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A B S T R A C T   

Modern 3D microelectronic packages frequently exhibit a significant overlap of reflected ultra-
sonic echoes, often exceeding 50 % due to the diminishing thickness of internal structural layers. 
This overlap results in a marked degradation of ultrasonic image quality during C-scanning. To 
tackle this issue, a novel multiresolution sparse signal representation algorithm is proposed to 
achieve multiresolution decomposition of overlapping ultrasonic signals. 

The algorithm begins with SMP algorithm using a standard Gabor dictionary for initial 
decomposition. In each subsequent iteration, the dictionary is refined by narrowing the dictionary 
parameter boundaries while dividing the signal into shorter segments. Through this iterative 
refinement, the decomposition achieves increased precision without necessitating the enlarge-
ment of the dictionary size. 

Our approach not only ensures a more precise decomposition but also enhances the alignment 
of dictionary atoms with ultrasonic echoes, especially in instances of echo overlap. The efficacy of 
this algorithm in accurately separating and estimating ultrasonic echoes has been validated 
through both simulated and experimental ultrasonic signals. This study strengthens Sparse Signal 
Representation (SSR) in ultrasonic Non-Destructive Evaluation (NDE) by addressing the challenge 
of unstable decomposition when the dictionary size surpasses a certain threshold, thereby 
enhancing the reliability of SSR in the failure analysis of 3D microelectronic packaging.   

1. Introduction 

Acoustic Microscopy Imaging (AMI) technology has been extensively employed in the reliability analysis of electronic packaging. 
Ultrasonic C-scan imaging generates interface images of testing materials at specific depths. To obtain a C-scan image, a pre-set time 
gate is applied to a series of A-scan signals collected by mechanically scanning the ultrasonic transducer over the test sample. Each A- 
scan signal comprises ultrasonic echoes reflected from various interfaces within the material. The maximum amplitude of each gated 
A-scan is stored as a pixel in the C-scan image at the corresponding X-Y scan position. However, the trend toward miniaturization in 
high-density electronic packaging, highlighted by the rise of Chiplet-based architectures, underscores the critical industrial demand for 
enhanced inspection techniques. The integration of Chiplets into compact electronic systems necessitates precise evaluation of 
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component integrity and interconnections to ensure system reliability. This trend necessitates ultrasonic inspection methods of greater 
resolution. when inspecting multilayer microelectronic packages, if an internal layer’s thickness falls below half of the ultrasonic 
wavelength or pulse width, overlapping echoes can result, cause echo distortion. Such echo distortion hampers precise defect local-
ization and adversely affects the integrity of ultrasonic C-scan imaging. Moreover, these echoes are crucial as they encode essential 
defect characteristics, including size and type, which are imperative for effective ultrasonic Non-Destructive Evaluation (NDE). With 
the increasing need for higher precision in the detection of minuscule defects, the resolution offered by conventional Acoustic Micro 
Imaging (AMI) technologies is nearing its inherent limits. 

Numerous methods have emerged in recent years, aimed at the enhancement of detected echoes within multilayer structures. These 
methods encompass techniques such as auto-correlation [1], adaptive filtering [2], autoregressive analysis [3], frequency spectrum 
analysis [4], and wavelet transformation [5]. Simultaneously, certain digital signal processing techniques, including compressed 
sensing [6], dictionary learning [7,8], and model-based methods [9], employ sparse constraints to process unique signals. The primary 
objective of these technologies is to augment defect detection and characterization. In our previous research, to address the issue of 
insufficient resolution when detecting internal defects in microelectronic packaging using traditional Acoustic Microscopy Imaging 
(AMI) systems, a novel AMI technique based on Sparse Signal Representation (SSR) was proposed, and a corresponding MATLAB 
toolbox was developed [10]. This innovation aims to break through the inherent resolution limitations of AMI in the assessment of 
microelectronic packaging. The technique employs nonlinear signal processing methods, utilizes an overcomplete time–frequency 
dictionary for sparse signal representation to characterize ultrasonic signals more flexibly, and achieves efficient identification and 
separation of ultrasonic echoes in A-scans, thus generating high-quality C-scan images. 

In the past decade, Sparse Signal Representation (SSR) algorithms have advanced considerably, largely due to their inherent 
benefits in facilitating compact representations of signals and accomplishing super-resolution reconstruction. The SSR algorithm 
significantly improves detection accuracy by precisely aligning signals with predefined elements, known as ’atoms’, within a dic-
tionary. This is particularly evident in the non-destructive evaluation (NDE) of ultrasonic waves for multilayered electronic packaging. 
The analysis of ultrasonic signals in multilayer electronic packaging reveals a distinct characteristic: a finite number of echoes. This 
observation suggests that the signals could be sparsely represented in an appropriately selected signal dictionary, which is a core 
hypothesis of the Sparse Signal Representation (SSR) methodology. By exploiting this inherent sparsity, sparse decomposition tech-
niques offer comparatively more precise and robust processing outcomes than conventional methods, thus highlighting their 
considerable value for practical applications. 

Precisely because of this, there has been a growing interest in utilizing Sparse Signal Representations (SSRs) for ultrasonic Non- 
Destructive Evaluation (NDE) [11–13] In recent years. Ultrasonic echoes manifest as transient signals in A-scan and display time-
–frequency localization characteristics. Typically, SSR employs an overcomplete Gabor dictionary to characterize the echoes present 
within the ultrasonic signal during ultrasonic NDE. This Gabor dictionary comprises a series of waveforms, referred to as atoms. The 
SSR problem can be generalized as the following optimization: 

min
x

‖x‖0subject to Ax = y (1)  

Here, ‖x‖0 is the norm-0 of x (x ∈ RM). which counts the number of non-zeros in x, while y denotes the given signal. The overcomplete 
dictionary A is an M × N matrix with M ≪ N, where M is the number of atoms and N is the length of y. As a result, the equation Ax = y is 
underdetermined and has numerous solutions. If A is known, the primary objective is to find a solution for Ax = y that minimizes the 
number of non-zero elements in x. However, discovering this solution is an NP-hard problem. Consequently, suboptimal solutions are 
sought, and three strategies including convex relaxation, non-convex local optimization and greed search are commonly used to 
develop SSR algorithms [14]. A comprehensive discussion on SSR and its application in ultrasonic NDE can be found in Zhang et al. 
[15]. Li et al. [16] developed a novel sparse decomposition method based on a highly matched atomic dictionary to address the issues 
of noise and echo interference in the detection of fouling in heat exchange tubes under complex environments. Mor et al. [17] proposed 
a sparse approximation approach to monitor the degradation of adhesive joints. Utilizes a compact Gabor atom dictionary and pro-
cesses the ultrasonic signals before and after degradation through a two-stage approximation. Kirchhof et al. [18] proposed a method 
using Sparse Signal Recovery and Orthogonal Matching Pursuit (OMP) to improve ultrasonic detection and reconstruction of shadowed 
flaws in non-destructive testing. 

Research on the application of existing SSR techniques to ultrasonic NDE has demonstrated SSR has a great potential in this field. 
However, the challenge lies in the fact that existing SSR algorithms often struggle to find the optimal solution. Moreover, SSR theory 
dictates that the algorithms only find the optimal solution when the overcomplete dictionary size, i.e., the number of atoms, is below a 
certain threshold due to cumulative coherence bound [19], beyond this threshold, sparse decomposition becomes unstable and un-
reliable. Finer discretization steps for the Gabor dictionary parameters are required to generate atoms that accurately match various 
ultrasonic echoes, which leads to a larger dictionary size. This contradiction between a smaller dictionary size and finer discretization 
steps severely limits the capabilities of existing SSR algorithms for ultrasonic echo separation and estimation. 

In this paper, we propose a multiresolution analysis sparse signal representation algorithm for accurate ultrasonic echo separation 
and estimation in overlapping ultrasonic signals. The algorithm separates severely overlapped echoes by iteratively segmenting the 
ultrasonic signal into two segments in the time domain and decomposing the segment signals using Support Matching Pursuit (SMP) 
[20] over a refined discrete Gabor dictionary. During each iteration, a customized discrete Gabor dictionary is regenerated by com-
pressing the upper and lower boundaries of the Gabor function parameters and refining their discrete steps. This process allows for 
significantly smaller discrete steps of the Gabor function parameters without increasing the Gabor dictionary size, thereby enhancing 
the matching degree between the atoms and ultrasonic echoes at each iteration. As the segment signals are decomposed at higher 
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resolution and accuracy, overlapped echoes that cannot be separated on coarser scales will be distinguished at finer scales. This 
gradually improves the accuracy of both echo separation and estimation. 

The main novel contributions of this work are as follows: 
1) A multiresolution analysis sparse signal representation approach 
Existing sparse representation techniques for ultrasonic signals have limited resolution that hinders accurate decomposition of 

overlapping echoes. The proposed multiresolution analysis algorithm iteratively segments signals into shorter segments and refines 
dictionaries without increasing size, enabling higher resolution decomposition at each iteration. This improves echo separation and 
estimation for overlapping echoes. 

2) Customized dictionary updating based on signal segments 
Dictionaries are updated for each signal segment based on the estimated echo parameters, allowing compressed parameter spaces 

tailored to the segment. This improves matching between dictionary atoms and echoes without increasing dictionary size. 
3) Gradually improving accuracy from coarse to fine scales 
Decomposition at finer scales and with refined dictionaries separates echoes that could not be resolved at coarser scales. This 

gradually improves the accuracy of echo separation and estimation. 

Fig. 1. Flowchart of the proposed algorithm.  
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In comparison to existing sparse representation methods for ultrasonic NDE that use fixed dictionaries, the key novelty and 
advantage of the proposed approach lies in the multiresolution analysis scheme with customized and refined dictionaries at each 
iteration. This enables higher resolution decomposition that more accurately matches dictionary atoms to ultrasonic echoes, especially 
for overlapped echoes. 

The organization of this paper is as follows: Section 2 describes the proposed algorithm. Section 3 describes dictionary updating. 
Section 4 describes signal segmentation. Section 5 describes termination criteria for iteration. Section 6 presents the simulation results. 
In Section 7, the experimental results on real ultrasonic signals are given. Finally, Section 8 concludes this paper. 

2. The proposed multiresolution analysis SSR algorithm 

2.1. Discrete Gabor dictionary 

The ultrasonic signal is a broadband pulse modulated at the transducer centre frequency and is commonly modelled by a Gabor 
function. A Gabor dictionary generated by discretising the four parameters (f , s, u,ω) of the Gabor function in equation (2) over the 
entire time–frequency plane is widely used in ultrasonic NDE: 

gγ(t) =
1̅̅̅
̅̅̅

2π
√

s
e−

(t− u)2

2s2 cos(2πf(t − u) + ω) (2)  

Where f represents the centre frequency of the atom, while s is the scale parameter that controls the atom’s temporal width. The 
variable t denotes time, and u indicates the time position at which an echo reaches the receiver, reflecting the depth of the corre-
sponding interface. Additionally, ω is the phase for an atom. This Gabor dictionary originally reported in Mallat and Zhang [21], and is 
generated by using the following discretization scheme: γ = (f , s, u,ω) =

(
ka− jΔf , aj, pajΔu, iΔω

)
, a = 2,Δu = 1

2,Δf = π, 0 < j < log2N,

0 ≤ p < N2− j+1,0 ≤ k < 2j+1, where N represents the length of the signal. This Gabor dictionary is both succinct and complete [22]. 
However, due to the large discrete step size (more than 0.05 µs for time and 1 MHz for frequency) the accuracy of approximating 
ultrasonic echoes over this Gabor dictionary is often limited in ultrasonic NDE. 

2.2. Advancing sparse signal decomposition with multiresolution analysis 

Fig. 1 presents the flowchart of the proposed algorithm, with the operation steps summarized as follows: 
Step 1: Initial sparse decomposition. The given ultrasonic signal y is decomposed using SMP over the standard overcomplete Gabor 

dictionary D0 as described in Section 2.1. 
Step 2: Signal segmentation. The ultrasonic signal y is divided into two segments y(1,1) and y(1,2) in the time domain by using the 

decomposition result in Step 1. The segmentation detail are described in Section 4. 
The notation y(1,1) refers to the first signal segment obtained after the first signal segmentation. 
The 1 on the left denotes the first iteration. The algorithm iteratively segments the signal into finer segments. 
The 1 on the right denotes the first segment obtained in that iteration. 
Step 3: Dictionary updating. A customized Gabor dictionary is generated for each segment by estimating the temporal widths, 

center frequencies, and spectral widths of the ultrasonic echoes based on the decomposed atoms from Step 1. The upper and lower 
boundaries of the Gabor function parameters are compressed, and a compressed parameter space is determined for each segment signal 
individually. Customized Gabor dictionaries, D(1,1) for y(1,1) and D(1,2) for y(1,2) are generated based on the compressed parameter 
spaces, as shown in Fig. 1. Details are described in Section 3. By compressing the Gabor dictionary parameter space, the discrete steps 
of the Gabor function parameters can be reduced without increasing the dictionary size, improving echo estimation accuracy due to 
better matching between dictionary atoms and ultrasonic echoes. 

Step 4: Sparse decomposition of the segments using the customized dictionaries. Each segment obtained in Step 2 is decomposed 
using SMP and its corresponding dictionary obtained in Step 3. 

Repeat the Step 2 and Step 3 until all the overlapped echoes are separated. The termination criteria are discussed in Section 5. For 
ease of expression, the segment i in iteration n is denoted as y(n,i), with its corresponding dictionary is denoted as D(n,i). At iteration n, 
there are 2n segments. Iteration 0 corresponds to the initial decomposition described in Step 1. With each iteration, each segment siganl 
is further divided into two shorter segments, allowing the Gabor dictionary parameters in both time and frequency domains to be 
further compressed. As a result, the matching degree between atoms and ultrasonic echoes is refined. Since segment signals are 
decomposed at higher resolution and accuracy, overlapped echoes that cannot be separated on coarser scales are separated on finer 
scales. 

3. Refinement and customization of Gabor dictionaries for enhanced echo decomposition 

3.1. Parameter boundaries determination for dictionary customization 

Assume m atoms denoted as dq(q = 1, 2,⋯,m) are obtained after decomposing the given segment signal y(n,i) (i.e., the segment i at 
iteration n) in Step 2 of the proposed algorithm. The scale parameter, time position, centre frequency and phase of each atom can be 
represented as sdq, udq, fdq and ωdq repectively. The lower boundary sl(n,i) for the parameter s can be estimated as min( sd1, sd2,⋯, sdm), 
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and its upper boundary su(n,i) can be estimated as max( sd1, sd2,⋯, sdm). Similarly, the lower and upper boundaries ul(n,i), uu(n,i), fl(n,i),
fu(n,i), ωl(n,i) and ωu(n,i) can be estimated. The parameter boundaries for the customized dictionary D(n,i) are then determined as follows: 

s ∈
[
sl(n,i)

α ,αsu(n,i)

]

, u ∈

[
ul(n,i)

α , αuu(n,i)

]

, f ∈
[
fl(n,i)

α , αfu(n,i)

]

,ω ∈

[
ωl(n,i)

α , αωu(n,i)

]

(3)  

Where α is a relaxation coefficient to enlarge the boundaries. As the m atoms are obtained after sparse decomposition at a coarser scale, 
there may be mismatches between an atom and a true ultrasonic echo. By applying the relaxation factor, accurate ultrasonic echoes can 
be identified when the segment y(n,i) is decomposed over the customized dictionary D(n,i) at a finer scale in the next iteration n + 1. 

3.2. Generation of customized Gabor dictionaries 

The dictionary size of D0, i.e., the number of atoms, denoted as LD0 can be calculated by equation (4): 

LD0 =
∑2j+1

k

∑N2− j− 1

p

∑log2N

j

∑12

i
1 (4)  

LD0 is then used as the reference for the following dictionary customization. Employing the same discretization scheme and dis-
cretization steps as used in LD0 , as described in Section 2.1, the dictionary size of D(n,i) for the segment signal y(n,i), can be calculated 
with the new boundaries estimated in equation (3), denoted as LD(n,i) . Since the parameter space is compressed, LD(n,i) is smaller than LD0 

and the shrinking ratio k(n,i) can be calculated as: 

k(n,i) =
LD0

LD(n,i)

(5)  

This approach refines the discretization steps for the four parameters without increasing the dictionary size, addressing the trade-off 
between smaller dictionary size and finer discretization steps. Furthermore, there are multiple ways to generate a customized Gabor 
dictionary by creating different discretization schemes for these parameters. The development of an optimal discretization scheme will 
be explored in future research. 

In ultrasonic NDT, the polarity of reflected echoes changes only when ultrasonic waves transmit from a material with higher density 
and speed of sound to one with lower density and speed of sound. In such cases, the reflected echoes alter their polarity at both in-
terfaces. The polarity is influenced by the acoustic impedances and densities of the two materials, with acoustic impedances being 
determined by both the density and velocity of sound within the materials. As a result, the phase ω of ultrasonic echoes have very 
limited changes. Consequently, refining the parameter ω can be disregarded in this application. 

In this paper, the customized dictionaries are generated using the discretization scheme outlined in Section 2.1 while refining the 
parameters s and f, the parameters u and ω are not refined. Although this is not the optimal scheme for updating the dictionaries, it can 
be employed to verify the proposed algorithm in Section 2. 

Assume the number of sampling point for the scale parameter in the dictionary D0 is nsD0 . In dictionary D0, s = aj, a = 2,
1 ≤ j ≤ nsD0 , and nsD0 ≤ N, with N being the upper boundary of scale parameter. To refine the discretization of scale parameter in D(n,i)

to make LD(n,i) is equal or close to the reference LD0 , the variable a can be updated as follows: 

anew =
̅̅̅̅̅̅̅̅̅̅̅
su(n,i)nsD(n,i)

√
=

̅̅̅̅̅̅̅̅̅̅̅
su(n,i)nsD0

√
(6)  

The dictionary D(n,i) can be generated by employing the discretization scheme outlined in Section 2.1, taking into account the update 
boundaries estimated by equation (3) and the updated variable anew calculated by equation (6). It is important to note that the 
parameter f is also refined, as it is related to the variable anew. 

4. Strategies for signal segmentation in sparse signal decomposition 

In this section, we elaborate on the signal segmentation details used in Step 2 of the proposed SSR method. Assume there are m 
atoms in the given signal y(n,i) after sparse decomposition at iteration n. The process of segmenting y(n,i) into two segments can be 
summarized as follows:  

1) Sort the m atoms in ascending order based on their arrival time u as u = (u1,u2,⋯,um).  
2) Calculate the arrival time difference of two adjacent atoms, denoted as du = (du1,du2,⋯,dum− 1).  
3) Search for the largest du and assume it to be duq. The given signal y(n,i) will be segmented at a time position between the two atoms 

of uq and uq+1.  
4) Reconstruct two echoes from the atoms of uq and uq+1 and their corresponding decomposition coefficients, denoted as echo(q) and 

echo (q + 1).  
5) Assess if the two reconstructed echoes are overlapped. Different strategies are then taken to segment the given signal y(n,i). The 

details are described in the following. 
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For a reconstruct echo, its starting point A and ending point B, as depicted in Fig. 2, are defined as follow: 
A is the point where the signal‘s amplitude begin to exceed a threshold from left to right, and B is the point where the amplitude of 

signal starts to surpass a threshold from right to left. Mathematically, A and B are calculated by equation (7): 

A = argmin
t
{|y(t) | ≥ βmax(|y(t)|)} (7)  

B = argmax
t

{|y(t) | ≥ βmax(|y(t)|)}

Where β is a pre-set percentage, the threshold β will mainly affect the length of the segment signals. A lower β will lead to longer 
segment signals, which may potentially increase the iteration count n and slow down the convergence of the proposed algorithm. 
However, a higher β will lead to information loss. Therefore, in the case of noise, a relatively lower β is recommended. 

We denote the starting point and ending point of echo(q) and echo(q + 1) are denoted as A1, B1, and A2, B2 respectively. If A2 is 
smaller than B1 as shown in Fig. 3 (a), the two echoes are overlapped. Otherwise, they are separated, as illustrated in Fig. 3 (b). If the 
two echoes are separated, the segmentation time position is set as the middle time position between B1 and A2, i.e., us = (B1 + A2)/2. 

If the two echoes are overlapped, B1 and A2 are used as the segmentation points. Segment 1 comprises time position 0 to A2 from the 
given signal y(n,i), while segment 2 spans time position B1 to N(n,i), where N(n,i) denotes the length of y(n,i). Clearly, the two segments 
generated are overlapped. This approach ensures each echo is completely covered by a segment, and also prevents an echo from being 
truncate into different segments. 

5. Termination criteria for iteration 

At the iteration n, after SMP decomposition over the dictionary D(n,i), a given signal y(n,i) is represented as: 

y(n,i) =
∑m− 1

k=0
< Rky(n,i), gγk > gγk +Rmy(n,i) (8)  

Assume m atoms are obtained for a given threshold ε of the residual signal Rmy(n,i). There exist two cases. 
Case 1: m ¼ 1. We update the dictionary D(n,i) to a finer dictionary D(n+1,i). y(n,i) is then further decomposed over D(n+1,i). There are 

two possibilities. 
Case 1.1: The number of atoms obtained is still equal to 1 at the finer scale sparse decomposition, the iteration terminates and 

sparse decomposition for this segment signal ends. 
Case 1.2: The number of atoms obtained is bigger than 1, the iteration continue until the Case 1.1 is met. 
Case 2: m > 1. The iteration will continue and proceed to the finer scale. Until the case 1 is met. 

6. Evaluating the MultiResolution SSR algorithm through simulation 

6.1. Multiple echoes overlapping 

The aim of this simulation is to evaluate the performance of the proposed SSR algorithm. A simulated ultrasonic signal y, 
comprising four echoes, is depicted in Fig. 4. Each echo is generated using the Gabor function, as described in Section 2.1, and their 

Fig. 2. The starting point and ending point of an echo with β = 0.05.  
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corresponding parameters are listed in Table 1. 
The parameter values in Table 1 were selected to demonstrate and test the performance of the proposed multiresolution analysis 

algorithm through simulation. 
The key aims in choosing the parameter values were twofold: 1) To simulate ultrasonic echoes with varying degrees of overlap; 2) 

To simulate echoes with different characteristics. This allows testing how the proposed algorithm separates and estimates overlapping 
echoes with variations in their parameters. The specific values for each parameter were selected as follows: 

Frequency (f): All echoes were assigned the central frequency around 75 MHz to simulate echoes originating from a single ul-
trasonic transducer, Additionally, due to the attenuation of ultrasonic waves as they propagate within electronic packaging, the central 
frequencies of the four simulated signals progressively decrease. 

Scale (s): Different scale values were chosen to simulate echoes with different durations, with larger scale corresponding to longer 
echoes. Corresponding to the central frequencies, the scales of the four simulated signals also decrease progressively. 

Time position (u): Different u values were selected to simulate echoes arriving at different times, with a larger difference in u 
representing more separated echoes. 

Amplitude: Larger amplitudes were chosen for Echoes 1 and 4 to show that the algorithm can handle echoes with different 
amplitudes. 

Fig. 3. (a) A simulated signal with two overlapped echoes; (b) A simulated signal with two non-overlapped echoes.  
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1) Initial sparse decomposition 
The initial sparse decomposition is conducted using the SMP algorithm on the dictionary D0. The threshold ε is set to 0.2, and four 

atoms are obtained after sparse decomposition on signal y. Fig. 5(a) displays the decomposition result in the phase plane [23], each 
atom is represented by a Heisenberg box. And the darkness of the box is represented by the decomposed coefficient of the atom, while 
Fig. 5(b) illustrates the reconstructed echoes. The parameters of the four atoms obtained are listed in Table 2. 

In Fig. 5(b), the four subfigures are the matching comparisons between the four atoms obtained from the decomposition in Fig. 4(a) 
and the four echoes that compose the signal y. In these subfigures, the red curves represent the decomposed atoms, while the blue 
curves denote the initial echoes that make up signal y. 

The atoms in Table 1 are sorted in ascending order based on their arrival time. Next, the arrival time difference between each 
adjacent atom is calculated, revealing that the largest arrival time difference is du2 = 64, Consequently, atom No.2 and atom No.3 are 
chosen to segment the signal y into y(1,1) and y(1,2). 

According to equation (7), the starting point and ending point of atom No.2 and atom No.3 are obtained : A1 = 0ns,B1 = 153ns,
A2 = 94ns,B2 = 256ns. Since A2< B1, atom No.2 and atom No.3 are considered as overlapped. Following the segmentation method 
outlined in Section 4, the signal y is divided into y(1,1) and y(1,2) by B1 and A2. The boundaries of each signal segment are: y(1,1) ∈
[0ns,153ns],y(1,2) ∈ [94ns,256ns]. 

With the relaxation coefficient α set to 1.5, the compressed boundaries of scale parameter of the dictionary D(1,1) and D(1,2) can be 
obtained using equation (3) as: sD(1,1) = [0.0437, 0.096], sD(1,2) = [0.0437,0.192]. 

The range of scale parameter in dictionary D(1,1) and D(1,2) is more compact than in dictionary D0, results in fewer sampling point of 
scale parameter being reached during decomposition. To improve the system resolution, the discretization of s in D(1,1) and D(1,2) is 
refined to make LD(1,1) and LD(1,2) equal or close to the reference LD0 by updating the variable a based on equation (6) as follows: 

anew(1,1) =
̅̅̅̅̅̅̅̅̅̅̅̅
su(1,1)nsD(1,1)

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
su(1,1)nsD0

√
= 1.7692284,

anew(1,2) =
̅̅̅̅̅̅̅̅̅̅̅̅
su(1,2)nsD(1,2)

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
su(1,2)nsD0

√
= 1.9293573 

Fig. 4. The simulated ultrasonic signal, blue: echo1; brown: echo2; yellow: echo3; purple: echo4. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The parameter used for the four simulated echoes.  

Echo 1 2 3 4 

f(MHz) 75 74 73 72 
s(us) 0.017 0.017 0.0169 0.0168 
u(us) 0.0510 0.0849 0.1699 0.2123 
Amplitude 1.3 1.4 1.5 1.4  
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Compare to the dictionary D0, the discretization step of scale parameter and frequency has been refined due to the step size anew has 
become smaller. Simultaneously, the size of each dictionary can be calculated using equation (4).LD0 = 106496, LD(1,1) = 93184,
LD(1,2) = 99265. 

2) Iteration 1 
The signal segment y(1,1) and y(1,2) are decomposed using SMP through dictionary D(1,1) and D(1,2) respectively, by setting the re-

sidual threshold ε equal to the initial sparse decomposition. Fig. 6 displays both the decomposed results in the phase plane and the 
reconstructed echoes. As seen in Fig. 6, two atoms obtained for each signal segment. 

In Fig. 6(b), the four subfigures are the matching comparisons between the four atoms obtained from the decomposition in Fig. 4(a) 
and the four echoes that compose the signal y. In these subfigures, the red curves represent the decomposed atoms, while the blue 
curves denote the initial echoes that make up signal y. 

Since only two atoms obtained for each signal segment, signal y(1,1) is segmented into y(2,1) and y(2,2) based on the arrival time of its 
two atoms. Similarly, signal y(1,2) is segmented into y(2,3) and y(2,4). The starting point and ending point of the two atoms decomposed 

Fig. 5. The result of initial sparse decomposition (a) the decomposed result in the phase plane; (b) the reconstructed echoes matching with the four 
simulated echoes. 

Table 2 
The parameters of each atom obtained by the SMP algorithm over the dictionary D0.   

s(us) u(us) f(MHz)

Atom1  0.064  0.064  78.5509 
Atom2  0.064  0.096  75.0724 
Atom3  0.064  0.160  76.4861 
Atom4  0.128  0.192  71.1332  
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from y(1,1) are determined by equation (7). 

A1 = 0ns,B1 = 85ns,A2 = 84ns,B2 = 153ns  

The starting point and ending point of the two atoms decomposed from y(1,2) can be obtained as well. 

A1 = 94ns,B1 = 220ns,A2 = 137ns,B2 = 247ns  

As A2 < B1 in both signal segment, the two atoms in each signal segment are considered overlapped. According to the segmentation 
method in Section 4, the signal y(1,1) segment into y(2,1) and y(2,2) by its B1 and A2. the signal y(1,2) segment into y(2,3) and y(2,4) by its B1 

and A2. The boundaries of each signal segment are as follows: 

y(2,1) ∈ [0ns,85ns], y(2,2) ∈ [84ns,153ns]

y(2,3) ∈ [94ns,220ns], y(2,4) ∈ [137ns, 247ns]

For the dictionary update, four customized dictionaries D(2,1), D(2,2), D(2,3), and D(2,4) are generated for signal segment y(2,1), y(2,2), y(2,3)
and y(2,4), respectively. 

Similar to the initial sparse decomposition, the relaxation coefficient α is set to 1.5 empirically. Larger α leads to larger boundaries, 
ensuring the phase plane covered all the ultrasonic echoes inside the segment signal. However, this will lower the matching degree 
between the atoms and the true echoes. On the other hand, smaller α constrains the boundaries excessively, as a result, the true echoes 
lie outside the range [sl(n,i)α ,αsu(n,i)], [

ul(n,i)
α ,αuu(n,i)], [

fl(n,i)
α ,αfu(n,i)]. 

A value of approximately 1.5 for provides an appropriate balance according to experiments conducted. It rescales the parameter 
space sufficiently while avoiding excessive mismatched atoms. 

Fig. 6. The result of first iteration of the proposed algorithm (a) in phase plane; (b) matching with the simulated echoes.  
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The compressed boundaries of scale parameter for the dictionary D(2,1), D(2,2), D(2,3) and D(2,4) are obtained using equation (3). 

sD(2,1) = [0.0347,0.0781], sD(2,2) = [0.0364,0.0819]

sD(2,3) = [0.0486,0.1093], sD(2,4) = [0.0329,0.0741]

Shorter signal segment leads to fewer sampling point for scale parameter and frequency. Thus, the discretization step of these two 
parameters in dictionary is further optimized by updating the variable a based on equation (6). 

anew(2,1) =
̅̅̅̅̅̅̅̅̅̅̅̅
su(2,1)nsD2,1

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
su(2,1)nsD0

√
= 1.7238990  

anew(2,2) =
̅̅̅̅̅̅̅̅̅̅̅̅
su(2,2)nsD2,2

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
su(2,2)nsD0

√
= 1.7500898  

anew(2,3) =
̅̅̅̅̅̅̅̅̅̅̅̅
su(2,3)nsD2,3

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
su(2,3)nsD0

√
= 1.7975390  

anew(2,4) =
̅̅̅̅̅̅̅̅̅̅̅̅
su(2,4)nsD(2,4)

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
su(2,4)nsD0

√
= 1.7125922  

The size of each dictionary can be calculated using equation (4). 

LD0 = 106496, LD(2,1) = 98833, LD(2,2) = 83160, LD(2,3) = 107328, LD(2,4) = 99197  

The discretization step of the dictionary has been further refined without significantly increase their sizes. However, since there are 
still two atoms in each signal segment’s sparse decomposition result, according to Case 2 of the termination criteria in Section 5, the 
algorithm proceeds to iteration 2. 

Fig. 7. The result of second iteration of the proposed algorithm (a) in phase plane. (b) Matching with the simulated echoes.  
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3) Iteration 2 
In this iteration, signal segments y(2,1), y(2,2), y(2,3) and y(2,4) are decomposed using SMP with their corresponding dictionaries D(2,1), 

D(2,2), D(2,3), and D(2,4). The decomposed result and the reconstructed echoes are presented in Fig. 7. By setting the residual threshold ε 
equal to the initial sparse decomposition, only one atom is obtained for each signal segment decomposition. As the Case 1 termination 
criterion is met, the algorithm proceeds to termination. 

In Fig. 7(b), the four subfigures are the matching comparisons between the four atoms obtained from the decomposition in Fig. 4(a) 
and the four echoes that compose the signal y. In these subfigures, the red curves represent the decomposed atoms, while the blue 
curves denote the initial echoes that make up signal y. 

4) Termination 
Since Case 1 of the termination criteria is met in iteration 2, it is necessary to determine which of the two possibilities the result 

belongs to. To do this, the dictionaries are further update to D(3,1), D(3,2), D(3,3), and D(3,4), and the signal segments y(2,1), y(2,2), y(2,3) and 
y(2,4) decomposed by SMP using the SMP algorithm with finer dictionaries D(3,1), D(3,2), D(3,3), and D(3,4) , respectively. The residual 
threshold ε is set to 0.2. As only one atom obtained for each signal segment. Case 1.2 of the termination criteria is met. Consequently, 
the iteration terminates, and the sparse decomposition for signal y concludes. 

6.2. Comparison of echo estimation between the traditional SMP and the proposed algorithm 

The estimation accuracy was measured by three criteria: energy error, coefficient error, and amplitude error [24]. The energy error 
Eerror is defined as: 

Eerror =
‖ỹl − yi‖

‖yi‖2
× 100% (9)  

Where yi is the original echo and ỹl is the recovered echo. The coefficient error which measures the similarity of the decomposition 
solution is defined as: 

Cerror =

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒̃cl

⃒
⃒
⃒
⃒ − |ci|

⃒
⃒
⃒
⃒

|ci|
× 100% (10)  

Where ̃cl is the estimated reflection coefficient and ci is the reflection coefficient. The amplitude error which measures the performance 
of amplitude-polarity AMI is defined as: 

Aerror =
|Arec − Atheo|

|Atheo|
× 100% (11)  

Where A represents the peak intensity value of recovered echo. 
The algorithm under study, executed on a Lenovo laptop equipped with an Intel Core i5 processor and 8 GB of RAM, requires 

approximately 0.5 s to decompose a signal of length 256 utilizing a standard Gabor dictionary composed of 100,000 atoms. In terms of 
memory, the algorithm demands approximately 200 MB. Both the computation time and memory usage scale linearly with the signal 
length and the size of the dictionary. These metrics provide a current assessment of the algorithm’s performance. 

Table 3 displays the results for the simulated signal shown in Fig. 4. The results in Table 3 demonstrate that the traditional SMP 
algorithm is less accurate in processing highly overlapping ultrasonic echoes. Yet, the multiresolution sparse decomposition algorithm 
shows marked improvements in accuracy with subsequent iterations. Notably, the energy error for echo number 1 decreases 
dramatically from 32.59 % to 2.15 %, and both the coefficient error and amplitude error diminish from 38.02 % and 26.45 % to 2.22 % 
and 15.31 %, respectively. This equates to an enhancement in accuracy by approximately factors of 15, 16, and 1.7, respectively. 

The simulation results are impressive; however, the algorithm’s accuracy in real-world applications may be subject to variation due 
to material properties, environmental noise, and equipment variability, subsequently affecting its performance. In ultrasonic non- 
destructive evaluation (NDE), the Gabor function typically models real ultrasonic signals effectively, particularly during pulse-echo 

Table 3 
The echo estimation performance of proposed algorithm and traditional SMP algorithm.   

Echo 1 Echo 2 Echo 3 Echo 4 

Traditional SMP Eerror(%) 32.59 65.02 47.74 56.95 
Proposed algorithm 2.15 4.52 2.35 3.26  

Traditional SMP Cerror(%) 38.02 42.49 21.28 28.33 
Proposed algorithm 2.22 4.35 1.03 3.18  

Traditional SMP Aerror(%) 26.45 50.83 20.68 28.49 
Proposed algorithm 15.31 17.96 2.55 11.20  
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imaging using broadband transducers. However, when detecting Lamb waves, discrepancies from the Gabor model can emerge. When 
ultrasonic echoes are not precisely replicated by the Gabor function, the algorithm delineated in this study may retain its applicability, 
although its efficacy might be reduced, mirroring the outcomes when employing a conventional Gabor dictionary for ultrasonic signal 
decomposition. Therefore, experimental validation with genuine ultrasonic signals in multilayered electronic packaging is crucial to 
ascertain the algorithm’s practical utility and dependability. 

7. Experimental validation of multiresolution SSR algorithm 

This section presents the experimental validation of the algorithm’s decomposition capabilities on real signals acquired from 
multilayered electronic packaging. Two types of electronic packages, hidden-die and flip-chip, were selected as subjects for experi-
mentation. Real A-scan signals from multiple points inside the packaging were collected using ultrasonic transducer with various 
frequencies. The characteristics of the transducer is shown in Table 4. These signals were then resolved using both the traditional SMP 
algorithm and the multiresolution sparse decomposition method proposed in this study. The comparative analysis aims to elucidate the 
efficiency and accuracy of the proposed method in handling real-world data scenarios. 

Data acquisition was performed using a commercial scanning acoustic microscopy system, the Gen6™ C-scan, by Sonoscan. The 
excitation pulse, shape, and bandwidth are dependent on the transducer. The gain was established at 24.5, and the amplitude was 
influenced by this gain setting. The vertical resolution was configured to 8bit. 

7.1. Experimental results for hidden-die packaging 

7.1.1. Test samples and data collection 
This section rigorously validates the algorithm’s decomposition performance on hidden-dies, a form of embedded electronic 

packaging where the semiconductor die remains obscured beneath the package surface. To thoroughly assess the algorithm’s ability to 
handle real, significantly overlapping A-scan signals, we employed the Virtual Resonance Mode (VRM) of the Sonoscan 6th Generation 
Acoustic Microscopy Imaging (AMI) system, paired with a 230 MHz high-frequency transducer, to conduct three-dimensional acoustic 
data collection on the samples. Subsequently, using our custom-developed toolbox, we extracted A-scan data from multiple locations 
within hidden-dies in the three-dimensional acoustic data. Finally, we conducted sparse decomposition on these signals employing 
both the traditional SMP algorithm and the multiresolution sparse decomposition algorithm introduced in this research. aiming to 
critically compare and ascertain the relative effectiveness of each algorithm in deconstructing these challenging signals. 

Fig. 8 presents the C-scan top view image alongside the detailed structural configuration of the hidden-dies packaging. The 
embedded module has dimensions of 10 mm by 10 mm, while the chip itself measures 5 mm by 5 mm. The pitch between the chips is 
100 μm, and each chip has a thickness of 50 μm. The die attach film (DAF) above the chips is 20 μm thick, followed by a 90 μm thick 
resin filling layer. The ultrasonic wave incidence point is 30 μm above the chip’s upper surface. Beneath the DAF, a 12 μm thick copper 
plating layer is situated, under which lies the FR4 substrate that is 50 μm thick. 

7.1.2. A-scan extraction using 3D acoustic microimaging toolbox 
By performing sparse decomposition on A-scan signals composed of reflected echoes and using the atoms obtained from the 

decomposition to locate structures within the electronic packaging, the effectiveness of the proposed algorithm could be verified 
through comparison of these localization results with those derived from the traditional SMP algorithm as well as with computational 
outcomes based on the structural dimensions presented in Fig. 8. However, as the ultrasonic waves traverse through different locations 
of the electronic packaging encountering materials with varying properties, the characteristics of the reflected echoes exhibit sig-
nificant differences. To further validate the effectiveness of the algorithm, this study extracts A-scan signals from different locations 
within electronic packaging. The collected three-dimensional acoustic data consist of A-scan signals from various measurement points 
of the sample. Consequently, the data are processed using a 3D toolbox previously developed by the team, enabling the extraction of A- 
scan signals from any location within the electronic packaging from the three-dimensional acoustic data. Fig. 9(a) demonstrates the 
user interface of the toolbox. After importing the 3D acoustic signal files, users can select any location on the C-scan image of the 
workpiece located at the lower left, whereupon the corresponding A-scan signal is displayed in the time-domain above. Furthermore, 
users have the option to select specific regions of the A-scan signal through a window, facilitating C-scan imaging at various depths of 
the workpiece. The toolbox is notably extensible, and the multiresolution sparse decomposition algorithm proposed in this study will 
be integrated into the software after experimental validation. 

In this study, the A-scan signals from points A and B on the chip were used as examples to sparse decomposition using the 
traditional SMP algorithm with a standard Gabor dictionary and the algorithm proposed in this paper with a progressively refined 
Gabor dictionary. As can be deduced from the electronic packaging structure in Fig. 8, the signal at point A (coordinates (80,200)) did 
not pass through the chip, whereas the signal at point B (coordinates (160,200)) did. Fig. 9(b) and (c) display the A-scan signals 

Table 4 
Experimental parameters of ultrasonic transducer.  

Frequency (MHz) Focal length (inches) Diameter (inches) F# Spot Size (mm) Resolution (mm) Depth of Focus (mm) 

50  0.5  0.25 2  0.073  0.052  0.85 
230  0.25  0.062 4  0.0321  0.0227  0.753  
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extracted from the three-dimensional acoustic signals at points A and B using the Toolbox, with an ultrasound transducer frequency of 
230 MHz. Fig. 9(d) and (e) present the sparse decomposition results in the phase plane for the signals in Fig. 9(b) and (c), utilizing the 
traditional SMP algorithm paired with the standard Gabor dictionary. 

Since the ultrasonic signal at point A did not pass through the chip, the decomposition of the A-point ultrasonic signal should 
include three atoms according to the electronic packaging structure shown in Fig. 8, corresponding sequentially to the interface be-
tween the resin and the upper copper, the interface between the resin and lower copper, and the interface between lower copper and 
the board. However, the decomposition result shown in Fig. 9(d) only contains two atoms, indicating that the traditional SMP algo-
rithm failed to effectively differentiate overlapping echoes. 

Similarly, the ultrasonic signal at point B pass through the chip, the decomposition of the B-point ultrasonic signal should 
encompass five atoms, corresponding to the interface between upper copper and resin, upper surface of the chip, the interface between 
the chip and the DAF, the interface between the DAF and the lower copper, and the interface between the lower copper and the board. 
However, the decomposition result revealed in Fig. 9(e) only presents three atoms. The primary causes for these discrepancies include:  

1. The multilayered structure of the chip at submicron scales results in a significant overlap of reflected echoes, and the standard 
Gabor dictionary used by the SMP algorithm does not have a sufficient number of parameter sampling points within the signal 
length, which affects the precise identification of echo locations.  

2. The chip may experience warping deformation during usage due to mismatched thermal expansion of internal layers, moisture 
absorption, mechanical stress, etc., which significantly impacts the results of ultrasonic testing. 

7.1.3. Decomposition results 
The issue of overlapping echoes caused by the multilayer structure can be resolved through algorithmic optimization. The proposed 

algorithm was applied to the ultrasonic signals obtained from points A and B, with Figs. 10 and 11 illustrating the respective 
decomposition results. 

As demonstrated in Fig. 10, the ultrasonic signal at point A was decomposed successfully after two iterations of the algorithm. 
Fig. 10(b) and (c) depict the atomic schematics after each iteration. Fig. 10(d) presents the reconstructed ultrasonic signal at point A 
using the atoms derived from Fig. 10(c). Fig. 10(e) shows the decomposition results in the phase plane. Similarly, as shown in Fig. 11, 

Fig. 8. (a) C-scan image of hidden-die packaging from the top view; (b) Schematic diagram of hidden-die structure.  
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the algorithm terminated after three iterations when processing the ultrasonic signal at point B, with Fig. 11(b), (c), and (d) illustrating 
the atomic schematics after each iteration. Fig. 11(e) displays the reconstructed ultrasonic signal at point B using the atoms obtained 
from Fig. 11(d), and (f) presents the decomposition results within the phase plane. 

A comparison of the decomposition results in Figs. 10 and 11 with those in Fig. 9 reveals that the overlapping ultrasonic echoes, 

Fig. 9. (a) The GUI of the Toolbox for 3D Acoustic Imaging of Manufactured Electronic Circuits; (b) The a-scan signal of point A (80,200); (c) The a- 
scan signal of point B (160,200); (d) The decomposition results of the A scan signal from point A using SMP algorithm; (e) The decomposition results 
of the A scan signal from point B using SMP algorithm. 
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Fig. 10. Decomposition results for ultrasonic signal at point A using multiresolution sparse decomposition algorithm (a) A scan signal at point A; (b) 
decomposition result after first iteration; (c) decomposition result after second iteration; (d) reconstructed A scan signal; (e) final decomposition 
result in phase plane. 

Fig. 11. Decomposition results for ultrasonic signal at point B using multiresolution sparse decomposition algorithm (a) A scan signal at point B; (b) 
decomposition result after first iteration; (c) decomposition result after second iteration; (d) decomposition result after third iteration; (e) recon-
structed A scan signal; (f) final decomposition result in phase plane. 
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which could not be separated by the traditional SMP algorithm, are progressively distinguished under the proposed multiresolution 
sparse signal representation algorithm. This is attributed to the iterative process of the algorithm, where the signal is incrementally 
segmented into shorter sections, and sequentially coupled with a customized Gabor dictionary with gradually refined parameters. This 
ensures that the sparse decomposition of each signal segment achieves a higher resolution than the previous iteration. 

An in-depth analysis and comparison of the decomposition results shown in Figs. 9, 10 and 11 indicates that the traditional SMP 
algorithm has significant limitations in distinguishing overlapping ultrasonic echoes. In contrast, the multiresolution sparse signal 
representation algorithm proposed in this study effectively addresses this issue. The warping deformation inherent in the encapsulated 
internal structure has led to discrepancies between the experimental findings and the theoretical predictions. Nevertheless, the pro-
posed algorithm has adeptly segregated the overlapping echoes, a task at which the traditional SMP algorithm failed, thereby sub-
stantially enhancing the precision of echo localization. Within the framework of the s multiresolution sparse signal representation 
algorithm, the signal is initially divided into shorter segments, a process that facilitates the isolation of multiple echoes that are 
proximate in time domain. Subsequently, each signal segment undergoes sparse decomposition in conjunction with a progressively 
refined Gabor dictionary. This customized Gabor dictionary is parameterized based on the results of the previous iteration of the 
algorithm, ensuring that each iteration yields more precise decomposition results for the respective signal segments. 

7.2. Experimental results for flip-chip packaging 

Furthermore, it is essential to recognize that the complexity of echo overlap decomposition is influenced not only by the presence of 
multilayered structures but also significantly by the selection of ultrasonic transducer frequency. High-frequency transducers are 
characterized by their higher resolution yet suffer from limited penetration depth, while low-frequency transducers achieve greater 
penetration at the expense of resolution. To validate the algorithm’s efficacy in decomposing A-scan signals obtained from identical 
chip locations with transducers of varying frequencies, a real automotive electronic circuit board (ceramic thick-film hybrid circuit) 
from a manufacturing line was used as the test sample to further validate the proposed algorithm. For the thick-film hybrid circuitry, 
multiple layers (tracks, conductors, dielectric layers, etc) were printed on one ceramic substrate. In this section, we focus on the flip- 
chip package on the ceramic board as illustrated in Fig. 12(b). The C-scan images for the solder bonds of the package are shown in 
Fig. 12(a). A scan at 32 points from different locations were investigated. Selected points are the representatives of two typical areas, 
point A: no solder joint area and point B: the center of solder balls area. At each point, A scan signals were captured using both 230 MHz 
transducer and 50 MHz transducer. 

Fig. 13(a) and (b) display the A-scan signals obtained from regions without solder joints. Fig. 13(a) was acquired using a 230 MHz 
transducer, while Fig. 13(b) was captured with a 50 MHz transducer. As illustrated in Fig. 12(b), When ultrasonic waves traverse areas 
without solder joints, the reception of three main echoes is anticipated. The first echo corresponds to the interface between the chip 
and underfill, the second indicates the interface between the underfill and the thick film, and the third is from the reflection off the 

Fig. 12. (a) C-scan image of chip–solder bond interface produced from the detection of a flip-chip package soldered on a ceramic substrate; (b) 
Schematic diagram of flip-chip structure. 
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thick film’s bottom surface. In Fig. 13(a), these three echoes are distinctly observed: the first echo occurs within the 50 to 100 ns range, 
the second is between 100 and 150 ns, and the third appears from 150 to 200 ns. In contrast, Fig. 13(b) shows that due to the ultrasonic 
probe’s frequency being set at 50 MHz, the resolution is insufficient to differentiate these echoes. 

The SMP algorithm, in conjunction with a Gabor dictionary, as well as the multiresolution sparse decomposition algorithm 
introduced in this study, was utilized to sparsely decompose the signals presented in Fig. 13(a) and (b), utilizing a progressively refined 
Gabor dictionary. Given that reflections are expected at three distinct interfaces, both methods extracted the first three atoms for the 
results display. Fig. 13(c) and (d) depict the phase plane distribution of atoms derived from the SMP algorithm, while Fig. 13(e) and (f) 
display the corresponding outcomes from the multi-resolution sparse decomposition algorithm. A comparative analysis indicates that 
the SMP algorithm exhibits significant variability in its decomposition capability for signals obtained from ultrasonic probes of 
different frequencies. By contrast, the multiresolution coefficient decomposition algorithm shows enhanced robustness with signals 
from probes at diverse frequencies. The gradual refinement of the dictionary parameters during the decomposition process permits the 
effective discrimination of highly overlapping echoes, thus improving echo localization accuracy. Therefore, this method provides a 
more precise imaging of the various interfaces within the encapsulation, markedly increasing the system’s detection resolution. 

Fig. 14 shows another case of example A scans from the center area of solder joint, where Fig. 14(a) depicts the ultrasonic signal 
obtained using a 230 MHz transducer, Fig. 14(b) demonstrates the signal acquired with a 50 MHz transducer. Further analysis of 
Fig. 12(b) reveals that the reflected signal within the solder joint area, akin to that in regions without solder joints, is composed of 
echoes from three interfaces: the interface between the chip and the solder joint, the interface between the solder joint and the upper 
surface of the thick film, and the interface between the thick film’s bottom surfaces and the substrate. However, unlike the non- 
soldered areas, the signal in the solder joint region traverses through the solder ball material instead of underfill. Due to the 

Fig. 13. A-scan signals obtained from non-solder joint area by (a) a 230 MHz transducer and (b) a 50 MHz transducer, decomposition results of each 
signal using the SMP algorithm are depicted in (c) and (d), respectively. The outcomes of the multiresolution algorithm’s decomposition are 
presented in (e) and (f) correspondingly. 
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relatively smaller acoustic impedance contrast between the solder ball material and the chip compared to that between the underfill 
and the chip, the echoes at these interfaces are weaker in the solder joint region. 

Fig. 14(a) and (b) represent the A-scan ultrasonic signals captured by 230 MHz and 50 MHz transducers, respectively, as they pass 
through the central region of a solder joint. Fig. 14(c) and (d) illustrate the schematic of atoms in the phase plane obtained through 
sparse decomposition of the signals traversing the solder joint area using the SMP algorithm. Fig. 14(e) and (f) display the schematic of 
atoms in the phase plane resulting from the application of a multiresolution sparse decomposition algorithm. Consistent with the 
results in Fig. 13, the decomposition outcomes from the multiresolution sparse decomposition algorithm exhibit robust performance 
when dealing with ultrasonic signals captured at different frequencies. Moreover, when confronted with weak ultrasonic echoes as in 
Fig. 14(b), the SMP algorithm decomposition results shown in Fig. 14(d) present significant errors, isolating only two echoes in the 
main part of the signal (50 ns–150 ns) and misplacing the third echo around 220 ns. In contrast, the algorithm proposed in this study 
still achieves precise echo localization. 

The experimental outcomes derived from the analysis of real-world signals have affirmed the efficacy of the multiresolution sparse 
signal representation algorithm introduced in this research. This algorithm exhibits substantial enhancements and shows promise for 
application in overcoming the resolution constraints and the overlapping echo dilemma prevalent in the traditional SMP algorithm. 
Such innovative advancements herald novel avenues for deployment in domains that necessitate exceptional precision, including 
advanced material evaluation and medical imaging. 

Fig. 14. A-scan signals pass through the centre of solder joint area captured by (a) a 230 MHz transducer and (b) a 50 MHz transducer, and the 
decomposition results of each signal using the SMP algorithm are depicted in (c) and (d), respectively. The outcomes of the multiresolution al-
gorithm’s decomposition are presented in (e) and (f) correspondingly. 
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8. Conclusions 

This paper introduces a pioneering multiresolution analysis sparse signal representation algorithm, significantly enhancing current 
methodologies in ultrasonic echo separation and estimation. The algorithm’s distinguishing feature is its iterative process of signal 
segmentation and dictionary refinement, enabling high-resolution decomposition without expanding the dictionary’s dimensions. This 
novel method diverges substantially from conventional practices often constrained by resolution limitations and the management of 
extensive dictionary sizes. 

Moreover, our innovative approach incorporates a tailored dictionary updating strategy for each segmented signal, which is 
predicated on the estimated echo parameters. This strategy considerably refines the alignment between dictionary atoms and echoes 
without necessitating expansive dictionary dimensions, offering a crucial advantage over traditional methods that rely on fixed, 
extensive dictionaries incapable of customization. Additionally, the simulation decomposition results proved our algorithm demon-
strates potential in treating overlapping echoes, a prevalent challenge in ultrasonic Non-Destructive Evaluation (NDE). By utilizing 
refined dictionaries to decompose at more detailed scales, our algorithm improves both echo separation and estimation accuracy by 
iteration, even for echoes unresolved at coarser scales by standard techniques. To evaluating the performance of the proposed algo-
rithm, energy error, coefficient error, and amplitude error of each echo were used as metrics, and the decomposition results were 
compared with those of the traditional SMP algorithm. The results indicate a significant reduction in error across all three metrics for 
the proposed algorithm: the average energy error decreased from 50.575 % to 3.07 %, the average coefficient error from 32.53 % to 
2.695 %, and the average amplitude error from 31.6125 % to 11.755 %. This advancement not only elevates the efficacy of ultrasonic 
NDE but also lays a foundation for future research in sparse signal representation and analysis. 

Experimental evaluations using real-world signals from microelectronic packages have validated the effectiveness of the proposed 
algorithm. The results indicate that the algorithm is capable of both overcoming the resolution constraints and the issue of overlapping 
echoes, which are prevalent in traditional methods. Moreover, the algorithm exhibits excellent performance on accurate echo esti-
mation when processing A-scan signals acquired by ultrasonic transducer across a range of frequencies. This potent capability is 
especially relevant for applications that demand high precision. 
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