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ABSTRACT 

Assessment of climate change on any hydrological system requires higher temporal resolution at hourly or 

less in terms of time-scale. This paper implements the Bartlett-Lewis Rectangular Pulses (BLRP) model 

coupled with a proportional adjusting procedure to disaggregate daily rainfall to hourly rainfall in order to 

demonstrate the reliability of this method. Three stations in NorthWestern England have been selected that 

represent different climates in the region. Parameters estimation of the BLRP model has been performed 

under different levels of hourly rainfall aggregation for a combination of rainfall statistics. The Hyetos 

model, which applies BLRP, reproduced standard statistics such as mean, variance, Lag -1, autocorrelation 

as well as dry proportions. Moreover, the model was proven to have the capability to disaggregate the 

rainfall extremes. The fitted BLRP model could then be used to disaggregate future daily rainfall in order to 

investigate the climate change impact of different rainfall intensities. 

 
Key words: Bartlett-Lewis Rectangular Pulses model, Daily Rainfall, Disaggregation, Extremes, Hyetos.  
 

 
INTRODUCTION 

 

Stochastic models have a wide range of application in fields such as flood risk estimation, river flow 

forecasting and water resources engineering. Many studies use the stochastic model for rainfall 

disaggregation from daily to sub-daily level for the purpose of flood design, although some of these methods 

are limited in their applications to specific rainfall conditions (Debele et al., 2006). 

Some of the hourly rainfall modelling in the literature makes use of the dry-wet structure of rainfall. In these 

approaches the rainfall occurrence and depth process are described separately and then both are 

superimposed to form the overall rainfall model (e.g. Eagleson, 1978; Istok and Boersma, 1989; Acreman, 

1990; Koutsoyiannis and Xanthopoulos, 1990).   In recent approaches, both occurrence and depth rainfall 

processes are combined together and parameters estimation is performed from the hourly and aggregated 

hourly rainfall data (e.g. Khaliq and Cunnane, 1996). Examples of these approaches are the Random Cascade 

Models, the Bartlett-Lewis Rectangular Pulses (BLRP) or Neyman Scott rectangular pulse models based on 

point process theory (Rodriguez-Iturbe et al., 1987a), as well as three-state continuous Markov model of 

Hutchinson’s (1990) . 
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The BLRP model in its original form was applied strictly as a rainfall simulator (Pui et al., 2009). It has since 

been modified with an appropriate adjusting procedure to be applied in rainfall disaggregation. 

 

Many studies have examined the ability of the BLRP and how realistically it simulates rainfall variability 

and extremes. Rodriguez-Iturbe et al. (1987b) found that the BLRP model is able to reproduce some of the 

rainfall depth statistics and perform relatively well in regard to the extreme values of rainfall for different 

periods of aggregation, but they are less able to preserve the proportion dry at the level of aggregation of 1 

hour when applied to Denver rainfall as stated by  Khaliq and Cunnane, 1996. When examining the method 

for two case studies in the UK and the USA, Koutsoyiannis and Onof, (2001) found that the BLRP model 

performed well in preserving the most important statistical properties of the rainfall process. Pui et al. (2009) 

found that the BLRP model performed better on average than the cascade models for Sydney rainfall with a 

slightly inflated reproduction of dry proportions at an hourly scale. However, complications were 

encountered during the parameter estimation stage and the choice of statistics remains subjective. Hanaish et 

al. (2011) tested the modified BLRP model for a station in Malaysia and compared the disaggregated 

synthetic rainfall data with the observed and expected data. They found that the mean values for the three 

rainfall data are quite close; however, the synthetic data are quite different from the observed and expected 

depths when comparison was based on autocorrelation and standard deviation. Moreover, Hanaish et al. 

(2011) compared the extreme values series and a poor fit (i.e. underestimation) was found at 1, 6 and 12 hour 

levels of aggregation. 

 

This paper addresses the issue of temporal rainfall disaggregation by applying combined hydroinformatics 

data-driven tools of the BLRP stochastic model and Hyetos model (Koutsoyiannis and Onof, 2000) on three 

selected case studies in North Western England. The stations are located in one region in the UK but have 

different climates (i.e. different rainfall intensities). The objective is to explore the effects of rainfall depth on 

the ability of the model to reproduce hourly statistics and rainfall extremes. The resulting model can then be 

used to examine the design storm of any hydrological system under current and future climate change 

conditions. It demonstrates an example of how hydroinformatics modelling technology can be used to 

resolve some problems in water and environmental fields. 

 



3 
 

CASE STUDY AND DATA COLLECTION 

Three stations have been selected in North Western England (NW) to represent three catchments or drainage 

areas with various climatic conditions: Tower Wood in the north (TW), Worthington in the middle (WN), 

and Worleston (WR) in the south, (see Figure 1). The exposure of the NW region to westerly maritime air 

masses and the presence of extensive areas of high ground, especially in the TW area, mean that the region is 

considered as one of the wettest places in the UK. 

 

Hourly rainfall data for the selected stations was obtained from the Environment Agency for England and 

Wales for the period 2000-2008 in TW, for period 1999-2010 in WN and for the period 1991-2010 in WR. 

The hourly data obtained (which is measured) was extracted from a data series that contains missing data 

sets. As calibration of the temporal disaggregation model requires only a small amount of hourly rainfall data 

at the same locations as the daily data being disaggregated, the small missing data sets are not going to affect 

the model calibration. Daily rainfall data was obtained from the daily recording rainfall gauges in the three 

locations. 

 

Figure.1 Location of studied stations 

BLRP MODEL STRUCTURE 

The BLRP model assumes that the storm origins (T) occur according to the Poisson Process with rate λ and 

the cell origins (t) arrive following Poisson Process with rate β, as depicted in Figure 2. The process of 
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considering new cell origins terminates after a time (S), which is exponentially distributed with parameter γ. 

The distribution of the duration of the cells (W) is an exponential distribution with parameter ƞ. The cell has 

constant intensity with a specified distribution (Koutsoyiannis and Onof, 2001). 

 

The above description for the original BLRP model assumes all parameters are constant, however in the 

modified model; the parameter ƞ varies randomly from one storm to another with a gamma distribution of 

shape parameter, α and scale parameter Ѵ. Rodriguez-Iturbe et al.( 1987a,b) applied the old version of BLRP 

model to a single month of Denver data (Onof and Wheater, 1993), where he found a major deficiency to 

reproduce the proportion of dry periods but Rodriguez-Iturbe et al.(1988) and Entekhabi et al. (1989) 

overcome this problem by this randomisation. Parameters β and γ are re-parameterised so that K= β/ ƞ and ϕ 

= γ / ƞ. Moreover it is desirable as it will be more consistent with nature of the storm which should be 

varying in the characteristics from storm to storm rather than consider them constant. Essentially, the effect 

of these parameters is that all storms have a common structure, but distinct storms occur on different 

(random) timescales. 

 

The constant cell depth (X) is exponentially distributed with parameter 1/µ. Alternatively, it can be chosen as 

a two parameter gamma with mean, µx   and standard deviation, Ϭx .  . 

The number of cells per storm has a geometric distribution of mean, µc = 1+ k/ ϕ (Khaliq and Cunane, 1996; 

Koutsoyiannis and Onof, 2001). In this paper seven parameters have been used, namely λ, K, ϕ, α, Ѵ, µx, Ϭx, 

as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sketch of modified Bartlett- Lewis Rectangular Pulses model (Reproduced from Hanaish, 2011) 

 

S ~ Exponential (γ) 

 

 

X~ Gamma (µx, Ϭx) 

 

Next storm 

t ~ Poisson (β) 

 

W~ Exponential (Ƞ ~ Gamma (α, Ѵ)) 

 

W~ Exponential (Ƞ) 

 

T ~ Poisson (λ) 
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ESTIMATION OF BLRP MODEL PARAMETERS 

The parameters for the BLRP were estimated on a monthly basis, assuming local stationary within the month 

according to procedures set out in ( Koutsoyiannis  and Onof , 2000). The combination of all months cannot 

be considered in one model (Khaliq and Cunnane, 1996). Each month has different characteristics and 

rainfall pattern, so it was found to be better to model each month separately.  

 

In general the main fitting techniques used are moment, likelihood and Bayesian. The latter two are based on 

likelihood function, which cannot be obtained for models based on the Poisson Cluster (Hanaish et al., 

2011). Therefore the method of generalized moments is the best choice to fit the BLRP model. The equations 

of the BLRP model are solved by equating the statistical feature of the historical rainfall with the theoretical 

one according to minimising sum of weighted squared errors criterion. That results in a set of non-linear 

equations which, in the current study, has been solved by employing the Newton optimization algorithm. So 

the theory behind the method of generalized moment is to find the parameters (ϴ) which minimize the 

objective function given by Equation 1: minimising sum of weighted squared errors 

𝑆(𝜃) = ∑ 𝑤𝑖  
𝑛
𝑖 [𝑇𝑖  − 𝜏𝑖(𝜃)]

2                                                                                                           (1) 

where 𝜃 = (𝜃1, 𝜃2…𝜃𝑛) is a vector of unknown parameters of the rainfall statistics used for calibration, 

𝑤𝑖  represents the weights, 𝑇𝑖  the historical statistics obtained for the data and 𝜏𝑖(𝜃) the theoretical model 

statistics as a function of 𝜃. 

The sensitivity of the statistical moments used to calibrate the model is still under investigation, however, for 

the seven parameters at least seven equations are needed, which should be obtained from historical data. The 

constant cell depth, has been selected to be a two parameter gamma distributed with mean, µx   and standard 

deviation, Ϭx , which have been chosen to be equally in this study  for  the modified version of BLRP model 

(µx   = Ϭx). 

The equation of the modified BLRP model relates the statistical properties of the rainfall to the seven BLRP 

parameters as given in Equation 2 to 5 below: 

The first and the second order properties of the aggregated process, 𝑌𝑖
ℎ ,  are reproduced here from 

Rodriguez-Iturbe, et al. (1988), where Y is the cumulative amount of rainfall in the ith arbitrary interval of 

length, h hours. 
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Average rainfall depth at time scale h: 

E(Yi
h) =

λhνµ
x 

µ
c  

∝ −1
                                                                                                                                                                (2) 

where: µ
𝑐
= 1 +

𝑘

∅
 

 

Variance of rainfall depth at time scale h: 

𝑉𝑎𝑟(𝑌𝑖
ℎ) = 2𝐴1[(∝ −3)ℎ𝜈

2−∝ − 𝜈3−∝ + (𝜈 + ℎ)3−∝] −  

2𝐴2[∅(∝ −3)ℎ𝜈
2−∝ − 𝜈3−∝+(𝜈 + ∅ℎ)3−∝]                                                                                                                   (3)                                                                                                                                                                     

and for   𝑘 ≥ 1 

 

Covariance of rainfall depth at time scale h: 

𝑐𝑜𝑣(𝑌𝑖
ℎ , 𝑌𝑖+𝑘

ℎ ) = 𝐴1  {[𝜈 + (𝑘 + 1)ℎ]
3−∝ − 2(𝜈 + 𝑘ℎ)3−∝ + 

[𝜈 + (𝑘 − 1)ℎ]3−∝} − 𝐴2{[𝜈 + (𝐾 + 1)𝜙ℎ]
3−∝ − 2(𝜈 + 𝑘∅ℎ)3−∝ + [𝜈 + (𝑘 − 1)𝜙ℎ]3−∝}                               (4)                

where, 

𝐴1 =
𝜆µ

𝑐
  𝜈∝                        

(∝ −1)(∝ −2)(∝ −3)
[𝐸(𝑋2) +

𝐾∅µ
𝑥
2

∅ − 1
] 

and  

𝐴2 =
𝜆µ

𝑐
𝑘µ

𝑋
2   𝜈∝                        

∅2(∅2 − 1)(∝ −1)(∝ −2)(∝ −3)
 

 

The probability that a period of length h is dry is given by: 

𝑃(𝑌𝑖
ℎ = 0) = 𝑒𝑥𝑝

{
 

 
−𝜆ℎ − 𝜆µ

𝑇
+ 𝜆𝐺𝑃

∗(0,0)
∅ + 𝑘 [

𝜈
𝜈 + (𝑘 + ∅)ℎ

]
∝−1

∅ + 𝑘
}
 

 
                                                                (5) 

where µT is the average mean storm duration whose exact expression is given in 

 Rodriguez-Iturbe et al. (1987 a) and can be approximated to a third degree in k and ϕ by:  

µ
𝑇 
≈

𝜈

𝜙(∝ −1)
[1 + ∅(𝑘 + ∅) −

1

4
∅(𝑘 + ∅)(𝑘 + 4∅) +

1

72
∅(𝑘 + ∅)(4𝑘2 + 27𝑘∅ + 72∅2)]     

 

The above approximation for µT  has not been considered accurate enough and was corrected by Onof and 

Wheater, (1993) as follows: 

µ
𝑇 
≈

𝜈

𝜙(∝ −1)
[1 + ∅(𝑘 +

∅

2
) −

1

4
∅(5 ∅ 𝑘 + 𝐾2 + 2 ∅2) +

1

72
∅(4 𝐾3 + 31 𝐾2 ∅ + 99𝑘∅2 + 36∅2)] 

 

The expression for 𝐺𝑃
∗(0,0) by Rodriguez-Iturbe et al. (1987 a): 

𝐺𝑃
∗(0,0) ≈

𝜈

∅(∝ −1)
(1 − 𝑘 − ∅ +

3

2
𝑘∅ + ∅2 +

1

2
𝑘2) 
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SINGLE SITE DISAGGREGATION USING HYETOS 

An application was developed by Koutsoyiannis and Onof (2000, 2001) and resulted in a computer program 

called Hyetos, which can be easily applied at any location as long as it is provided with a minimal amount of 

data that can support the parameter estimation. The higher and lower levels of time scales in this application 

are daily and hourly, respectively. These levels are found to be the most suitable ones for typical 

hydrological applications. The Hyetos model itself does not include a module to estimate model parameters; 

therefore, another module (Solver in Excel) has been used in this study to fit the model. Once the BLRP 

parameters are obtained, they are subsequently used with the Hyetos model to obtain a single site 

disaggregated rainfall series (Koutsoyiannis and Onof, 2000). 

The procedure that Hyetos follows to disaggregate the daily rainfall at a single site into hourly data using the 

BLRP model as a background stochastic model can be described as follows. Four levels of repetition scheme 

used so as to optimise computer time. Level 0, BLRP model run several times (t > L+1) until a sequence of 

exactly L wet days is generated (which is selected in the current study based on the maximum observed wet 

spell and should not exceed 12). Different sequences separated by at least one dry day can be assumed 

independent. Then (level1), the intensities of all cells and storms are generated and the resulting daily depths 

are calculated. For each cluster of the wet days the generated synthetic daily depths (which simulated at 

hourly scale) should matched the sequence of original daily totals with a tolerance distance, d defined as: 

𝑑 = [∑ 𝑙𝑛2  (
𝑁𝑖+𝐶

�̃�𝑖+𝐶
)𝐿

𝑖=1 ]                                                                                                                       (6)          

Where 𝑁𝑖    and   �̌�𝑖     are, respectively, the original and simulated daily totals at the rain gauge station, with L 

as the length of the sequence of wet days and c small constant (0.1 mm). If d is greater than acceptable limit 

which is selected in this study to be 0.1 as suitable value (various values around 0.1 were tested), regenerate 

the intestines of cells (level 1 repetitions) without modifying the time location of the storms and their cells. If 

however after a large number of level 1 repetitions, the distance still higher than 0.1, in this case discard the 

arrangement of the storm and cells which is not consistent with the original one and generate new one which 

is level 2 repetitions .In the case of the very long sequences where it is impossible to obtain the criteria of d 

less than 0.1, the sequence should divided into subsequent randomly and each treated separately from others 

(Level 3 repetitions). 
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For all levels the study used a total number of repetitions is 5000 as maximum. 

A correction procedure, referred to as proportional adjustment, to make the generated hourly series fully 

consistent with given daily totals, is then applied based on Koutsoyiannis and Onof (2001). The proportional 

adjusting procedure modifies the initially generated values to get the modified values according to: 

𝑋   𝑠 = �̌�𝑠 (
𝑁

∑ 𝑋�̌�
24
1

)                           s =1, 2,....24                                                                                      (7)                                                           

where N is the daily depth to be disaggregated. 

 

RESULTS & DISCUSSION 

PERFORMANCE OF THE TEMPORAL DISAGGREGATION MODEL 

The sensitivity of the number of observations used to calibrate the model affects the final performance of the 

model (Segond et al. 2006). This suggests that a model needs to be calibrated with a large number of data. 

Wheater et al. (2005) suggested that at least 15 years of rainfall data should be used in order to obtain a 

model that would have good overall performance. However, that amount of data was not available for all 

stations in the current study. Instead, the disaggregating model calibrated for each station was found to have 

good performance with 9, 12, and 18 years in TW, WN, and WR stations, respectively. Although the model 

for TW station has been calibrated with only 9 years of data, but resulted in a good fit model compared with 

the other two sites which have more than 9 years used in the fitting. This could be attributed to the increased 

number of sequences of wet day. 

This reflects that the BLRP model does not need only more data to have a well calibrated model, but rather it 

also depends on the statistics and type of algorithm used to estimate the parameter. Different combinations of 

rainfall statistic for 1-hour and multiples thereof have been tried in order to obtain the best fit across the three 

catchments. The suitable moments (statistics) found are: 1-hour mean, 1-hour variance, 1-hour lag 1 

autocovariance  , 1-hour proportion dry , 6-hour variance and 24-hour proportion dry for TW and WR 

stations. For WN station, all the above statistics were selected additional to 24 -hour variance, which was 

found to give good results when added. The difference between the two sets of statistics used in fitting the 

models  as explained earlier due to equality of parameters µx   and Ϭx (leads to six parameters, so six statistics 

needed as in TW and WR but in WN seven statistics employed to improve the fitting ). However the 

assumption of randomisation still exists for the three stations which associated only with parameter ƞ. 
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The values for these parameters were chosen for a certain tolerance limit in order for the solution to converge 

(see Table 1). 

The weights used in these models have been taken as having a value of 1. This decision came after carrying 

out numerous trials for different statistics computed from the historical data using different values for the 

weights which were found to be  unsatisfactory for the model fit. A summary of the modified BLRP model 

parameters obtained is presented in Tables 2- 4 using Equations 2 -5 with the original approximation of the 

mean storm duration by Rodriguez-Iturbe et al. (1987 a). Parameters estimates vary considerably over the 

months, indicating that separate monthly simulations are required to accurately reproduce actual rainfall 

distributions in the area. 

Moreover another fit was performed using the same set of Equations 2-5 with the approximation of the mean 

storm duration by Onof and Wheater, (1993) which corrected an error in the original one. Table 5 shows an 

example of this fit for TW employing the corrected approximation, however no significant difference to the 

results was found. There was difference in the optimization method as Conjugate Gradient yield in better 

results than Newton method which used in the original approximation. So it is recommended for any future 

application of BLRP model to consider the correct approximation as there is not obvious that the difference 

between the two approximations will always have negligible effects. 

 

 Plots of the model fit (BLRP) and that produced from  Hyetos against the observed data for each month in 

respect of mean, standard deviation and proportion dry day, are shown in Figures 3- 5.  

 

 

Table 1. Boundary constraints of parameters used at the three sites 

Parameter Unit Lower constraint Upper constraint 

λ d-1 0.000001 99 

κ = β/η (-) 0.000001 99 

φ = γ/η (-) 0.000001 99 

α (-) 0.000001 99 

ν d 0.000001 99 

μX mm d-1 0.000001 99 

σX mm d-1 0.000001 99 
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Table 2. Estimated BLRP parameter s for the master gauge of TW station using Rodriguez-Iturbe et al. (1987 a) 

approximation of the mean storm duration 

 

Month λ(mm.d-1) κ = β/η φ = γ/η α ν (d) μX(mm.d-1) σX(mm.d-1) OF 

1 0.48063 0.34870 0.06212 4.25885 0.21034 33.10716 33.10716 4.29E-05 

2 0.58331 0.25759 0.10290 3.47918 0.19618 34.46851 34.46851 2.35E-05 

3 0.71708 1.04539 0.11131 2.07677 0.02885 20.60905 20.60905 0.000131 

4 0.68744 0.93569 0.08705 2.26942 0.02486 21.94154 21.94154 7.31E-05 

5 0.69741 0.72757 0.07488 2.65820 0.02469 27.61123 27.61123 0.000286 

6 0.65496 0.59934 0.13289 5.05571 0.12527 30.67456 30.67456 4.01E-05 

7 0.67621 0.17180 0.01646 3.29331 0.01107 99.00000 99.00000 0.001053 

8 0.77587 0.40874 0.06009 4.10360 0.04429 50.56184 50.56184 0.000163 

9 0.65940 0.21706 0.07396 6.68564 0.24459 45.35329 45.35329 4.71E-05 

10 0.75736 0.50493 0.07860 2.44029 0.03932 34.97688 34.97688 4.16E-05 

11 1.06377 0.49538 0.06715 2.33371 0.02535 35.06887 35.06887 5.34E-05 

12 0.82024 0.58854 0.07954 2.31739 0.04747 32.97733 32.97733 2.86E-05 

 

 

 

Table 3. Estimated BLRP parameters for the master gauge of WN station using Rodriguez-Iturbe et al. (1987 a) 

approximation of the mean storm duration 

 

Month λ(mm.d-1) κ = β/η φ = γ/η α ν (d) μX(mm.d-1) σX(mm.d-1) OF 

1 0.94353 0.95068 0.11449 6.67558 0.08308 21.96963 21.96963 0.01678 

2 1.02358 1.66562 0.10615 2.91308 0.02001 14.84352 14.84352 0.03928 

3 0.68053 0.50863 0.05772 3.60237 0.03445 21.04118 21.04118 0.04827 

4 0.73608 0.83627 0.07895 6.51238 0.05872 24.75399 24.75399 0.00355 

5 0.66516 0.53682 0.03441 2.90789 0.00997 40.92153 40.92153 0.03622 

6 0.42464 0.11639 0.02584 3.58376 0.04359 60.99989 60.99989 0.00942 

7 0.66348 0.26703 0.05439 5.55417 0.05306 59.36534 59.36534 0.00244 

8 0.89540 0.24281 0.05346 4.88165 0.02709 90.00382 90.00382 0.02361 

9 0.72438 0.49474 0.06884 3.91303 0.03618 45.24926 45.24926 0.00585 

10 1.07305 0.63846 0.05074 2.86708 0.01305 38.94103 38.94103 0.00438 

11 1.31967 0.78842 0.08485 4.02959 0.03092 26.32452 26.32452 0.01104 

12 1.14823 0.92793 0.08472 4.50687 0.03944 21.73045 21.73045 0.01430 

 

 

 

Table 4. Estimated BLRP parameters for the master gauge of WR station using Rodriguez-Iturbe et al. (1987 a) 

approximation of the mean storm duration 

 

Month λ(mm.d-1) κ = β/η φ = γ/η α ν (d) μX(mm.d-1) σX(mm.d-1) OF 

1 0.94782 1.07250 0.09040 2.99318 0.01432 19.80680 19.80680 0.00284 

2 0.79134 1.29547 0.11121 4.45990 0.03587 13.81512 13.81512 0.00159 

3 0.62701 1.16025 0.09904 8.15786 0.07493 15.68464 15.68464 0.00131 

4 0.60466 0.35884 0.06343 9.24289 0.13078 26.09495 26.09495 0.02655 

5 0.56557 0.43836 0.03196 2.61501 0.00729 41.16541 41.16541 0.01098 

6 0.58699 0.62010 0.09791 6.20092 0.06204 32.46399 32.46399 0.00029 

7 0.54831 0.09508 0.03254 4.23765 0.03596 77.97608 77.97608 0.00052 

8 0.59787 0.25854 0.05471 3.26056 0.01899 68.59553 68.59553 0.00045 

9 0.55469 0.27013 0.07864 9.60892 0.18119 39.54048 39.54048 0.00941 

10 0.82557 0.72706 0.15378 7.00000 0.10420 29.41798 29.41798 0.06440 

11 1.02375 0.90255 0.20520 7.00000 0.12395 17.77258 17.77258 0.04228 

12 0.86177 1.05417 0.12521 7.00000 0.07604 19.21809 19.21809 0.04636 
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Table 5. Estimated BLRP parameter s for the master gauge of TW station using Onof and Wheater, (1993) 

approximation of the mean storm duration 

 

Month λ(mm.d-1) κ = β/η φ = γ/η α ν (d) μX(mm.d-1) σX(mm.d-1) OF 

1 0.46725 0.33610 0.05852 4.18179 0.20615 33.26702 33.26702 0.00010 

2 0.55207 0.23104 0.08775 3.41445 0.19284 34.79662 34.79662 0.00006 

3 0.71651 1.02863 0.11134 2.07536 0.02915 20.69567 20.69567 0.00006 

4 0.68729 0.92960 0.08723 2.26919 0.02504 21.96087 21.96087 0.00032 

5 0.69733 0.72499 0.07531 2.66502 0.02502 27.58908 27.58908 0.00026 

6 0.65300 0.57822 0.13006 4.95667 0.12323 30.87397 30.87397 0.00017 

7 0.67624 0.17180 0.01646 3.29331 0.01107 99.00000 99.00000 0.00107 

8 0.77571 0.40750 0.05998 4.09599 0.04425 50.56000 50.56000 4.94E-05 

9 0.64193 0.20421 0.06785 6.39133 0.23257 45.59212 45.59212 1.46E-05 

10 0.75579 0.49795 0.07782 2.43323 0.03926 35.05539 35.05539 0.000126 

11 1.06267 0.49115 0.06684 2.33055 0.02538 35.10419 35.10419 0.000126 

12 0.81671 0.57610 0.07818 2.30507 0.04717 33.13377 33.13377 0.000238 

 

The Hyetos model use the full test mode with hourly historical data as input (the data is read from a file).This 

mode is appropriate for testing the entire model performance including the appropriateness of the Bartlett-

Lewis model and its parameters and disaggregation model by comparing the original and disaggregated 

statistics. 

 

All the models generally perform well, as they reproduce the mean exactly and fit the standard deviation well 

in the three stations of the study. The proportion of dry days is a very important property for hydrological 

applications and also useful to reserve as an important feature for subsequent model validation. The plots 

show that the simulated rainfall obtained by Hyetos slightly overestimates the proportion of dry in all 

stations. However, the expected values in respect to the fit perfectly match the observed ones in TW but are 

underestimated in the WN and WR stations. 

Another important demonstration for the ability of the Hyetos model to disaggregate the daily rainfall to 

hourly under the full test mode employing the parameters estimated in Tables 2-4 is shown in terms of the 

obtained statistics and presented in Figures 6-8. These statistics can be used to assess the model’s adequacy. 

The figures depict the goodness of the fit test represented here by the computed  

Lag-1 autocorrelation function and skewness between the theoretical and disaggregated hourly rainfall data 

at the three stations. The plots of the two statistics in these figures confirm that the Hyetos model performed 

very satisfactorily and produced acceptable results, especially for the lag-1 autocorrelation. 
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Figure 3. Properties of hourly rainfall for TW single site. Circle represents the observed, square the disaggregated using 

Hyetos and triangle is the simulated using BLRP. 

 

  
Figure 4.  Properties of hourly rainfall for WN single site. Circle represents the observed, square the disaggregated 

using Hyetos and triangle is the simulated using BLRP. 

 

 

 
Figure 5. Properties of hourly rainfall for WR single site. Circle represents the observed, square the disaggregated using 

Hyetos and triangle is the simulated using BLRP. 

 

Nevertheless, looking at the model results in terms of skewness, there is a significant underestimation for the  

hourly rainfall skewness in the months of July and August at TW and WN stations respectively. This can be 

attributed to the fact that summer months normally have the highest rainfall variability and skewness. Results 

for the WR station tend to be best in reproducing the skewness property, which can be attributed to the 

nature of rainfall in the area, which is characterised by having lower intensity rainfall and shorter continuous 
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wet days. WR station results are also a reflection of the effect of rainfall intensity on the disaggregation 

scheme.  

The disaggregated results obtained through the full test mode of Hyetos when the hourly input aggregated to 

daily which serve as an original series and then disaggregated producing another synthetic hourly series 

using BRL parameters. However the operational mode of Hyetos can be used with daily input for model 

application (eg. climate change studies) no means for testing and can also produce disaggregated rainfall. 

 

  
Figure 6. Comparison of lag-1autocorrelation (left) and Skewness (right) of observed and disaggregated for the case 

study of TW station at hourly scale. 
 

  
Figure 7. Comparison of lag-1autocorrelation (left) and Skewness (right) of observed and disaggregated for the case 

study of WN station at hourly scale. 
 

  
Figure 8. Comparison of lag-1 autocorrelation (left) and Skewness (right) of observed and disaggregated for the case 

study of WR station at hourly scale. 
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Different levels of aggregation have been compared for the rainfall statistics simulated by BLRP model and 

disaggregated by Hyetos . The mean statistic for 6 and 24 hourly rainfall was preserved well for TW, WN 

and WR for both disaggregated and simulated rainfall (see Figures 9-11). Moreover the randomised BLRP 

model brought an achievement for proportion dry at hourly and even for 24 hourly rainfall and slightly 

overestimated the 6hourly aggregations for the three sites. Although the 6hourly rainfall was not used in the 

fitting, but has shown a good agreement with the observed data as depicted by Figures 9-11. 

For the disaggregated rainfall BLRP model has tendency to underestimate autocorrelation lag-1 at scale of 6 

hour for all sites, but reproduced it well for 24 hour scale (Figures 9-11). Whereas for the simulated rainfall 

at 6 hourly aggregations, the autocorrelation lag-1 was overestimated in TW and WR but not in WN. This 

may attributed to the different statistics used in fitting the model. However for 24 hourly scale rainfall BLRP 

model has found to underestimate the autocorrelation lag-1. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 9.  Statistical properties of 6- hourly (top) and 24- hourly (bottom) rainfalls for TW single site for the 

observed, simulated by BLRP and disaggregated using Hyetos. 
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Figure 10.  Statistical properties of 6- hourly (top) and 24- hourly (bottom) rainfalls for WN single site for the 

observed, simulated by BLRP and disaggregated using Hyetos . 

 

 

 
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Statistical properties of 6- hourly (top) and 24- hourly (bottom) rainfalls for WR single site for the 

observed, simulated by BLRP and disaggregated using Hyetos . 

 

 

EFFECTS OF DISAGGREGATION ON EXTREME RAINFALL 

 

Extreme rainfall is considered one of the most important parameters used in the design of any hydrological 

system. So the ability of the Hyetos model to reproduce extreme values of rainfall has also been assessed in 

this study using a combined approach of Peak over Threshold (POT) and Generalised Pareto Distribution 

(Gilleland et. al. 2005). The combined approach, which uses the method of maximum likelihood to estimate 

the parameters of the Generalised Pareto Distribution, is programmed R Language and contained in software 

called extRemes.  Figures 12-14 show plots of specified return period and corresponding computed hourly 

return level obtained by extRemes in the three studied stations. The plots demonstrate that Hyetos slightly 

overestimated the values of computed return levels; however, it was able to capture some features of the 
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observed extremes at hourly scale. The thresholds selected to fit the observed and disaggregated models are 

not significantly different. For TW the observed and disaggregated thresholds used were 1.3mm and 2mm, 

for WN they were 1.5mm and 2mm, and for WR they were 1.2 and 2mm, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Impact of the disaggregation scheme on hourly extreme rainfall at TW  

 

 
Figure 13.  Impact of the disaggregation scheme on hourly extreme rainfall at WN 

 

 

 
Figure 14.  Impact of the disaggregation schemes on hourly extreme rainfall at WR 
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In this paper the performances of the combined stochastic rainfall model (BLRP) and the daily rainfall 

disaggregator (Hyetos) for reproducing hourly rainfall are evaluated. Historical rainfall data from three 

stations were used to assess the effect of different rainfall intensities on these models. Fitting of the BLRP 

model has been achieved by using a combination of different moments generated from the statistical 

properties of the historical rainfall data. Then, fitted parameters obtained from the BLRP model were used in 

the Hyetos software to disaggregate the daily rainfall to test the performance of the Hyetos model. The 

disaggregated rainfall series obtained by Hyetos was then used to reproduce the standard statistics and 

extreme values in each station. The results obtained have shown reasonable estimates for the standard 

statistics and extreme values under different climates and consequently, encourage use of the BLRP and 

Hyetos models in studies involving modelling of hydrological systems, especially for climate change studies. 

Moreover, the results also demonstrated that hydroinformatics modelling technology is very useful in 

resolving complex issues such as temporal disaggregation of rainfall. 
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