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A B S T R A C T   

Compared to the heterogeneous traffic flow on roads, the heterogeneous characteristics of maritime traffic flow 
are more pronounced, due to disparities in the manoeuvrability, size, and safety requirements among different 
ships. These factors increase the complexity of quantifying traffic efficiency. This paper employs hierarchical 
clustering to categorise trajectories with similar speed variation features and utilises Long Short-Term Memory 
(LSTM) models to predict ship speeds, forming a speed control strategy based on time-series data. Moreover, 
extending from the principles of car-following, models are developed to compute dynamic safety distances for 
both manned and autonomous ships. Further, a port waterway simulation model based on cellular automaton 
(CA) is developed, integrating data-driven speed control strategies while maintaining dynamic safety distances, 
resulting in a comprehensive simulation model with dual speed control mechanisms. A case study of the Tianjin 
port shows the advantages of dynamic safety distances. Dynamic safety distances significantly improved ship 
navigation and overall channel traffic efficiency. The inclusion of autonomous ships further improves the effi-
ciency and the benefits are directly related to the proportion of autonomous ships. This research provides new 
insights and methodologies for assessing transport efficiency and waterway capacity, which also offers support 
for research on autonomous maritime traffic flow.   

1. Introduction 

With the development of global economic integration, maritime 
transportation business has witnessed further growth, culminating in 
China achieving the world’s highest cargo throughput and container 
throughput in2022.1 It can be foreseen that the maritime transport in-
dustry will sustain a continuous growth trend in the future. Conse-
quently, the traffic flow of ships entering and leaving a port will become 
more complex, posing higher demands on maritime authorities in terms 
of traffic organization and regulatory coordination. As an essential 
component of the port navigation system and a primary object of 
regulation by the supervisory authorities, the pressure facing the chan-
nels for entering and leaving the port will further intensify. Channel 
transport efficiency, serving as a key indicator reflecting the service of 
ships entering and leaving the port, is related to the planning, 

organization, and operation of the entire port navigation system. The 
scientific and accurate quantification of it holds significant theoretical 
and practical value and remains a current hotspot and challenge in 
research. 

Autonomous ship is a new type of ship that only needs a few crew 
members on board or at remote control stations to realise autonomous 
functions and perform various operations (Schröder et al., 2019), and 
the development of autonomous ships basically follows the research and 
development path of “assisted, decision-making-remote, con-
trol-unmanned, to autonomy’. In recent years, autonomous ships related 
technologies, such as artificial intelligence (Veitch and Alsos, 2022), 
situational awareness (Lin et al., 2022), and autonomous collision 
avoidance, gradually promote autonomous ships from imagination to 
reality. The development and application of autonomous ships have 
brought new changes to the ship traffic flow, the heterogeneous traffic 
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pattern of mixing autonomous ships and manned ships will continue to 
exist, and the coupling between the main bodies will be more complex. 
The research on the efficiency of heterogeneous ship traffic flow will 
face a new challenge, and how to quantify the impact of autonomous 
ships on the structure and efficiency of the traffic flow will become a 
problem that needs to be solved urgently. 

In this paper, based on the characteristics of ship traffic flow, such as 
ship speed distribution, ship distance and ship type distribution, a ship 
traffic flow simulation model is established. The model is grounded on 
the dual-speed control strategy involving speed prediction and dynamic 
safety distance. The specific contributions include.  

a. By employing advanced techniques such as Dynamic Time Warping 
(DTW) and hierarchical clustering methods, we have systematically 
clustered ship trajectories. This clustering is based on observed 
variations in speed, forming distinct categories reflecting different 
navigational behaviours. Subsequently, a predictive model employ-
ing a Long Short-Term Memory (LSTM) network has been estab-
lished. This model is adept at predicting ship speed variations based 
on positional data, thereby contributing to a nuanced understanding 
of ship movements and speed alterations within navigational routes.  

b. Integrating foundational theoretical frameworks with meticulously 
derived formulae, we have formulated a model to calculate a ship’s 
reversing surge. This integration results in a robust and versatile 
model capable of determining the dynamic safety distance of ships.  

c. Incorporating insights from Points a and b, we have developed a 
scalable Cellular Automaton (CA) model, enriched with two integral 
modules to elevate the fidelity of our simulations. The first module, 
Ship Speed Control, utilises the findings from speed classification in 
Point a to craft accurate speed control strategies for various ship 
types navigating through waterways. Additionally, the second 
module, named Dynamic Ship Safety Distance, introduces algorithms 
informed by the theoretical advancements made in Point b. This 
module is crucial for simulating the relative safety distances between 
both manned and autonomous ships under dynamic conditions. 
Together, these enhancements harness the knowledge gained from 
the preceding sections, offering a refined approach to modelling 
dynamic safety distances in maritime navigation. 

The remainder of the paper is organised as follows: Section 2 in-
troduces the latest research developments in the related fields, Section 3 
describes the methods and models used, Section 4 applies the model to 
the main channel of Tianjin Port for empirical validation, and Section 5 
discusses the model and offers insights into future research directions. 

2. Literature review 

To study the characteristics and efficiency of heterogeneous traffic 
flows resulted from the introduction of autonomous ships, it’s impera-
tive to commence with foundational traffic models, undertaking sys-
tematic modelling and analysis. This research primarily zeroes in on the 
speed control strategies based on predictions within traffic simulation 
models, the dynamic safety distances based on ship types, and the 
impact of autonomous ships on heterogeneous traffic flows. The litera-
ture review is also orchestrated along these dimensions. 

2.1. Traffic model 

Traffic models serve as mathematical or computational representa-
tions designed to characterise and analyse traffic flows. They aid re-
searchers in comprehending and prognosticating the behaviour and 
attributes of traffic flows. Based on scale, these models can be cat-
egorised into macroscopic, microscopic, and mesoscopic models. 
Macroscopic (e.g., Mohan and Ramadurai, 2013; Wang et al., 2022) 
models perceive traffic flow as a continuous fluid, concentrating solely 
on its aggregate characteristics such as flow, speed, and density, whilst 

disregarding the nuances of individual vehicles. Such models typically 
employ differential or difference equations (Khan and Gulliver, 2018) to 
delineate the dynamics of traffic flow, with the 
Lighthill-Whitham-Richards (LWR) (Lighthill and Whitham, 1955) and 
Cell Transmission Model (CTM) (Daganzo, 1994) models being quin-
tessential examples. Conversely, microscopic models view traffic flow as 
a discrete system constituted by individual vehicles. They focus on 
factors related to each vehicle’s position, speed, acceleration, and 
driving behaviour, as well as the interactions between vehicles. The 
motion of individual vehicles in microscopic (Cardaliaguet and For-
cadel, 2021) models is usually captured by car-following or 
lane-changing models, with the Intelligent Driver Model (IDM) (Treiber 
et al., 2000) and Minimizing Overall Braking Induced by Lane Changes 
(MOBIL) (Kesting et al., 2007) models being prominent examples. 
Mesoscopic models represent a hybrid approach, synthesising both 
macroscopic and microscopic models to portray traffic flow attributes 
across different spatial or temporal scales. This amalgamation ensures a 
balance between a holistic view and detailed insights. Multilevel or 
multi-resolution methods are typically employed in the construction of 
mesoscopic models, with examples including the three-tiered hybrid 
model (e.g., Storani et al., 2021; Jiang et al., 2020) and the 
multi-resolution hybrid simulation system (Son et al., 2022). 

In the realm of maritime traffic research, scholars frequently draw 
inspiration from road traffic flow theories. Given the distinct charac-
teristics of ships, such as their larger scale, comparatively slower ve-
locities, and elongated reaction times, maritime traffic flow models are 
established to investigate the navigational efficiency of waterways. 
Initial studies on channel throughput capabilities typically utilised 
empirical formulas. Building on the spatial-temporal consumption the-
ory, Liu et al. (2016) formulated a channel throughput capability 
computation model that accounts for the dynamic maritime domain. 
Gao et al. (2020) similarly leveraging the spatial-temporal consumption 
theory, probed into the ramifications of LNG ship navigation on the 
throughput capabilities of seaport channels. Liu et al. (2020) and col-
laborators, anchored in Automatic Identification System (AIS) data, 
analysed the traffic flow characteristics of ships entering and exiting 
ports. Employing the spatial-temporal consumption theory, they devel-
oped a maritime throughput computation model and forecasted channel 
throughput capabilities. 

2.2. Traffic simulation model 

In recent years, with the rapid advancement of computer simulation 
technology, scholars have shifted their focus towards employing com-
puter simulation modelling techniques to study maritime traffic flow 
and port channel navigation efficiency. Some researchers have used 
simulation software or platforms such as AWESIM, MATLAB, ARENA 
(Dragović et al., 2017), FLEXSIM (Dulebenets et al., 2015), and WIT-
NESS (Parola and Sciomachen, 2005) to study channel throughput ca-
pabilities via computer simulation. Uğurlu et al. (2014)) considering 
ship arrival patterns, developed a simulation model combining both 
docks and channels using the AWESIM simulation software. Their 
research delved into dock ship type, tonnage, berthing frequency, 
loading frequency, manoeuvring time, and transportation capacity. 
Almaz et al. (2006) utilizing the Arena simulation platform, pioneered 
the construction of the Istanbul Strait maritime traffic flow simulation 
model, which integrated various factors affecting safe passage through 
the strait. Legato and Mazza (2001) employed discrete event simulation 
using the Visual S. LAM simulation language to simulate the entire 
process of ship arrivals, berthing, and departures. Xin et al. (2019) 
grounded in AIS data, analysed the maritime traffic flow characteristics 
of the Xiazhimen channel and established a maritime traffic flow 
simulation model based on discrete event simulation. 
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2.3. Simulation model of ship traffic based on CA 

At present, for waterway traffic, the majority of scholars have initi-
ated the development of simulation models rooted in CA. Liu et al. 
(2010) drawing upon varying ship categories, safety distances, ship 
arrival patterns, and berth service levels, crafted a CA model for port 
waterway traffic flows. This model adeptly tackled the intricacies and 
non-linear challenges inherent in simulation. Subsequently, various re-
searchers have integrated random variables into the CA framework 
during the simulation of ship traffic flows. This integration is to 
encapsulate the influence of environmental determinants on maritime 
manoeuvres, as delineated in works like Qi et al. (2017a, 2017b) and Qu 
and Meng (2012). Given the heightened activity within the approach 
channels, explorations into the ramifications of lane switching on traffic 
efficacy have been conducted, evident in studies such as Sun et al. 
(2015), Hu et al. (2017), and Qi et al. (2021). Jiang et al. (2019) 
introduced a sophisticated port waterway traffic simulation model, 
ingeniously integrating cellular automata with multi-agent systems. 

This research meticulously examines the significant impact of ship 
behaviour on port operations, shedding light on the intricate dynamics 
and providing pivotal insights for enhancing operational efficiency and 
navigational safety within port precincts. Analogously, Liu et al. (2021) 
utilised both CA and multi-agent simulation paradigms to formulate a 
model that mimics the ingress and egress of Liquefied Natural Gas (LNG) 
carriers within ports. 

2.4. Heterogeneous traffic flow modelling 

Similarly, the heterogeneous traffic flow resulting from the intro-
duction of autonomous driving vehicles first emerged on roads. With the 
development of autonomous driving technology, autonomous vehicles 
have begun to participate in traffic as main entities. As a result, the 
model of heterogeneous traffic flow (e.g., Tampere and van Arem, 2001; 
Hoogendoorn et al., 2014, Fagnant and Kockelman, 2015) has become a 
hot topic for researchers. Many researchers have investigated the im-
pacts of Autonomous Vehicles (AVs) on the efficiency of road traffic 

Fig. 1. Logical framework of the study.  
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flow. Reza Mohajerpoor and his team used an analytical model to derive 
the expected traffic flow values and headway times for mixed autono-
mous and manually driven vehicles. Ye and Yamamoto (2018) 
leveraging the Two-State Safety Speed Model (TSM), established a 
dual-lane CA heterogeneous traffic flow model. This model incorporated 
both autonomous and conventional vehicles into the heterogeneous 
traffic flow to study the potential impacts of connected and autonomous 
vehicles on traffic flow. Guo et al. (2021) proposed a dual-queue mixed 
traffic flow model to describe the dynamics and flow conversions at 
intersections. Based on this mixed flow model, they developed a dy-
namic dual-layer framework to capture the behaviours and interactions 
of both manually driven and autonomous vehicles, enhancing the 
network performance of heterogeneous traffic flows. Yao et al. (2021) 
believed that autonomous vehicles following manually driven vehicles 
could lead to a decline in the performance of autonomous vehicles. 
Based on this, they derived and analysed the linear stability of hetero-
geneous traffic flows, considering the degradation of autonomous ve-
hicles and the diversity of reaction times. Yang et al. (2022) developed a 
platoon cooperation strategy based on a “catch-up’ mechanism, 
analyzing its impact on traffic dynamics within mixed environments. 
Zhang et al. (2023) enhanced a CA model to examine the characteristics 
of heterogeneous traffic, including electric vehicles. Xu et al. (2023) 
proposed a novel multi-view adaptive hierarchical spatial graph 
convolution network for predicting trajectories of varied traffic agents. 
Lastly, Ku et al. (2023) introduced an attention mechanism in graph 
construction neural networks, focusing on asymmetric spatiotemporal 
correlations in heterogeneous traffic, offering more sensitivity compared 
to traditional models. 

According to the current research achievements, it’s evident that 
within the prevailing traffic flow models, some have already incorpo-
rated the dynamic maritime safety distances. However, the primary 
focus of these models is on varying navigational behaviours of ships, 
neglecting the changes in safety requirements arising from alterations in 
speeds. Whilst road traffic models have begun emphasising heteroge-
neous traffic flows constituted by both autonomous and manually driven 
vehicles, maritime research predominantly centres on the situational 
awareness, intelligent collision avoidance, and route planning of 
autonomous ships. The theoretical and simulation models for hetero-
geneous ship traffic flow warrant further in-depth exploration. 

3. Methodology 

Studying heterogeneous traffic flow inclusive of autonomous ships is 
a complex and systematic endeavour. One of the primary datasets in-
tegrals to this research is the AIS data, which encompasses a plethora of 
both dynamic and static ship-related information, being crucial in nav-
igation as ships transmit and receive these data. AIS data can be 
collected by satellite and received by shore-based base stations, which 
include ship identification information, Maritime Mobile Service Iden-
tities (MMSI) number, static information, and dynamic information, etc. 
Dynamic information includes a ship’s position (longitude and latitude), 
heading, speed, bow direction, the ship’s status, etc., while static in-
formation includes the ship’s size, type, draught depth, destination, 
expected arrival time, etc. By analysing the AIS data, the historical 
trajectory, position change and speed change of the ship can be under-
stood, and then the behavioural pattern of the ship and the speed change 
trend can be analysed. Therefore, our study begins with the processing 
and feature extraction of AIS data. Firstly, ships are categorised based on 
static data like their type and dimensions. Further classification ensues 
based on the pattern in their speed change, wherein the trajectories are 
grouped by speed characteristics. This process entails calculating tra-
jectory similarity by speed attributes. The use of hierarchical clustering 
offers the benefit of a stratified data perspective without the prerequisite 
of specifying cluster numbers. Consequently, trajectories with analogous 
trends and attributes are grouped, furnishing requisite data for subse-
quent ship speed predictions. 

For speed prediction, the LSTM model, renowned for its heightened 
sensitivity to spatiotemporal features in data, was employed. An LSTM 
network model was constructed hinged on velocity and positional data 
to forecast trajectory speeds exhibiting varying tendencies. This culmi-
nated in a speed control strategy. Following this, a dynamic safety dis-
tance computational model for both manned and autonomous ships was 
devised, grounded in car-following theories and suppositions regarding 
parameters of autonomous ships. 

Conclusively, by integrating the speed control strategy and the dy-
namic safety distance computation into a CA-based simulation model, a 
heterogeneous maritime traffic flow simulation model was established, 
possessing a dual-speed control strategy. The logical framework of each 
segment is elucidated in Fig. 1. 

3.1. Trajectory clustering based on velocity features 

Before embarking on trajectory prediction, it is imperative first to 
undertake data pre-processing, trajectory similarity measurement based 
on velocity attributes, and subsequently trajectory clustering. These 
processes are instrumental in understanding the trends in ship speed 
variations and a broad categorisation within the targeted research area.  

(1) Data pre-processing 

In the data pre-processing stage, the main steps include the 
following: standardisation of the ‘Speed’, ‘Lat’, and ‘Lon’ columns of the 
data using the Z-Score (Al Shalabi et al., 2006) method, and elimination 
of outliers by excluding Z-Scores with absolute values greater than 3. 
The Z-Score is calculated using the formula: 

Z =(X − μ)/σ (1)  

where X is each observation, μ is the mean of the observations, and σ is 
the standard deviation of the observations. 

After eliminating outliers, discontinuous trajectories are removed. 
Firstly, the time difference between two consecutive observations of the 
same MMSI is calculated, and then data points with too large time dif-
ference are removed. Finally, trajectories with lengths less than a certain 
spatial extent were filtered out. The latitude and longitude data were 
converted to distance data using the Haversine formula, which calcu-
lates the distance between two latitudes and longitudes. The formula is: 

a = sin2
(Δφ

2

)
+ cos φ1 ∗ cos φ2 ∗ sin2

(
Δλ
2

)

c = 2 ∗ atan 2
( ̅̅̅

a
√

,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − a)

√ )

d = R ∗ c

(2)  

where φ1 and φ2 represent the latitude of the first and the second point 
in radians, respectively. 

Δφ represents the difference between the latitudes of the two points 
in radians, calculated as φ2 − φ1, λ1 and λ2 represent the longitude of 
the first and the second point in radians, respectively, Δλ represents the 
difference between the longitudes of the two points in radians, calcu-
lated as λ2 − λ1, R is the mean radius of the Earth (taking the value of 
6371 km), a represent a helper variable in the formula, calculated using 
the latitudes and longitudes of the two points, c represent another helper 
variable, computed using the arctangent function applied to the square 
root of a and the square root of 1 − a, d represent the final calculated 
distance between the two points on the surface of the sphere, in the same 
units as the radius R (usually km). 

The process starts by finding the start point of each MMSI, then 
calculating the distances between the other points and this start point 
using the Haversine formula. These computed distances are subse-
quently added to the dataset as new features. 

Before the similarity calculation, the trajectory data should be pre- 
processed again, the velocity of each ship trajectory is taken as a 
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sequence, and the distance of each sequence is split into segments of 
length distinterval, and the average velocity of each segment is calculated. 
d denotes the sequence of distances, s denotes the sequence of velocities, 
and the new sequence of velocities, s′ is computed in the following way: 

s′
i =

⎧
⎪⎪⎨

⎪⎪⎩

∑
j:mj≥i•distinterval and mj<(i+1)•distinterval

sj

count of j

0

if count of j > 0

if count of j = 0

(3)  

where mj is the jth element in the sequence of distances.  

(2) Trajectory similarity metric 

For similarity metric, the DTW algorithm is used to calculate the 
distance between two sequences (Zhang et al., 2023). Firstly, the data 
are grouped by MMSI, then the ‘Dist’ and ‘Speed’ values of each MMSI 
are combined into a two-dimensional array, finally, the DTW distance 
between each pair of data is calculated and the distance is stored in a 
two-dimensional array. The DTW algorithm excels at assessing the 
similarity between trajectories, exhibiting robustness with respect to 
time. It is capable of computing the distance between sequences of 
differing lengths, determining the distance between trajectories based 
on the correspondence of time-series features. Notably, DTW is free from 
parameter constraints and does not necessitate a one-to-one corre-
spondence of time points. For a given sequence of d and s′, of lengths n 

and m, respectively, the DTW distance D(d, s′) can be calculated by the 
following recursive relation: 

DTW(i, j)= dist(d|i|, s′|j|) + min

⎧
⎨

⎩

DTW(i, j − 1)
DTW(i − 1, j − 1)

DTW(i − 1, j)

⎫
⎬

⎭
(4)  

where DTW(i, j) is the DTW distance between d[1⋯i] and s′[1⋯j], 
dist(•, •) is the Euclidean distance, and D(m, n) is the final DTW distance.  

(3) Clustering based on trajectory similarity 

There are various clustering methods, including K-means (Son et al., 
2022a; 2022b), Density-based spatial clustering of applications with 
noise (DBSCAN) and Hierarchical Clustering. In this study, the need to 
classify trajectories with similar speed change trends into the same 
category makes Hierarchical Clustering a more appropriate method. 

Hierarchical clustering not only delivers the final clustering outcome 
but also offers a hierarchical perspective on the data. This method allows 
for a view of data clustering on varying levels of abstraction, tran-
sitioning from fine to coarse granularity, facilitating a deeper under-
standing of the similarities and disparities amongst the data. Unlike 
many clustering methods that require the pre-specification of the 
number of clusters to be formed, hierarchical clustering is devoid of this 
stipulation. The hierarchical structure and dendrogram facilitate a vi-
sual interpretation of clustering outcomes. It’s adaptable, permitting the 
use of different distance metrics and linkage methods, thus making it 
flexibly applicable to diverse types of data and usage scenarios. Contrary 
to centroid-based clustering methods, hierarchical clustering negates 
the need to select initial centroids, which diminishes its sensitivity to 
initial conditions, thus consistently yielding stable results. Moreover, 
hierarchical clustering is amenable to both small and large samples. This 
is because it doesn’t necessitate processing all data from the outset but 
builds clusters through progressive merging or division. 

In the hierarchical clustering method, the ward method works to 
minimise the variance within each cluster by selectively merging the 
two clusters that minimise the variance of the total inner clusters at each 
step, whereas the maxclust criterion determines the final number of 
clusters by evaluating the inter- or intra-cluster distances or densities to 
determine the appropriate cut-off point (e.g., Li et al., 2022; Wang et al., 
2021; Zhang et al., 2018). The precise merging of the ward method and 
the cut-off strategy of the maxclust criterion provides an ordered, 
multilevel clustering structure for the data. 

The specific steps of hierarchical clustering include: 1) initialising 
the best contour score best score and the corresponding number of 
clusters best num clusters, by iterating over a predefined range of 
different number of clusters nclusters; 2) constructing the linkage matrix, 

Table 1 
Pseudocode of trajectory clustering process. 

Fig. 2. LSTM neuron structure diagram (Hochreiter and Schmidhuber, 1997)  
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calculating the linkage matrix using the ward method; 3) clustering the 
data according to the given number of clusters and the maxclust crite-
rion, using the fast clustering fcluster method; 4) using the pre-computed 
distance matrix distance and the clustering result clusters to compute the 
profile score score, and 5) after iterations, using the best num clusters to 
reconstruct the linkage matrix and form the final clusters. 

For a given distance matrix D and a range of number of clusters 
nmin ≤ nclusters ≤ nmax, the process of trajectory clustering is shown in 
Table 1. 

During the iteration process, for each nclusters, the number of clusters 
that maximises the profile score is chosen as the final optimal number of 
clusters. 

3.2. LSTM-based ship speed prediction 

LSTM (Fig. 2) networks are particularly adept at predicting speed 
using ship trajectory data. The inherent ability of LSTM to capture and 
remember information over extended time periods is crucial for ana-
lysing long-term dependencies in time-series data like trajectories. Its 
capability to handle sequences of varying lengths and its inherent 
adaptability make it ideal for processing spatial-temporal data, which 
often consists of trajectories or event sequences of diverse lengths. 
Moreover, the LSTM’s contextual memory ensures a more profound 
comprehension of patterns and relationships within sequences, espe-
cially in the realm of spatial-temporal data. It is sensitive to time-space 
features, effectively capturing correlations in temporal and spatial di-
mensions, which is invaluable for analysing and predicting trends and 
patterns in such data. Furthermore, its flexibility in processing multi- 
dimensional inputs allows for a holistic understanding by integrating 
time-series data with other attributes. 

In this study, a LSTM neural network model was used to predict the 
speed corresponding to every 60 m in the trajectory. The data contained 
multiple ship trajectories, each containing information such as longi-
tude, latitude, timestamp, and distance from the starting point to the 
current point. The prediction goal is to predict the current velocity based 
on the current location and its previous velocity. 

First, a one-dimensional interpolation process was performed on 
each trajectory to ensure that there was a data point every 60 m. The raw 
data were transformed into new data at 60 m/data point to obtain a 
more continuous trajectory. 

Distnew = interp1d (Dist, Speed,Time, axis= 0) (5) 

For the input data of the neural network model, the distance to 
starting point and the interpolated speed were selected as features and 
these two features were normalised, i.e., the mean was subtracted and 
divided by the standard deviation to transform it into a normal distri-
bution with mean 0 and variance 1. For the output of the model, the 
interpolated speed was selected and was also normalised similarly. 

xnorm =
x − xmin

xmax − xmin
(6) 

An LSTM model containing a 50-neuron LSTM layer, and a fully 
connected layer of output neurons was used (Fig. 3). The Adam opti-
miser (Kingma and Ba, 2014) was chosen, as well as the mean square 
error as the loss function. During model training, one group of trajec-
tories was selected as the validation set for monitoring the model per-
formance during training, and the other group as the training set. The 
maximum number of epochs for model training was set to 200, and an 
early stopping strategy was also introduced, i.e., if the loss in the vali-
dation set did not decrease further after 10 consecutive epochs, the 
model training would be ended early. At the same time, the parameters 
of the model were saved after each epoch, and if it was found that the 
new model was not better than the previous one, it would not overwrite 
the previously saved model. 

The equations provided describe the mathematical formulations 
underpinning the LSTM neural network, a specialized type of Recurrent 
Neural Network (RNN) renowned for its proficiency in learning tem-
poral dependencies in sequential data. The LSTM architecture comprises 
various components such as forget, input, and output gates, along with 
cell and hidden states, each playing a pivotal role in governing the 
network’s learning process. The specified equations can be delineated as 
follows: 

ft = σg
(
Wf ⋅[ht− 1, xt] + bf

)

it = σg(Wi⋅[ht− 1, xt] + bi)

C̃t = tanh (WC⋅[ht− 1, xt] + bC)

Ct = ft⋅Ct− 1 + it⋅C̃t

ot = σg(Wo⋅[ht− 1, xt] + bo)

ht = ot⋅tanh (Ct)

(7)  

where ft, it, ot are the activation values of the oblivion gate, the input 
gate, and the output gate, Ct is the cell state, and C̃t represents the 
candidate memory cell state. This state contains the information that 
could potentially be added to the long-term state Ct at the current time 
step. ht is the hidden state, xt is the input, and σg is the sigmoid acti-
vation function. Wf , Wf , WC, and Wo are the weight matrices associated 
with the forget gate, input gate, cell state, and output gate, respectively. 
bf , bi, bC and bo are the bias vectors for the corresponding gates and cell 
state. 

For a Fully Connected layer (FC), the output is as follows: 

y=W • h + b (8)  

where h represents the input features or activations from the preceding 
layer. The matrix W and vector b are the weight and bias parameters of 
the layer, respectively, which are learned during the training of the 
neural network. The dot product W • h signifies the weighted sum of the 
input features and adding the bias b to this sum introduces an additional 
degree of freedom to the model, allowing it to better fit the training data. 
The resultant y typically undergoes a non-linear activation function 
before being forwarded to subsequent layers, aiding the network in 
learning complex patterns and representations from the input data. 

3.3. Dynamic ship safety distance based on the follow theory 

For ships of diverse classifications, the prerequisites for maintaining 
safety distances are subject to variations, contingent upon distinct ve-
locities and environmental conditions. This complexity is accentuated in 
the evolving landscape of maritime traffic, where heterogeneity is not 
merely a function of scale and type but also encompasses a shift towards 
a composite structure of both manned and autonomous ships. In such a 
diversified framework, the heterogenous characteristics of distinct ships 
and their corresponding safety requisites become increasingly 

Fig. 3. LSTM network structure diagram.  
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prominent and intricate, necessitating nuanced considerations and 
strategies to address the dynamic environment of maritime navigation 
and safety in the forthcoming era. 

Current methods for calculating the safe distance of ships primarily 
focus on car-following theory and ship domain. In restricted channels, 
the value of a ship’s domain is generally 5–7 times the length of the ship, 
and the methods of determining this value have evolved from earlier 
Fujii models (1971), Goodwin observational data models (1975), and 
others (e.g., Szlapczynski and Szlapczynska, 2017; Yang et al., 2023), to 
ship domain models based on mathematical analysis and AIS data. This 
study adopts a safety distance of five times the ship’s length, a parameter 
consistent with practices in restricted channels and supported by theo-
retical models like Goodwin’s. This choice is informed by the specific 
navigational characteristics of the Tianjin Port main channel and aligns 
with the evolution of ship domain methods from Fujii’s early model to 
recent AIS data-based analyses. 

Following theory can characterise the generation and evolution 
process of traffic flow and can depict the following behaviour of het-
erogeneous ship flow in busy traffic conditions. Hence, in this study, a 
method based on the car-following behaviour of ships to calculate dy-
namic safety distance is employed. 

The ship following behaviour model divides the ship’s reaction to an 
emergency braking situation into three stages (Fig. 4.). 

Stage I：：The leading ship Y encounters an emergency and begins to 
reverse and brake, while the following ship X continues to sail at its 
original speed. 
Stage II: The following ship X receives the dynamics of the leading 
ship Y’s reversing and braking through VHF and begins to reverse 
and brake accordingly. 
Stage III: The following ship X completes its braking and maintains a 
certain safety distance, denoted as DS , from the leading ship Y, 
which has already completed its braking. 

If the start time of the braking manoeuvre of the front ship is taken as 
a reference, the distance DY between the initial position of the front ship 
and the rear ship at the completion of braking can be calculated by the 
following formula: 

DY =D0 + Dy1 + Dy2 (9)  

where Dy1 + Dy2 is the braking distance of the front ship; D0 represents 
the net distance before the two ships when the front ship is performing 
the braking manoeuvre. 

The rear ship X receives the ship dynamics of the forward ship Y 
braking in reverse via VHF, and the distance Dx1 travelled forward 
before starting to perform the reverse braking is also called the reaction 
distance, and if it is assumed that Dx2 is the distance travelled by the rear 

ship in the process of braking to the expected speed, the following for-
mula can be used for the calculation of the rear ship’s distance of travel, 
DX, after the forward ship has braked: 

DX =Dx1 + Dx2 (10)  

where Dx1 = Vt, V represents the sailing speed of the rear ship when the 
front ship takes braking manoeuvre; t represents the reaction time of the 
rear ship, which consists of the reaction time of the driver and the 
braking action time of the main engine. 

In order to maintain the full safety of the two ships during braking, 
the distance between the two after the completion of braking should be 
greater than the safety margin Ds, i.e., DY − DX ≥ Ds. Based on the above 
conditions, the following formula for the safe longitudinal distance be-
tween ships can be determined: 

D0 ≥Dx1 + Dx2 + Ds − Dy (11)  

where Dy = Dy1 + Dy2 represents the braking distance of the front ship. 
Dx2 and Dy are the reversing strokes of the front and rear boats 

respectively, and the reversing strokes can be calculated by the 
following empirical formulae: 

S=
1
2

Wk
gTp

V2 (12)  

where S represents reversing stroke (m); g is acceleration of gravity (9.8 
m/s2); W represents ship’s displacement (t); k represents ship’s forward 
direction of the virtual mass coefficient, taken as 1.07; Tp represents 
propeller reversing pull (t), taken as 0.01 MP, MP represents the 
reversing power; V represents the ship’s speed during reversing motion 
(m/s). 

Assuming a normal following situation, the relationship between the 
ship’s safety distance and speed obtained from the above equation has: 

D0 =Dx1 + Ds +
Vx

2kWX

2gTPX
−

Vy
2kWY

2gTPY
(13) 

As delineated in Table 2, some correspondence is established be-
tween ship length and Deadweight Tonnage (DWT), as well as between 
ship power and DWT, in accordance with the Design Code of General 

Fig. 4. Schematic diagram of ship following behaviour.  

Table 2 
Correspondence between tonnage, length, and power of ships.  

Ship type Ship length(m) Power (kW) 

Oil ships 8.491DWT0.291 (6809 + 0.0896DWT)*0.746 
Cargo ships 7.945DWT0.301 (7617 + 0.081DWT)*0.746 
Container ships 4.089DWT0.380 (0.863DWT-1905)*0.746 
Miscellaneous cargo ship 6.839DWT0.321 (748 DWT+0.552DWT)*0.746  
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Layout for Sea Ports.2 This correspondence is derived through rigorous 
statistical analysis and regression conducted on an extensive array of 
ship parameters. It is noteworthy that the relationship between ship 
length and DWT is characterised by an exponential correlation, whilst 
the association between ship power and DWT is distinctly proportional. 

Regarding the assumptions made in our dynamic safety distance 
model for autonomous ships, we have assumed that in the future 
maritime Internet of Things environment, autonomous ships will be able 
to obtain real-time information about surrounding ships and promptly 
act upon it. Under this premise, autonomous ships are more sensitive to 
the speed changes of the ships ahead compared to manned ships. In the 
dynamic safety distance model, we can thus omit the time taken to ac-
quire information about speed changes of the leading ship and the time 
for the ship’s own reaction and operation. 

The fundamental sequence underlying the following behaviour of an 
autonomous ship mirrors that of a manned ship; however, a distinctive 
variance emerges in the decision-making dynamics, accounting for these 
assumptions. An autonomous ship is endowed with the capability to 
instantaneously discern and respond to the deceleration of the preceding 
ship, thereby abbreviating the reaction process depicted as stage 2 in 
Fig. 4. This enhanced sensitivity and real-time responsiveness effectively 
reduce the necessary safety distance, as reflected in the optimized for-
mula (Eq. 14) compared to the computation for manned ships (Eq. (13)). 
Consequently, the following behaviour of such autonomous ships, 
including their decision-making dynamics and the calculation of dy-
namic safety distance, is aptly represented in Fig. 5. This refined model 
and the adaptations in computational methodologies underscore the 
nuanced differences and advancements in autonomous maritime 
navigation. 

D0 =Ds +
Vx

2kWX

2gTPX
−

Vy
2kWY

2gTPY
(14)  

3.4. Simulation model of ship traffic flow based on CA 

The CA model, when applied to ship traffic flow simulation, stands 
out due to its blend of precision, adaptability, and efficiency. Drawing 
inspiration from the Na-Sch rules and tailoring it to the maritime 
domain, the CA model offers a keen reflection of real-world ship 
movements, allowing for granular control over ship behaviours. Its 
inherent scalability ensures real-time simulation of ship generation 
patterns and the dynamic safety distances resulting from ship in-
teractions. Moreover, by integrating modules based on predicted speeds, 
the model can implement ship speed control strategies, further aligning 
simulations with actual traffic conditions. In essence, the CA model’s 
adaptability and holistic approach render it invaluable for portraying 
and understanding complex maritime traffic dynamics.  

(1) Location update rules 

The ship’s location update follows the rules shown in Eq. (18). 

xn(t+ 1)= xn(t) + vn(t) (15)    

(2) Calculation of dynamic safety distance 

During navigation, the distance between the target ship n and the 
nearest leading ship n + 1 is first calculated. If the target ship is a 
manned ship, dsafe is calculated according to Eq. (13); if the target ship is 
autonomous ship, dsafe is calculated according to Eq. (14). If the distance 
between the following ship and the leading ship is greater than the safe 
distance, i.e., xn+1(t) − xn(t) > dsafe, then the ship enters the acceleration 
rule; otherwise, it enters the deceleration rule.  

(3) Acceleration rules: 

For situations where the predicted speed strategy vdata exists:  

a. Calculate the speed difference: Δv = vdata − vn.  
b. If Δv > 0, then accelerate: vn = vn + min{Δv,a}, where a is the pre- 

set acceleration.  
c. If Δv < 0, then decelerate: vn = vn − min{Δv,a}. 

For situations where the speed strategy vdata does not exist, acceler-
ation is carried out according to part (a), but not exceeding the 
maximum speed: vn→min{vn + a,vmax}, where vdata represents the speed 
of the ship according to predictions, and vdata(x) represents the predicted 
speed at position x.  

(4) Deceleration rules 

When the distance between shipn and shipn+1 is less than the pre-set 
safe distance, xn+1 − xn < dsafe, the rear ship needs to slow down as Eq. 
(16). 

vn→min{vn(t) − 1, vmin} (16)  

4. Case study 

Tianjin Port, as a large and busy port in northern China, carries an 
important role as a freight distribution centre. The main channel of 
Tianjin Port, as the main channel for ships to enter and leave the port, 
carries an irreplaceable important role, which has a good research value. 
Thus, the main channel of Tianjin Port was selected as a study case. It 
was discretised according to the requirements of the cellular automaton 
model, and the visualization effect is shown in Fig. 6. 

Fig. 5. Schematic diagram of the following behaviour of an autonomous ship.  

2 JTS 165–2013, Design Code of General Layout for Sea Ports, People’s 
Communications Press, Beijing, 2013. 
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4.1. Traffic flow feature extraction 

The AIS data of the main channel of Tianjin Port from 1 July to July 
30, 2019 were selected as the dataset (Fig. 7). By analysing the ship 
types and ship sizes, it can be found that the proportion of cargo ships 
has reached 94.3%, of which the proportion of ships with a length of 
<180 m, 180–300 m and >300 m is about 1:7:2 (Fig. 8). Therefore, these 
three types of cargo ships are mainly considered for trajectory clustering 
and velocity prediction. 

According to the clustering results (Fig. 9), the trajectories can be 
classified into three categories according to the velocity trend, and the 
training and prediction of the three categories are carried out respec-
tively to obtain the result in Fig. 10. Mean Squared Error (MSE), Mean 
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) 
were employed as evaluation metrics for our study. The results, as 
presented in Table 3, demonstrate that the accuracy of our predictions is 
over 90%. This high level of accuracy substantiates the effectiveness of 
our predictive model. 

In response to the observed deviations in ship speed predictions, 

particularly regarding the higher speed deviation in Type 3 ships (over 
300 m) compared to Type 2 ships (240 m), it is important to consider the 
unique characteristics of the Tianjin Port main channel used in our 
study. Typically, larger ships are expected to have more stable speed 
patterns, theoretically making them easier to predict accurately. How-
ever, the Tianjin Port main channel presents unique navigational chal-
lenges due to specific convergence points, which can lead to speed 
variations that deviate from conventional expectations. In addition, 
ships during navigation are significantly influenced by the speed of 
vessels ahead, particularly in dense traffic scenarios. These specific 
conditions have influenced the predictive results, leading to higher 
speed deviations for larger ships in our dataset, as they adjust their 
speeds in response to the movements of preceding ships. 

After transforming the position information into metric spatial order, 
a new two-dimensional array is formed with the corresponding pre-
dicted velocities to obtain the velocity control strategy based on the 
predicted data. 

Fig. 6. Range of target waters.  

Fig. 7. Ship trajectory in Tianjin Port main channel.  
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4.2. Parameter setting  

a. Temporal discretisation and spatial discretisation of the simulation 

According to the spatial-temporal discretisation requirements of the 
theoretical model of the CA and the actual traffic conditions of the main 
channel of Tianjin Port, the size of each cell is set to represent a space of 
15 × 15 m, and each time step t represents 30s, and the whole channel is 
discretised into a cellular space of 60 × 2000, and the ship moves for-
ward one cell when sailing at the speed of 1kn for one time step, which 

facilitates the movement of the ship in the whole system. 
According to the provisions in the Classification Code for Steel Sea- 

going Ships,3 the reversing power should not be less than 70 per cent 
of the forward power and the reversing speed should not be less than 50 
per cent of the forward speed (Table .4).  

b. Simulation background settings based on AIS data 

From the AIS data analysis (July 1, 2019–July 7, 2019), we cat-
egorised ships as <180 m, 180–300 m, and >300 m, with a generation 

Fig. 8. Ship Type and ship length distribution.  

Fig. 9. Ship trajectory clustering.  

3 China Classification Society. Classification Code for Steel Sea-going Ships. 
Beijing: China Classification Society, 2023. 
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ratio of 1:7:2. To facilitate precise dynamic safety distance calculations, 
these categories refined to specific lengths of 180 m, 240 m, and 300 m. 
This approach aligns with the statistical distribution and enhances the 
model’s accuracy and practicality. The time interval between the arrival 
of ships at the beginning of the channel is counted as 60min. For a simple 
description, manned ships and autonomous ships are defined as shown 
in Table 5. 

4.3. Model verification 

To verify the effectiveness of the simulation model and the speed 
control strategy, simulations were carried out without increasing the 
traffic flow density and without adding the dynamic safety distance 
calculation module. 

Upon examination of the trajectory and variations in a ship’s speed, 
it becomes evident that despite the third group in Fig. 11 manifesting a 
prediction error marginally larger than its preceding two counterparts, 
the devised simulation model retains the capacity to emulate a more 
authentic trend of the ship’s speed alterations, particularly in scenarios 
characterised by sparse traffic density. Given that the principal objective 
of this investigation revolves around elucidating the ramifications of 
alterations in ship behaviour, specifically acceleration and deceleration, 
on traffic efficiency, it is inferred that a traffic model proficient in 
simulating the trend of speed changes fulfils the fundamental pre-
requisites to facilitate the progression of the subsequent phases of this 
study. 

4.4. Experiment and analysis 

Three groups of experiments were carried out respectively, and the 
length of time for each set of experiments was 24 h. The first group was 
without dynamic safety distance, and the ships were navigated accord-
ing to a fixed safety distance. The second group added the calculation of 
dynamic safety distance in the simulation, and the safety distance was 
calculated according to the scale and speed of the ships before and after 
at every step. The third group added a certain proportion of autonomous 
ships based on the addition of the calculation of dynamic safety distance. 
The main difference is that autonomous ships have a smaller safety 
distance compared to manned ships. 

4.4.1. Scenario 1: increase in traffic flow 
This simulation scenario increases the density of ship traffic flow to 

simulate future heavy traffic due to increased demand for ships entering 
and leaving the port, while a fixed safety distance is set based on five 
times the length of the ship to observe the ship following behaviour in 
the trajectory (Fig. 12). 

Fig. 10. Velocity prediction with loss function variation.  

Table 3 
Error analysis.  

Indicators Group 1 Group 2 Group 3 

MSE 0.029 0.165 0.564 
MAE 0.116 0.262 0.489 
MAPE 1.056% 4.785% 6.252%  

Table 4 
Cargo ship parameters.  

Ship length(m) DWT(t) Ship’s main engine 
power P (kW) 

Ship reversing power 
MP (kW) 

180 34,185 7610 5327 
240 82,833 10,696 7487 
300 173,871 16,206 11,344 
Autonomous 

ship 
82,833 10,696 7487  

Table 5 
Definition of ship types.  

Type1 Type2 Type3 Type4 Type5 Type6 

<180 
m 

180–240 
m 

>300 
m 

Autonomous 
ship <180 m 

Autonomous 
ship 180–240 
m 

Autonomous 
ship >300 m  
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To quantitatively analyse the experiment, avoid random error caused 
by computer, 10 groups of experiments were carried out to obtain the 
number of ships and average speed of different types of ships completing 
the voyage, and the average of the results of the ten groups was taken, 
and the results shown in Table 6. 

An examination of the trajectory and speed change trends derived 
from the experimental results reveals that under conditions of high 
traffic flow density, ship n tends to exhibit deceleration behaviours. This 
is necessitated by the imperative to maintain a predetermined safety 
distance from the preceding ship. Subsequent to achieving this safety 
distance, additional deceleration is mandated by the speed control 
strategy, culminating in a series of frequent deceleration and accelera-

tion behaviours throughout the navigation process. This pattern is 
vividly depicted in Fig. 12, contributing to augmented energy con-
sumption by the ship and a concomitant diminution in traffic efficiency 
during actual navigation. 

4.4.2. Scenario 2: incorporation of a dynamic safety distance calculation 
module 

With the addition of the dynamic safety distance module, it is evident 
that the ship’s speed fluctuates less and the average speed is higher than 
before，The need for ships to slow down to a minimum speed to 
maintain a safe distance is greatly reduced (Fig. 13). The mean of the 
results of the ten groups of experiments shown in Table 7. 

From the experimental results, it can be found that the number of 
ships completing the voyage has shown a small increase, and the average 
speed of ships has also shown a small increase, which indicate that the 
introduction of dynamic safety distance can improve the efficiency of 
ship traffic. The increase in speed is mainly observed in the ships with a 
length of 180 m and 300 m, and the increase in the number of ships 
passing through is mainly observed in the ships with a length of 240 m. 
The total number of ship passages was 17.8, with an increase of 6.5%, 

Fig. 11. Experimental results for verification: (a) ship trajectory, and (b) speed versus position.  

Fig. 12. Experimental results after increasing the density of traffic flow: (a) ship trajectory, and (b) speed versus position.  

Table 6 
Result of increasing traffic density.  

Ship type Type1 Type2 Type3 

Ship number 3.700 ± 0.786 9.800 ± 1.826 3.200 ± 1.618 
Average speed (knot) 9.375 ± 0.672 7.160 ± 0.044 9.510 ± 0.596  
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and the average speed was increased by 2.5%. 

4.4.3. Scenario 3: accession of 10%–100% autonomous ships with 
dynamic safety distance 

Upon integrating autonomous ships, we undertook ten experimental 
sets spanning from 10 % to 100 % of the total traffic flow. Each set was 
replicated 10 times, during which we measured the mean velocity of 
each ship type and the average number of voyages completed. 
Furthermore, for every experimental set, the proportion of the traffic 
flow was designated, as delineated in Table 8. 

We selected representative trajectory plots (Fig. 14) and velocity 
trend graphs (Fig. 15) from each experimental set for consolidation and 
analysis. It can be observed that concerning the traffic trajectories, as the 
proportion of autonomous ships within the total traffic flow increases, 
there is a gradual augmentation in traffic density. In terms of velocity 
trends, the frequency of ships undergoing substantial acceleration and 
deceleration appears to be diminishing. 

By analysing the number of ships that completed their voyages 
(Table 9), it becomes evident that as the proportion of autonomous ships 
rises, the number of ships completing their journeys within the 

stipulated experimental duration also progressively increases. This 
corroborates the hypothesis that autonomous ships positively influence 
the channel’s throughput capacity. 

As the proportion of autonomous ships increases, we observe a 
gradual decrease in the magnitude of acceleration and deceleration for 
all ship types. This trend, illustrated in Fig. 14, is attributable to the 
advanced capabilities of autonomous ships in our model. These ships are 
designed to detect changes in the speed of the ships ahead and react 
more promptly compared to traditional ships. As a result, they can adjust 
their speed earlier and more smoothly, reducing the need for abrupt 
speed changes. This leads to a smoother traffic flow and less pronounced 
velocity fluctuations. The improved reaction time and decision-making 
of autonomous ships, as modelled, not only enhance navigational effi-
ciency but also contribute to safer and more predictable maritime traffic 
patterns. 

In addition to analysing the number of voyages completed by the 
ships, we delved into the effects of an increasing proportion of autono-
mous sailing ships on the average speed of each type of ship in every 
experimental set. Fig. 16 delineates the average speed outcomes from 
ten experiments for different ship types, alongside the corresponding 
standard deviations. Notably, the speeds of Type 2 and Type 5 ships 
remain relatively stable, showing little to no variance with the increase 
in the proportion of autonomous ships. Conversely, the average speeds 
of the remaining ship types tend to incrementally rise as the proportion 
of autonomous sailing ships increases. This phenomenon can be attrib-
uted to the fact that, due to their speed control strategies, Type 2 and 
Type 5 ships maintain lower speeds, thus rarely finding themselves 

Fig. 13. Experimental results after incorporation of a dynamic safety distance calculation module: (a) ship trajectory, and (b) speed versus position.  

Table 7 
Result of incorporation of dynamic safety distance.  

Ship type Type1 Type2 Type3 

Ship number 3.700 ± 1.872 10.100 ± 3.035 4.000 ± 1.155 
Average speed (knot) 9.600 ± 0.350 7.170 ± 0.022 10.003 ± 0.373  

Table 8 
Experimental working condition setting.   

Ship type      

AS proportions Type1 (manned) Type2 (manned) Type3 (manned) Type4 (AS) Type5 (AS) Type6 (AS) 

10% – 70% 20% 10% – – 
20% – 60% 20% 10% 10% – 
30% – 50% 20% 10% 20% – 
40% – 40% 20% 10% 30% – 
50% – 30% 20% 10% 40% – 
60% – 20% 20% 10% 50% – 
70% – 10% 20% 10% 60% – 
80% – – 20% 10% 70% – 
90% – – 10% 10% 70% 10% 
100% – – – 10% 70% 20% 

*AS: Autonomous Ships. 
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nearing ships ahead of them. Meanwhile, other ship types, with their 
average speeds surpassing those of Type 2 and Type 5 ships, necessitate 
frequent deceleration and acceleration actions, especially in dense 
traffic scenarios. Consequently, these ships exhibit heightened sensi-
tivity to speed variations as the proportion of autonomous ships shifts. 

4.5. Discussion 

With the rapid advancement of smart ship technologies, the mari-
time future will inevitably comprise a heterogeneous traffic flow, co- 
inhabited by both autonomous and manned ships. Owing to their digi-
tal and informational prowess, autonomous ships excel in swiftly and 
precisely acquiring navigational situations and surrounding environ-
mental data compared to their manned counterparts. This imparts them 
with a distinctive advantage in navigation efficiency and economic 
viability. Against this backdrop, this study delved into the impact of 
autonomous ships on the efficiency of heterogeneous traffic flow. 

This investigation particularly considered the incorporation of dy-
namic safety distances and the capability of autonomous ships to rapidly 
decide and execute in the face of evolving navigational situations. Based 
on the experimental results shown in Fig. 17, some observation and 
consideration are as follows.  

a. When ships are positioned at distances shorter than a predetermined 
safety threshold, they predominantly maintain a reduced speed to 
uphold the safety distance. Such a practice substantially augments 
fuel consumption, hampers maritime traffic efficiency, and escalates 
transportation costs. Nonetheless, the introduction of dynamic safety 

distances seems poised to mitigate these challenges, to enhance 
traffic efficiency.  

b. The integration of autonomous ships optimises the dynamic safety 
distances between ships, leading to more stable speed alterations 
when confronted with changing traffic situations.  

c. Both the inclusion of dynamic safety distances and autonomous ships 
bolster the navigational efficiency of waterway traffic systems. The 
impact of autonomous ships is especially pronounced: when their 
proportion reaches 100%, the overall pass-through efficiency wit-
nesses an uplift of 26.35%. 

The experimental results demonstrate that the proposed model 
effectively simulates the impact of incorporating dynamic safety dis-
tances on the characteristics of heterogeneous traffic flow. Additionally, 
the results reflect how changes in the proportion of autonomous ships 
affect the efficiency of heterogeneous traffic flows. The outcomes align 
with objective patterns, thus validating the effectiveness and advance-
ment of the model. 

Drawing upon our literature review, we note that most existing 
heterogeneous traffic flow models differentiate between manned and 
autonomous vehicles, with discussions primarily centred around road 
traffic (e.g., Yang et al., 2022; Zhang et al., 2023; Zheng et al., 2020). 
However, research focusing on the distinct characteristics and devel-
opmental trends of heterogeneous traffic flows comprising manned and 
autonomous ships is relatively scarce. Our model contributes to this 
underexplored area by enriching the study of waterway traffic dy-
namics, particularly in the context of the gradual shift towards auton-
omous navigation. This not only enhances the current understanding of 

Fig. 14. Traffic flow trajectories with the inclusion of autonomous ships.  
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maritime traffic flow but also lays a foundational framework for future 
research in the progressive evolution of waterway traffic towards 
autonomous navigation. 

5. Conclusion 

This paper employs hierarchical clustering to categorise trajectories 
with similar speed variation features and utilises LSTM models to predict 
ship speeds, forming a speed control strategy based on predictive data, 
which is novel in traffic simulation modelling. Moreover, extending 
from the principles of following-theory, models have been developed to 
compute dynamic safety distances for both manned and autonomous 
ships. This innovation propels the refinement of maritime traffic simu-
lation models in terms of safety. Further, a port waterway simulation 
model based on CA has been developed, integrating data-driven speed 
control strategies while maintaining dynamic safety distances, resulting 
in a comprehensive simulation model with dual speed control 
mechanisms. 

From the experimental results, one can observe that dynamic safety 
distance requirements can diminish the frequency with which ships 
undertake significant deceleration and acceleration manoeuvres. 
Furthermore, the efficiency of maritime port transport is considerably 
influenced by speed strategies. The integration of autonomous sailing 
ships affects different ship types in varied ways. For ships which 
inherently maintain a slower pace, they tend to persist with their 
languid speeds. However, for the swifter ships, the incorporation of 
autonomous sailing ships can further amplify the efficiency. When the 

Fig. 15. Traffic flow trajectories with the inclusion of autonomous ships.  

Table 9 
Statistics on the number of ships completing the voyage.   

Ship type 

AS 
proportions 

Type2 
(manned) 

Type3 
(manned) 

Type4 
(AS) 

Type5 
(AS) 

Type6 
(AS) 

10% 12.400 ±
2.261 

4.200 ±
2.267 

2.300 ±
0.816 

– – 

20% 10.800 ±
1.327 

4.500 ±
1.432 

1.900 ±
0.539 

1.800 ±
0.600 

– 

30% 9.900 ±
1.155 

4.000 ±
0.875 

1.900 ±
0.875 

3.800 ±
1.499 

– 

40% 7.400 ±
1.685 

3.700 ±
1.487 

3.000 ±
1.095 

5.800 ±
1.249 

– 

50% 4.000 ±
1.100 

4.700 ±
1.414 

3.900 ±
0.875 

7.400 ±
1.333 

– 

60% 3.700 ±
1.900 

5.100 ±
0.943 

3.300 ±
0.900 

8.100 ±
2.022 

– 

70% 2.300 ±
0.816 

4.700 ±
2.708 

2.700 ±
1.750 

10.800 ±
2.409 

– 

80% – 4.700 ±
1.616 

3.100 ±
0.700 

12.700 ±
2.648 

– 

90% – 2.000 ±
0.471 

3.200 ±
1.397 

13.400 ±
1.563 

2.222 ±
0.629 

100% – – 3.700 ±
2.114 

12.700 ±
3.830 

4.700 ±
2.5728 

*AS: Autonomous Ships. 
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proportion of autonomous ship reaches 100%, the overall pass-through 
efficiency witnesses an uplift of 26.35%. 

An accurate model for ship traffic efficiency assessment plays a 
pivotal role in supporting maritime authorities with waterway planning, 
traffic organization, and safety oversight, thereby positively influencing 
the growth and efficient operation of ports. The model introduced in this 
study enriches the theoretical foundation of maritime traffic flow and 
offers novel perspectives on quantifying the efficiency of heterogeneous 
traffic. However, the current model necessitates a significant number of 
parameter inputs with a high demand for precision, resulting in a rela-
tively intricate computational process. Future research will focus on 
further optimising and refining the model’s parameter input. Further-
more, this study’s reliance on data specific to the Tianjin Port main 
channel presents a limitation, potentially impacting the model’s broader 

applicability. Future investigations should incorporate a more varied 
dataset, thereby extending the model’s relevance to diverse maritime 
settings. The proposed dynamic safety distance model is suitable for 
both uni-directional and bi-directional heterogeneous traffic flows, 
requiring specific modifications tailored to the particular navigational 
conditions of each scenario. 
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