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Abstract: Tropical peatlands in Southeast Asia have experienced widespread subsidence due to for-

est clearance and drainage for agriculture, oil palm and pulp wood production, causing concerns 

about their function as a long-term carbon store. Peatland drainage leads to subsidence (lowering 

of peatland surface), an indicator of degraded peatlands, while stability/uplift indicates peatland 

accumulation and ecosystem health. We used the Advanced Pixel System using the Intermittent 

SBAS (ASPIS-DInSAR) technique with biophysical and geographical data to investigate the impact 

of peatland drainage and agriculture on spatial patterns of subsidence in Selangor, Malaysia. Re-

sults showed pronounced subsidence in areas subjected to drainage for agricultural and oil palm 

plantations, while stable areas were associated with intact forests. The most powerful predictors of 

subsidence rates were the distance from the drainage canal or peat boundary; however, other driv-

ers such as soil properties and water table levels were also important. The maximum subsidence 

rate detected was lower than that documented by ground-based methods. Therefore, whilst the AP-

SIS-DInSAR technique may underestimate absolute subsidence rates, it gives valuable information 

on the direction of motion and spatial variability of subsidence. The study confirms widespread and 

severe peatland degradation in Selangor, highlighting the value of DInSAR for identifying priority 

zones for restoration and emphasising the need for conservation and restoration efforts to preserve 

Selangor peatlands and prevent further environmental impacts. 

Keywords: tropical peatlands; peatland subsidence; land cover change; APSIS; DInSAR; peatland 

management 
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1. Introduction 

Tropical peatlands are carbon-rich terrestrial stores of waterlogged organic matter. 

They cover 3% of the Earth’s terrestrial area [1] and provide important regional ecosystem 

services (e.g., supporting high biodiversity, providing safe drinking water, and minimis-

ing flood risk by storing excess rainfall [2]). Globally, tropical peatlands are of great im-

portance in the carbon cycle; they store one-third of global soil carbon and have an essen-

tial role in balancing atmospheric greenhouse gases [3–6]. As such, protecting peatlands 

is a priority for climate change mitigation and conservation [6–8]. 

Tropical peatland conditions are under threat from drainage and land cover changes 

such as deforestation and plantation development, which have been rapid in the South-

east Asia region over the past decades [9]. This is pertinent given that Southeast Asian 

tropical peatlands store an estimated 24–45% of total tropical peatland carbon [6,10]. Miet-

tinen et al. [9] estimated a 50% conversion of forested peatlands to industrial plantations 

and smallholder agriculture in Peninsular Malaysia, Sumatra, and Borneo from 1990 to 

2015, resulting in heavily drained peatlands that are a source of carbon to the atmosphere 

and are subsiding as a consequence [11–13]. 

Peat drainage impacts the hydrology and condition of the peat and leads to loss of 

the carbon stock through CO2 emissions. The lowering of the water table leads to oxidation 

of the peat, which in turn causes peat physical compaction and consolidation, thus pro-

ducing long-term subsidence and a legacy of greenhouse gas emissions [3,11]. Subsiding 

areas are also more susceptible to flooding [14]. Climate change is compounding the ef-

fects already felt by land use change [15] and without intervention will exacerbate subsid-

ence rates, increase greenhouse gas emissions and induce larger and more frequent fires. 

Some efforts have been made towards rewetting and retaining the natural hydrology of 

peat swamps by raising the water levels in the disturbed areas as an attempt to halt oxi-

dation and allow forest vegetation regrowth [16–18]. This has been achieved by blocking 

drainage canals [19], building dams [20], and practising paludiculture [21]. However, the 

costs of restoring and maintaining peat conditions across extensive areas are enormous 

and more efficient approaches are needed to inform restoration practices. Improved un-

derstanding of peat subsidence drivers as an aid to peatland land use planning and the 

prioritisation of restoration activities, as well as the development of a large-scale, system-

atic subsidence monitoring system, is therefore vital. 

As such, satellite observations of peat conditions have a valuable role to play in peat-

land subsidence monitoring [22]. Since tropical peatlands are subject to such widespread 

and large-scale threats, the resulting spatial and temporal patterns of subsidence are com-

plex and challenging to capture with in situ measurements (for example, PVC tubes [12] 

and differential GPS). Such methods are only able to cover small geographical areas due 

to the cost of large-scale field surveys and the inaccessibility of dense tropical peat swamp 

forests. Given the scale and distribution of peatlands and the lack of representativeness 

across space for field measurements, it is necessary to find tools that are capable of map-

ping subsidence across both large areas and over multi-annual time periods. Copernicus 

Sentinel-1 and Sentinel-2 data open new opportunities for this with the provision of freely 

available, high-temporal and spatial resolution data. Sentinel-1 can make observations de-

spite cloud cover and enables the use of Differential Interferometric Synthetic Aperture 

Radar (DInSAR) to measure the vertical motion of the Earth’s surface, whereby a series of 

many images are used to produce a surface deformation measurement. Previous work 

using DInSAR for tropical peat surface subsidence measurement has employed L-band 

data, as it has a better capability to penetrate vegetation canopies [13] and is, therefore, 

less affected by temporal decorrelation than X- and C-band radars [23]. However, it has a 

lower accuracy of vertical surface displacement measurement due to its longer wave-

length [24] and is capable of penetrating soil depending on soil conditions [25], which can 

be variable over degraded peat swamp forests. Therefore a surface displacement meas-

urement using L-band may not actually be reflective of the actual peat surface in certain 

areas or during certain time periods. 
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Recent developments in InSAR data processing have delivered solutions that over-

come the problem with temporal decorrelation and produce regional measurements of 

deformation over vegetated terrain over long time periods using C-band data, even 

through forest canopies. Studies of wetland areas in the southern USA showed that C-

band InSAR was indeed able to penetrate a moderate forest canopy and make measure-

ments of the land surface beneath [26,27]. APSIS (Advanced Pixel System using Intermit-

tent SBAS), rebranded from ISBAS [28–30], expands the application of InSAR to vegetated 

environments by allowing for greater variation in the coherence of phase information [30]. 

The use of C-band SAR with this method enables sensitive detection of vertical defor-

mation from millimetres to a few centimetres per year over a range of land cover classes 

including urban, agriculture, forestry and natural surfaces. The APSIS method has so far 

been successfully applied to the Flow Country peatlands in Scotland [28], peatland in 

South Selangor, Malaysia [30], and degrading permafrost peatlands in the sub-Arctic [31], 

with confidence in the direction of motion. When APSIS has been applied to C-band data 

of forested areas, almost full coverage has been possible, even though expectations are 

that diffuse scattering from the canopy should dominate [32,33]. Polarimetric studies have 

also shown evidence of double-bounce reflections in other inundated environments asso-

ciated with canopy penetration and ground–trunk interaction [34–36], which goes some 

way to explain the success of the APSIS method over inundated forests. This was illus-

trated by the presence of coherent interferometric bands over North Selangor [37]. 

The aim of this study is to provide empirical evidence of the utility of the APSIS tech-

nique and regression models for remotely monitoring and analysing the key drivers of 

subsidence rates. Our objectives are as follows: (i) to map tropical peatland subsidence 

rates in Selangor, Malaysia over a two-year period (2017–2019); (ii) to investigate the driv-

ers that influence spatial variability in subsidence rates and their significance using remote 

sensing methods. Moreover, this study demonstrates how routine and comprehensive 

monitoring of peatlands can now be cost-effective through the exploitation of freely avail-

able and continuous observations from satellites through the EU Copernicus programme. 

2. Materials and Methods 

2.1. Study Site 

The study area comprises the North Selangor Peat Swamp Forest and the Kuala Lan-

gat peatlands in the State of Selangor, Peninsular Malaysia (Figure 1). The climate at these 

locations is characterised by high temperatures and humidity, and diurnal and seasonal 

rainfall with the greatest amount of rain falling between March to May and October to 

December [38]. Both North Selangor and Kuala Langat are predominantly agricultural 

districts, with oil palm being the dominant crop. Kuala Langat has experienced wide-

spread encroachment of agriculture and urban zones onto the peatland system for dec-

ades. Alternatively, North Selangor Peat Swamp Forest was gazetted as a reserve in 1990 

[39] and has seen a three-fold increase in the area of oil palm agriculture surrounding the 

boundary since reserve status was implemented [40]. 

North Selangor Peat Swamp Forest is the largest peat swamp forest remaining in Pen-

insular Malaysia and consists of four forest reserves: Raja Musa Forest Reserve, Sungai 

Karang Forest Reserve, Sungai Dusun Forest Reserve and Bukit Belata Extension Forest 

Reserve. Limited peat depth measurements of the site estimated an average depth of 3.6 

m in 2014 [39]. The forest has been selectively logged historically but logging has now 

ceased following a logging moratorium in the reserve areas established in 1990. A 500 km 

network of canals previously used for transporting timber still remains in the North Se-

langor Peat Swamp Forest [39]. Consequently, the North Selangor Peat Swamp Forest con-

sists of a secondary forest of varying height, density and condition [41]. Peat swamp wa-

ters are used to supply water for the neighbouring Tanjong Karang Irrigation Scheme, 

which provides irrigation for oil palm and rice paddy plantations in the region. These 

sources of drainage have led to reduced water retention and lower water tables within the 
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reserves, inducing peatland subsidence [39]. Local NGOs have become increasingly in-

volved in the restoration of North Selangor Peat Swamp Forest, such as the Global Envi-

ronment Centre and The Friends of North Selangor Peat Swamp Forest. Restoration activ-

ities have included canal blocking to raise water tables and reduce drainage and subsid-

ence rates, replanting of native species, and fire prevention methods involving education 

schemes and the introduction of a fire risk forecasting system [39]. 

Kuala Langat consists of two main forest reserves: Kuala Langat North Forest Re-

serve and Kuala Langat South Forest Reserve. These reserves are host to a mixed mosaic 

of forests ranging from primary forests to degraded and regenerating forests. The peat 

depth in these areas is ~3.3 m. The Selangor Forestry Department estimated that the 

swamp forest in the Kuala Langat South Forest Reserve stores more than 27.7 Mt carbon 

within its peat soil. This reserve plays an important role in flood mitigation in Selangor 

State since it is part of the larger coastal peatland that formed in between river basins 

along the Selangor coast [39]. 

 

Figure 1. Study area. North and South Selangor. Red points represent the points where pixels were 

extracted for the analysis. Peatlands are enclosed in the black polygon and rivers and canals are 

represented by blue lines. 
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2.2. Datasets 

Peatland subsidence is a complex environmental process which depends on hydrol-

ogy, climate, topography and anthropogenic factors (land use and land cover changes). 

Thus, we selected a set of variables linked to peat extent, water bodies, vegetation, soil 

moisture and land use (a total of 37; see Table 1) that are either proxies or direct measure-

ments of the factors mentioned above to understand and explain subsidence patterns in 

North and South Selangor. 

Table 1. Causative variables for explaining subsidence. 

Variable/Map Layer Formula/Source Characteristics 

Motion velocity (vertical) APSIS technique 
Dependent variable 

20 m pixel size 

Peat_dist “Near” function from ArcGIS v 10 
Distance (m) from the edge of the 

peatland area to each point 

Water_dist “Near” function from ArcGIS v 10 
Distance (m) from the closest water 

body (canal) to each point 

Land cover SVM classification Categorical variable; 10 m pixel 

MNDWI difference 2020–2018 MNDWIJanuary-20 − MNDWIFebruary-18 Numerical variable; 10 m pixel 

MNDWI 2018 MNDWIFebruary-18 Numerical variable; 10 m pixel 

NDPI difference 2020–2018 NDPIJanuary-20 − NDPIFebruary-18 Numerical variable; 10 m pixel 

NDPI 2018 NDPIFebruary-18 Numerical variable; 10 m pixel 

NDTI difference 2020–2018 NDTIJanuary-20 − NDTIFebruary-18 Numerical variable; 10 m pixel 

NDTI 2018 NDTIFebruary-18 Numerical variable; 10 m pixel 

NDWI difference 2020–2018 NDWIJanuary-20 − NDWIFebruary-18 Numerical variable; 10 m pixel 

NDWI 2018 NDWIFebruary-18 Numerical variable; 10 m pixel 

NDWI2 difference 2020–2018 NDWI2January-20 − NDWI2February-18 Numerical variable; 10 m pixel 

NDWI2 2018 NDWI2February-18 Numerical variable; 10 m pixel 

ChlredEdge difference 2020–2018 ChlredEdgeJanuary-20 − ChlredEdgeFebruary-18 Numerical variable; 10 m pixel 

ChlredEdge 2018 ChlredEdgeFebruary-18 Numerical variable; 10 m pixel 

EVI difference 2020–2018 EVIJanuary-20 − EVIFebruary-18 Numerical variable; 10 m pixel 

EVI 2018 EVIFebruary-18 Numerical variable; 10 m pixel 

GVMI difference 2020–2018 GVMIJanuary-20 − GVMIFebruary-18 Numerical variable; 10 m pixel 

GVMI 2018 GVMIFebruary-18 Numerical variable; 10 m pixel 

NDVI difference 2020–2018 NDVIJanuary-20 − NDVIFebruary-18 Numerical variable; 10 m pixel 

NDVI 2018 NDVIFebruary-18 Numerical variable; 10 m pixel 

MSI difference 2020–2018 MSIJanuary-20 − MSIFebruary-18 Numerical variable; 10 m pixel 

MSI 2018 MSIFebruary-18 Numerical variable; 10 m pixel 

NBR difference 2020–2018 NBRJanuary-20 − NBRFebruary-18 Numerical variable; 10 m pixel 

NBR 2018 NBR Feb-18 Numerical variable; 10 m pixel 

NDMI difference 2020–2018 NDMIJanuary-20 − NDMIFebruary-18 Numerical variable; 10 m pixel 

NDMI 2018 NDMIFebruary-18 Numerical variable; 10 m pixel 

FAPAR difference 2020–2018 FAPARJanuary-20 − FAPARFebruary-18 Numerical variable; 10 m pixel 

FAPAR 2018 FAPARFebruary-18 Numerical variable; 10 m pixel 

FCOVER difference 2020–2018 FCOVERJanuary-20 − FCOVERFebruary-18 Numerical variable; 10 m pixel 

FCOVER 2018 FCOVERFebruary-18 Numerical variable; 10 m pixel 

LAI difference 2020–2018 LAIJanuary-20 − LAIFebruary-18 Numerical variable; 10 m pixel 

LAI 2018 LAIFebruary-18 Numerical variable; 10 m pixel 

LAI_CAB difference 2020–2018 LAI_CABJanuary-20 − LAI_CABFebruary-18 Numerical variable; 10 m pixel 

LAI_CAB 2018 LAI_CABFebruary-18 Numerical variable; 10 m pixel 

LAI_CW difference 2020–2018 LAI_CWJanuary-20 − LAI_CWFebruary-18 Numerical variable; 10 m pixel 

LAI_CW 2018 LAI_CWFebruary-18 Numerical variable; 10 m pixel 
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2.3. Land Cover 

A land cover classification of Selangor was produced so that spatial patterns of sub-

sidence could be contextualised by land covers and land uses during the period of meas-

urement. To create the land cover layer, a cloud-free Sentinel-2 median composite image 

(January 2018–January 2020) was acquired, then processed and downloaded using Google 

Earth Engine [42]. The selection of dates was based on the presence of a lower percentage 

of clouds in the images available. Additionally, we chose a period that aligns with the 

subsidence data to ensure consistency between the land cover map and the vertical move-

ment. Training areas were collected based on expert knowledge of the study area and 

visual interpretation using very-high-resolution images (Google Earth). Then, a super-

vised classification was computed based on 80% of the training data using a Support Vec-

tor Machine classifier with a radial function kernel in ArcMap 10.4. The inputs for the 

classifier were ten multispectral bands (2–8a, 11, and 12 from Sentinel-2) and a digital el-

evation model (SRTM) resampled to 20 m spatial resolution. The resulting land cover map 

had ten classes (urban areas, agriculture, rice paddies, oil palm plantations, secondary 

forest, logged forest, shrubs, and bare soil/mining). Finally, validation was performed us-

ing 20% of the training data and visual interpretation. 

2.4. Spectral Indices 

Two Sentinel-2 cloud-free images were acquired and downloaded from the ESA 

Open Access Hub (https://scihub.copernicus.eu/dhus/#/home, accessed on 30 March 

2020): one from February 2018 and another from January 2020. Images from the same sea-

son in the calendar year were selected so that seasonal change did not impact changes in 

spectral indices over time. Both images were atmospherically corrected and seven differ-

ent spectral indices were calculated in RStudio using the ‘raster’ package [43]. These indi-

ces are expected to be proxies of vegetation condition, moisture content, and soil proper-

ties—all relevant factors for determining peat condition. The employed spectral indices 

were Normalized Differences Vegetation Index (NDVI), Modified Normalized Difference 

Water Index (MNDWI), Enhanced Vegetation Index (EVI), Normalized Difference Pond 

Index (NDPI), Normalized Difference Turbidity Index (NDTI), Normalized Difference 

Water Index (NDWI), Normalized Difference Water Index 2 (NDWI2), Chlorophyll Red 

Edge Index (ChlredEdge), Global Vegetation Moisture Index (GVMI), Moisture Stress In-

dex (MSI), Normalised Burn Ratio (NBR), and Normalized Difference Moisture Index 

(NDMI). The references, definitions and formulae to derive these indices are shown in 

Appendix A (Table A1). All spectral indices were derived at a spatial resolution of 10 m 

and resampled to 20 m to correspond with the spatial resolution of the InSAR data. This 

was conducted using the ‘resample’ function using the bilinear method in the ‘raster’ 

package in R [43]. 

Given that subsidence is a dynamic process and subsidence data is a rate of change 

between two dates over two years, we have computed the difference between all spectral 

indices from 2018 to 2020. The rate of change is simply expressed as the subtraction of the 

2018 value from the 2020 value. 

2.5. Biophysical Parameters 

Using the same Sentinel-2 images, biophysical parameters were also computed (Table 

1). Leaf Area Index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), 

Cover fraction (FCOVER), canopy chlorophyll content (LAI_CW), and canopy water con-

tent (LAI_CB) in SNAP using the biophysical processor. As per the spectral indices, bio-

physical parameters were derived at 10 m spatial resolution and were resampled to 20 m 

resolution to match the InSAR data, and differences were computed between the biophysi-

cal parameters using 2020 minus 2018. 
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2.6. Peat Boundary Distance and Canal Distance 

The distance of each point to the nearest edge of the peatland boundary and canal 

shapefiles were calculated using the “near” function in ArcGIS v10. The shapefile for de-

lineated peatlands was provided by the Selangor State Forest Department in 2010. It is 

important to note that the boundary of the peatlands may have changed since 2010 due to 

peat loss. The shapefile for the canals was created by combining water body datasets from 

the Malaysian government website, which included canals and rivers. These two meas-

urements are used as a proxy for peat depth because peatland systems in Southeast Asia 

form domes that are separated by rivers, with the deepest peat found at the furthest dis-

tance from rivers, canals and the peat boundary [11]. 

2.7. Subsidence Data 

The APSIS-DInSAR technique was used to derive mean vertical velocity measure-

ments of the tropical peat swamp surface (i.e., average subsidence rates) across Selangor 

[44,45]. A summary of the methodology is presented by Sowter et al. [45]. A total of sixty 

Sentinel-1 Interferometric Wide (IW) images from November 2017 to November 2019 from 

descending track 3 were processed to derive measurements of vertical ground motion. 

This period was selected to match a corresponding field campaign of subsidence meas-

urements at Selangor [46,47]. A total of 780 interferograms were produced with a maxi-

mum normal perpendicular baseline of 250 m and a 6-month temporal baseline, showing 

the average rate of motion over the period measured (2017–2019) in millimetres per year, 

at 20 m resolution. Ground motion (where negative values represent subsidence and pos-

itive values represent uplift) was used as the dependent variable in the analysis. A stable 

reference point (3.107277, 101.621646) was used to derive subsidence estimates for the 

whole region. This location was a stable urban area that experienced an average velocity 

of 0 mm yr−1 over the study period. 

2.8. Regression Models 

We used a big data approach to our investigation, sourcing and producing many re-

mote sensing and GIS products that are relevant to tropical peat swamp forest subsidence 

and condition. We selected a linear (multiple linear regression) and non-linear (random 

forest regression) approach to investigate whether variance in subsidence rates across Se-

langor could be better explained by linear relationships or non-linear relationships. The 

variances and variable importance rankings from these model outputs were then com-

pared to establish the key drivers of subsidence. This is summarised in our methodologi-

cal approach (Figure 2). Image acquisition and pre-processing were the first steps for 

building different spatial layers; then, spectral indices and biophysical parameters were 

extracted to explain peat conditions. 

Once we collated our suitable raster and vector dataset, we created 2200 random 

points covering all peatland areas in Selangor (see Figure 1). These random points were 

used as coordinates for extracting the values of each pixel of a given data layer. With this, 

we built a data frame of 2128 rows by 38 columns which was rescaled and used for run-

ning the analyses. 
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Figure 2. Methodology framework. 

2.8.1. Multiple Linear Regression 

Multiple Linear Regression (MLR) was carried out to investigate whether our inde-

pendent variables could significantly predict tropical peat subsidence and to understand 

the spatial distribution of peat subsidence using a linear combination of our predictor var-

iables. In this case, the dependent variable was the subsidence data, and the predictor 

variables were the spectral and vegetation variables. 

MLR is defined as: 

y = a + b1X1 + b2X2+ … + bnXn + ε (1) 

where y is the dependent variable, X are the predictors, n is the number of predictors, a is 

the intercept, b are the partial regression coefficients and ε is the estimated error. 

RStudio was used to compute the MLR model using the function “lm” from the base 

package. The data was split 80:20 into training and test datasets and the MLR was con-

ducted on the training set. F-statistics and the associated p-value were obtained for a given 

predictor and evaluated whether the association was significant between the predictor 

and the dependent variables. We obtained the R2 and the adjusted R2 for estimating the 

proportion of variance in the subsidence data that can be explained by the predictor vari-

able values. Given that R2 is not penalised by the number of variables in the model, a better 

estimation of R2 is using the adjusted R2. Adjusted R2 was therefore used to determine the 

variance explained in the model. The residual standard error was also computed. 
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To select the best model, stepwise regression was used (also called stepwise selection) 

which involved removing and adding predictor variables until the best-performing model 

was found (based on the highest R2 value). For this, we used the “stepAIC” function from 

the MASS R package [48]. This function enabled computation of the stepwise regression 

using a combination of forward selection and backward elimination which eliminated col-

linearity in the data. In addition, variance inflation factors were computed to seek and 

eliminate any collinearity in the model. To ensure the model met the assumptions of uni-

variate normality and homogeneity of variance, the residual plots were inspected (Figure 

A1). 

2.8.2. Random Forest Regression 

Random Forest Regression (RFR) is a machine learning algorithm and an alternative 

form of MLR. It is based on binary rule-based decisions (regression trees) and feature 

ranking that search for the optimal subset to explain how a predictor variable relates to a 

dependent variable [49]. RFR is a robust algorithm that can describe complex relationships 

and does not assume that the data has a particular distribution or linear relationship; 

therefore, it has been broadly used for understanding ecological and environmental sys-

tems [50–53]. The performance of the two models investigated was assessed based on 

model internally generated accuracy statistics and independent validation samples, cal-

culating the RMSE of the predicted values and the correlation coefficient. Ten-fold cross-

validation with five repetitions was computed in each model to guarantee model stability 

(non-overfit) and reliability [54]. 

RFR was carried out because it is a powerful feature selection method that scores the 

importance of the contribution of each variable towards explaining the dependent varia-

ble. The combination of MLR and RFR enabled an understanding of the variables that are 

most important for determining subsidence rates and the complex relationships in the 

data. 

RFR was carried out in RStudio using the ‘randomForest’ package [49]. The functions 

within this package allowed for model tuning and analysis of the results, as well as the 

validation of the model. The dataset was split 80:20 into training and test datasets (the 

same data used for MLR). The most important parameters in RFR are the number of trees 

(500 as default) and the number of variables at each decision tree split (1/3 of the total 

number of variables) [55]. The first model was built using the default parameters and then 

this was tuned using the “tuneRF” function. This allowed us to search for the optimal 

number of variables used at each split (using the Out-of-bag error). Afterwards, the model 

was run eliminating the least important variable listed in the variable importance outputs 

at a time. This way, the best model was found based on the adjusted R2. Finally, the best 

models were validated with the test data (20% of the data) using the “predict” function 

from the ‘caret’ R Package [56]. RMSE was also calculated, as well as the correlation coef-

ficient between the predicted and observed values. 

3. Results 

3.1. Patterns of APSIS Coherence and Subsidence 

The overall coherence count, representing the number of coherent interferometric 

pairs per pixel, was highest in urban areas of Selangor due to the predominance of double-

bounce scattering and low temporal decorrelation (Figure 3c,f). At both North Selangor 

and Kuala Langat, the overall coherence count of the secondary forest was moderate com-

pared to oil palm, rice paddy and shrub land covers, which were overall lower. A moder-

ate coherence count within the secondary forest land cover was likely achieved due to the 

presence of both surface water and tree trunks to enable double-bounce scattering and 

lower temporal decorrelation than expected overall. The coherence count maps show that 

an adequate number of coherent interferometric pairs (minimum 71) was achieved for 
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every pixel using the APSIS method, enabling a reliable rate of deformation to be calcu-

lated for the entire region of Selangor. 

When comparing subsidence rates across the study region, it was clear that subsid-

ence was most pronounced in South Selangor (Figure 3e). Subsidence was also recorded 

in North Selangor but at a lower magnitude, particularly in the north part of the peatland 

(Figure 3b). Subsidence was present across all land cover categories except for bare soil in 

North Selangor. In some locations, land cover boundaries had a clear correspondence with 

patterns in subsidence (see red squares in Figures 3a,b,d,e), likely due to land cover 

change, forest clearance, and/or drainage (Figure 1). 

 

Figure 3. (a) Land cover map from North Selangor; (b) Subsidence over North Selangor; (c) number 

of coherent pairs per pixel over North Selangor (coherence count); (d) Land cover map from South 

Selangor; (e) Subsidence over South Selangor; (f) number of coherent pairs per pixel over North 

Selangor. The subsidence data are in mm yr−1 between 2017 and 2019. A greater negative value (red) 

indicates a greater subsidence rate. Coherence count data ranges from 71 to 1335, whereby the 

higher the value, the greater the number of consistently coherent pairs that exist for this pixel. Black 

and blue lines represent the peatland extent. Areas of notable interest are marked with a red square. 

In South Selangor, subsidence occurred over extensive areas (~439 km2) with the 

greatest rates (of ca. −7.5 mm yr−1 between November 2017 and November 2019) occurring 

in areas with bare soil, secondary forest, oil palm plantations or agriculture (Figure 4). 

Forested areas in the centre of the peatland also showed subsidence but at a lower rate, 

suggesting that the impacts of drainage have expanded to reach areas which still have 

forest cover. In North Selangor, the higher rates of subsidence were more spatially con-

fined and mainly found along the northern edge of the reserve. However, at North Selan-

gor, relatively large central areas of the peatland seemed stable or at least much less im-

pacted by subsidence (Figure 3b). Subsidence rates in bare soil showed opposing trends: 

bare soil in South Selangor was subsiding and North Selangor was uplifting. 
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Figure 4. Rates of subsidence in mm yr−1 computed from the surface motion velocity (2017–2019) 

among different land cover classes. Mean and SD are shown. A greater negative value indicates 

greater subsidence rates. (a) North Selangor subsidence rates; (b) South Selangor subsidence rates. 

3.2. Multiple Linear Regression 

The MLR explained 13% of the variation in the ground motion (F = 5.73, p < 0.001). 

MLR results showed that the most significant variables (p-value: [0, 0.001]) for explaining 

subsidence were peat boundary distance (how far a given pixel is from the peat border) 

and land cover (mainly oil palm plantations and agriculture). This was followed by (p-

value: [0.001, 0.01]) canal distance (how far a given pixel is from a canal or river), NDMI 

difference, and LAI_CW_2018. Finally, those variables with p-values of (0.01, 0.05] were 

EVI and MSI. p-values and significance can be found in Table A2 in Appendix A. A signif-

icant (99% confidence) correlation coefficient of 0.30 between the predicted values and the 
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observed data with a RMSE = 0.0046 was found. The accuracy achieved in the validation 

was good considering the relatively low adjusted R2 of the model. 

The MLR allowed us to understand the linear relationships between our predictor 

variables and the subsidence rate. However, given that tropical peatland subsidence is a 

complex environmental process and some of the non-linear relationships might be omit-

ted in the MLR, we also performed RFR for its robustness and for its capability to find 

non-linear relationships in the data. 

3.3. Random Forest Regression 

RFR was carried out using first the 37 variables and the default RFR parameters (i.e., 

500 trees, and mtry = n/3). This produced a model that explained 20% of the variance 

which, after tuning the model (1000 trees and mtry = 37), increased marginally to 21.32%. 

The variable importance of this model is shown in Figure 5. The top three variables (canal 

distance, peat boundary distance, and presence of small ponds (ndpi)) were found in both 

variable importance measures: the percentage increase in MSE (%IncMSE) and the in-

crease in node purity (IncNodePurity). The top three ranked variables for both variable 

importance measures were the same as in the results obtained in the MLR. In order to 

obtain the most parsimonious model with the highest accuracy, we tuned and ran the 

model iteratively by eliminating or adding one variable at a time and taking into account 

both the variable importance by %IncMSE and by IncNodePurity. Results of these itera-

tions show that the best models performed with the 13 most important variables 

(%IncMSE) and with the 7 most important variables (IncNodePurity) (Figure 5, Table 2). 

With this, a selection of the most important variables was carried out, and finally, the best 

two models were computed, producing final results of 21.45% and 21.46% of variance ex-

plained by each of the models (%IncMSE and IncNodePurity, respectively). The summary 

of the results of all models is presented in Table 2. 

(a) (b) 

 
(c) (d) 
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Figure 5. (a) Variable importance based on MSE; (b) variable importance based on node purity; (c) 

variable importance in optimum variables selected based on MSE (d) variable importance in opti-

mum variables selected based on node purity. 

The top 10 predictor variables which contributed most to the accuracy of subsidence 

mapping in Selangor are presented in Figure 5. The results reveal that both models in-

cluded land cover, canal distance and peat boundary distance among the most important 

variables in all models. Some variables shown as driving factors in the top 10 for RFR were 

not present in the MLR (e.g., ChlredEdge Index, LAI_CW, GVMI, NDMI). 

Table 2. Random forest model results for all variables and selected variables. 

 All Variables 
Selected Variables 

(%IncMSE) 

Selected Variables 

(IncNodePurity) 

Number of variables 37 13 7 

Number of trees 1000 1000 500 

Number of variables tried at each split 37 9 4 

Mean of squared residuals 2.20 × 10−5 2.17554 × 10−5 2.16 × 10−5 

% Variance explained 21.32 21.45 21.46 

4. Discussion 

4.1. Spatial and Temporal Patterns of Subsidence Rates for Selangor Peatlands 

This study showed that widespread subsidence occurred across the major peatland 

areas in the Selangor region from 2017 to 2019. The maximum rate of subsidence reported 

by APSIS-DInSAR was −7.5 mm yr−1 over the 2017–2019 period, which was greater than 

the maximum subsidence rates of −5.8 mm yr−1 found in Arctic peatlands [31] and −6.2 

mm yr−1 found in the Flow Country, Scotland [57], although lower than rates measured in 

another study from the Flow Country, Scotland (−11 mm yr−1 [28]). This rate was also con-

siderably lower than point-based ground measurements from North Selangor, which 

measured a maximum rate of −25 mm yr−1 using subsidence poles [47], indicating that 

APSIS-DInSAR rates are an underestimation. With this underestimation in mind, we con-

tinue to discuss temporal and spatial patterns of subsidence in relative terms and contex-

tually with an understanding of the site. 

Overall, higher subsidence rates were seen at the edges of the peat where agricultural 

activities have rapidly expanded, including rice paddies and smallholder oil palm [40]. 

Subsidence was most severe in South Selangor, where the highest subsidence rates were 

documented both within the peat dome and at the peat boundary. This corresponds with 

results from Marshall et al. [30], which showed high subsidence around Kuala Lumpur 

airport which extended into the peatland. It was clear that the impacts of land use change 

were not constrained to the production areas, i.e., if one part of the peatland is drained, 

the effects are noticeable across the wider peatland hydrological unit (Figure 3). This is a 
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particularly important point to note for policy makers and land managers when making 

decisions on peatland management and offers a strong argument for ensuring high water 

table levels across wider areas beyond the peat swamp forest, for example, by implement-

ing a buffer zone whereby no drainage is permitted around peat swamp forest reserves if 

there is an overarching aim of conservation and protection. 

The continued low-rate subsidence of the interior of the North Selangor forest reserve 

two decades after the cessation of logging and drainage ditch digging shows that the peat-

land has not yet reached a stable equilibrium [58]. It also implies that the recovery of these 

forests and the recommencement of peat formation is slow, especially if the hydrological 

integrity of the peatland is not fully restored since remnant drainage canals continue to 

drain the water table and hinder the recovery of these peat swamp forests [59–61]. The 

widespread occurrence of subsidence is also a concern as it suggests loss of peat soil and 

its water holding capacity, increased risk of flooding and thereby the potential long-term 

loss of neighbouring agricultural production as well as ecosystem recovery [62,63]. Alt-

hough some areas of North Selangor had not yet fully recovered, it was also clear that 

subsidence rates of large tracts of the interior of the peatlands had levelled off and stabi-

lised with time since gazettement in 1990, as seen in other studies [64,65]. As such, docu-

mented rates of uplift from InSAR may be due to the rebound of the peat surface due to 

groundwater recharge [66,67]. 

4.2. Variable Importance 

Despite the spatial and temporal complexity of peat subsidence, this study showed 

that remotely sensed products descriptive of peatland geography, the peat surface and 

above-ground biomass can explain up to 21.5% of the variance (Table 2). This offers in-

sights into the most relatively important processes that control subsidence at the land-

scape scale: peat boundary distance, land cover and canal distance. Water spectral indices 

were also ranked as important, highlighting the need to maintain the hydrological func-

tion of tropical peat to avoid subsidence. 

Geographical variables such as peat boundary distance, land cover and canal dis-

tance were consistently the most important variables for describing spatial patterns of 

subsidence across Selangor. The high importance of these variables can partly be ex-

plained by the linearity between the subsidence rate and the depth of the peat and water 

table as found by Ritzema et al. [19]. Peat boundary distance, in particular, has a strong 

relationship with peat depth and water table level; the further the distance from the peat 

boundary, the deeper the peat, but the lower the water table due to the increased lateral 

flow away from the centre of the dome [58,68]. This therefore results in overall increased 

subsidence rates towards the centre of the dome, particularly in areas impacted by drain-

age enhancing the impact of lateral water flow out of the peatland, and with increased 

distance from the peat boundary. 

Land cover and canal distance likely had an interacting and compounding effect on 

subsidence rates in Selangor. Land cover changes dictate peat subsidence rates [65], 

whereby the conversion of tropical peat swamp forests involves logging and drainage, 

deepening water table levels and inducing subsidence as a result. In SE Asia, agricultural 

conversion of peatlands has accelerated over time; between 2007 and 2015, industrial oil 

palm plantations almost doubled their coverage over SE Asian tropical peatlands, cover-

ing 27% of all SE Asian peatlands in 2015. Additionally, smallholder plantations covered 

22% of all peatlands in the same year [9]. This rate of conversion applies to Selangor, where 

the encroachment of oil palm agriculture in particular led to mass logging and drainage 

of peatland, most notably in South Selangor (Figure 3d). Such land cover changes in Se-

langor have resulted in the digging of ditches and canals to drain the peatland. The great-

est subsidence rates were seen closest to canals and ditches, with a parabolic-shaped rela-

tionship with distance from the canal [64]. The strength of this relationship in Selangor 

was reflected in the importance of both canal distance and land use in the MLR and RFR 

models. 
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4.3. Effectiveness of APSIS-DInSAR and Modelling Techniques 

C-band InSAR phase unwrapping can fail to produce an accurate vertical displace-

ment measurement if a well-defined fringe pattern is absent from any interferogram, 

which is likely over an intermittently coherent area such as a peat swamp forest [30]. DIn-

SAR methods also have poor capability for measuring rapid surface deformation rates 

[69]. If surface deformation exceeds one-quarter of a wavelength between a pair of images, 

the magnitude and direction of motion cannot be confidently determined, leading to sup-

pressed variations in time series, especially with long temporal baselines [70,71]. This has 

been previously recorded in North Selangor, with a surface level change of 18.5 mm doc-

umented within a Sentinel-1 revisit period of 12 days [47]. Both scenarios outlined result 

in an underestimation of subsidence rates. Based on the likelihood of phase unwrapping 

errors over these sites, and the comparison of measurements from the ground at North 

Selangor and elsewhere, we believe that the subsidence rates determined by APSIS-DIn-

SAR in this study are underestimates and should be considered with caution. As such, we 

propose a selection of appropriate and inappropriate applications of the method at pre-

sent towards tropical peatland conservation, restoration and management in Table 3. 

Table 3. A summary of appropriate and inappropriate applications for APSIS-InSAR towards trop-

ical peatland conservation, restoration and management. 

Appropriate Qualitative Applications Inappropriate Quantitative Applications 

Local, landscape and regional prioritisation of rehabilitation initi-

atives and interventions according to relative subsidence rates 
Carbon loss/gain/savings assessment 

Assessment of relative efficacy of rehabilitation interventions 

over longer-term 
Carbon credit calculations 

Assessment of relative impact of landscape and/or local land-use 

change and land management over a longer term 
GHG emissions monitoring/calculations 

‘Heat mapping’ of the risk of loss of drain-ability to aid in further 

quantitative investigations (e.g., via RSPO) 

Confirm/quantify limits of drain-ability assessment by planta-

tions for certification schemes (e.g., RSPO) 

Contribute to current and future flood risk scanning/predictions Modelling extent of absolute future flooded areas 

Aid in research prioritisation and site selection activities to iden-

tify areas of variable peat health and stability 
Monitoring absolute subsidence rates and extent 

Prioritisation of funding towards peatland conservation 
Assessing the depth of peat loss, especially from high-loss events 

such as fire 

Our study demonstrated that ASPIS-DInSAR had sufficient coherence over peat 

swamp forests in line with previous findings in North Selangor [37] and South Selangor 

[30]. Out of the two models we used for assessing how other remotely sensed peatland 

properties related to the ground motion data, the RFR model explained greater variance 

of the spatial patterns of subsidence (21.5%) compared to the MLR model (13%). This can 

be attributed to the fact that RFR is a machine learning model that accounts for non-linear 

relationships between subsidence and the explanatory variables. As such, RFR is recom-

mended for use when exploring peat swamp forest characteristics with big data. In addi-

tion, RFR is capable of selecting important spectral and environmental features that are 

sensitive to subsidence data and improves the accuracy levels for understanding and pre-

dicting subsidence across the space. Despite the poorer performance of the MLR model, 

RFR was only able to account for 8.5% more variance explained. The use of MLR therefore 

showed the extent to which linear relationships between tropical peat subsidence and 

above-ground peat swamp forest variables exist. This further highlights the complexity of 

the relationships between subsidence and its predictive variables. 

4.4. Recommended Further Work 

This study highlights the potential of remote sensing data for mapping peat subsid-

ence properties, both at local and regional scales. However, it is crucial to acknowledge 

the limitations and complexity of peat subsidence and the potential challenges associated 
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with interpreting remote sensing data through machine learning techniques. Overall, the 

dynamism and spatial variability of peat properties, the heterogeneity of the landscape, 

the varied practices for agriculture and water management, and the lack of ground meas-

urements of subsidence and peat profile-specific datasets that can be acquired through 

remotely sensed data (e.g., bulk density, peat depth) are among the sources of limitation 

on model performance. We managed to explain only a proportion of the variance of such 

a complex process; the performance of the models could be improved upon by collecting 

more ground data on variables that describe peat profile condition and water table level 

directly and incorporating this into the model, rather than including variables that de-

scribe the peat surface and above-ground biomass characteristics from remote sensing 

products only. Time series data of surface subsidence and water table levels from Evans 

et al. [72] presented a strong relationship between peat surface level and water table level. 

This illustrates the importance of including a product that directly reflects water table lev-

els across Selangor peatlands in subsidence models. Indeed, the importance of MNDWI, 

an indicator of surface water presence, as a variable in the RFR models, highlights the 

importance of water levels as an explanatory variable for landscape level patterns in sub-

sidence. 

Time series analysis of subsidence rates and changes in tropical peat swamp forest 

characteristics and land cover could also improve the amount of variance explained in the 

models. The APSIS technique is able to provide a time series product, whereby a time 

series of surface elevation change is produced with observations that match the satellite 

acquisition frequency (12 days for Sentinel-1 at low latitudes) after the launch of parallel 

satellite Sentinel-1C scheduled for 2024. Patterns in magnitude and frequency of seasonal 

surface motion can be derived from the time series, which acts as a proxy for peat condi-

tions [57,73,74]. Such an approach could provide regional-scale information on peat pro-

file condition, a missing component of the models presented in this study. The work of 

Bradley et al. [74] and Marshall et al. [57] has shown a greater benefit in terms of mapping 

peat condition trends with the time series produced from the APSIS technique rather than 

the average vertical velocity, therefore future work should seek to make use of the time 

series output instead. Ground-based technologies have also improved significantly, with 

the introduction of automated monitoring systems for peat surface motion [72], poten-

tially enabling improved comparisons between methods in the future. Further, our results 

indicate that a considerable component of the variation in ground motion was driven by 

below-surface variables such as water table level and peat properties, e.g., bulk density, 

elasticity, and peat depth, which are currently not observable with satellite data, and 

which most likely explain the relatively low predictive capability of the model. 

Despite the APSIS-DInSAR subsidence underestimation documented in this study, 

there is great potential for the APSIS-DInSAR approach to be further developed for flood 

risk prediction and monitoring linked to the predicted flood and drainability outcomes in 

Sarawak [14]. This method also has the potential to contribute towards adherence moni-

toring for the new Round Table on Sustainable Palm Oil (RSPO) guidance on drainability 

and subsidence surveying, a new requirement for all RSPO peat plantations to optimise 

the peat condition and therefore the lifetime of these plantations [75]. We hope that with 

further work to improve the modelling of subsidence rates and peat conditions, the APSIS-

DInSAR method can aid in understanding the consequences of drainage on tropical peat-

land conditions and subsidence and inform management strategies towards restoring 

these environments. 
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Appendix A 

Table A1. Formulae for deriving spectral indices used in analysis. 

Index Formula Definition Reference 

Normalized Difference Vegetation In-

dex 
NDVI = (B12 − B8)/(B12 + B8) 

Detection of live green vegetation and an indica-

tor of its condition. Chlorophyll sensitive. 
[76] 

Modified Normalized Difference Water 

Index 
MNDWI = (B9 − B12)/(B9 + B12) 

Enhances surface water features whilst supress-

ing or removing noise from vegetation, soil and 

urban areas. 

[77] 

Enhanced Vegetation Index 
EVI = 2.5 × (B8 − B4)/((B8 + 6.0 × B4 − 7.5 × 

B2) + 1.0)) 

Detection of live green vegetation with increased 

sensitivity in high biomass regions. More sensi-

tive to canopy structural variations than NDVI. 

[78] 

Normalized Difference Pond Index NDPI = (B11 − B3)/(B11 + B3) 

Distinguishes small ponds from water bodies and 

differentiates vegetation within ponds from their 

surroundings. 

[79] 

Normalized Difference Turbidity Index NDTI = (B4 − B3)/(B4 + B3) 

A measure of the amount of suspended sedi-

ments. Therefore, a measure of the clarity of a wa-

ter body. 

[79] 

Normalized Difference Water Index NDWI = (B8 − B12)/(B8 + B12) 

Sensitive to the liquid water content of vegetation 

canopies. Less sensitive to atmospheric effects 

than NDVI. 

[80] 

Normalized Difference Water Index 2 NDWI2 = (B3 − B8)/(B3 + B8) 

Detects surface water presence in wetland envi-

ronments and allows for measurement of surface 

water extent. 

[81] 

Chlorophyll Red Edge Index ChlredEdge = (B7/B5) − 1 

High reflectance of vegetation in the NIR region. 

Used to estimate plant composition, including 

chlorophyll content of leaves. 

[82] 

Global Vegetation Moisture Index 
GVMI = (B9 + 0.1) − (B12 + 0.02)/(B9 + 0.1) 

+ (B12 + 0.02) 
Vegetation water content at the canopy level. [83] 

Moisture Stress Index MSI = B11/B8 

Sensitive to increases in leaf water content. Appli-

cations include fire hazard analysis and canopy 

stress analysis.  

[84] 

Normalised Burn Ratio NBR = (B8 − B12)/(B8 + B12) 
Identifies burned areas and provides a measure 

of burn severity. 
[85] 

Normalized Difference Moisture Index NDMI = (B8 − B11)/(B8 + B11) 

Sensitive to moisture levels in vegetation. Used to 

monitor droughts and fuel provision in high-risk 

fire zones. 

[86] 
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Figure A1. Residual plots for multiple regression. 

Table A2. p-values and significance of multiple linear regression models. Bold values represent 

significance below threshold of 0.05. 

Predictors Estimates CI p 

(Intercept) −0.00 −0.00–−0.00 0.023 

LC [2] −0.00 −0.00–−0.00 <0.001 

LC [3] −0.00 −0.00–0.00 0.346 

LC [4] −0.00 −0.00–−0.00 <0.001 

LC [5] −0.00 −0.00–0.00 0.843 

LC [6] 0.00 −0.00–0.00 0.298 

LC [7] −0.00 −0.00–0.00 0.054 

LC [8] 0.00 −0.01–0.01 0.701 

LC [9] 0.00 −0.00–0.00 0.927 

Peat dist −0.00 −0.00–−0.00 <0.001 

Water dist −0.00 −0.00–−0.00 0.008 

mndwi diff 0.00 −0.00–0.00 0.921 

ndpi diff 0.00 −0.00–0.00 0.075 

ndti diff −0.00 −0.00–0.00 0.501 

ndwi diff −0.00 −0.00–0.00 0.742 

ndwi2 diff 0.00 −0.00–0.00 0.939 

ChlredEdge diff −0.00 −0.00–0.00 0.088 

EVI diff −0.00 −0.00–0.00 0.141 
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GVMI diff 0.00 −0.00–0.00 0.072 

NDVI diff −0.00 −0.00–0.00 0.145 

MSI diff 0.00 0.00–0.00 0.011 

NBR diff −0.00 −0.01–0.00 0.500 

NDMI diff 0.00 0.00–0.01 0.001 

FAPAR diff −0.00 −0.00–0.00 0.750 

FCOVER diff 0.00 −0.00–0.00 0.231 

LAI diff 0.00 −0.00–0.00 0.461 

LAI CAB diff −0.00 −0.00–0.00 0.084 

LAI CW diff −0.00 −0.00–−0.00 0.021 

Chlred edge 2018 −0.00 −0.00–0.00 0.133 

EVI 2018 −0.00 −0.00–−0.00 0.016 

GVMI 2018 0.00 −0.00–0.01 0.606 

NDVI 2018 −0.00 −0.01–0.00 0.419 

MSI 2018 0.00 −0.00–0.00 0.935 

NBR 2018 −0.10 −0.21–0.01 0.067 

NDMI 2018 0.00 −0.00–0.01 0.155 

FAPAR 2018 0.00 −0.00–0.00 0.898 

FCOVER 2018 0.00 −0.00–0.01 0.353 

LAI 2018 −0.00 −0.00–0.00 0.227 

LAI CAB 2018 0.00 −0.00–0.00 0.817 

LAI CW 2018 −0.00 −0.00–−0.00 0.006 

mndwi 2018 0.00 −0.00 – 0.00 0.422 

ndpi 2018 −0.00 −0.00–0.00 0.807 

ndti 2018 −0.00 −0.00–0.00 0.322 

ndwi 2018 0.09 −0.01–0.20 0.083 

ndwi2 2018 −0.00 −0.01–0.00 0.456 

Observation number 2113   

R2/R2 adjusted 0.129/0.110   
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