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A B S T R A C T   

Ship collision accidents are one of the most frequent accident types in global maritime transportation. Never-
theless, conducting an in-depth analysis of collision prevention poses a formidable challenge due to the con-
straints of limited Risk Influential Factors (RIFs) and available datasets. This paper aims to incorporate a global 
perspective into a new data-driven risk model, scrutinize the root causes of collision accidents, and advance 
measures for their mitigation. Additionally, it seeks to analyze the spatial distribution and conduct a compre-
hensive comparative study on collision characteristics for both pre- and post-COVID-19, utilizing the real acci-
dent dataset collected from two reputable organizations: Global Integrated Shipping Information System (GISIS) 
and Lloyd’s Register Fairplay (LRF). The research findings and implications encompass several crucial aspects: 1) 
the constructed model demonstrates its reliability and accuracy in predicting collision accidents, as evident from 
its prediction performance and various scenario analysis; 2) the most hazardous voyage segment for collision 
accidents is identified to provide valuable guidance to different stakeholders; and 3) the hierarchical significance 
of various ship types in the context of collision accident is highlighted regarding the most probable scenario for 
collision occurrences; 4) During the pandemic, the rise in collision probabilities, particularly involving older 
vessels and bulk carriers, implies heightened operational challenges or maintenance issues for these ship types; 
(5) The prominence of favorable and adverse sea conditions in collision reports underscores the significant in-
fluence of weather on accidents during the pandemic. These findings and implications help enhance safety 
protocols, ultimately reducing the frequency of collision accidents in the global maritime domain.   

1. Introduction 

Collision accidents rank among the most frequent accident types in 
global maritime transport [1,2]. As reported by the European Maritime 
Safety Agency (EMSA) [3], ship collision accidents have resulted in dire 
consequences, including substantial economic damages, loss of lives, 
and significant environmental degradation. These severe outcomes un-
derscore the paramount importance of maritime safety and the pressing 
need for proactive prevention measures. In response to this critical issue, 
the International Maritime Organization (IMO) has introduced the 
Formal Safety Assessment (FSA) procedure, aiming to assess and miti-
gate risks within the maritime domain effectively. The primary objective 
is to implement preventive measures against potential accidents and 
enhance overall safety. Furthermore, as part of its commitment to 
reducing the risk of maritime collision accidents, the IMO has put forth 

the Convention on the International Regulations for Preventing Colli-
sions at Sea (COLREGs). These essential regulations, mandated for 
adherence by all maritime vessels engaged in waterborne trans-
portation, play a pivotal role in safeguarding against collisions and 
promoting safe navigation practices. 

Ship collision accidents can occur in various environments, encom-
passing open seas, coastal waters, ports, straits, inland waterways, Arctic 
regions, trade corridors, and other pertinent locations. The surging de-
mand for maritime transportation has led to complex and high-density 
traffic, especially in restricted and narrow waterways, highlighting 
navigational safety concerns. For instance, Liu et al. [4] found that 
collision accidents form a substantial portion of maritime accidents in 
China’s coastal waters, a trend evident in both historical and global 
annual analyses. Along the Yangtze River, recognized as the world’s 
busiest inland waterway, collision accidents accounted for 59.18 % of 
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the reported accidents from 2012 to 2021 [5]. In the İstanbul Strait, one 
of the narrowest and most congested maritime channels globally, the 
Kandilli sector exhibits the highest collision likelihood, as highlighted 
by Kamal and Çakır [6]. In inland rivers, collision accidents are a 
common occurrence accident type. Collision accidents are also common 
in inland rivers, prompting Kandel and Baroud [7] to propose intelligent 
technologies like ship speed optimization and situational awareness to 
decrease their probability. Furthermore, the warming of the Arctic re-
gion has opened up alternative routes in maritime transportation, 
leading to an uptick in collision-related accidents, particularly for longer 
vessels, as predicted by Zhang et al. [8]. The main challenge in regional 
risk analysis studies lies in the identification of Risk Influential Factors 
(RIFs) tailored to each unique geographical area. Although such studies 
shed light on accident risk and severity, they might fall short of offering 
a comprehensive view of global maritime collision accidents. 

The literature comprises both qualitative and quantitative studies for 
conducting maritime accident risk analysis. The primary goals of these 
analyses are risk assessment and the implementation of necessary pre-
cautions to prevent adverse consequences in the maritime domain. 
Qualitative studies typically rely on expert opinions, but it is essential to 
manage the uncertainties stemming from such subjective data effec-
tively. In contrast, quantitative research doesn’t entail these un-
certainties. However, the primary constraint for quantitative studies is 
adequate databases, as a substantial sample size is vital for training 
models effectively. Advanced techniques like fuzzy logic, the Dempster- 
Shafer (D-S) theory, and the Bayesian probabilistic method are 
employed for these analyses. Among these methods, the Bayesian 
Network (BN) model is prominent for its comprehensive risk analysis 
capabilities, allowing for dual-direction interpretation both from cause- 
to-root and root-to-cause [9]. Furthermore, BN can reveal relationships 
among RIFs by integrating sophisticated algorithms like the Naïve 
Bayesian network (NBN) and the Tree Augmented Bayesian Network 
(TAN). 

Collision accident-related studies can be classified into three groups 
depending on the granularity of collision events and the data type uti-
lized [10]. The first category focuses on reducing collision accidents by 
evaluating both singular and multi-ship encounter situations [11,12]. 
The second category concentrates on diminishing collision accidents by 
analyzing ship traffic patterns using data from the Automatic Identifi-
cation System (AIS) [13]. The third category’s objective is not only to 
reduce the frequency of collisions but also to mitigate their conse-
quences by assessing risks using data gathered from historical accident 
records [14,15]. A comparative analysis of the three categories reveals 
the distinct focuses within the field: the first two primarily target 
reducing the likelihood of collision accidents, while the third adopts a 
more comprehensive approach to collision prevention. By leveraging 
historical accident data, it offers a broader perspective derived from past 
occurrences, aiming to decrease both the number of collisions and the 
impact of such events. Consequently, it strengthens proactive prevention 
and effective management of the aftermath, ensuring a robust and 
all-encompassing safety strategy. While some studies have explored the 
impact of the COVID-19 pandemic on the mental health of seafarers 
[16], maritime pilots [17], and other stakeholders [18], a comprehen-
sive examination of the repercussions of COVID-19 on maritime acci-
dents is still lacking. Furthermore, detailed research on the spatial and 
temporal characteristics of collisions, both before and during COVID-19, 
remains limited. 

According to the abovementioned research status, this paper delves 
into a global analysis of maritime collision accidents from a data-driven 
and macro perspective, drawing from historical data sourced from the 
Global Integrated Shipping Information System (GISIS) and Lloyd’s 
Register Fairplay (LRF). Utilizing the latitude and longitude information 
from collision accidents in the IMO dataset, this paper advances the 
analysis by examining the spatial distribution characteristics. It iden-
tifies and extracts significant features related to the geographical spread 
of these accidents. The generated dataset, which is among the most 

recent, includes 402 accident records between 2017 and 2021. The 
methodology employs a comprehensive quantitative approach rooted in 
historical accident data, thereby eliminating uncertainties tied to expert 
judgments. Leveraging the strengths of the BN model using the TAN 
algorithm, a thorough examination has been conducted to investigate 
the complex interplay among RIFs and facilitate root-cause analysis. 
Additionally, this paper provides a comprehensive analysis aimed at 
reducing both the frequency of collisions and their ensuing conse-
quences, providing readers with an overall risk perspective. Finally, this 
paper further compares the characteristics of collision accidents before 
and during COVID-19, revealing significant findings and implications, 
thereby providing effective guidance for the entire maritime industry. 

The paper is structured as follows. Section 2 introduces the literature 
review of BN-based maritime accident studies, focusing on collision 
accidents in particular, and highlights the research gaps, addressing 
them with new contributions. Section 3 provides information on the 
mathematical background of the data-driven BN model and identifies 
the details of the RIFs. The validation of the constructed model has been 
conducted using fundamental analysis in Section 4. Section 5 discusses 
the implications through scenario analysis. A thorough comparative 
analysis is performed in Section 6 to offer a comprehensive insight into 
the collision characteristics both pre- and during the pandemic. Addi-
tionally, the findings of this research are compared with the literature 
studies, specifically concerning collision accidents in terms of RIFs and 
ship types. Finally, the conclusions are highlighted in Section 7. 

2. Literature review 

2.1. BN-based maritime accident risk analysis 

The IMO established the FSA to systematically evaluate maritime 
risks and enhance safety measures. Leveraging the principles of FSA, 
numerous global maritime risk studies, spanning both qualitative and 
quantitative evaluations, have been undertaken. Prominent methods for 
qualitative risk assessments encompass the Functional Resonance 
Analysis Method (FRAM) [19], Root Cause Analysis (RCA), the Human 
Factor Analysis and Classification System (HFACS) [20,21], as well as 
Strength Weakness Opportunity and Threat (SWOT) analysis, among 
others. A primary concern with using qualitative methods is the po-
tential uncertainty in their results, mainly due to their reliance on expert 
views that can be subjective. In contrast, quantitative risk assessment 
models address this issue by utilizing objective data [22]. Fuzzy Logic 
(FL), Evidence Reasoning (ER), Fault Tree Analysis (FTA), Event Tree 
Analysis (ETA), and BN methods are frequently employed within the 
maritime domain. 

Each model has its own set of strengths and limitations based on its 
design and implementation. For instance, the FTA and ETA models yield 
binary outcomes from their analyses, rendering the interpretation of 
root-cause relationships less adaptable and detailed. To enhance inter-
pretive coherence, some models are synergistically combined. Within 
this framework, the Hybrid Causal Logic (HCL) model incorporates the 
FTA method to investigate the events in the Even Sequence Diagram 
(ESD), as well as the BN to investigate the human factors, as demon-
strated by Zhang et al. [23]. The primary objective was to discern event 
sequences leading to accidents for Maritime Autonomous Surface Ships 
(MASS). Drawing from expert opinions, Yu et al. [24] formulated an 
integrated model based on BN and ER to evaluate the ship-specific risks 
associated with geographical-dependent factors. In this context, ER aids 
in mitigating uncertainties stemming from expert judgment. 

The application of BN analysis in maritime accident research can 
incorporate objective and subjective data or a combination of both. For 
instance, Zhang et al. [25] created a BN model for predicting accident 
outcomes at Tianjin Port, integrating historical accident records with 
expert knowledge. Nevertheless, the subjective nature of expert insights 
introduces uncertainties. To mitigate such uncertainties, leveraging 
robust databases is recommended to reduce reliance solely on expert 
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experience. Recent studies have investigated maritime accidents by 
directly mining data from historical records of maritime organizations. 

Despite the availability of abundant training data for BN, selecting 
the suitable algorithm for specific challenges remains an obstacle. The 
BN model offers various algorithms, encompassing the NBN, Augmented 
Naïve Bayesian Network (ABN), and TAN. Fan et al. [26] adopted the 
NBN to analyze maritime accident risks using a relatively new historical 
accident dataset, providing quantitative insights. However, due to lim-
itations, the NBN model couldn’t capture intricate relationships among 
RIFs. The limitation was addressed by adopting the ABN algorithm, 
which enriches the naïve structure by establishing ties between leaf 
nodes based on the value of the target node [27]. Li et al. [1] employed 
the TAN approach to analyze global maritime accidents spanning 
2017–2021, facilitating the identification of RIF relationships without 
solely relying on expert perspectives. Using the same approach, Cao 
et al. [28] evaluated accident severity using historical accident data 
from various national databases, identifying key RIFs such as ship type, 
voyage segment/location, deadweight/gross tonnage, and engine 
power. Additionally, Zhou et al. [29] developed a data-driven BN model 

to observe changes in RIF roles through yearly analysis of maritime 
accidents. 

Furthermore, the application of the BN model, which utilizes his-
torical accident data, is prevalent in maritime risk analysis. Zhao et al. 
[30] introduced an accident prevention model using a data-driven BN 
framework specially tailored for autonomous ships, aiming to mitigate 
human factors’ influence on accidents. Combining BN with TOPSIS, Fan 
et al. [31] tackled this challenge of human factors in accident preven-
tion, leveraging data from the Marine Accident Investigation Branch 
(MAIB) and the Transportation Safety Board (TSB) database. 

This comprehensive BN analysis pinpointed information, clear order, 
and safety culture as crucial factors for advancing maritime safety, 
particularly regarding human factors. Additionally, there has been an 
emphasis on regional studies, with BN-based risk analyses conducted for 
various regions such as the Maritime Silk Road [32], Suez Canal [33], 
China Coasts [27], İstanbul Straight [6], and Artric Waters [15,34]. 
However, challenges in regional risk analysis studies include 
region-based influential factors, potentially limiting insights applicable 
to global maritime accidents. Some researchers have also utilized Port 

Fig. 1. The flowchart of the framework.  

H. Li et al.                                                                                                                                                                                                                                        



Reliability Engineering and System Safety 249 (2024) 110187

4

State Control (PSC) inspection data within the BN model framework to 
explore ship accidents and their consequences [35–38]. 

Despite the adaptability and versatility of BN in modeling maritime 
accidents, challenges such as collecting real accident datasets persist. To 
address these challenges, this study compiles a comprehensive database 
from authoritative institutions, GISIS and LRF, comprising 402 accident 
records for a detailed exploration using the TAN algorithm within the 
BN framework. 

2.2. Collision accident risk analysis 

Collision accidents represent a significant portion of global maritime 
transportation accidents, leading to extensive research efforts to un-
derstand and mitigate their occurrence and impact [1,4,34,39]. These 
studies can be broadly categorized into geometric collision models and 
collision causation models, each with its own focus and methodology 
[39]. Geometric collision models employ Euclidean methods to quantify 
Time to Closest Point Approach (TCPA) and Distance Closest Point of 
Approach (DCPA) between vessels and potential collision targets. 
Nonetheless, these methods fall short in analyzing ship collision sce-
narios from an accident evolution perspective. In contrast, causation 
collision models aim to mitigate both the likelihood and impact of 
collision by evaluating risks based on historical accident records. 

Numerous studies have been carried out to evaluate the risk of 
navigational accidents regionally, aligning with the FSA framework 

proposed by the IMO [40–42]. For instance, the Yangtze River experi-
ences frequent collision accidents, leading to innovative methodologies 
like BN analysis to address these challenges. Wu et al. [40] improved BN 
by using mutual information calculations to understand relationships 
among key factors like ship type, visibility, distress personnel count, and 
emergency resources. Wu et al. [10] constructed a decision-making 
model for real-time response strategies, considering challenges in 
densely populated areas near the Yangtze River. They also simulated 
collision consequences downstream, while Zhao et al. [42] integrated 
navigational accident reports at Qinzhou Port to create a comprehensive 
fault tree model using fuzzy set theory and BN. Aydin et al. [43] iden-
tified significant risk factors in narrow waters using BN, including 
maneuvering failures, collision detection risks, and communication 
breakdowns. Similarly, Hänninen and Kujala [44] explored ship colli-
sion likelihood using BN, monitoring causation probabilities. Trucco 
et al. [45] merged FTA with BN to understand collision risk factors in 
open sea conditions, recognizing connections between accident occur-
rences and organizational contexts. 

In addition to studies analyzing the risk of collision accidents, some 
scholars have focused on the severe consequences of such accidents. For 
instance, Goerlandt and Montewka [46] investigated an oil spill scenario 
resulting from a ship collision, aiming to improve response strategies 
and evaluate environmental risks. Chen et al. [47] investigated the 
causes of collision accidents leading to oil spills, identifying factors like 
operational errors, lookout negligence, and vessel size. Similarly, 

Fig. 2. RIFs and their states.  
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Montewka et al. [48] conducted a case analysis of collisions involving 
RoPax vessels in open waters, presenting a methodical framework for 
evaluating risk in maritime transportation. This approach aligns with 
the conventional definition of risk assessment. Moreover, Pilatis et al. 
[49] examined the impact of collision accidents on vessel hulls through 
statistical analysis of ship accidents. 

The literature emphasizes the importance of collision causation 
models in understanding the causes associated with predefined RIFs. 
However, there is a notable absence of analysis regarding the temporal 
and spatial characteristics of collision accidents, as well as a scarcity of 
studies comparing collision accidents before and during the COVID-19 
pandemic. While regional collision causation analysis is widespread, 
our research takes a global perspective. Through the application of bi- 
directional BN analysis, this paper aims to explore both cause-to-root 
and root-to-cause relationships. As a result, this paper addresses these 
limitations and offers valuable insights to maritime stakeholders. Find-
ings from this study will enable preventive measures to be enacted to 
decrease collision accidents and alleviate their severe consequences. 

2.3. Research contributions 

Given the backdrop of the abovementioned review, the utilization of 
current accident data is crucial for investigating emerging RIFs and their 
contributions to global collision accidents. An up-to-date accident 
dataset paves the way for more robust data-driven models in assessing 
maritime collision risks, reducing dependence on expert judgments. The 
paper presents the following key contributions:  

(1) Employing a comprehensive quantitative approach rooted in 
historical accident data, reducing uncertainties associated with 
expert judgments. 

(2) Leveraging the strengths of the BN model using the TAN algo-
rithm to conduct a thorough examination of the complex inter-
play among RIFs and facilitate root-cause analysis.  

(3) Providing a comprehensive analysis aimed at reducing both the 
frequency of collisions and their ensuing consequences from an 
overall risk perspective.  

(4) Comparing the characteristics of collision accidents before and 
during COVID-19, revealing significant findings and implications 
for the maritime industry and providing effective guidance. 

3. Methodology 

The framework proposed in this paper is illustrated in Fig. 1, 
encompassing data generation, model construction, model validation, 

discussion by scenario analysis, and comparative analysis before and 
during the pandemic. The framework examines the spatial distribution, 
as well as the risk model analysis of maritime collision accidents, 
uncovering significant insights and implications for a range of 
stakeholders. 

3.1. RIF identification 

In risk analysis, the factors that directly or indirectly impact safety 
are referred to as RIFs. They have been derived through a deep exami-
nation of the literature review and the data obtained from GISIS and 
LRF. This paper focuses on collision accidents using a set of 23 identical 
RIFs. The states of these RIFs are illustrated in Fig. 2, and their detailed 
definitions are available in Li et al. [1]. One notable advantage of this 
research lies in the detailed states of factors recognized to exert a direct 
impact on collision accidents. For instance, RIFs such as ship operation, 
voyage segment, and ship type are each divided into more than eight 
discrete states. This statement offers a refined comprehension of the 
underlying causes of collision accidents. 

3.2. Dataset generation and feature extraction 

3.2.1. Data aggregation 
The data were initially gathered from the latest IMO GISIS accident 

reports spanning from 2017 to 2021. These reports provide compre-
hensive details such as the ship’s specifications, the time and location of 
the accident, the sequence of events, and the surrounding environmental 
conditions. The detailed process is listed below. 

Initially, a collection of 1105 historical accident records was 
compiled. Yet, a significant issue with these reports is the lack of specific 
static information about the ships involved. 

By correlating the ships’ Maritime Mobility Service Identity (MMSI) 
and IMO numbers, the missing details including type of ship, type of 
hull, age of ship, dimensions (length and breadth), gross tonnage, 
deadweight, and the material of the hull construction were filled in 
using the LRF database. 

Nevertheless, some data on fishing ship accidents were found to be 
lacking due to their oversimplification, absence of detailed accident 
reports, and the removal of IMO numbers. 

After a thorough process of data cleaning, missing information 
filling, and filtering, 402 accident records encompassing types of acci-
dents and 23 RIFs were retained to effectively construct the BN model. 

3.2.2. Spatial distribution of collision accidents 
To deepen the analysis of the spatial characteristics of maritime 

Fig. 3. The spatial distribution of global maritime collision accidents.  
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collision accidents, latitude and longitude record information was 
extracted from the IMO dataset. This refined dataset facilitated a focused 
analysis, with the results illustrated in Fig. 3. Fig. 3 maps the spatial 
distribution of global maritime collision accidents over a five-year 
period. The key spatial features discerned from this data are summa-
rized below.  

(1) Concentration of collision accidents 
There are visible clusters of accidents in certain regions. For 

example, there is a consistent concentration of accidents along 
the coastlines of East Asia, particularly around the South China 
Sea, Yellow Sea, and East China Sea. Other notable clusters are 
seen around the North Sea, the Mediterranean Sea, and along the 
east coast of North America.  

(2) Geographical spread 
Collisions are not uniformly spread out across the oceans but 

are concentrated along busy shipping routes, in proximity to 
ports, and in areas with heavy maritime traffic.  

(3) Coastal waters versus open waters 
The majority of collisions occur near coastlines rather than in 

open oceans, which suggests that the complexity of navigation 
near the coast and the higher density of vessels have a higher 
influence on ship collisions. 

These features are reflected prominently in the ‘voyage segment’ RIF, 
indicating a close correlation between geographic regions and naviga-
tional waters. These findings also serve to validate the significance of the 
‘voyage segment’ RIF. 

3.3. Data-driven BN modeling 

Following the comprehensive discussion in Section 2.2, BN is an 
effective and powerful graphical model that reveals probabilistic re-
lationships between variables and uses rules for reasoning and learning 
[6]. Maritime risk analysis studies employing BN generally adhere to a 
sequence that encompasses data collection, the identification of vari-
ables, the acquisition of structural knowledge, model validation, and 
sensitivity analysis. In addition to examining the methodological 
framework used in the existing studies, an in-depth scenario analysis has 

been conducted pertaining to collision accidents involving various ship 
types on a global scale. 

Data-driven refers to the utilization of machine learning algorithms 
for acquiring knowledge and constructing a BN model from a given 
dataset. Prominent data-driven techniques in the context of maritime 
risk analysis involve the K2 algorithm, Markov Chain Monte Carlo 
(MCMC), NBN, ABN, and TAN. TAN represents an enhancement over the 
NBN approach by eliminating the assumption of attribute independence, 
thereby accounting for interdependencies between attributes. Conse-
quently, TAN preserves the resilience of NBN while rendering the 
network structure more reflective to real-world scenarios. Within the 
TAN network, each attribute relies on both the class variable and 
another attribute. 

Let X1,⋯,Xn be the attribute variables (i.e., RIFs) and C indicates the 
class variable (i.e., collision accident in this paper). ΠC denotes the 
parent variable of C. The model is defined as a TAN model if ΠC = ∅ and 
there exists a function φ which defines a tree over X1,⋯,Xn such that if 
φ(i) > 0, then ΠXi = {C,Xφ(i)}, and if φ(i) = 0, then ΠXi = {C}. This 
optimization problem finds a tree-defining function φ on X1,⋯,Xn 
which maximizes the log-likelihood, and the TAN model under this 
function is taken as the final BN structure. 

The “Construct-TAN’ program proposed by Friedman et al. [50] is 
applied to solve the above optimization problem. The method utilizes 
the conditional mutual information between attributes to help construct 
the TAN structure, and the calculation formula is defined by 

IP
(
Xi,Xj|C

)
=

∑

xii ,xji ,ci

P
(
xii, xji, ci

)
log

P
(
xii, xji|ci

)

P(xii|ci)P
(
xji|ci

) (1)  

where IP represents the conditional mutual information, xii is the ith 
state of the attribute variable Xi, xji is the ith state of the attribute var-
iable Xj, and ci is the ith state of the class variable C. 

IP between each RIF is illustrated in Fig. 4, displaying a gradual shift 
in color from blue to red to simplify the intensity of their mutual 
relationships. 

Leveraging the learning network function, the initial step in this 
paper involves the construction of the TAN network structure. After 
establishing the qualitative framework of the network, the Bayesian 
learning method is employed using the Netica software to learn the 
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Fig. 4. The conditional mutual information value between each RIF.  
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parameters and establish the conditional probability distribution of the 
nodes. The resulting TAN model, following this learning process, is 
illustrated in Fig. 5. 

4. Model validation 

4.1. Comparative analysis using the original dataset 

As an initial step, it is necessary to validate the predicted results 
against the historical statistical results. The analysis of historical data 
indicates an occurrence probability of collision accidents at 19.70 %, 
while the trained BN estimates it at 19.75 %. This comparison result 
demonstrates that the prediction accuracy of the TAN-based model 
when using the historical data as the test data. 

4.2. Sensitivity analysis 

4.2.1. Mutual information 
The mutual information values between the ‘Collision’ target node 

and 23 RIFs are presented in Table 1. A higher mutual information value 
indicates a stronger impact of the respective RIF on the ‘collision acci-
dent’. The average value is calculated to be 0.02138. RIFs with mutual 
information values greater than 0.02138 are deemed more important, 
including Ship operation, Information, Voyage segment, Ship speed, Sea 
condition, Wind, Ship type, and Human factor. 

These factors are thoroughly examined in the following subsections 

to provide a comprehensive collision risk analysis. 

4.2.2. Combined impact of multiple RIFs 
To further investigate the detailed impact of the most important RIFs 

identified through mutual information calculation, additional sensitivity 
analysis methods are utilized to examine how these RIFs influence 
collision accidents. To accomplish this, the probability of each RIF’s 
different states is incrementally increased to 100 %, generating the joint 
probability of each variable and “collision accident’ [27]. The results of 
these joint probabilities are presented in Table 2. For instance, when a 
ship is in an anchored state, denoting its stationary mooring at a specific 
location, the probability of a collision occurrence exhibits a decrease 
from 19.67 % to 2.27 %. Conversely, when the ship is actively maneu-
vering, the likelihood of a collision event escalates from 19.67 % to 
36.77 %. These outcomes align remarkably well with anticipated trends 
related to critical operational scenarios. 

From the perspective of the information factor, if seafarers receive 
inadequate and ineffective information, the probability of a collision 
occurrence approximately doubles from 19.67 % to 42.98 %. Within the 
context of distinct voyage segments, collision accidents have a higher 
likelihood of occurring in canals but are less likely to happen when a 
vessel is berthed. For the remaining important RIFs, a comparison with 
the original probabilities listed in the first row of Table 2 demonstrates 
the alterations in collision accident probabilities when a particular RIF is 
associated with a specific state. This analysis highlights the states where 
each variable has the most significant influence and the least impact. 

Collision
no
yes

80.3
19.7

Ship operation
at anchor
fishing
loading/unloading
manoeuvring
on passage
others
pilotage
towing

20.1
5.31
8.02
13.4
43.1
1.21
6.76
2.12

Voyage segment
anchorage
archipelagos
at berth
canal
channel
coastal waters
inland waters
open sea
port
port approach
river

7.10
3.23
4.25
1.54
1.58
22.6
1.58
27.1
22.9
4.36
3.71

Information
bad
good

24.9
75.1

Weather condition
bad
good

35.2
64.8

Visibility
bad
good

20.5
79.5

Sea condition
bad
good

33.0
67.0

Ship speed
high
low
middle

18.8
52.5
28.8

Equipment
bad
good

47.3
52.7

Ergonomic_design
bad
good

11.7
88.3

Time of day
day
night

50.0
50.0

Human_factor
no
yes

32.4
67.6

Wind
high
low

31.9
68.1

Vessel condition
bad
good

40.4
59.6

Ship age
1
2
3
4
5
6

14.2
23.3
16.9
10.2
29.3
6.04

3.35 ± 1.6

Breadth
1
2
3
4

49.5
22.4
18.1
10.0
1.89 ± 1

Hull construction
double bottom
double hull
single hull

17.0
41.1
42.0

Length
1
2
3

37.7
37.8
24.5

1.87 ± 0.78

Ship type
RORO
bulk carrier
cargo ship
container ship
dredger
fishing vessel
offshore vessels
others
passenger vessel
tanker or chemical ship
tug

4.90
18.3
18.9
13.8
1.26
11.8
3.93
4.00
5.60
14.5
2.94

Hull type
GRP
NA
aluminium_alloy
composite materials
light alloy
steel
wood

3.10
2.44
0.99
1.20
2.44
86.2
3.59

Draught
1
2
3

46.8
26.9
26.2

1.79 ± 0.83

Deadweight
1
2
3
4

40.8
20.5
7.40
31.3

2.29 ± 1.3

Gross tonnage
1
2
3
4

34.9
18.2
10.3
36.5

2.48 ± 1.3

Power
1
2

43.0
57.0

1.57 ± 0.5

Fig. 5. The final TAN model.  
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While most of the findings are in good harmony with the best practice 
and/or results from previous studies in the field, two interesting findings 
involving sea conditions and wind attract further investigation. The 
marginal probability of the vessel operating in bad sea conditions or 
high wind indicates a lower probability of ship collision. Further 
investigation finds that when the sea and wind conditions are bad, the 
other influenced factors (e.g., Information, Ship Speed and Ship Oper-
ation) change towards a safer status, which jointly leads to a lower 
probability of collisions. It mirrors some similar findings in trans-
portation research, suggesting that operators could develop better risk 
awareness and possibly take countermeasures (e.g., reducing speed) 
when the external environment becomes harsh (e.g., poor visibility). It 
also highlights the value of utilizing joint probability in BN for assessing 
the combined impact of multiple RIFs in risk analysis, as opposed to 
analyzing individual factors in isolation. 

4.2.3. True risk influence 
True Risk Influence (TRI) represents an innovative technique for 

verifying sensitivity, as introduced by Alyami et al. [51]. The concept 
behind TRI is to assess the hierarchy of importance among the most 
influential factors identified through mutual information analysis. The 
detailed steps are listed below:  

(1) Following the TAN-based model analysis, original influence 
values for both ‘collision occurrence - yes’ and ‘collision occur-
rence - no.’ Subsequently, the joint probability of each variable 
and ‘collision accident’ was computed as each factor’s different 
states were incrementally increased to 100 %.  

(2) The High Risk Influence (HRI) value is determined by calculating 
the difference between the highest occurrence probability of a 
certain state and the original influence.  

(3) Conversely, the Low Risk Influence (LRI) value is calculated by 
quantifying the difference between the original influence and the 
lowest occurrence probability of a certain state.  

(4) In the final step, the TRI is calculated as follows; 

TRI =
HRI + LRI

2
(2) 

Table 1 
Mutual information shared with ‘Collision’.  

Node Mutual 
Information 

Entropy Reduction 
Percent 

Variance of 
Beliefs 

Collision 0.71521 100 0.1579899 
Ship operation 0.0866 12.1 0.015872 
Information 0.07367 10.3 0.018041 
Voyage segment 0.04173 5.83 0.0088661 
Ship speed 0.03332 4.66 0.0071858 
Sea condition 0.03034 4.24 0.0059462 
Wind 0.02922 4.09 0.0057025 
Ship type 0.02603 3.64 0.0053992 
Human factor 0.02587 3.62 0.0051097 
Time of day 0.02087 2.92 0.0044969 
Deadweight 0.0181 2.53 0.0038502 
Vessel condition 0.0166 2.32 0.0034748 
Draught 0.0147 2.05 0.0031661 
Gross tonnage 0.012 1.68 0.0025856 
Ship age 0.01029 1.44 0.0021763 
Equipment 0.00976 1.36 0.0021075 
Weather 

condition 
0.00929 1.3 0.0019448 

Length 0.00842 1.18 0.0018093 
Visibility 0.006 0.839 0.0013934 
Breadth 0.00591 0.826 0.0013947 
Hull type 0.00462 0.645 0.0009937 
Hull 

construction 
0.00298 0.416 0.000658 

Power 0.00284 0.396 0.0006139 
Ergonomic 

design 
0.00247 0.345 0.0004993  

Table 2 
The joint probability (100 %).   

no yes 

original 80.33 19.67 

Ship operation   

at anchor 97.73 2.27 
fishing 95.65 4.35 
loading/unloading 94.25 5.75 
manoeuvring 63.23 36.77 
on passage 72.65 27.35 
others 80.85 19.15 
pilotage 86.38 13.62 
towing 68.94 31.06 

Information   

bad 57.02 42.98 
good 88.07 11.93 

Voyage segment   

anchorage 88.12 11.88 
archipelagos 80.79 19.21 
at berth 95.90 4.10 
canal 59.60 40.40 
channel 88.96 11.04 
coastal waters 70.38 29.62 
inland waters 88.93 11.07 
open sea 79.38 20.62 
port 90.54 9.46 
port approach 59.95 40.06 
river 77.01 22.99 

Ship speed   

high 71.31 28.69 
low 88.40 11.60 
middle 71.51 28.49 

Sea condition   

bad 91.31 8.69 
good 74.92 25.08 

Wind   

high 91.35 8.65 
low 75.16 24.84 

Ship type   

RORO 87.84 12.16 
bulk carrier 71.35 28.65 
cargo ship 83.42 16.58 
container ship 84.00 16.00 
dredger 89.52 10.48 
fishing vessel 87.03 12.98 
offshore vessels 96.65 3.35 
others 70.32 29.69 
passenger vessel 85.44 14.56 
tanker 71.83 28.17 
tug 87.84 12.16 

Human factor   

no 90.66 9.34 
yes 75.39 24.61  

Table 3 
TRI of RIFs for ‘Collision’.   

no yes 

Ship operation 17.251 17.250 
Information 15.525 15.525 
Voyage segment 18.151 18.151 
Ship speed 8.549 8.549 
Sea condition 8.197 8.197 
Wind 8.098 8.098 
Ship type 13.168 13.168 
Human factor 7.638 7.637  
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Table 3 provides the corresponding TRI results for the influential 
factors, while Table 4 illustrates the hierarchy of their significance. The 
ordering of the most influential factors is as follows: Voyage segment, 
Ship operation, Information, Ship type, Ship speed, Sea condition, Wind, 
and Human factor. 

4.3. Model evaluation 

4.3.1. Model correctness verification 
The results of the aforementioned sensitivity analysis can also help 

validate the correctness of the model. Table 5 demonstrates that 
increasing the prior probabilities of variable nodes leads to corre-
sponding increases in the posterior probabilities of the target node, thus 
confirming Theorem 1 [52]. Furthermore, Table 5 indicates that the 
probability values of the target node progressively increase as the RIFs 
are continuously updated, showing a rising trend in the probability 
values from left to right. This observation validates Theorem 2. The 
cumulative increments of the probability values have also been provided 
in the lower rows of Table 5. Specifically, the increment for ‘collision 
occurrence – no’ does not exceed 0.714 %, while for ‘collision occur-
rence – yes,’ it remains below 3.401 %. Additionally, the absence of 
abrupt transitions between the updated values underscores the inherent 
robustness in the trained model. In conclusion, the model proposed in 
this paper satisfies both Theorem 1 and Theorem 2, thus validating the 
correctness and reliability of the model. 

4.3.2. Evaluation of the predictive performance of the model 
This paper utilizes a range of predictive performance evaluation 

metrics to gauge the accuracy and reliability of the constructed model’s 
predictions. Initially, the data for training and testing the BN model is 
randomly selected from the new dataset of historical accidents. The 
model is built using the training set, and the testing set is employed for 
model evaluation. The overall accuracy serves as a straightforward and 
effective metric for gauging the prediction accuracy of the constructed 
model, defined as the percentage of correctly predicted instances in the 
total sample. However, it may not be suitable when dealing with un-
balanced samples. To address these issues, precision, recall, and F- 
measure are chosen as measurement techniques to validate the model’s 

reliability and robustness. 
In this paper, 80 % of the data from the dataset was randomly 

selected for training the model, leaving the remaining 20 % (comprising 
80 accident records) for use as the test dataset. The test results are 
presented in the form of a confusion matrix, as shown in Table 6. 

The calculation formula of the overall accuracy indicator is shown in 
Eq. (3). 

overallaccuracy =
TP + TN

TP + FP + TN + FN
(3) 

The overall accuracy of the mode is 97.5 % (78/80) from the results 
in the confusion matrix. Other performance indicators for collision ac-
cidents are calculated and presented in Table 7. The closer the value 
approaches 1, the more favorable the outcome. 

Drawing from the aforementioned results, it is evident that this 
model displays robust predictive performance and yields dependable 
outcomes. 

4.3.3. Model consistency verification 
In this paper, Cohen’s Kappa statistic is used to evaluate the model’s 

consistency in predicting collision accidents. The kappa statistic k value 
closer to 1 indicates stronger consistency of the model [53], which is 
given as follows: 

k =
po − pe

1 − pe
(4)  

where po is the overall accuracy. According to the confusion matrix, the 
overall accuracy po of the model is 0.975. 

Assuming that the total number of samples in the test dataset is n. In 
these samples, ‘a1’ instances where the actual collision occurrence is 
‘yes,’ and ‘a2’ instances where the actual collision occurrence is ‘no’ are 
accounted for. In the prediction results, ‘b1’ instances where a collision 
occurrence is predicted as ‘yes,’ and ‘b2’ instances where it is predicted 
as ‘n’ are recorded. Then, the definition of pe is 

pe =
a1 × b1 + a2 × b2

n × n
=

64 × 62 + 16 × 8
80 × 80

= 0.665 (5) 

Table 4 
The most important RIFs for ‘Collision’.   

no yes 

Ship operation 2 2 
Information 3 3 
Voyage segment 1 1 
Ship speed 5 5 
Sea condition 6 6 
Wind 7 7 
Ship type 4 4 
Human factor 8 8  

Table 5 
The analysis result of minor changes in RIFs.  

Human factor  +2 % +2 % +2 % +2 % +2 % +2 % +2 % +2 % 
Wind   +2 % +2 % +2 % +2 % +2 % +2 % +2 % 
Sea condition    +2 % +2 % +2 % +2 % +2 % +2 % 
Ship speed     +2 % +2 % +2 % +2 % +2 % 
Ship type      +2 % +2 % +2 % +2 % 
Information       +2 % +2 % +2 % 
Ship operation        +2 % +2 % 
Voyage segment         +2 % 
No 80.33 80.64 80.96 81.29 81.62 82.11 82.69 83.32 83.66 
Increment (%) – 0.31 0.62 0.96 1.29 1.77 2.36 2.99 3.33 
Yes 19.67 19.97 20.30 20.62 20.98 21.54 22.20 22.95 23.72 
Increment (%) – 0.31 0.63 0.96 1.31 1.88 2.53 3.29 4.05  

Table 6 
The predicted results.  

Actual Predicted no yes Actual total Accuracy rate (%) 

no 62 (TP) 2 (FP) 64 96.875 
yes 0 (FN) 16 (TN) 16 100 
Predicted total 62 18 80 97.500  

Table 7 
Performance results for “Collision’.   

no yes 

Precision 1.000 0.889 
Recall 0.969 1.000 
F-measure 0.984 0.941  
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Therefore, the calculation of the Kappa coefficient k of the model 
using Eqs. (4) and (5) yields a value of 0.925, indicating strong consis-
tency in the proposed model. 

4.3.4. Prediction performance measurement by real cases 
To provide additional evidence of the model’s effectiveness, a real- 

world verification is conducted by using a maritime accident that 
occurred in 2022. This accident was not part of the training and testing 
datasets used in this paper, and its details are shown in Fig. 6. Despite 
the presence of three unknown nodes, the model predicted a remarkably 
high probability of a ship collision, reaching 99.8 %. This real-case 
analysis further confirms the robustness and reliability of the con-
structed risk analysis model. Moreover, the risk model presented in this 
paper can be used as a predictive tool, offering valuable insights and 
effective measures for preventing future collision accidents in the 
maritime domain. 

5. Discussions and implications by scenario analysis and 
comparison analysis 

Scenario analysis involves modifying the states of nodes to simulate 
various scenarios, enabling the exploration of the impact of specific 
conditions on collision accidents [54]. By conducting scenario analysis, 
it is possible to uncover the risks associated with specific scenarios 
leading to a collision occurrence. This information can effectively assist 
maritime authorities in formulating appropriate collision prevention 
strategies. 

5.1. Scenario one: The most likely scenario for collision 

The most important influential factors (depicted as grey boxes in 
Fig. 7) identified through mutual analysis, are selected to simulate the 
most probable collision scenario. Then, the most pivotal state for each 
factor is set to 100 %. For instance, in the event of inadequate infor-
mation for the seafarer and the highest likelihood of human error 
leading to a potential collision accident, when the ship is navigating in a 
canal at a high cruising speed with low wind conditions, the probability 
of a collision occurrence reaches its peak, registering at 96.7 %. The 
specific state values within the BN model prediction, alongside the 
outcome for the most probable collision occurrence, are presented in 
Fig. 7. 

5.2. Scenario two: The most unlikely scenario for collision 

The determination of the least likely scenario is reaffirmed by taking 
into account the most influential factors, given their substantial influ-
ence on the absence of collision accidents. The state with the least in-
fluence for each factor, as determined through joint probability analysis, 
is assigned a value of 100 % in Fig. 8. Following the analysis, it becomes 
evident that even under high wind conditions, collision accidents are 
highly unlikely for offshore vessels engaged in low-speed sailing or 
anchoring operations at the berth. There are no instances of human 
error, and the available information resources are deemed sufficient to 
adequately support the seafarers. 

Collision
no
yes

0.20
99.8

Ship operation
at anchor
fishing
loading/unloading
manoeuvring
on passage
others
pilotage
towing

0
0
0
0

100
0
0
0

Voyage segment
anchorage
archipelagos
at berth
canal
channel
coastal waters
inland waters
open sea
port
port approach
river

0
0
0
0
0
0

100
0
0
0
0

Information
bad
good

100
0

Weather condition
bad
good

0
100

Visibility
bad
good

0
100

Sea condition
bad
good

0
100

Ship speed
high
low
middle

0
0

100

Equipment
bad
good

0
100

Ergonomic_design
bad
good

0
100

Time of day
day
night

0
100

Human_factor
no
yes

0
100

Wind
high
low

0
100

Vessel condition
bad
good

0
100

Ship age
1
2
3
4
5
6

0
100
0
0
0
0

2

Breadth
1
2
3
4

100
0
0
0

1

Hull construction
double bottom
double hull
single hull

40.8
36.4
22.9

Length
1
2
3

100
0
0

1

Ship type
RORO
bulk carrier
cargo ship
container ship
dredger
fishing vessel
offshore vessels
others
passenger vessel
tanker or chemical ship
tug

0
100
0
0
0
0
0
0
0
0
0

Hull type
GRP
NA
aluminium_alloy
composite materials
light alloy
steel
wood

0
0
0
0
0

100
0

Draught
1
2
3

24.1
69.6
6.27

1.82 ± 0.52

Deadweight
1
2
3
4

6.93
91.0
0.17
1.88

1.97 ± 0.38

Gross tonnage
1
2
3
4

0
100
0
0

2

Power
1
2

100
0

1

Fig. 6. The prediction result.  
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5.3. Scenario three: The combined impact of RIFs 

The TAN-based model offers the Most Likely Explanation (MPE) for 
determining collision occurrence probability and finding the most likely 
state of occurrence in a node. This MPE mode enables the observation of 
the most likely RIFs in the current scenario and updates known scenarios 
through manual evidence input. This approach enhances the analysis of 
maritime collision accidents, predicts their probability, and aids in 
collision prevention. The combined impact of RIFs has been further 
investigated to present prominent aspects of collision accidents, utilizing 
a relatively updated database that holds significant interest for maritime 
authorities, shipping companies, and seafarers. The findings of this 
paper have been compared with those from pertinent research con-
ducted within the domains of maritime accidents, maritime accident 
severity, and collision accidents, as presented in Table 8. In contrast to 
our research, the limitations of these referenced studies are emphasized. 
For instance, Wu et al. [40] developed a model to estimate navigational 
accidents specifically within the Yangtze River region. However, it is 
noteworthy that their analysis was conducted at a regional scale, 
thereby lacking a comprehensive global perspective. Furthermore, their 
investigation focused on a total of 11 RIFs, with only 4 of them being 
identified as highly significant, a scope narrower than that of the present 
paper. Fan et al. [55] and Fan et al. [33] conducted a comprehensive 
maritime accident analysis employing a data-driven BN model, consid-
ering a substantial number of RIFs. Nevertheless, the analysis primarily 
focused on determining the most influential factors related to maritime 
accidents, including but not limited to collision, grounding, capsizing, 

and so on, rather than exclusively concentrating on collision accidents. 
The hierarchy of importance among different ship types within their 
research was extracted manually from their joint probability table. Liu 
et al. [4] conducted a systematic investigation into the causation of 
maritime collision accidents in the coastal waters of China. However, it 
should be noted that their study involved a smaller set of RIFs and a 
narrower range of ship types compared to the scope of the current 
research. In recent studies conducted by Antão et al. [14] and Liao et al. 
[2], a detailed analysis of maritime collision accidents and broader 
maritime accidents was undertaken to identify RIFs and their associated 
outcomes, respectively. It is worth noting, however, that the historical 
data employed in their research predates the timeframe considered in 
the present study. Besides, the number of RIFs considered and the 
identification of their most influential factors were found to be more 
extensive in our investigation in comparison to their work. As a kernel, 
this paper has undertaken an examination of the most influential factors 
by treating collision accidents as a target node within a BN model. 
Notably, the historical data utilized in the BN training process exhibits a 
significant degree of contemporaneity compared to previous available 
studies. Furthermore, this research has provided a valuable analysis of 
the hierarchical importance of various ship types. This analysis carries 
practical implications for ship owners and shipping companies seeking 
to assess the global collision risk associated with their vessels. Through a 
rigorous joint probability analysis involving the occurrence probability 
of collision and ship types, the study has identified a hierarchy of risk 
among vessel categories. Following the ship type state ‘others’, the 
riskiest categories of vessels in descending order of collision accident 

Collision
no
yes

3.26
96.7

Ship operation
at anchor
fishing
loading/unloading
manoeuvring
on passage
others
pilotage
towing

0
0
0

100
0
0
0
0

Voyage segment
anchorage
archipelagos
at berth
canal
channel
coastal waters
inland waters
open sea
port
port approach
river

0
0
0

100
0
0
0
0
0
0
0

Information
bad
good

100
0

Weather condition
bad
good

19.8
80.2

Visibility
bad
good

24.7
75.3

Sea condition
bad
good

100
0

Ship speed
high
low
middle

100
0
0

Equipment
bad
good

38.9
61.1

Ergonomic_design
bad
good

2.47
97.5

Time of day
day
night

32.4
67.6

Human_factor
no
yes

0
100

Wind
high
low

0
100

Vessel condition
bad
good

30.9
69.1

Ship age
1
2
3
4
5
6

2.19
42.1
1.94
2.07
21.7
30.1

3.89 ± 1.8

Breadth
1
2
3
4

88.0
8.43
2.15
1.41

1.17 ± 0.52

Hull construction
double bottom
double hull
single hull

1.85
1.85
96.3

Length
1
2
3

81.6
16.0
2.36

1.21 ± 0.46

Ship type
RORO
bulk carrier
cargo ship
container ship
dredger
fishing vessel
offshore vessels
others
passenger vessel
tanker or chemical ship
tug

0
0
0
0
0
0
0

100
0
0
0

Hull type
GRP
NA
aluminium_alloy
composite materials
light alloy
steel
wood

36.2
1.73
1.73
19.0
2.28
19.5
19.5

Draught
1
2
3

90.1
7.81
2.07

1.12 ± 0.38

Deadweight
1
2
3
4

94.5
1.82
1.82
1.82

1.11 ± 0.49

Gross tonnage
1
2
3
4

81.2
10.1
6.16
2.55
1.3 ± 0.7

Power
1
2

85.6
14.4

1.14 ± 0.35

Fig. 7. The most likely scenario for collision.  
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occurrence were identified as bulk carriers, tankers, cargo vessels, 
container ships, passenger vessels, fishing vessels, Ro-Ro ships, tugboats, 
dredgers, and offshore vessels. 

Besides, a comprehensive investigation has been conducted con-
cerning joint probabilities. For instance, one of the most likely collision 
scenarios for tanker and bulk carrier ships involves the vessel being in 
the process of maneuvering within a canal, given that the probability of 
collision is above 95 %. The level of collision occurrence is similar for 
cargo ships under the same operational conditions, particularly in the 
high-speed region exceeding 12 knots. If the speed of cargo ships is 
reduced from the high-speed region to the low-speed region, the prob-
ability of collision occurrence decreases significantly, by approximately 
65.5 %. In addition to ship type, a thorough investigation of the voyage 
segment is also conducted. As previously emphasized, a critical scenario 
for bulk carrier ships involves maneuvering while navigating canals and 
coastal waters. Interestingly, even within the open-sea voyage segment, 
these vessels demonstrate consistent levels of collision occurrence. 
Container ships typically operate within a high-speed regime, defined as 
exceeding 12 knots in this paper. The high-speed container ships pose a 
considerable challenge in maneuvering operations. Consequently, the 
probability of collision occurrence is further investigated across various 
voyage segments, including berth, canal, channel, coastal water, port 
approach, and notably, open sea. These segments emerge as the most 
critical ones among the others, with collision accident probabilities 
consistently exceeding 80 %. An additional analysis of collision acci-
dents is conducted, specifically focusing on fishing vessels engaged in 
loading/unloading operations in coastal waters. It is noteworthy that 

regardless of the vessel’s speed category, the collision probability 
consistently exceeds 97 %. This finding holds significant implications for 
seafarers and warrants attention. 

6. Comparative analysis before and during the COVID-19 
pandemic for collision 

Research on collision accidents in the shipping industry before and 
during the COVID-19 pandemic holds significant importance on various 
fronts. It is however difficult to achieve due to the constraints in terms of 
data availability and modelling capacity. Due to the advances that this 
work brings both the updated accident data in 2017–2021 and the new 
model containing comprehensive RIFs, the comparative impact analysis 
of the COVID-19 pandemic (before and during) on ship collisions is 
conducted in this section. It provides crucial insights into the resilience 
of the industry amidst crisis, identifies the impact of external factors 
such as changes in shipping patterns or regulations, and informs the 
development of targeted safety measures and policies. Additionally, the 
analysis guides risk management strategies, contributes to global resil-
ience efforts, and enhances preparedness for future disruptions. By un-
derstanding how collision accidents have evolved during the pandemic, 
stakeholders can make informed decisions about resource allocation, 
route planning, and safety protocols, thus ensuring the industry’s 
continued safety and operational efficiency. 

The comparative analysis results in terms of collision accidents in the 
shipping industry before and during the COVID-19 pandemic are pre-
sented in Table 9, with regard to between the periods 2017–2019 and 

Collision
no
yes

100
.030

Ship operation
at anchor
fishing
loading/unloading
manoeuvring
on passage
others
pilotage
towing

100
0
0
0
0
0
0
0

Voyage segment
anchorage
archipelagos
at berth
canal
channel
coastal waters
inland waters
open sea
port
port approach
river

0
0

100
0
0
0
0
0
0
0
0

Information
bad
good

0
100

Weather condition
bad
good

97.3
2.66

Visibility
bad
good

45.5
54.5

Sea condition
bad
good

100
0

Ship speed
high
low
middle

0
100
0

Equipment
bad
good

64.4
35.6

Ergonomic_design
bad
good

0.67
99.3

Time of day
day
night

54.2
45.8

Human_factor
no
yes

100
0

Wind
high
low

100
0

Vessel condition
bad
good

65.5
34.5

Ship age
1
2
3
4
5
6

31.4
12.3
6.91
7.25
34.1
8.04

3.25 ± 1.9

Breadth
1
2
3
4

79.9
11.8
5.55
2.77

1.31 ± 0.7

Hull construction
double bottom
double hull
single hull

13.7
20.3
66.0

Length
1
2
3

72.0
20.8
7.14

1.35 ± 0.61

Ship type
RORO
bulk carrier
cargo ship
container ship
dredger
fishing vessel
offshore vessels
others
passenger vessel
tanker or chemical ship
tug

0
0
0
0
0
0

100
0
0
0
0

Hull type
GRP
NA
aluminium_alloy
composite materials
light alloy
steel
wood

7.01
7.01
0.64
0.64
19.7
64.3
0.64

Draught
1
2
3

83.6
10.1
6.33

1.23 ± 0.55

Deadweight
1
2
3
4

85.0
7.15
0.66
7.15

1.3 ± 0.81

Gross tonnage
1
2
3
4

71.4
13.5
4.35
10.8

1.55 ± 0.99

Power
1
2

75.1
24.9

1.25 ± 0.43

Fig. 8. The most unlikely scenario for collision.  
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2020–2021, revealing key findings.  

(1) The ranking of risk factors changed during the pandemic, with 
visibility and ship type becoming more significant. 

(2) The reduced number of data records could indicate fewer ship-
ping movements during the pandemic, due to restricted opera-
tions or prioritization of resources.  

(3) There was a dramatic increase in the probability of collisions due 
to ship-related factors during the pandemic, indicating that ship 
operations became dangerous, possibly due to crewing or main-
tenance challenges. 

(4) Relatively speaking, the probability of collisions from environ-
mental factors remains more stable compared to ship factors.  

(5) Among all the environmental factors, bad sea conditions became 
more influential in collisions during the pandemic than other 
ones. 

Some valuable implications for the shipping industry include: 
(1) The rise in crucial RIFs during the pandemic indicates the 

emergence of new hazards, potentially stemming from modifications in 
maritime logistics or environmental shifts. It is imperative to update risk 

assessment frameworks to account for the identified risk elements of 
increasing importance, such as visibility and the type of vessel involved. 

(2) Implementing stricter maintenance inspections and/or more ef-
forts on old ships could serve as a preventive measure against collision 
accidents. 

(3) The consistently high risk of collisions across different periods 
highlights an ongoing challenge within maritime operations, under-
scoring the essential need for enhanced safety protocols and risk man-
agement efforts to mitigate the risk of vessel collisions. 

(4) The categorization of “fishing type” as a vessel category and 
“maneuvering” as an operation during the pandemic period points to an 
increase in risk associated with fishing vessels and their maneuvers, 
likely due to shifts in fishing practices or more frequent interactions with 
other ships. 

(5) Policies regarding coastal navigation should be examined with 
the aim of implementing tighter regulations or improving navigational 
aids to ensure safer operations. 

7. Conclusions 

This paper contributes significantly to the understanding of collision 

Table 8 
Comparison of findings specific to collision accidents.  

Refs Region Period of historical data Total of RIFs Most influential RIFs Most risky ship types 

Current Research Global 2017–2021 23 Ship operation 
Information 
Voyage segment 
Ship speed 
Sea condition 
Wind 
Ship type 
Human factor 

Others 
Bulk carrier 
Tanker 
Cargo 
Container 
Passenger 
Fishing 
Ro-Ro 
Tug 
Dredger 
Offshore vessel 

[14] Global 2005–2017 6 Ship type 
Geographic area 

Cargo 
Container 
Ro-Ro 

[2] Global 2005–2020 7 Quarter of accident 
Ship type 
Gross tonnage 

Bulk carrier 
Chemical/oil tanker 
Container 
Others 
General cargo 
Passenger 
Fishing 

[33] Global 2005–2021 25 Ship type 
Ship age 
Passage plan 
Gross tonnage 
Weather condition 
Risk assessment 
Information 

Tanker/Chemical tanker 
Container 
Ro-Ro 
Others 
Cargo 
Bulk carrier 
Passenger 
Tug/barge 

[4] China coastal waters 2007–2020 19 Ship type 
Season 
Ship speed 
Length 
Ship age 

General cargo 
Others 
Fishing 
Oil and gas 
Service 

[52] Global 2012–2017 25 Ship operation 
Voyage segment 
Ship age 
Vessel condition 
Information 

Fishing 
Tug 
Others 
Container 
Bulk carrier 
Cargo 
Passenger 
Tanker/Chemical tanker 
Barge 
Ro-Ro 

[39] Yangtze River 2006–2013 11 Ship type 
VisibilityThe number  
of people in distress 

Emergency source used 

–  
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accidents in global maritime transport. By identifying the most influ-
ential factors and assessing their impact, it offers valuable information 
to maritime stakeholders, ultimately contributing to safer and more 
efficient maritime operations regarding collision accidents. The findings 
of this research have the potential to improve safety measures, reducing 
the occurrence frequency of collision accidents in the maritime domain. 

(1) Model validation and sensitivity analysis demonstrated the ac-
curacy and reliability of the constructed model, identifying key 
RIFs, such as Ship operation, Information, Voyage segment, Ship 
speed, Sea condition, Wind, Ship type, and Human factor. TRI 
analysis further ranked these factors, highlighting their relative 
importance.  

(2) Bulk carriers, tankers, cargo vessels, container ships, passenger 
vessels, fishing vessels, Ro-Ro ships, tugboats, dredgers, and 
offshore vessels presented the highest levels of risk in terms of 
collision accidents, sorted in descending order of occurrence.  

(3) Typically, canals are considered the most hazardous voyage 
segment for collision accidents in comparison to other voyage 
states. Furthermore, among the states of the ship operation, ship 
maneuvering exerts a significant influence on collision accidents 
in almost all scenarios.  

(4) When engaged in loading and unloading operations in coastal 
waters, fishing vessels are notably susceptible to collision 
accidents. 

(5) Container ships predominantly operate within high-speed re-
gions, and the collision occurrence probability at maneuvering 
operation is predicted to be approximately 89.6 %, even in the 
open sea. 

(6) During the pandemic, the rise in collision probabilities, particu-
larly involving older vessels and bulk carriers, implies heightened 
operational challenges or maintenance issues for these ship types.  

(7) The prominence of favorable and adverse sea conditions in 
collision reports underscores the significant influence of weather 
on accidents during the pandemic. 

The data-driven BN model developed in this paper provides a macro- 
scale assessment of collision accident risks by leveraging global histor-
ical accident data. However, the model’s global focus on overarching 
themes means that it reveals a limitation in addressing local density 
details, which is compounded by the absence of density data in the IMO 

dataset and the current unavailability of global AIS data. These con-
straints highlight areas for future investigation and improvement. 

The integration of accident data with AIS data presents a promising 
opportunity for advanced maritime accident analysis in real time. 
Moreover, there is potential for further exploration of machine learning 
methods combined with BN to investigate maritime accident risk anal-
ysis in future research endeavors. 
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Table 9 
Comparison of findings specific to collision accidents before and during the COVID-19.   

2017–2019 2020–2021 

RIFs 24 RIFs in total, of which 4 are important RIFs 24 RIFs in total, of which 5 are important RIFs 
Data records 337 65 
Scenario one: The combined impact of important RIFs Important RIFs setting: 

(1) ship operation: at anchor 
(2) information: bad 
(3) voyage segment: open sea 
(4) ship speed: middle 

Important RIFs setting: 
(1) visibility: low 
(2) information: bad 
(3) sea condition: good 
(4) ship type: fishing type 
(5) ship operation: manoeuvring  

The state probabilities of collision: 
(1) no: 1.0 % 
(2) yes: 99.0 % 

The state probabilities of collision: 
(1) no: 0.19 % 
(2) yes: 99.8 % 

Scenario two: The combined impact of ship-related factors The state probabilities of collision: 
(1) no: 99.5 % 
(2) yes: 0.49 % 

The state probabilities of collision: 
(1) no: 55.0 % 
(2) yes: 45.0 % 

Scenario three: The combined impact of environment-related factors The state probabilities of collision: 
(1) no: 89.9 % 
(2) yes: 10.1 % 

The state probabilities of collision: 
(1) no: 97.9 % 
(2) yes: 2.09 % 

Scenario four: The most likely scenario for collision (yes=100 %) (1) Type of casualty (very serious): 56.0 % 
(2) Ship type (bulk carrier): 25.1 % 
(3) Ship operation (on passage): 57.2 % 
(4) Ship age [6, 10]: 33.4 % 
(5) Voyage segment (coastal waters): 35.3 % 
(6) Sea condition (good): 81.0 % 
(7) Weather condition (good): 81.1 % 

(1) Type of casualty (serious): 53.4 % 
(2) Ship type (bulk carrier): 28.3 % 
(3) Ship operation (on passage): 66.6 % 
(4) Ship age (>20): 39.9 % 
(5) Voyage segment (coastal waters): 31.6 % 
(6) Sea condition (good): 98.5 % 
(7) Weather condition (bad): 51.5 %  
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[19] Salihoglu E, Bal Beşikçi E. The use of Functional Resonance Analysis Method 
(FRAM) in a maritime accident: A case study of Prestige. Ocean Eng 2021. https:// 
doi.org/10.1016/j.oceaneng.2020.108223. 

[20] Qiao W, Liu Y, Ma X, Liu Y. Human factors analysis for maritime accidents based 
on a dynamic fuzzy Bayesian network. Risk Anal 2020;40:957–80. 
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