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A B S T R A C T

The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative
phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled.
In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic
‘exercise stress-related’ signaling, transcription, and translation responses. However, with increasing engagement
in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise
emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become,
through AT, ‘fit’ and RT, ‘mighty.’ Much of our understanding of molecular exercise physiology has arisen from
targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of
specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied
extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun
to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling
and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to
better understand the divergent relationship between exercise and phenotypic outcomes of training.

1. Introduction

In healthy adults, skeletal muscle comprises approximately ~40 % of
total body mass and is essential to functions of daily life, including
locomotion, nutrient storage, and metabolic regulation [1,2]. Skeletal
muscle is fundamental to athletic performance, and a certain amount of
functional muscle is vital for good health. The preventative effects of
exercise against non-communicable diseases such as cardiovascular
disease and type 2 diabetes are, in part, attributed to skeletal muscle
responses to exercise training [3]. In addition, regular exercise helps
maintain muscle mass in aging, with older individuals who are in the
upper tertile of mass exhibiting lower all-cause mortality and a lower
incidence of cancer-related deaths [4]. The ability of exercise to improve
physical performance and health outcomes is indisputable; however,
substantial molecular details are missing from our knowledge of the
mechanisms that underpin the beneficial processes of muscle adaptation
to exercise. Muscle adaptation is largely an intrinsic process; neverthe-
less, the intracellular signals that occur transiently during and in

recovery following exercise cannot yet be accurately linked to the
phenotypic changes in muscle content and function that are associated
with chronic, repeated bouts of the exercise stimulus. Further mecha-
nistic understanding of how exercise leads to improvements in muscle
mass and metabolic function is needed to fully ‘unlock’ the potential of
skeletal muscle and optimize health and athletic performance.

Training-induced improvements in exercise performance are a direct
reflection of the specificity of the perturbations elicited by the stimulus.
Therefore, research on muscle responses to exercise is largely dichoto-
mized into either aerobic or resistance-type stimuli, which lead to
distinct muscle adaptations. Aerobic exercise (AE) includes activities
involving relatively low forces over prolonged periods (minutes to
hours), requiring drastic elevations in ATP usage and resynthesis via
oxidative phosphorylation to sustain work output. The majority of ATP
generated during aerobic exercise is derived from carbohydrate (i.e.,
glycogen) and fatty acid (i.e., intramuscular triglyceride and circulating
free fatty acids) oxidation by elevations in mitochondrial oxidative
phosphorylation [5]. The power output of the exercise session, often
measured in W, estimates the rate of ATP consumption, and relative
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exercise intensity (as a percent of VO2 peak) dictates the contribution of
energy derived from carbohydrates and fatty acids available [2,5,6].
Regular aerobic training (AT) remodels skeletal muscle into a more
oxidative, fatigue-resistant phenotype underpinned by changes in sub-
strate utilization (i.e., altered % carbohydrate and fatty acid oxidation at
relative work intensities), mitochondrial content, efficiency and capil-
larization [7,8]. Just 14 consecutive days of AT can increase VO2 peak
by 17 % in sedentary males [9], which suggests an early rapid phase of
adaptation in response to unfamiliar exercise stimuli. The improvements
in whole-body aerobic performance (i.e., VO2 peak) are underpinned by
muscle adaptions, including mitochondrial biogenesis, which enhances
oxidative metabolism and alters substrate utilization [10,11].

Resistance exercise (RE) is characterized by movements against
higher loads for a shorter duration of time relative to those associated
with AT [7]. RE primarily relies on anaerobic metabolism to meet the
immediate and high-energy demands of the mechanical loading of the
target muscle. During very intense and brief intermittent RE, the pri-
mary source of energy is derived from the breakdown of phosphocrea-
tine and glycogen with a high contribution, at least initially, from
non-oxidative glycolytic flux, resulting in lactate production [5]. Phos-
phocreatine and glycogen metabolism rapidly regenerate ATP, typically
able to sustain high output for ~10–30s and 30–120s, respectively,
before recovery is necessary [12,13]. Although anaerobic energy path-
ways are the primary contributor to ATP production with RE if the effort
is prolonged or repetitive, then oxidative metabolism of glucose and
fatty acids occurs, and recovery from all forms of AE or RE is always an
oxidative process [14–17]. Regular resistance training (RT) facilitates
muscle remodeling toward growth and increased force output [18]. We
have previously observed an 8.1 % increase in vastus lateralis muscle
cross-sectional area, assessed by MRI, following 10 weeks of RT that
targeted the quadricep muscle [19]. Although there are many variables
associated with RE (i.e., load, sets, frequency, type of contraction), a
recent systematic review from our lab of 192 articles emphasizes that
most RT prescriptions are effective for increasing muscle strength, range
of standardized mean difference vs. control (0.75–1.60) and hypertro-
phy, range of standardized mean difference vs. control (0.10–0.66)
when compared to non-exercise [14]. The evidence is overwhelming for
the efficacy of RT to consistently improve measures of muscle mass,
function, and strength [20].

Despite the divergent outcomes of the different modes of training,
relatively little is known about the signaling mechanisms that are spe-
cific to the transition to an aerobic or resistance-trained muscle
phenotype. Chronic responses of muscle to exercise occur over a time

frame of weeks-months and cannot, as yet, be readily predicted from the
transient molecular responses of muscle to each exercise session. A
greater understanding of the processes that link the acute responses of
muscle during or soon after exercise to the longer-term changes in hy-
pertrophy and metabolic phenotype are prerequisite for efficiently
exploiting programmed training or lifestyle recommendations that
reliably benefit performance and health. Molecular markers that are
predictive of desirable changes in muscle phenotype could be used to
optimize exercise prescription but there are issues to be resolved before
this becomes a reality. Interindividual differences exist at baseline
(untrained state), such that health and disease risk profile and respon-
siveness to environmental stimuli such as exercise training, acute
pathological insults, or chronic responses to unhealthy environments
give rise to different acute physiological responses to exercise. Muscles
of individuals that are normal weight, overweight, or diagnosed with
type 2 diabetes start from different baselines at the beginning of a
training intervention, and the demonstrable benefits of exercise (e.g.
relative change in insulin sensitivity) will differ in each case. Likewise, it
is unclear which beneficial components of exercise occur irrespective of
age or exhibit sexual dimorphism because the full repertoire of muscle
molecular responses to exercise is unknown.

High-intensity interval-type training (HIIT) is a popular form of
training that encompasses higher energy demand aerobic exercise [21]
interspersed with rest and requires higher force than traditional lower
aerobic power activity [22,23]. While there have been some studies
examining the impact of intensity on post-exercise MPS [24–26] and
signalling [23], the conclusion is less than clear as to whether HIIT re-
sembles AE or RE in terms of the phenotypic changes it induces. Most
evidence suggests HIIT definitely promotes mitochondrial biogenesis
[27] and can lead to hypertrophy [22], although this appears to be less
than that achieved with RE.

Recognizing that the cellular molecular events that transpire after
exercise are complex, we hone in on some of the most commonly studied
intracellular processes associated with the conspicuous adaptations to
AE, namely mitochondrial expansion, or RE, increased myofibrillar
protein accretion. Our review initially focuses on literature from tar-
geted studies on protein phosphorylation because this is amongst the
most extensively studied post-translational modification (PTM). We first
review literature arising from targeted analysis of key proteins associ-
ated with signal transduction in muscle adaptations to exercise. Me-
chanical loading is a key differentiator between muscle responses to
resistance versus aerobic training, and we, secondly, consider some
leading candidate proteins in mechano-transduction and also the
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concept that some degree of muscle ‘damage’ may be necessary or
involved in distinguishing muscle responses to exercise training. The
third aspect of our review addresses limitations of the existing literature
that currently constrain our understanding of the mechanisms under-
pinning muscle adaptation. We highlight issues and new avenues of
research brought forth by more contemporary phospho-proteomic ana-
lyses, which have expanded the number of proteins of interest and
highlighted that complex phosphorylation networks, rather than linear
pathways, may underpin muscle adaptation. A lack of knowledge on the
detailed time-course of molecular responses to exercise and on protein-
specific dynamics in muscle are further constraints to our current un-
derstanding of muscle adaptations to exercise training. Our review
concludes by highlighting the fundamental but underappreciated role of
protein turnover in muscle adaption to AE and as well as RE, and we
identify ideas for future experiments that clarify the processes that
distinguish between muscle adaptations to AT versus RT.

2. Exercise-responsive phosphorylation of skeletal muscle
proteins

Each session of exercise is detected in muscle as stimuli in the form of
mechanical stress and metabolic perturbation. These stimuli are largely
transduced through transient changes in the PTM of signaling proteins
and transcription factors, which in turn alter the abundance, location, or
activity of muscle proteins. The accumulated effect of repeated exercise
bouts shifts the balance between the synthesis and degradation of spe-
cific proteins and elicits changes in muscle protein content and function
that can lead to improvements in exercise performance. Covalent
attachment by kinases or removal by phosphatases of phosphate can
regulate the cellular location and activity of target proteins. Reversible
phosphorylation of specific serine (S), threonine (T), and tyrosine (Y)
residues is a prominent and extensively studied mechanism of intracel-
lular signaling. Phosphorylation can be detected using antibodies spe-
cific to a phosphorylation site on a particular protein, and mechanistic
studies can be conducted using phospho-mimetic or refractive proteins
wherein the S/T/Y residue of interest is substituted with alanine (A)
(inert/non-phosphorylatable) or aspartic acid (D) (active/phosphomi-
metic). We, however, acknowledge other PTM, including acetylation,
neddylation, and ubiquitination are also transiently regulated by exer-
cise and likely contribute to muscle adaptation. Nevertheless, phos-
phorylation has also been a dominant focus, and several canonical
signaling pathways have been elucidated that collectively contribute to
the adaptation of muscle, including mammalian target of rapamycin
complex (mTORC), mitogen-activated protein kinase (MAPK) and AMP-
activated protein kinase (AMPK) activation/modification. In addition,
we briefly discuss the role of reactive oxygen species (ROS), which can
modulate some phosphorylation pathways.

2.1. Mammalian target of rapamycin (mTOR)

The mTOR complex is a serine/threonine kinase that has two distinct
complexes, rapamycin-sensitive mTORC1 and rapamycin-insensitive
mTORC2 [28]. Each mTOR complex is defined by distinct binding
partners that specify its function. Unique to mTORC1 is the subunit
regulator associated protein of mTOR (raptor) and proline-rich substrate
of AKT of 40 kDa (PRAS40) [29]. mTORC2 includes similar components
to mTORC1 (mLST8 and DEPTOR) but lacks raptor and instead contains
the rapamycin-insensitive companion of mTOR [30]. Raptor has mul-
tiple points of potential interaction with mTOR, is essential for regu-
lating mTORC1 activity, and contains the binding sites for downstream
signaling targets (i.e. p70S6K and 4EBP1) [31]. Exercise primarily reg-
ulates mTORC1 activity via upstream Ras homolog enriched in brain
(Rheb), which in its GTP-bound state enhances the recruitment of sub-
strates to mTORC1 [32]. The activation of mTOR kinase activity is
denoted by the phosphorylation of specific serine residues (S2448, S2481,
and S2446) in addition to the phosphorylation of well-characterized

downstream targets [33–35]. The phosphorylation activation of mTOR
has long been associated with muscle growth and is thought to initiate
signaling for protein translation [36]. However, mTOR S2448 phos-
phorylation also occurs following acute AE [37], indicating mTOR S2448

phosphorylation is not specific to RE. It is, therefore, necessary to pair
investigations on mTORC1 activation with RE- or AE-specific down-
stream targets to link signaling mechanisms with training outcomes.
Well-defined downstream targets of mTORC1 kinase activity include
proteins associated with ribosomal biogenesis and translation, including
T389 of ribosomal protein S6 kinase beta-1(70S6K), T37/T46 of eukary-
otic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1),
and T56 of eukaryotic elongation factor-2 kinase (eEF2K; a.k.a. CaM-
KIII). Further, mTORC1 is known to phosphorylate master regulators of
the autophagy-lysosomal pathway, such as S757 of Unc-51-like auto-
phagy-activating kinase 1 (ULK1) and S211 of transcription factor EB
(TFEB) [38,39]. Together, this implicates mTOR signaling in the regu-
lation of both synthetic and degradative pathways with acute exercise.
Although mTOR S2448 has been extensively used as a marker of protein
synthesis/anabolic response, it may not be a direct indicator of mTOR
kinase activity, and analysis of known downstream targets is recom-
mended to infer the presence of the active forms of mTOR complexes 1
and 2 (Fig. 1) [40].

RE stimulates mTOR activity and is the most investigated mechanism
linked to skeletal muscle hypertrophy. RE-induced mTORC1 S2448

phosphorylation results in increases in mRNA translation initiation via
downstream phosphorylation of 4E-BP1 T37/46, resulting in disassocia-
tion of the binding protein from eIF4E allowing interaction with eIF4G
and cap-dependent translation of mRNA to proceed [41]. mTORC1
phosphorylation of p70S6K1 T389 induces downstream C-terminal
phosphorylation of rpS6 S235/236 and S240/244, whose modification po-
tentiates 40S ribosomal subunit binding the 5’ mRNA cap, promoting
assembly of the 43S pre-initiation complex [42]. Regulation of
exercise-induced signaling through mTORC1 is one mechanism that
contributes to shifting the balance between anabolism and catabolism in
skeletal muscle, and differences in mTOR regulation may, therefore, be a
point of delineation between AE and RE signaling outcomes in skeletal
muscle [43].

Upstream of mTOR, phosphoinositide 3-kinase (PI3K) phosphory-
lates the inositol ring of phosphatidylinositol-4,5-bisphosphate (PI-4,5-
P2), converting to phosphatidylinositol-3,4,5-trisphosphate (PIP3) at
the plasma membrane [44]. PIP3 binds to AKT and 3-phosphoinositide--
dependent kinase 1 (PDK1), increasing the phosphorylation and acti-
vation of AKT T308/S478 by PDK1 [45]. Phosphorylation of AKT S478

alone is not sufficient to increase AKT activity; instead, it induces a
conformational change, stabilizing the active structure and promoting
phosphorylation of AKT T308 for full activation [45]. In human muscle,
following RE, AKT S478 and T308 are often robustly phosphorylated
rapidly (immediately post-exercise) and remain elevated for ~2–3hrs
post-exercise [46,47]. AKT activity can also be regulated by mTORC2 at
AKT S477/T479 and AKT S473, hypothesized to stabilize active AKT [48].
Active AKT directly phosphorylates TSC2 T1462, a GTPase activating
protein for Rheb, preventing signal transduction through mTOR [49]. At
the same time, Rheb bound to GTP increases mTOR S2448 phosphory-
lation [50]. In non-muscle, HEK293 cells, phosphorylation of mTOR
S2159/T2164 has also been demonstrated to alter interaction with raptor
and PRAS40, found to be required for mTORC1 associated mTOR
autophosphorylation at S2481, promoting downstream signaling and
growth [51]. However, phosphorylation of mTOR S2159/T2164 has not
been demonstrated in human muscle to our knowledge.

Baar and Esser (1999) [52] first identified p70S6K phosphorylation
in response to high resistance lengthening contractions and found there
to be a correlation with the chronic (6-week) change in muscle mass.
Work by Bodine et al. (2001) [36] characterized the AKT/mTORC1
pathway as an upstream regulator of p70S6K, with its ability to increase
muscle mass and build upon the anabolic signaling mechanism of
loading-induced hypertrophy. Bodine et al. (2001) [36] manipulated the
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AKT/mTOR signaling pathway in vivo to demonstrate that signaling
through this pathway is a critical regulator of muscle growth, and
activation is sufficient to induce hypertrophy. These data [36] led to the
hypothesis that the prolonged significant activation (6 h) of p70 with a
transient elevation of AKT may be resistance exercise specific (high vs.
low-frequency stimulation) and potentially a point of divergent
signaling adaptation between AE and RE [53]. Since the work of Bodine
and colleagues [36], mTOR and its relationship to the regulation of
muscle mass have been extensively studied [54]. Regulation of mTORC1
is sensitive to multiple factors, including amino acids, glucose, growth
factors (IGF1), and mechanical stress [54,55]. Mechanistic work in
humans demonstrates that rapamycin, a potent inhibitor of mTORC1,
treatment was sufficient to ablate the immediate (1–2 h) post-exercise
elevation of muscle protein synthesis (MPS) and blunt downstream
phosphorylation of S6K1 T421/S424 and eEF2 T56 [17]. Early work that
established an interaction between mTORC1 with increases in protein
synthesis and muscle mass has led others to focus their investigations on
the canonical pathways of mTORC1 signaling in relation to myriad
models of acute and chronic RT [56].

The ability of mechanically induced mTORC1 S2448 phosphorylation
to regulate phosphorylation of p70 T389 via a completely rapamycin-
sensitive mechanism has been confirmed [57], and mTOR signaling is
detectable yet attenuated in a trained state. In trained (18 sessions)
mice, acute phosphorylation of mTORC1 downstream targets p70S6K

T389, rpS6 S235/236, and rpS6 S240/244 were blunted in comparison to a
single (naive) session of RE [58]. However, both total and phosphory-
lated proteins of the targets p70S6K T389 and rpS6 S235/236 were
significantly greater than the control (non-exercising), demonstrating
that mTOR signaling in trained muscle is still sensitive to mechanical
stimuli [58]. Furthermore, in human skeletal muscle, AKT S473 and
mTOR S2448 are still significantly phosphorylated following RE after 10
weeks of RT [25]. Additionally, in 8 chronically resistance-trained men,
the phosphorylation of p70S6K T389 was found to be related (r = 0.34, p
= 0.03) to myofibrillar FSR, suggesting conservation of mTORC1
signaling even in a trained state [59]. However, transient phosphory-
lation of AKT S473 is not RE-specific and was found to be elevated (50 %)
immediately post-exercise in response to AE (70 % VO2 peak for 60 min)
in endurance-trained individuals [60]. Interestingly, the same study
observed no change in AKT S473 or AKT T308 following resistance ex-
ercise (8 sets × 5 reps maximal intensity contraction) in previously
trained individuals, further suggesting attenuation of the exercise
signaling response in a trained state [60].

In addition to temporal differences in signaling activity following
exercise, mTORC1 activation is spatially distinct and regulated by
changes in subcellular localization [61]. The presence of mTORC1 at the
muscle periphery and mTOR translocation to the lysosome may be
necessary for the elevated activity [62]; nonetheless, this has primarily
been observed in addition to amino acid provision [63,64], but one

Fig. 1. Simplified signaling network of the key proteins, kinases, and transcription factors involved in the regulation of translation initiation and autophagy
following acute exercise. Targeted PTM studies following exercise have identified AKT-mTOR, MAPK, and AMPK cascades as primary regulators of translation
initiation and autophagy. The color of the arrow denotes the model of evidence used to demonstrate the link between signaling proteins.
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study has demonstrated a rapid (<30 min) increase (20 %) in mTOR
translocation following resistance exercise alone [65]. The same group
[66] reports mTOR translocation to the lysosomal membrane and
colocalization with Rheb increased 60 and 300 min after AE (60 min run
at 70 % VO2max), with a mixed-macronutrient meal (18g protein),
observed post-exercise, concomitant phosphorylation of downstream
mTORC1 targets rpS6 S240/244 and 4E-BP1 T37/46. In sum, RE and AE
(albeit with amino acids) appear to be sufficient to induce mTORC1
spatial regulation and subsequent activation.

2.2. Mitogen-active protein kinases (MAPK)

MAPK are a family of highly conserved serine/threonine kinases that
can influence a variety of cellular processes in response to growth
stimuli, playing a key role in skeletal muscle signaling for growth,
repair, and adaptation [67]. In humans, ERK, JNK, and p38 are the
primary MAPK involved in the regulation of muscle adaptation to
contraction-type stimuli. In addition to mTOR, MAPK activation can
influence protein translation via signaling through mitogen-activated
protein kinase signal-integrating kinase 1 (Mnk1). The phosphoryla-
tion of Mnk1 on T197/202 by ERK1/2 and p38MAPK has been shown to
increase the phosphorylation of eIF4E on S209, influencing the affinity
for the 5’ -mRNA cap and decreasing protein synthesis [68,69]. The
independent activity of MAPK signaling networks is partly dependent on
exercise variables such as modality (AE vs. RE), duration, and intensity
[70]. For example, the extent of contraction-induced ERK1/2 T202/Y204

phosphorylation is well correlated to the intensity of the exercise stim-
ulus [71], which has been demonstrated for both ERK1/2 T202/Y204 and
ERK2 T183/Y185 phosphorylation in an exercise intensity-dependent
manner, following AE [72].

The MAPK are activated in an array of phosphorylation events
facilitated via upstream MAPKKK and upstream Ras GTP signaling with
Raf induces the phosphorylation of MEK (MAPKK1) at S217 and S221, a
known activator of ERK [73]. MAPK singling was first identified to be
exercise-regulated by notable muscle-specific increases in MAPK phos-
phorylation and upstream MAPKK activity following exercise [74,75].
Subsequently, p38, JNK, and ERK signaling were hypothesized to
regulate muscle growth and remodeling in response to exercise stimuli
[76,77]. ERK1/2 has since been identified as an important component of
the signaling pathway for the regulation of MPS [78,79].

In human skeletal muscle, p38a is known to be phosphorylated at
T180/Y182, increasing its kinase activity and signaling [80]. However,
there appear to be distinct mechanisms for the activation and subse-
quent signaling of p38aMAPK as compared to ERK or JNK. AE has been
shown to stimulate robust phosphorylation signaling through
p38aMAPK. In contrast, the effect of RE on p38aMAPK signaling is
controversial, with RE-induced activation being dependent on timing,
contraction type, or volume of exercise [81]. It is hypothesized that the
unique ROS produced from AE vs. RE stimulates p38MAPK signaling and
subsequently increases the activity of PGC-1a by interacting with up-
stream transcription factors ATF2 and MEF2 [82]. Early work in cardiac
myocytes demonstrated that p38 activation is responsive to hypoxia,
inducing rapid phosphorylation of Y182, thought to be regulated via the
Src family of tyrosine kinases and Ras [83]. In human muscle, p38a
T180/Y182 phosphorylation is also demonstrated to occur following
high-intensity (4 bouts of all-out 30s) cycling [84]. MAPK signaling is
further associated with AT outcomes, as both ERK and p38MAPK acti-
vation can lead to the phosphorylation of CREB S133 via MSK1, initiating
the transcription of genes involved in energy metabolism and mito-
chondrial biogenesis [85,86].

In human muscle, ERK1/2 T202/Y204 and p38MAPK T180/Y182 are
robustly (~7 and ~4.5-fold change, respectively) and rapidly (imme-
diately post-exercise) phosphorylated in response to AE [87]. However,
it should be acknowledged that ERK1/2 T202/Y204 and p38MAPK
T180/Y182 phosphorylation is not AE-specific and has also been observed
following resistance exercise [88]. Interestingly, AE and RE result in a

similar magnitude of ERK1/2 T202/Y204 phosphorylation [87,89];
however, significant phosphorylation following RE has been detected at
later times post-exercise [46], which may influence the downstream
outcomes. Additionally, RE in human skeletal muscle that demonstrated
MAPK (ERK1/2 T202/Y204, p38MAPK T180/Y182, and JNK T183/Y185)
phosphorylation immediately post-exercise with significant Mnk1
T197/202 phosphorylation but no significant increase in eIF4E S209

phosphorylation [90]. The lack of increase of eIF4E S209 phosphoryla-
tion in this study could be attributed to biopsy timing (immediate
post-exercise) or the magnitude of MAPK activation or other unknown
signalling regulation (Fig. 1).

A mechanism for ERK-dependent regulation of protein synthesis is
thought to be mediated upstream of mTOR via TSC1-2. Specifically, ERK
1/2 phosphorylation of TSC2 S664 leads to TSC1-TSC2 dissociation,
impairing TSC2s ability to inhibit mTORC1 signaling [91]. In C2C12
myoblasts, MAPK (ERK) activation has also been demonstrated to
induce TSC2 phosphorylation at multiple residues (S664/939 and T1462)
and shown to regulate mTOR activity as assessed by downstream S6K1
phosphorylation at T389 and T421/S424 [92]. ERK1/2 can also modulate
TSC2’s GAP (GTPase-activating protein) activity towards Rheb, a
negative regulator of mTORC1 activity [93]. Further, ERK1/2 T202/Y204

is significantly phosphorylated above rest in human skeletal muscle 1 h
after RE, coinciding with increased phosphorylation of p70S6K T389

[89]. ERK is, therefore, responsive to both AE and RE, likely in an
intensity-dependent manner, regulating protein synthesis through
site-specific phosphorylation of TSC2-mTOR (Fig. 1).

Although someMAPK signaling does appear to converge on mTOR, it
has been commonly reported as a mTORC1-independent mechanism of
mechanically regulating muscle growth [94]. ERK2 signaling can alter
protein synthesis by phosphorylation of T117 and T201 of UBF (RNA
polymerase factor 1), which is essential for transcription enhancement
and regulating ribosomal gene expression [95]. ERK1/2 can also target
the substrate p90RSK (p90 ribosomal S6 kinase) T573, leading to the
downstream activation of transcription factors, demonstrated in human
skeletal muscle following RE [90]. In addition to contraction, ERK1/2
activation and signaling are sensitive to insulin [74,96]. IGF1 knock-
down has been shown to reduce ERK1/2 T202/Y204 phosphorylation in
myotubes [97]. Fluckey et al. [98] demonstrated that insulin-mediated
elevation in muscle protein synthesis following RE is dependent on
ERK1/2 T202/Y204 and ERK T183/Y185 phosphorylation signaling, and
inhibition of ERK has been demonstrated to prevent hypertrophy
induced by IGF1 [99]. Further investigation into the exercise-induced
changes in ERK1/2 MAPK signaling is necessary to determine if
signaling timing and magnitude play roles in the divergent regulation of
protein pool specific (i.e., myofibrillar vs. mitochondrial) synthesis
associated with AT and RT.

In well-trained individuals, p38MAPK T180/Y182 phosphorylation
still occurs in response to AE (1.6-fold increase); nonetheless, the
magnitude of the response may be attenuated in comparison to naïve
controls (2.1-fold increase) when muscle is working at the same relative
intensity [87]. This observation has also been made in rat skeletal
muscle, where oxidative stress-induced activation of p38MAPK
T180/Y182 is reduced by 59 % in trained muscle as compared to control
[100]. MAPK signaling, therefore, contributes to the
contraction-induced mechanisms of adaptation that occur in skeletal
muscle with AE and RE, possibly altering timing and magnitude with
training status. Distinct modalities (AE vs. RE), volume, and intensity of
exercise may differentially regulate MAPK activation and potentially
influence the divergent exercise-specific adaptations observed with
training.

2.3. Adenosine monophosphate-activated protein kinase (AMPK)

AMPK is a serine/threonine protein kinase that becomes active in
response to cellular stress (i.e., low nutrient availability or prolonged
exercise). AMPK acts as a central regulator of cellular metabolism and is
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sensitive to intracellular AMP/ADP levels (i.e., activated when the ATP:
AMP ratio is lowered) and aids its function as a coordinator of growth,
differentiation, and metabolism [101,102]. The most prevalent AMPKs
in skeletal muscle are AMPKa1 and AMPKa2, and activity is primarily
exercise-regulated via phosphorylation at sites T183 and T172, respec-
tively [103,104]. AMPKa1 and a2 become activated during prolonged
activity and appear to stay elevated for ~3 h post-cessation of exercise
[105]. However, there is some evidence to suggest exercise can differ-
entially regulate the amplitude and timing of AMPK a1 and a2 activity
[106]. AMPKa2 T172 activation occurs during exercise/contraction,
functioning to both generate and conserve ATP via activation of cata-
bolic pathways as well as suppression of protein and fatty acid synthesis
[107,108]. In untrained males, cycling (60 min at 70 % VO2peak)
elevated AMPK T172 phosphorylation 16-fold immediately post-exercise
[37]. Additionally, phosphorylation of AMPK(a1 and a2) T172 has been
observed following only 4 bouts of 30s all-out sprint cycling, demon-
strating that even relatively low volume (but high intensity)
aerobic-type training can cause significant cellular energy stress to
stimulate altered metabolism through downstream targets of AMPK
signaling (i.e. PGC-1a) [84]. A potent upstream regulator of AMPK T172

phosphorylation in skeletal muscle is LKB1 [109–111]. Pseudokinase
STRADα promotes the active conformation of LKB1, which is stabilized
by MO25α interacting with the LKB1 activation loop [112]. LKB1 S428

phosphorylation alters cellular location and affinity for AMPK activation
[113]. When LKB1 expression in muscle is knocked down by ~90 %,
AMPK T172 demonstrates significantly reduced phosphorylation
following muscle contraction [114]. Downstream, the acute increase in
AMPK T172 activity regulates SIRT1 affinity for PGC-1a by phosphory-
lating PGC-1a T177/S538 in addition to elevating the intracellular NAD +

concentration, which in turn modulates mitochondrial protein synthesis
[115–118]. Furthermore, chronic (repeated) activation of AMPK T172,
via exercise or pharmacological intervention results in increased mito-
chondrial content [109,119–121] and has also been postulated to alter
metabolism and improve muscle insulin sensitivity due to its ability to
regulate the expression of proteins (i.e., GLUT4) involved with insulin
signal transduction [122–124].

During exercise, muscle protein synthesis is attenuated, presumably
due to it being an energy-consuming process, and this is thought to be
regulated via AMPK activity [108]. With RE, AMPKa2 activity is
significantly increased during and immediately following (1–2 h) exer-
cise [108]. AMPK phosphorylates TSC2 T1227/S1345 and heightens its
ability to suppress translation regulation via the mTORC1 pathway
[125]. Additionally, work performed in TSC2-depleted cells identified
raptor S722/S792 as alternative phosphorylation targets of AMPK
inducing 14-3-3 binding to raptor and subsequent suppression of
mTORC1 activity [126]. AMPK can further regulate mTOR via phos-
phorylation of T2446, which has been demonstrated to reduce activity via
attenuation of phosphorylation at mTOR S2448 [34]. Evidence of AMPK
attenuating anabolic signaling has been demonstrated in human skeletal
muscle, where individuals who performed high-intensity AE prior to RE
had no significant elevation of phosphorylation at downstream targets of
mTORC1, including p70SK1 T389 and p70SK1 T421/S424 [127]. How-
ever, although mixed MPS is repressed during RE while AMPKa2 is
known to be active, there is a robust increase (75 %) in MPS following
RE (1–2 h) despite AMPKa2 remaining significantly elevated from basal
levels [108]. Further, an elevation in protein synthesis has been shown
to occur concomitantly with an increase in mTOR S2448 phosphorylation
(significantly elevated 1- and 2-h post-resistance exercise) despite
elevated AMPK [108]. Elevation of protein synthesis in spite of elevated
AMPK activity suggests that the anabolic signaling from RE is able to
overcome some level of AMPK-induced suppression. Interestingly,
AMPK T172 phosphorylation has also been observed 24 h following RE,
suggesting alternative signaling rolls beyond immediate energy stress
[128], such as the promotion of autophagy by phosphorylating ULK1 at
S317 and S777 [38]. Indeed, AMPK activation with RE can serve to more
than regulate immediate energy metabolism and may also signal for

alteration of mitochondrial protein synthesis, as demonstrated by
increased respiration following 12 weeks of RT [129]. Furthermore,
AMPK activation is also implicated in the modulation of glycolytic
pathways via phosphorylation of PFK2 S466, which may alter energy
metabolism adaptation with chronic RT [130].

Although AMPK activity is regulated by both AE and RE, the differ-
ences in isoform, magnitude, and timing of AMPK T172 phosphorylation
may be a potential mechanism for divergent functional and phenotypic
adaptation with chronic AT and RT. Although much is known regarding
the regulation and interplay of AMPK and mTOR with exercise, they
alone do not appear to dictate/distinguish between the divergent phe-
notypes observed in skeletal muscle with chronic training, which raises
the question of what other signaling mechanisms occur that have not
been previously considered or recognized as specific to an AT or RT
phenotype.

2.4. Reactive oxygen species (ROS)

Acute exercise induces disturbances to cellular homeostasis. The
metabolic perturbation from exercise induces the production of ROS
thought to be derived from the mitochondria and other cell compart-
ments in response to muscle contraction and strenuous exercise [131,
132]. Initially, ROS production with exercise was thought to have
negative consequences on health and performance; however, ROS pro-
duction is now recognized as an important mediator of signaling path-
ways in the adaptation of skeletal muscle [133]. Skeletal muscle
produces superoxide and hydrogen peroxide at rest, and exercise elicits
a drastic increase in the rate of production [134]. During contraction
and prolonged exercise, skeletal muscle has three main contributing
sources of ROS, including the mitochondria [135], xanthine oxidase
[136], and NAD(P)H oxidase enzymes [133,137]. However, there is
experimental evidence that challenges mitochondria as a primary source
of ROS in skeletal muscle, demonstrated by ablation of activity-induced
ROS production in the presence of an NADPH oxidase inhibitor [138,
139].

A likely mechanism by which ROS signals for exercise-induced
adaptation in skeletal muscle is through its regulation of AMPKa indi-
rectly and directly (redox changes to cysteine residues) [140,141] and
via activation of p38MAPK (thought to be responsive to hydrogen
peroxide concentrations) [142], both of which have been previously
shown to increase activation in response to elevated ROS production.
The attenuation of ROS (via xanthine oxidase inhibition) prevents the
increase in signaling through redox-sensitive p38MAPK T180/Y182 and
ERK1/2 T202/Y204 phosphorylation, which is associated with a reduc-
tion of gene expression of mitochondrial transcription factor A (mTFA)
but does not alter PGC-1a mRNA transcription or protein content with
AT [143]. ROS production also triggers an elevation in cytosolic calcium
via ROS-mediated opening of calcium-release activated channels and
activation of ryanodine receptors of the T-tubules, increasing phos-
phorylation of AMPKa T172 through a CAMKKb-dependent mechanism
[144,145].

In addition to ROS, nitric oxide production is increased during
muscle contraction [146]. Nitric oxide signaling can regulate AMPKa
T172 and CAMK T286 phosphorylation [147,148] and, therefore, may
influence downstream GLUT4, PGC-1a, and mitochondrial gene
expression. The sustained presence of nitric oxide can also stimulate
mitochondrial biogenesis via guanylate cyclase and the generation of
cGMP [148]. However, evidence for these mechanisms is lacking in
human muscle, and less is known regarding how distinct ROS produc-
tion with AE and RE could elicit divergent phenotypic adaptation with
chronic training.

RE and AE primarily rely on different energy systems (i.e., glycolytic
vs. oxidative, respectively), causing a purported distinct generation of
ROS and reactive nitrogen species, which may contribute towards the
distinct skeletal muscle adaptation with RT and AT [149,150]. Although
ATP generation is still significantly elevated in RE, leading to the
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stimulation of ROS-producing mechanisms (i.e., NOX and XO) the con-
centration of ROS may differ from AE and elicit unique RE-specific
signaling [151]. Further evidence in human muscle is necessary to
elucidate whether contraction-induced ROS plays a significant role in
the determination of exercise-specific phenotype adaptation to training.

3. Mechanosensing and mechanotransduction

Mechanical loading of muscle regulates mass. Several proteins have
been identified as potential mechanosensors that play a key role in
mediating muscle mass [152–154]. Yet, the mechanistic link deter-
mining how load is sensed and then propagated as an acute biochemical
signal to alter muscle protein synthesis is not fully understood [152,
155]. In addition to metabolic perturbance, the detection of mechanical
load intrinsically in muscle may determine the downstream molecular
signaling that affects a change in protein synthesis. It is important to
understand which mechanosensors play prominent roles in the signaling
regulation of muscle mass and how they respond under different loa-
ding/unloading conditions. This section of the review will briefly
highlight some of the prominent mechanosensors, transducers, and
mediators of mechanical signaling mechanisms involved in the regula-
tion of PTM signaling pathways and potentially initiating/regulating
protein synthesis for skeletal muscle adaptation.

3.1. Yes-associated protein (YAP)

Yes-associated protein (YAP) and transcriptional activator with PDZ-
binding motif (TAZ) have been identified as candidate mediators of
mechanical signal transduction in skeletal muscle, regulating cell size
and growth through a variety of mechanisms [156]. Mechanically
activated YAP mediates protein synthesis by regulating crosstalk be-
tween the HIPPO pathway and mTORC1 [157,158]. The large tumor
suppressor kinases coordinate the primary mediation of YAP activity 1
and 2 (LAMP1/2) of the HIPPO pathway [159]. A secondary upstream
regulator of YAP is phosphatidic acid, which is a product of phospha-
tidylinositol 4,5 bisphosphate conversion by phospholipase Cγ1 in
response to mechanical stimuli [160]. Also upstream of YAP is Bag
cochaperone 3 (Bag3), a chaperone protein that relays matrix stiffness
by redistributing YAP and TAZ in muscle progenitor cells [161]. The
knockout of Bag3 reduces the nuclear localization of YAP and TAZ,
effectively inhibiting mechanically induced signaling in myoblasts
[161]. YAP in its active form induces miR-29, which downregulates the
translation of phosphatase and tensin homolog deleted on chromosome
10 (PTEN), an upstream inhibitor of mTOR signaling that acts via a
reduction in PDK1 ability to phosphorylate AKT1 T308 [158]. The
expression of YAP has been demonstrated to increase as a response to
acute muscle loading, with a strong correlation between the change in
YAP expression and AKT T308 phosphorylation [159]. Watt et al. (2015)
[162] demonstrated that inhibition of YAP by mutation of S79 within the
C-terminus (blocking interaction with TEAD transcription factors) was
sufficient to reverse hypertrophy observed from YAP overexpression.
TEAD transcription factors are known to interact with miR-29; however,
this result was associated with no increase in mTOR S2448 activity [162].
Therefore, other mechanisms for YAP to mechanically influence muscle
size may exist. TEAD transcription factors can also induce the expression
of high-affinity leucine transporter LAT1, which may aid muscle in
amino-acid-induced mTORC1 activation and elevating protein synthesis
[163].

Additionally, YAP activity may also dictate muscle growth through
its role in the proliferation and differentiation of satellite cells. Elevation
of YAP stimulates the proliferation of activated Pax7+/MyoD + pro-
genitor cells in muscle, whereas YAP inactivation appears necessary for
terminal differentiation [164,165]. Altogether, the mechanically
induced activation of YAP expression may have myriad pathways for
influencing the acute signaling of MPS; however, little is known
regarding the differential activity of YAP in response to AE vs. RE

loading stimuli. YAP activity has primarily been studied in the context of
muscle growth and it is unclear whether YAP regulation of downstream
targets may also mediate adaptation towards an aerobic phenotype.

3.2. Integrin – focal adhesion kinase (FAK)

Integrins are a family of transmembrane proteins that connect the
extracellular matrix to intracellular actin, a necessary component of
lateral force transduction [166]. Despite their critical role in regulation
and force transduction, integrins have no known kinase activity in
human skeletal muscle [167] and, therefore, must interact with other
proteins to propagate mechanically induced signals. Current evidence of
how integrin protein signal for elevated protein synthesis in vivo is
lacking, and most studies have utilized FAK and ILK phosphorylation as
indirect markers of integrin signaling [168]. FAK is a non-receptor
tyrosine kinase that is known to coordinate signaling through the
costamere-associated protein complex [152,167]. Activation of FAK
kinase domain propagates mechanically induced signals and is known to
regulate cytoskeletal remodeling [166,169]. There is no paucity of evi-
dence that mechanical signals are capable of being transduced via
integrin – FAK [94]. FAK Y397 phosphorylation is thought to regulate
protein synthesis via the PI3K/AKT/mTORC1 signal pathway, as phos-
phorylation of FAK allows for binding to 85 kDa subunit of PI3K through
the SH2 domains of p85, leading to an elevation in its activity [170].
Phosphorylation of FAK Y397 may also regulate mTORC1 activity
through direct phosphorylation inhibition of TSC2 T1462 [171,172].
However, another mechanism has been identified for FAK Y397 as an
upstream mechanosensitive regulator of p70S6K activity, coordinating
protein synthesis in an AKT-independent mechanism [173]. FAK over-
expression in transfected mouse muscle demonstrated significantly
greater phosphorylation of p70S6K S411 and p70S6K T421/S424 at 6 and
24 h following reloading, respectively, in comparison to control [173].
In human muscle, RE significantly increased phosphorylated FAK
Y576/577 to a greater extent at 4 h following exercise in an untrained
state, and 10 weeks of exercise training (AT and RT) was sufficient for
increasing FAK Y576/577 phosphorylation at baseline (rest) [25].
Integrin-FAK mechanosensing may, therefore, be a key player in the
signal transduction pathway coordinating transient changes in PTM
signaling following exercise.

3.3. Filamin C – Bag cochaperone 3 (Bag3)

Filamin C is a Z-disc-associated protein with a “V” shaped structure
that deforms when force is applied, opening to reveal binding sites for
downstream signaling [174]. Filamin C has 90+ known binding part-
ners, highlighting its involvement and significance in skeletal muscle
signaling regulation [175]. The growing list of binding partners for
Filamin C includes ERK1/2, titin, IGFN1, actin, and Bag3 [175]. Phos-
phoproteomic analysis has confirmed that both Filamin C and Bag3
phosphorylation status is altered in response to high-intensity exercise
[176]. Filamin C and its interaction with Bag3 has been identified as a
mechanosensitive pathway with the ability to regulate downstream
mTORC1 and YAP activity [152]. As noted previously, Filamin C - Bag3
also engages in YAP/TAZ signaling in response to acute mechanical
stress [174]. Additionally, Bag3 can act as a filamin signaling mediator
for tension-induced increases in transcription and degradation [174].
Furthermore, cochaperone Bag3 has been demonstrated to interact and
sequester the mTORC1 inhibitor TSC1 [177]. It has also been observed
that mTORC1 inhibition attenuates Bag3-mediated extracellular matrix
autophagy, providing further evidence for Bag3 as a central mediator of
transcription in response to mechanical stress [177]. Furthermore, the
phosphoproteomic analysis identified AKT and PKCa as dual kinases of
Filamin C S2234/S2237, propagating PI3K/AKT hypertrophic signaling
[178].
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3.4. Titin

Titin is a large protein that extends from the Z-disc to the M-band
with several domains that are considered to be functionally active,
providing binding sites for diverse proteins, enzymes, and kinases [179].
Titin has also been implicated as a sensor of mechanical stimuli, with
phosphorylation activity within the kinase domain of titin predicting
hypertrophic changes in muscle following exercise in a load-dependent
mechanism [180]. The serine/threonine kinase domain of titin is asso-
ciated with the M-band portion of the sarcomere, belonging to the
myosin light-chain kinase (MLCK S143 and S586/587/588) family of ki-
nases, and is known to be regulated by CAMK [80,179,181]. Specif-
ically, it has been demonstrated that CAMKKII phosphorylates titin at
several sites, including Titin S26, S34, S170, S496, T70, T80, T117 [182]. The
kinase domain of titin is structurally and positionally optimal for sensing
tension during muscle contraction, opening the protein, and exposing
phosphorylation sites that may be upstream of mechanosensitive
signaling pathways [180]. In response to mechanical stress, titin
signaling has been shown to regulate gene expression and protein
turnover [183]. The work by Ibata et al. (2021) [180] and van der Pijl
et al. (2018) [184] demonstrate that titin may be a key mechanosensor
able to propagate signaling cascades that vary in response to the pro-
portion of mechanical stress. Titin can acutely increase protein synthesis
via interaction with muscle LIM protein, which binds calcineurin and
dephosphorylated nuclear factor of activated T cells (NFAT), an up-
stream regulator of transcription and cellular remodeling [185].

Titin is just one example of several structural proteins that can be
considered key regulators in the sensing and transduction of mechanical
stimuli. Although these key sensors have been proven to be essential for
the signaling regulation of protein synthesis, it is not well understood
how varying factors such as the intensity, load, volume, and frequency
of mechanical stimuli can be sensed and elicit divergent transient
signaling responses. The application of load to skeletal muscle results in
a coordinated signaling network response that produces the phenotypes
commonly associated with RT and AT, yet relatively little is understood
about the mechanosensory mechanisms initiating and regulating this
phenomenon. The interplay of several mechanosensors may be respon-
sible for interpreting the modality and relative intensity of load on
skeletal muscle. Therefore, it is critical to continue to examine these and
other mechanosensitive signaling mechanisms in the context of muscle
mode-specific adaptation.

4. Mechanisms for adaptation

4.1. Muscle damage as a driver of adaptation

Mechanical loading (such as RE) of muscle unaccustomed to exercise
can induce muscle ‘damage.’ Damage is especially prevalent following
heavy RE in exercise naïve muscle and after eccentric contractions [186,
187]. Skeletal muscle has incredible potential for repair and remodeling,
adapting to handle future stress, and impeding future damage induced
by bouts of loading through altered cytoskeletal structure and contrac-
tile components [188]. RE-induced damage can occur at several sites in
muscle and is typically localized to the sarcomere, costamere, sarco-
lemma, basal lamina, contractile structures, and connective tissue
[187]. Muscle damage is associated with a transient decrease in force
production, muscle swelling/soreness, and metabolic perturbation due
to disrupted signaling and mitochondrial damage. Unfortunately, most
experimental methods for assessing contraction-induced muscle damage
[189] are based on proxies of damage and do not directly assess struc-
tural disruption to the cytoskeletal or muscle architecture. Examples of
such methods are creatine kinase assays, soreness (DOMS), inflamma-
tory markers (i.e., interleukin-6, -10, macrophages), as well as satellite
cell proliferation and activation. Currently, the most direct method of
assessing muscle damage is with electron microscopy, quantifying focal
disruption of the sarcomere thought to occur primarily at the z-disc

(z-disc smearing/streaming) or complete dissolution of the entire
sarcomere [190]. Z-disc disruption is often interpreted as structural
muscle damage following heavy resistance exercise [191,192]. How-
ever, this notion has been challenged by Yu et al. (2004) [193], who
observed greater Z-disc disruption on days 2–3 and 7–8 post-exercise in
comparison to 1-h post-exercise. Greater occurrence of Z-disc streaming
and smearing in the days following exercise may, therefore, be indica-
tive of myofibrillar remodeling and sarcomerogenesis [193]. Therefor,
significant elevation of skeletal muscle proteolysis that is stimulated
following exercise could present as ‘damage’ but instead may be
remodeling and repair necessary for adaptation [194,195]. While
damage is a plausible mechanism, we propose that what may appear as
mechanical disruption of the sarcomere under electron microscopy
could be an early stage of robust focal elevations in protein turnover in
response to heavy, eccentric, or unaccustomed exercise [196].

Contrary to the protein turnover thesis is the idea of sarcomere
‘popping,’ which has been proposed to occur in response to heavy or
eccentric contractions [197]. Briefly, it is hypothesized that marginal
differences in contraction force along the length of the myofibril may
cause disparate stretch in sarcomeres with less filament overlap. Under
strenuous stimuli (eccentric contraction), contractile myofilaments no
longer overlap and ‘pop,’ causing physical disruption to the sarcomere
[197]. Remodeling to adapt to such damage is focused on structural
maintenance of sarcomere stability, which could occur rapidly without a
drastic increase in muscle fiber cross-sectional area [198]. This obser-
vation may explain why some markers of ‘damage’ are attenuated
rapidly following only a few bouts of unaccustomed exercise without
measurable hypertrophy or other (known) significant adaptations
[198]. Exercise-induced muscle damage is attenuated following as little
as a single session of exercise and tends to decrease even more with
subsequent bouts; however, significant hypertrophic adaptation is
typically not reliably measurable until 6 weeks (12–15 bouts) of RT or
later [199]. Notably, protein synthesis following resistance exercise
correlates with hypertrophy only after muscle damage is attenuated, as
assessed by microscopy and indirect markers (i.e., reduced contraction
force and CK assay) [200]. However, muscle hypertrophy occurs inde-
pendent of damage, examined in naïve and trained individuals using
markers of CK and soreness to assess damage [201]. Similarly, mice that
performed eccentric exercise experienced myofiber hypertrophy and an
increase in Pax7+ cell content without indication of disruption (dam-
age) in myofibers [202]. Furthermore, there is evidence that satellite
cells can contribute to skeletal muscle remodeling in the absence of
hypertrophy [203]. We propose that the initial (early training) stimu-
lation of protein synthesis is, at least in untrained persons, more directly
related to the repair and/or remodeling of skeletal muscle. At the same
time, myofibrillar hypertrophy may occur with progressive attenuation
of damage after subsequent bouts with chronic RT [198]. Taken alto-
gether, although damage is commonly associated with an elevation in
protein synthesis and breakdown, it does not appear to be an essential
factor for anabolic signaling or hypertrophy to occur in skeletal muscle.
It is, therefore, unlikely a key regulator determining the different out-
comes of aerobic vs. resistance exercise training.

4.2. Protein turnover in muscle adaptation

The functional attributes of skeletal muscle are underpinned by the
function of its constituent proteins (i.e., the proteome), which exist in a
dynamic equilibrium of protein turnover (encompassing the balance of
synthesis and degradation). MPS is the metabolic process of incorpo-
rating amino acids into new muscle proteins, and MPB is the antago-
nistic function whereby proteins are broken down into amino acids.
Rates of MPS and MPB are dynamic and can change in response to ex-
ercise and protein ingestion. Loading and aerobic exercise induce
robust, transient rises in MPS, whereas periods of disuse reduce MPS and
transiently stimulate MPB [204]. Unlike measures of PTM, mRNA
expression, or protein content, the dynamic processes of MPS and MPB
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cannot be assessed solely from ‘snapshots’ taken at isolated time points.
Measurements of MPS and MPB require the use of tracer methodologies
and measure the rates of incorporation of a tracer (e.g., stable isotope
labeled amino acid) into muscle protein to calculate a mixed-protein
fractional synthesis rate (FSR)

Typically, MPS is measured from whole muscle (bulk) or muscle sub-
fractions, e.g., myofibrillar and sarcoplasmic fractions. Although bulk
MPS (measured as fractional synthesis rate, typically %/h in humans)
provides information on the overall efficacy of an intervention, fraction-
specific data offers deeper perspectives on exercise mode-specific re-
sponses to exercise. In response to RE, Mitchell et al. (2014) [205]
observed an increase in myofibrillar FSR above resting values in the
recovery timeframe at both 60–180 min (235 ± 38 %) and 180–360 min
(184 ± 28 %). Whereas, after a single session of AE, bulk (mixed muscle
protein) MPS is elevated by ~58 % between 2 and 6 h following exercise
[206]. The lower MPS response to AE is not typically associated with
hypertrophy, but the relative intensity of an AE stimulus may be posi-
tively associated with MPS and myofibrillar FSR [24,26]. For example, a
higher intensity AE has been demonstrated to stimulate myofibrillar
protein synthesis (~60%) over a longer time (24–28 h) as compared to a
lower intensity group [26].

Studies such as those by Fry et al. (2011) [46] and Moore et al.
(2011) [89] demonstrate significant regulation of kinases in the mTOR
pathway (4E-BP1 and p70SK6K1) at periods of 5–6 h after resistance
exercise concomitant a significant increase in protein synthesis. A few
groups have examined the mTOR signaling axis (AKT/mTOR/p70S6K1)
along with protein synthesis over longer periods (up to 24 h) after RE;
however, the results are currently difficult to interpret because the data
are sparsely distributed (i.e. large gaps in-between timepoints in the 24 h
period) and the exercise intervention varied in loads as well as

amino-acid provision [46,59,88,207–209]. Mixed results of later (6<
hours) mTOR signaling denotes that mTORC1-dependent signaling may
play a more significant role in the early (~1–6 h) rise of protein syn-
thesis following RE, but later time points (~18–36 h) may be regulated
by rapamycin-insensitive or mTORC1 independent pathways [56,210].
Phosphorylation of mTORC1 S2448 is associated with a general elevation
in MPS, but heightened MPS is sustained during knockout of raptor (i.e.,
mTORC1 inhibition), which points to an mTORC1-independent mech-
anism [57]. We have attemtped to sumarize these time courses in Fig. 2.

The exercise-induced regulation of translation initiation has been
primarily studied in the context of RE and protein accretion [79]. In
contrast, AE has been primarily examined in relation to its regulation of
transcription factors and mitochondrial genes [211]. The effectors
downstream of AE signaling-induced increases in MPS are relatively less
well characterized in contrast to RE due to the context of previous
literature.

In untrained individuals, translation initiation with AE may be in
part mediated by mTORC1 S2448 phosphorylation and its downstream
target 4EBP1 T37/46 [212]. However, the magnitude of mTORC1 S2448

signaling downstream targets S6K1 T389 and 4EBP1 T37/46 at 1–4 h
post-exercise is less (~50 % lower) following AE vs. RE, which may
serve as a mechanism delineating the divergent adaptation with
different exercise modalities or signaling events may follow a different
time course after AE vs RE. Although AE and RE significantly elevated
mTOR S2448 phosphorylation 1 h after exercise, there were differences at
a later time point (4 h post-exercise) following RE [212].

Wilkinson et al. (2008) [25] hypothesized that the divergent phe-
notypes observed with chronic AT and RT are derived by the differential
repeated stimulation of predominantly myofibrillar and mitochondrial
protein synthesis elicited by RE and AE, respectively. In their seminal

Fig. 2. Acute exercise PTM signaling timelines for representative proteins of resistance (mTOR) and aerobic (AMPK). Sixteen studies each for resistance and aerobic
exercise were identified from a systemic search of the literature to have assessed (A) mTOR S2448 and (B) AMPK T172 phosphorylation following a single session of
exercise. The data was used to graph the approximate average signaling response of each signaling factor following the respective exercise. (C) Forty-five studies that
included data of targeted PTMs following exercise (AE and RE) were identified from a systematic search of the literature and assessed for time points of signaling
(biopsies) to compare and contrast the strength of signaling data in the minutes and hours following exercise. The mean number of time points per study was 3.
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study, acute myofibrillar and mitochondrial protein synthesis were
measured after exercise in untrained and trained muscle (following 10
weeks of training in the same participants). In the untrained state, RE
stimulated similar (~70 %) increases in myofibrillar and mitochondrial
protein synthesis above resting values. Whereas AE stimulated an in-
crease in mitochondrial protein synthesis in the untrained (by 154 %)
and trained (by 104 %) state but failed to significantly alter myofibrillar
FSR [25]. Additionally, after 10 weeks of training, resting myofibrillar
protein synthesis was greater (~40 %) in the RT condition in compari-
son to AT, and the same relative acute RE stimulus elevated myofibrillar
protein synthesis a further 37 % above resting values [25]. Skeletal
muscle is, therefore, able to resolve different exercise modes and elicit
exercise-specific stimulation of protein synthesis and subsequent
adaptation.

Developments in the application of deuterium oxide as a biosynthetic
label to trace dynamic processes combined with proteomic techniques
offer new possibilities to gain higher resolution information on muscle
responses (i.e., changes in protein synthesis, degradation, and turnover
rate) that occur in response to specific stimuli (i.e., AT compared to RT).
Mixed muscle and fraction-specific measurements of protein synthesis
represent an average of thousands of proteins, which may respond
differently to a particular exercise intervention. Deuterium oxide la-
beling with proteomic analyses of muscle samples can resolve the syn-
thesis of individual proteins within the muscle [213] and has
highlighted that proteins with different functions have different syn-
thesis rates in human muscle [214]. The first dynamic proteomic anal-
ysis of human skeletal muscle responses to RT included parallel
measurement of protein-specific synthesis and abundance data for
almost 100 muscle proteins [215], adding new detail on the selectivity
of protein turnover responses to RT. The patterns of protein synthesis
and abundance changes in skeletal muscle included subsets of proteins
that i) increased in turnover but exhibited no change in abundance, ii)
increased in abundance without a parallel rise in synthesis rate, and iii)
decreased in abundance even though the synthesis rate was increased. In
comparison, profiling of individual protein synthetic rates in response to
aerobic-type exercise showed a significant increase in the turnover of 22
proteins (from 409 measured) associated with energy metabolism,
proteasome, and cell stress in endurance-trained muscle [216].

5. Future directions

5.1. Important considerations for acute post-exercise signalling

To date, much of our understanding of molecular exercise physiology
has arisen from hypothesis-led studies targeting small numbers of pro-
teins that have well-defined modification sites. Necessarily, the current
literature includes a mix of studies at different levels (cell, animal, or
human) and using different interventions (gain-loss- function, pharma,
or exercise). The diversity of experimental designs is a strength but also
should not be overlooked when attempting to summarise the mecha-
nisms of exercise-induced muscle adaptation. Some mechanistic data (e.
g., gain-/loss-of function in cell models) may not apply in the context of
exercise. For example, data collected in non-muscle cells or experiments
that did not include exercise should be treated with caution until vali-
dated specifically in the context of exercised muscle. Changes in PTM (e.
g., phosphorylation of S, T, or Y) must be interpreted against the context
of cooccurring changes across the networks in which protein residue is
involved. Intracellular signaling represents a computational system that
reads various inputs (e.g., changes in energy status, metabolism, redox
state, mechanical stress, etc.) and generates a particular output (e.g.,
modulation of gene expression, protein synthesis, degradation, and
abundance). The processing algorithmmay be different in the muscles of
trained athletes versus untrained individuals, or the input may be sensed
differently depending on the cellular context (e.g., redox state), leading
to concepts of hormesis and bi- or multi-phasic responses to exercise.

More recently, non-targeted ‘omics’ studies have brought forth new

hypotheses and may reveal new candidates that distinguish between AE
and RE mode-specific adaptation. Højlund et al. (2009) [217] reported
the first non-targeted data on the human muscle phosphoproteome and
identified phosphorylation of muscle-specific proteins, confirming the
role of phosphorylation in the regulation of skeletal muscle function.
Hoffman et al. (2015) [176] reported phosphoproteomic profiling of
muscle collected from youngmen before and immediately after ~10min
of high-intensity aerobic exercise and highlighted 1004
exercise-regulated phosphosites, of which 92 % were yet to be associ-
ated with upstream kinases [176]. Surprisingly, just 5
exercise-responsive phosphorylation sites were known substrates of
AMPK, which questions the narrow focus of targeted studies on ‘master
regulators’ of exercise adaptation.

Potts et al. (2017) [218] reported phosphoproteomic profiling of
mouse tibialis anterior collected 1 h after a bout of maximal intensity
contractions (MIC) induced by electrical stimulation. Contractile activ-
ity resulted in significant differences in phosphorylation of 621 sites on
313 proteins, with the majority (531 sites) increasing in phosphoryla-
tion after exercise. Most exercise-responsive phospho-sites had not
previously been detected and only 12 phosphosites had known upstream
kinases, which were mapped to ERK1/2 and CAMKII. In a subsequent
study [155], rapamycin was used alongside the MIC protocol to inves-
tigate mTORC1-dependent and independent phosphorylation. Over
2000 unique phosphorylation sites were significantly regulated, but just
38 sites were rapamycin-sensitive, and most MIC-induced phosphory-
lation was rapamycin-insensitive anabolic pathways [155].

Exercise mode-specific phosphorylation of muscle proteins was re-
ported by Blazev et al. (2022) [219], who identified 5486 phosphosites
(on 1573 proteins) that were significantly regulated 1 h and 3 h after at
least one of either endurance (90 min, 60 % of VO2 max), sprint (3 × 30
s all-out cycling), or resistance exercise (6 sets of 10 rep max knee ex-
tensions) in 8 healthy, untrained men [219]. Phosphorylation of 430
sites were common across the different training modes, including
phosphorylation of the novel gene product C18ORF25, which was
validated as an AMPK substrate [219]. In contrast, the phosphorylation
of rapamycin-sensitive mTORC1 substrates was specific to different
training modes [219]. Phosphoproteomic analyses can reveal unique
signaling networks in response to different training modes that may
accumulate to result in differences in the adaptive responses to training.

Non-targeted analyses add significant power to discover new
mechanisms and, simultaneously, have exposed how little is known
about signaling networks and the paucity of information on which ki-
nases regulate which phosphorylation sites. Despite their comprehen-
sive nature, non-targeted PTM studies so far have raised more questions
than answers, and it is still unclear which key signaling events might be
mechanistically linked to phenotypic muscle adaptations. As yet, few
omic studies have considered more than one type of PTM. This review
focuses on phosphorylation, which currently has the largest body of
evidence in the context of skeletal muscle and exercise adaptation.
However, crosstalk exists between different PTM (e.g., ubiquitination)
on the same protein [220]. Multi-PTM omic studies are required to bring
a complete understanding of intracellular signaling networks.

Currently, the full repertoire of mechanisms of exercise is unknown,
and many questions remain unanswered regarding how different modes
of exercise result in distinct muscle responses. Even when constrained to
protein phosphorylation, higher levels of complexity exist than are
currently considered. The archetypal exercise substrate, AMPKa1, has
50 known sites of post-translational modification, including 36
phospho-sites, 12 ubiquitylation sites, 1 acetylation, and 1 SUMOylation
site (Phosphosite, AMPKA1 human site table). Just 20 of these sites have
been investigated using targeted (low throughput; LTP) methods, and
>80 % (227/280) of those studies focus on a single phosphorylation site
(T183). Similarly, 34 modification sites are known on the human isoform
of AMPKa2, and only 12 sites have been studied by LTP targeted ana-
lyses, including the exercise responsive T172 mapped with 222 targeted
studies from a total of 249 mapped to the entirety of AMPKa2. From a
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total of 109 PTM sites mapped to mTOR (Phosphosite, mTOR human site
table) from discovery and targeted analyses (60 phosphorylation, 47
ubiquitylation, 2 acetylation), only 11 sites have been followed up with
targeted investigation and only 2 sites (i.e. the exercise responsive S2448

and S2481 phosphorylation sites) mapped with >10 targeted analyses
(217 and 68, respectively from a total of 304 citations providing low
throughput analysis of the human isoform of mTOR).

6. Summary

In the future, it will be necessary to understand the interactions
between different types of PTM across and within different proteins. In
such studies, changes in gene expression, ribosomal activity, cellular
location of proteins, and degradation rate are the immediate outcome
measures that, in turn, need to be related to changes to the muscle
proteome (i.e., protein abundance profile) and phenotype/functional
characteristics of the muscle. Adaptation is a time-dependent process
that, so far, has been investigated by time-series studies of samples
collected at discrete time points. Time-series studies attempt to describe
the continuous dynamic process of adaptation using snapshots that are
an incremental sequence of isolated points. Emerging new dynamic
proteomic methods that combine proteomics with stable isotope label-
ing offer new opportunities to investigate the process that occurs be-
tween each sampling point. If a protein becomes more abundant from
one time to the next, it is not clear whether more of that protein was
synthesized or less degraded. Protein turnover is the mechanism of
adaptation; therefore, readouts of synthesis and degradation should be
the most relevant outcome or end point for studies on intracellular
signaling.

Mechanistic studies cannot be conducted in humans but the analysis
of molecular responses to exercise in human muscle is essential to
validate data from cell and non-human animal models. Studies in
humans provide the only substrate for within-subject analysis of mo-
lecular processes, which is a key advantage that is currently under-
exploited. Both cell and animal experiments necessarily use indepen-
dent groups at different time points, which introduces an additional
source of error because different animals or cell cultures are used at
different time points. Although the number of biopsies is limited, there
are examples of multi-time point studies, and in these cases, extensive
omic analyses should be employed to make the most of the limited
samples. Currently, the focus on limited numbers of molecular targets at
too few time points limits our understanding of the crosstalk between
different molecular mechanisms involved in the adaptive process with
exercise.

Despite divergent outcomes of chronic training of one form of ex-
ercise or the other, relatively little is known about the exercise mode-
specific acute signaling mechanisms that are proposed to result in the
transition to an aerobic or resistance-trained muscle phenotype. Un-
doubtedly, exercise of either type (AE or RE) results in profound tran-
scriptional responses, with some common genes being transcribed and
some that are unique [221]. The general thesis is that with each exercise
session, there are transcribed genes that are subsequently translated,
and the resultant proteins accumulate to change, over time, the
phenotype of the muscle [2]. Studies on AE have often focused on
linking signaling to transcription factors and changes in gene expression
[222]. Studies on RE often try to link signaling to translation initiation
and subsequent protein synthesis [223]. What we know far less about is
what occurs when concurrent exercise is performed, combining both AE
and RE, which were generally thought to oppose each other [224]. We
propose that while the ultimate phenotype of the muscles of aerobic and
resistance-trained persons are different, there may be more in common
than there are distinct, at least initially, until training progresses to a
point where the persistent practice of one type of exercise refines the
response leading to a more distinct phenotype (Fig. 3).

The molecular responses to acute exercise in an untrained state may
largely consist of a ‘generic stress’ response to the unaccustomed

perturbation. Hence, only over time, with repeated exercise bouts, is
muscle able to adapt to the stimuli, whereby the extent of the pertur-
bation is refined and potentially targeted towards efficient adaptation
for improved muscle function and substrate utilization specific to the
exercise stimulus [225]. Therefore, a preparatory shift in the muscle
proteome and phosphoproteome should be apparent in the early phase
of training.

Differences should exist between the proteomes of untrained,
trained, and highly trained individuals that could aid the interpretation
of differences in muscle signaling in these states. In line with these hy-
potheses, Damas et al. (2016) [200] demonstrated that the acute
exercise-induced increase in protein synthesis only correlated with hy-
pertrophy after an initial attenuation of damage had occurred [200]. We
propose that a significant overlap of exercise-induced signaling patterns
exists in response to the initial exposures to exercise, regardless of mo-
dality. With chronic exposure (i.e., training), skeletal muscle transcrip-
tional and translational programs are refined and initiate signaling
pathways that drive phenotypic changes [25,226]. Acute signaling can,
therefore, change as an individual becomes more accustomed to the
stress of exercise training. For example, in untrained individuals, the
acute signaling response of canonical signaling pathways, including
AMPK, ERK1/2, and p38, is attenuated after only 10 days of intensified
aerobic exercise, such that acute exercise no longer elicits a significant
elevation in phosphorylation [37].

The degree of post-exercise signaling and transcription does not

Fig. 3. Exercise perturbation in unaccustomed muscle elicits a less specific
signaling (PTM, transcription, and translation) response that becomes more
refined with chronic training. With repeated exercise of a specific modality, the
molecular response to exercise has a lesser but more efficient PTM cascade to
induce exercise-specific changes in muscle protein content and phenotype.
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necessarily equate to a proportional change in protein content or func-
tion. There exist some relationships between mRNA and protein
expression that have been established [227]; still, the acute expression
does not correlate well with protein translation/content or accurately
predict phenotypic outcomes of training in humans [2,228–230]. More
recent omic studies have substantially expanded on the discordant
relationship between genes and proteins [231]. The discordance be-
tween mRNA expression and protein content may be related to (i)
post-transcriptional processing and transcript stability, (ii) translational
capacity and efficiency, and (iii) protein degradation. Discordant re-
sponses between PTM exercise signaling, mRNA abundance, protein
synthesis, and long-term adaptation (typically assessed as change in
muscle protein content) are not uncommon in exercise literature [200,
205,225,232–234]. Therefore, more omic studies that encompass tran-
scriptomic, phosphoproteomic, proteomic, and proteome dynamics are
required to unravel the relationship between acute stimuli and pheno-
typic outcomes.

Lastly, changes in signal transduction following AE or RE elicit
divergent elevation of protein synthesis despite commonly regulated
signaling pathways. For example, AE and RE have demonstrated similar
phosphorylation status of AMPK T172 and FAK Y576/577 and eIF4E S209

but elicited differential responses in synthesis rates when assessing
myofibrillar and mitochondrial protein fractions [25]. Therefore,
studies that better relate the acute (transient) and chronic (adaptation)
changes in signaling to protein-specific dynamics and muscle function
are required to improve our understanding of the mechanisms of
adaptation with exercise training. We hypothesize that there are key yet
uncharacterized differences in the signaling and subsequent regulation
of protein-specific synthesis and degradation that drive unique adapta-
tion to AT and RT. These differences in molecular responses can only be
detected with multi-timepoint/omic methods that consider both key
differences and similarities in the transient PTM responses to acute ex-
ercise, as well as changes in proteome dynamics over longer periods of
training.
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