow antibody penetration in the absence of 
detergent. The STERM method paired with the stand-
ard confocal microscopy workflow markedly improved 
the ability to resolve GLUT4 present in small vesicles 
from larger membrane structures. By then visualizing 
GLUT4 in STERM-prepared human muscle samples using 
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transmission electron microscopy, Knudsen also confirmed 
GLUT4 localisation to cytosolic perinuclear, intramyofi-
brillar and subsarcolemmal areas, tubulovesicular struc-
tures, multivesicular endosomes and, most critically, small 
vesicles sized ~ 70—150 nm, some of which would presum-
ably be detergent-sensitive [50].

Interestingly, it is evident that the degree of localisa-
tion of GLUT4 with the plasma membrane under resting 
conditions appears to be smaller than when exercise pre-
cedes insulin-stimulation [15, 50]. Exercise appears to be a 
stronger stimulus to induce GLUT4 translocation in skel-
etal muscle than insulin (~ 19% vs 9% increase in localisa-
tion), also suggested by Bradley et al. [15].

Conclusions
The present data suggest that GLUT4 co-localisation is 
not significantly decreased following a lipid infusion when 
compared to a glycerol control. Decreases in GLUT4 spot 
number irrespective of GLUT4 intensity demonstrate that 
dispersal from clusters at the plasma membrane may facili-
tate glucose homeostasis.
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