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A B S T R A C T

The distinctive features of maritime infrastructures present significant challenges in terms of security. Disrup-
tions to the normal functioning of any part of maritime transportation can have wide-ranging consequences at 
both national and international levels, making it an attractive target for malicious attacks. Within this context, 
the integration of digitalization and technological advancements in seaports, vessels and other maritime ele-
ments exposes them to cyber threats. In response to this critical challenge, this paper aims to formulate a novel 
cybersecurity risk analysis method for ensuring maritime security. This approach is based on a data-driven 
Bayesian network, utilizing recorded cyber incidents spanning the past two decades. The findings contribute 
to the identification of highly significant contributing factors, a meticulous examination of their nature, the 
revelation of their interdependencies, and the estimation of their probabilities of occurrence. Rigorous validation 
of the developed model ensures its robustness for both diagnostic and prognostic purposes. The implications 
drawn from this study offer valuable insights for stakeholders and governmental bodies, enhancing their un-
derstanding of how to address cyber threats affecting the maritime industry. This knowledge aids in the 
implementation of necessary preventive measures.

1. Introduction

Global maritime transport is crucial, accounting for over 80% of 
global trade in goods (Li and Yang, 2023; UNCTAD, 2022). The exten-
sive use of advanced technology and intelligent telecommunication 
systems in both mobile and fixed maritime components raises significant 
concerns about the potential impact of cyber-attacks. In the contempo-
rary era, seaports and vessels employ a diverse range of sophisticated 
technological systems that incorporate electronic software and hard-
ware to improve effectiveness, safety, and overall functionality. The 
implementation of Automated Terminal Operating Systems (ATOS) for 
container optimization, Port Security Systems, and Cargo Handling 
Equipment Automation in seaports, along with Global Positioning Sys-
tems (GPS), Automated Identification Systems (AIS), and Electronic 
Chart Display and Information Systems (ECDIS) on vessels (Weng et al., 
2023), raises concerns regarding cybersecurity in the maritime domain. 

In 2017, Maersk, a leading global shipping company with the largest 
fleet capacity (comprising 18% of the global fleet capacity), experienced 
significant financial losses amounting to $300 million due to the most 
severe cyberattack ever recorded in the maritime industry. The attack 
involved the NotPetya ransomware, which infiltrated the company’s 
reservation system, resulting in the widespread congestion of 80 ports 
worldwide. Some of these ports experienced complete disruptions in 
loading traffic and container operations. Rotterdam’s automated ter-
minal was rendered inactive, and electronic systems in New York and 
New Jersey froze (Benmalek, 2024). Given the gravity of cyber-attacks 
and their unique nature, which sets them apart from other security 
concerns by transcending physical boundaries, hackers have the 
freedom to target electronic systems worldwide at any given moment.

Recognizing this, there is an essential need to redirect attention from 
conventional safety and security measures on physical systems toward 
addressing the risks posed by cyber threats. In 2022, the International 
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Maritime Organization (IMO) took a significant step by revising its 
guidelines on “Maritime Cyber Risk Management”. These updated 
guidelines offer comprehensive recommendations at a high level, aiming 
to protect the shipping industry from both existing and evolving cyber 
threats and vulnerabilities. Notably, the guidelines incorporate func-
tional elements designed to enhance the efficacy of cyber risk manage-
ment practices in the maritime sector (IMO, 2022). On an individual 
level, attempts have been made to assess the cybersecurity risks in the 
maritime sector through both qualitative and quantitative approaches. 
Oruc et al. (2022) presented a summary of global standards, current 
bridge test environments, and regulations established by the IMO for 
evaluating cybersecurity risks in integrated navigation systems. Kessler 
(2021) offered a technical analysis of Control Area Network (CAN) bus 
standards and operations within maritime vessels, delving into cyber-
security vulnerabilities that could compromise the confidentiality, 
integrity, or availability of information in the maritime industry. Schinas 
and Metzger (2023) conducted a review highlighting policy gaps in the 
realm of cybersecurity within the maritime domain. In response to these 
identified gaps, they introduced the concept of “cyber-seaworthiness” as 
a proposed solution. Kanwal et al. (2022) conducted an evaluation 
examining the interplay between the cybersecurity performance of ships 
and six distinct cybersecurity dimensions. These dimensions encom-
passed aspects such as “regulations,” “company procedures,” “shipboard 
system readiness,” “training and awareness,” “human factor,” and 
“compliance monitoring".

From a quantitative perspective, attempts have been made to apply 
conventional risk assessment techniques to address cyberthreats. Ex-
amples of such efforts include the use of HAZOP (Hazard and Opera-
bility), FMEA (Failure Mode and Effect Analysis), FTA (Fault Tree 
Analysis), ETA (Event Tree Analysis), Bow-tie, attack trees, and risk 
matrices (Henriques De Gusmão et al., 2018; Komal, 2023; Progoulakis 
et al., 2021; Yoo and Park, 2021). However, the primary challenge with 
these approaches lies in the significant uncertainty inherent in data 
analysis, raising questions about their effectiveness. To address this 
concern, some researchers have proposed the adoption of advanced 
methods like Bayesian Networks (BN) or a combination of BN with the 
traditional approaches mentioned earlier. This integration is exempli-
fied in the work of Park et al. (2023), who utilized a combination of 
FMEA and Rule-based BN (RBN) to assess and prioritize the risk levels 
associated with various cyber-attacks. Despite some improvement in 
cybersecurity analysis through these recent methodologies, a drawback 
is their reliance on subjective data. The collection of data predominantly 
relies on expert judgment, a practice that invites debate due to inherent 
biases in expert opinions. Factors such as the number of experts 
responding to questionnaires and the quality of their responses critically 
determine the study’s reliability. Additionally, the weighting assigned to 
experts and their opinions is a point of contention. While in safety and 
security analyses, greater weight is often given to experts with more 
experience, in the realm of cyberthreats, there is an argument that 
younger experts, possessing greater familiarity with Information Tech-
nology (IT) systems, may offer more realistic insights (Öğütçü et al., 
2016). Basically, the existing maritime cybersecurity analysis methods 
at large rely on subjective and/or qualitative analysis (e.g., Park et al.’s 
hybrid FMEA (Park et al., 2023) due to the constraints of data avail-
ability. Therefore, in Park et al.’s work (Park et al., 2023), the risk pa-
rameters are generic at a macro level, such as likelihood and 
consequence severity that could be evaluated by domain experts. 
Additionally, a detailed classification of cyber threats across different 
maritime sectors is lacking. In contrast, in this study, it is for the first 
time to employ micro-level risk factors (e.g., regions, attack modes, 
vulnerable targets) to quantify maritime cybersecurity risk levels. It can 
therefore better reflect the real-world cyber security threats and eval-
uate/predict their risk levels, as revealed by the implications of the 
work.

Taking into account the limitations identified in prior research, this 
paper endeavors to pioneer a novel approach to maritime cybersecurity 

risk analysis. The proposed method involves harnessing real data 
encompassing all cyber incidents within the maritime industry over the 
past two decades. The intention is to employ this comprehensive dataset 
to train a data-driven BN model, offering a more robust and empirically 
grounded framework for evaluating cybersecurity risks in the maritime 
sector. The contributions of this paper can be summarized as follows:

• Comprehensive data collection on maritime cybersecurity: An 
exhaustive collection of recorded cyber-attacks within the maritime 
industry was conducted, and the data was refined to develop a new 
dataset that encompasses comprehensive information on the most 
relevant risk factors.

• Novel diagnosis analysis: This paper introduces a pioneering 
approach to quantifying maritime cybersecurity risk analysis by 
utilizing real data spanning two decades to train a data-driven BN 
model. This enhances the empirical foundation of cybersecurity risk 
assessment in the maritime sector and marks the first significant 
improvement in the accuracy of cybersecurity diagnosis analysis.

• Identification of contemporary patterns: This study contributes to 
tracking contemporary patterns in maritime cyber-attacks, eluci-
dating key influencing factors such as vulnerable targets, affected 
countries, high-risk regions, types of cyber-attacks, and their origins.

• Insights for nuanced understanding: The adopted approach offers 
valuable insights for a nuanced comprehension of the dynamics 
surrounding maritime cyber threats, providing a more comprehen-
sive perspective. The results serve as a benchmark for enhancing 
diagnostic analyses, ultimately leading to improved prediction 
accuracy.

• Implications for stakeholders and governmental bodies: The study’s 
implications provide valuable insights for stakeholders and govern-
mental bodies, enriching their understanding of addressing cyber 
threats in the maritime industry. This includes optimized resource 
allocation, preventive measures, and mitigation strategies.

The following sections of the paper are structured as follows: Section 
2 offers a brief critique of existing literature on maritime cybersecurity 
and studies related to data-driven BN risk analysis. In Section 3, the 
paper delves into the details of the data collection process, methodology, 
and validation techniques employed for the developed model. Section 4
presents the analysis results and engages in discussions regarding the 
model’s outputs. Further discourse on the results and their potential 
implications, along with considerations for future research directions, is 
provided in Section 5. The paper concludes in Section 6 by drawing 
overall insights and summarizing key findings.

2. Literature review

2.1. Studies on cybersecurity risk assessment

Examining the literature pertaining to cyber-attacks, a significant 
portion of the published papers originates from the fields of computer 
security and related disciplines (Berghout and Benbouzid, 2022; Diao, 
2024; Patriarca et al., 2022; Tang et al., 2023). However, when focusing 
on the maritime field, there is a limited number of identified papers, 
indicating a substantial gap requiring additional research. Several re-
view papers (Ashraf, 2022; Ben Farah, 2022; Larsen and Lund, 2021; 
Tusher et al., 2022) offer a thorough overview of published papers on 
maritime cybersecurity, with the work by Bolbot et al. (2022) standing 
out as the most comprehensive among them. To narrow the focus to 
papers employing a risk assessment methodology, the emphasis will be 
on studies involving risk identification, evaluation, and analysis.

Additionally, attention will be given to research that develops 
frameworks and conducts vulnerability analyses within this domain. 
Several contributions in the realm of cybersecurity studies can be 
attributed to model-based approaches. Tam and Jones (2019), for 
instance, introduced a model-based framework named ‘MaCRA’ 
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(Maritime Cyber Risk Analysis). This framework aims to identify pri-
mary risk outcomes, attackers, attack vectors, and systems that would 
benefit or require additional security. Moreover, it seeks to characterize 
the severity of maritime cyber risks and, crucially, to present risk data in 
informative views that aid human decision-making processes. Schauer 
et al. (2019) introduced a six-stage methodology named ‘MITIGATE 
SCRA’, utilizing a graph-based approach to analyze the risk of 
cyber-attacks within the maritime supply chain. Carreras Guzman et al. 
(Carreras Guzman et al., 2020) presented a master model diagram that 
features a multi-layered diagrammatic representation of cyber-physical 
systems. This model is designed for a comprehensive safety and security 
risk analysis, showcasing its application in the maritime sector through 
the analysis of an autonomous surface vehicle. In the realm of quanti-
tative cyber threat risk assessment, notable work includes the following: 
Park et al. (2023) introduced an innovative hybrid framework, 
combining FMEA with a rule-based BN approach. This framework was 
developed to assess the risk levels of various cyber-attacks in maritime 
operations and rank them accordingly. Quantitative data for this 
assessment was gathered through a questionnaire and expert judgments, 
contributing to a robust understanding of cyber threat risks. A similar 
study in the realm of quantifying cyber threat risks was undertaken by 
Uflaz et al. (2024), focusing on the assessment of potential cyber-attacks 
on bridge navigational systems. Their approach involved a combination 
of Failure Modes, Effects, and Criticality Analysis (FMECA), expert 
judgment, Dempster-Shafer theory, and a rule-based BN technique. This 
comprehensive methodology aimed to provide a quantitative evaluation 
of the risks associated with cyber threats on bridge navigational systems. 
In terms of the port sector, Gunes et al. (2021) proposed a cyber security 
risk assessment methodology tailored for seaports. Their approach 
involved simulating four distinct cyber-attack scenarios within a desig-
nated container port. Employing a comprehensive 13-stage framework, 
they quantified the risk associated with each scenario on a scale ranging 
from 1 to 10. This systematic assessment provided a nuanced under-
standing of cyber security risks specific to seaport environments.

2.2. Application of BN in maritime risk assessment

Among the array of methodologies discussed for assessing the risks 
posed by cyber-attacks, BN stands out for its exceptional ability to model 
and manage uncertainty effectively. When compared to conventional 
risk assessment approaches such as FTA, FMEA, and risk matrices, BN 
emerges as superior in its capacity to capture the intricate causal re-
lationships among risk factors. It excels in managing both subjective and 
objective data concurrently. Moreover, in terms of scalability, recent 
advancements in computational techniques have empowered BN to 
handle the construction and analysis of large-scale structures (Cheng, 
2024; Kong et al., 2024; Sheng et al., 2024). This progress facilitates the 
modeling of complex systems with myriad interconnected variables. 
Additionally, in relation to adaptability, BN offers the flexibility to be 
updated and refined with emerging data or evolving system insights. 
This feature ensures that risk assessments remain pertinent and up to 
date over time (Kabir and Papadopoulos, 2019). These inherent char-
acteristics position BN as a promising and effective tool for the analysis 
of cyber-attacks, enabling comprehensive modeling and the study of 
their potential consequences. In this context, initiating the deployment 
of such a methodology begins with the structural learning of the BN. 
Existing literature indicates that mastering the structure learning of BN 
can be a formidable task, given the super-exponential multitude of po-
tential graphs and the challenge of accurately diagnosing relationships 
among various nodes. The integration of expert knowledge has the po-
tential to enhance the learning process, particularly when the number of 
experts and their level of experience reach a satisfactory threshold. In 
this regard, leveraging experts’ insights into cause-effect relationships 
can be employed to shape the network’s structure. Furthermore, 
modeling the individual probabilities of experts correctly labeling the 
inclusion or exclusion of edges can be employed to refine and improve 

the overall learning algorithm (Amirkhani et al., 2017). Given the 
wealth of literature on the application of BN in maritime risk, a selection 
strategy is implemented to offer a manageable yet inclusive set of pa-
pers. This strategy involves picking a combination of both highly cited 
and recently published papers. These chosen papers should not only 
focus on maritime security but also offer innovative perspectives on the 
application of BN within this context. Both Bouejela et al. (Bouejla et al., 
2014) and Pristrom et al. (2016) utilized expert judgment alongside data 
from the IMO to establish a BN structure for evaluating the risk of piracy 
attacks on ships. Jiang and Lu (2020) adopted a hybrid approach, 
combining statistical data with expert knowledge for BN structure 
learning, applying this methodology to analyze maritime piracy in 
Southeast Asia. Hao et al. (2023) introduced a risk analysis and pre-
diction model that explores the internal dynamics of maritime piracy 
accidents using a combination of the Markov model and BN. Chang et al. 
(2021) conducted a risk assessment of autonomous ships with a hybrid 
method combining FMEA and BN. Tuncel et al. (Tunçel et al., 2024) 
devised an integrated approach incorporating rule-based BN and 
FMECA under evidential reasoning (ER) to assess the risks associated 
with anchoring operations on ships.

Although expert judgment is acknowledged as a valuable resource 
for BN structure learning, especially in scenarios with limited or un-
available data, it is essential to acknowledge the potential presence of 
uncertainty and biases. When abundant data is accessible, the utilization 
of machine learning algorithms becomes a precise and efficient alter-
native for learning the BN structure. With the latest progress in BN ca-
pabilities, integrating machine learning methods into BN can boost their 
predictive power and enable the management of complex datasets, 
thereby enhancing the precision of risk assessments. Furthermore, the 
integration of sophisticated techniques for quantifying and propagating 
uncertainty within BN has been devised, leading to more resilient and 
trustworthy risk assessments through the consideration of uncertainty in 
input variables and model parameters. This approach, referred to as 
data-driven BN, involves the extraction of causal relationships, de-
pendencies, and interdependencies among risk factors directly from the 
available data. By leveraging the information contained in the data, this 
method offers a more objective and empirical way to establish the 
structure of the BN, particularly in situations where extensive datasets 
are available. The adoption of a data-driven approach is observable in 
numerous maritime risk assessment studies. In order to provide a 
representative array of papers concerning data-driven BN structure 
learning, a comparable approach is utilized, selecting a mix of both 
widely referenced and recently published works, all of which are rep-
resented in Table 1.

2.3. Research gaps

With consideration of the conducted literature review, the following 
research gaps have been revealed:

1) The dominance of conventional risk assessment techniques in 
cybersecurity: The majority of the existing literature relies on con-
ventional risk assessment techniques (e.g., HAZOP, FMEA, FTA, ETA, 
Bowtie, attack trees, and risk matrices) to address cyber threats. 
However, these methods have been criticized due to the high un-
certainty in cybersecurity risk data and the associated challenges in 
risk inference. There is a need for further research to adapt or 
improve risk analysis methods to enable them to handle the inherent 
uncertainty in cybersecurity data.

2) Subjectivity in expert judgment: The reliance on subjective data and 
expert judgment in most studies introduces potential biases, 
affecting the reliability of cyber risk assessments. New research 
should focus on finding ways to minimize these biases and enhance 
the objectivity of cybersecurity evaluations. It is essential to explore 
methods of mitigating expert bias in cybersecurity risk assessment.
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3) Quality and weighting of expert opinions: Since most current studies 
rely on subjective data, leading to the ongoing debate about how to 
weigh expert opinions, particularly when balancing between the 
insights of experienced and less experienced experts. New research is 
needed to develop methods for systematically and fairly weighing 
expert opinions or to create alternative approaches that can effec-
tively balance different types of expertise.

4) Comprehensive classification of cyber threats in different maritime 
sectors: Many existing studies on maritime cybersecurity risk anal-
ysis suffer from a lack of comprehensive classification of cyber 
threats across various maritime sectors. Some studies focus solely on 
cyber threats affecting vessels, while others concentrate only on 
shore-based entities. New research should aim to develop more 
granular and sector-specific classifications of cyber threats to 
improve the accuracy and relevance of risk assessments.

5) Real-world cybersecurity threat reflection: Many studies fail to 
adequately consider real-world cyber incidents within the industry, 
which can result in unrealistic objectives and less accurate outcomes. 
To address this gap, incorporating micro-level risk factors and 
developing an objective database based on historical data could 
provide a more accurate reflection of real-world threats. Research 
should further validate this approach by comparing the effectiveness 

of micro-level versus macro-level risk assessments in predicting and 
mitigating real-world cyber threats.

This paper builds on the existing literature by pioneering the use of 
data-driven learning in developing a BN model for analyzing cyber 
threats in the maritime sector. However, in contrast to prior research, it 
introduces a novel approach to analyzing the risks associated with 
maritime cyberattacks by incorporating objective data for the first time. 
To achieve this goal, two decades’ worth of maritime cyber incidents are 
manually collected, analyzed and utilized to construct a BN model 
driven by machine learning. Additionally, a comprehensive manual 
examination of each maritime cybersecurity incident across diverse 
entities, including seaports, shipping companies, offshore installations, 
vessels, and others, is conducted to establish the inaugural maritime 
cybersecurity risk database. This study approaches the process from a 
broad and worldwide viewpoint, emphasizing its theoretical novelty. 
The research progresses through several phases, including data collec-
tion, model development, comparative analysis of models, validation of 
the model, and the resulting model output. In contrast to the traditional 
use of BN in risk assessment, this paper is among the pioneering ones 
investigating cyber security risk assessment, and it additionally proves 
the effectiveness of the developed model in maritime cybersecurity risk 
analysis, a less explored but crucial area of growing importance for 
safety at sea. It newly identifies the risk factors during the model com-
parison stage, using real-world data. This endeavor marks a substantial 
leap forward in the discipline, enhancing comprehension of maritime 
cyber-attacks and refining our understanding of the risk attributes 
linked to cyber threats within this field.

3. Methodology

This paper utilizes a data-driven BN methodology to pinpoint the 
‘Security Risk Influencing Factors’ (SRIFs) related to cyber threats in 
maritime infrastructures such as seaports and vessels. In this regard, a 
holistic framework encompassing four pivotal stages is developed: data 
collection and processing, BN model construction, model validation and 
verification, analysis of model outputs, and extraction of useful infor-
mation. The ultimate goal is to propose effective guidelines for 
bolstering maritime security. Fig. 1 demonstrates the entirety of our 
proposed methodology.

3.1. Data collection and processing

In the process of gathering information on cyber-attacks targeting 
maritime infrastructures, the Maritime Cyber Attack Database (MCAD) 
is employed for its specific focus (MCAD, 2023). Originating from 
open-source data, the MCAD is the result of collaborative efforts by the 
Maritime IT Security research group at NHL Stenden University of 
Applied Sciences in the Netherlands, encompassing details on more than 
160 cyber incidents within the maritime sector. This database goes 
beyond vessel-related events, also documenting incidents affecting 
seaports and various maritime facilities on a global scale. The timeline 
for data collection spans from 2001 to 2023, allowing for a compre-
hensive analysis of maritime cyber threats and the identification of 
meaningful patterns over an extensive period. Upon thorough exami-
nation of the database and consideration of pertinent cases within the 
realm of maritime cyber-attacks, the decision was made to adopt a 
comprehensive approach. Given the novelty of the subject and the 
intricate interplay of cyber-attacks across diverse elements of the 
maritime industry, including the potential impact on seaports, it was 
determined that all incidents, irrespective of their specific target (sea-
ports, ships, offshore structures, and related components), would be 
included for analysis. This inclusive approach ensures a holistic under-
standing of the various cyber threats within the maritime domain. Data 
collection involved manual extraction from the MCAD database, with 
categorization according to various SRIFs. However, during this process, 

Table 1 
Summarization of data-driven BN approach in maritime risk analysis.

No. Source Amount 
of 
dataset

Number 
of nodes

Structure 
learning 
technique

Application

1 Fan et al. 
(Fan 
et al., 
2020)

208 25 Tree 
Augmented 
Naïve (TAN) 
Bayes

Human factors in 
maritime 
accidents

2 Liu et al. (
Liu et al., 
2021)

414 20 Bayesian 
searching 
approach

Maritime major 
accident records 
in the Chinese 
coastal waters

3 Liu et al. (
Liu et al., 
2022)

1880 11 Bayesian 
searching 
approach

Port State Control 
inspection

4 Fan et al. 
(Fan 
et al., 
2022)

61 25 TAN Bayes Maritime 
accidents within 
restricted waters

5 Li et al. (
Li et al., 
2023)

428 23 TAN Bayes Global maritime 
accident

6 Zhou 
et al. (
Zhou 
et al., 
2024)

402 24 TAN Bayes maritime casualty 
analysis

7 Fan and 
Yang (
Fan and 
Yang, 
2024)

104 6 LASSO and 
TAN Bayes

Human fatigue 
investigation in 
maritime 
accidents

8 Xu et al. (
Xu et al., 
2024)

42418 18 Noisy-OR gate 
and the IF- 
THEN method

Navigation status 
control of cargo 
ships.

9 Wang 
and Yang 
(Wang 
and 
Yang, 
2018)

350 21 Augmented 
naive 
Bayesian 
Networks

Accident severity 
in waterborne 
transportation

10 Kamal 
and Cakir 
(Kamal 
and 
Çakır, 
2022)

418 13 TAN Bayes Marine accidents 
in Istanbul Strait
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certain shortcomings were encountered in obtaining precise information 
regarding the SRIFs. These shortcomings stem from certain gaps in the 
data, such as missing details about the target characteristics (such as 
whether it was offshore infrastructure, a port, a shipping company, or a 
maritime organization), the extent of the consequences (whether the 
impact of the cyberattack was significant or minimal), the source of the 
attack (with some cases having unidentified origins in the database), and 
the geographical region of the incidents. Not all data were available in 
the database. To address these issues, additional information from news 
articles and public sources was researched and gathered to create a 
refined database suitable for model development. Each case was scru-
tinized individually to extract missing information through resources 
referenced by MCAD and cross-referencing relevant websites to validate 
the data in MCAD. For instance, in February 2022, the UK ferry operator 
Wightlink, based in Portsmouth, was hit by a cyber-attack. The database 
only mentioned that the back-office IT systems were compromised. Our 
further investigation revealed it was a phishing attack with a minor 
impact on the company’s functionality. Another example is the June 
2021 ransomware attack on the network of the Woods Hole, ’Martha’s 
Vineyard, and Nantucket Steamship Authority in Boston, MA, USA. 
Initially, the database only mentioned that malware encrypted files, 
rendering the system inoperable. Additional research uncovered that the 
attack had a major impact, preventing changes or bookings for reser-
vations, causing ticketing delays, and limiting the availability of credit 
card systems, necessitating cash transactions. Overall, the refined 
database underwent rigorous scrutiny and cross-checked with multiple 
information sources to ensure the reliability of the collected data and 
address any missing items in the MCAD.

3.2. SRIF identification

In this paper, the elements influencing the security of maritime in-
frastructures and vessels are denoted as SRIFs. These factors are 

identified by examining data from the MCAD, as well as by incorpo-
rating information from a literature review to classify and compile 
relevant indicators. The pertinent literature is chosen by conducting 
searches with keywords such as “cybersecurity”, “cyberattacks,” and 
“cyber threats” on the Web of Science. From numerous identified papers, 
10 have been scrutinized for their relevance and content, with the aim of 
extracting the most significant SRIFs. Table 2 presents the selected 
literature along with their corresponding SRIFs.

In the context of cyber-attacks, the precise factors that exert a sig-
nificant influence on the overall risk level are not yet fully understood 
due to their novel and complex nature. However, a literature review, as 
outlined in Table 2, and available historical data have identified 7 SRIFs 
for a data-driven BN analysis. These factors encompass cyber threats, 
target entities (including offshore structures, shipping companies, ves-
sels, etc., not limited to seaports), victim and origin countries, regions, 
years, and consequences. It is noteworthy that the scope of potential 
targets extends beyond seaports to include various maritime-related 
elements. This broader perspective provides a holistic understanding 
of how cyber-attacks may unfold in the maritime industry. Throughout 
the selection process of SRIFs, several criteria were considered to ensure 
the model’s accuracy, relevance, and practicality. Here are the key 
criteria adopted for this study:

1) Literature review: It is evident that SRIFs recognized in the literature 
as critical to cybersecurity should be prioritized. This process in-
volves examining academic papers, industry reports, and case studies 
to identify factors with a significant impact on research outcomes. 
Furthermore, among the identified SRIFs, those empirically vali-
dated through previous studies are more likely to have a well- 
established relationship with the outcomes being modelled. There-
fore, we conducted a comprehensive literature review by conducting 
searches with keywords such as “cybersecurity”, “cyberattacks,” and 
“cyber threats” on the Web of Science. From numerous identified 

Fig. 1. The proposed framework for security risk analysis.

Table 2 
The sources of SRIFs based on the retrieved results and the comprehensive dataset.

Reference SRIFs

1 2 3 4 5 6 7 8 9 10 11 12

Uflaz et al. (2024) * * * * * * *
Gunes et al. (2021) * * * * * * * *
Kavallieratos et al. (2021) * * * *
Bolbot et al. (2020) * * * * * * * * *
Kavallieratos et al. (2019) * * * * *
Yoo and Park (2021) * * * *
Park et al. (2023b) * * *
Tam and Jones (2019) * * * * * * * * *
Henriques De Gusmão et al. (2018) * * * * *
MCAD * * * * * * * *

Note: 1. Region; 2. Country; 3. Perpetrator; 4. Scenario; 5. Cyber-attack type; 6. Target; 7. Successful attack; 8. Property damage; 9. Prevention ability; 10. Security risk 
level; 11. Consequence; 12. Temporal trend.
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results, 10 papers have been scrutinized for their relevance and 
content to extract the most significant SRIFs. Table 2 presents the 
selected literature along with their corresponding SRIFs.

2) Availability of factors in the database: It is essential to ensure that the 
selected SRIFs are well-represented in the database with minimal 
missing data, as factors with significant missing information can 
result in inaccurate or biased outcomes. Additionally, it is crucial to 
verify that the data related to these factors is consistently recorded 

and formatted. Inconsistent data can complicate the modelling pro-
cess and diminish the reliability of the results. In this context, the 
SRIFs identified from the literature review were cross-referenced 
with the existing factors in the MCAD database to ensure a consis-
tent selection process. For instance, factors such as scenario, property 
damage, prevention ability, and security risk level were identified in 
the literature review but were missing in the database. Consequently, 
these factors were excluded from further analysis.

Table 3 
Cyber SRIFs states and their descriptions.

SRIFs States Description

Cyber threats DDOS, Hacking, Jamming, Malware, Phishing, Ransomware, Spoofing A “DDOS” which stands for Distributed Denial of Service attack, is an intentional 
effort to disrupt the normal operation of a network, service, or website by 
inundating it with a surge of internet traffic. 
“Hacking” serves as a broad term encompassing unauthorized access into 
computer or network systems, aiming to manipulate information, engage in data 
theft, or disrupt normal operations. 
“Jamming” refers to intentional interference with radio and GPS signals, wireless 
communications, or radar systems, with the goal of disrupting or preventing 
normal communication. 
“Malware” involves introducing harmful software to disrupt the functioning of 
computer systems, networks, or devices, leading to malfunctions or the 
dissemination of inaccurate data. 
“Phishing” is occurred when victims are deceived into revealing sensitive 
information through deceptive communication posing as a trustworthy entity. 
“Ransomware”, evident from its name, is a form of virtual extortion in which 
malicious software encrypts the victim’s system, rendering it inaccessible, and 
demands payment for the decryption key. 
“Spoofing” deceives AIS systems with false signals, causing incorrect vessel 
information, while the system remains operational; distinct from jamming, 
which disrupts and disables the system.

Target Offshore structures, Port, Shipping company, Vessel, Other “Offshore structures” encompass a range of installations and facilities situated in 
bodies of water, usually distant from the shore. Examples include gas and oil 
platforms, wind farms, and drilling rigs. 
“Shipping companies” are responsible for the sea transportation of goods or 
passengers. They own, operate, and manage vessels, including cargo ships, 
container ships, tankers, and more, facilitating global maritime trade and 
transportation. 
Entities related to maritime activities, including shipbuilding firms, energy 
distributors, insurance, and brokerage organizations situated on the shore, are 
categorized under the label “other."

Victim 
countries

Australia, Belgium, Canada, China, Cyprus, Denmark, Germany, Greece, India, 
Indonesia, Iran, Israel, Japan, Kuwait, Netherland, Norway, Philippines, 
Russia, Saudi Arabia, Singapore, South Korea, UK, Ukraine, USA, Other

“Countries” experiencing fewer than three cyber-attacks are collectively 
categorized under the “other” state. The screening criteria are established at 
fewer than 3 cyber-attacks to eliminate over 15 countries as new states. This 
method is adopted to circumvent the subsequent drawbacks: 1. As the quantity of 
states within a node rises, so does the complexity of the BN. 2. A greater volume 
of data is required to precisely gauge the probabilities linked with each state as 
the number of states increases. 3. A BN featuring numerous states within a node 
might become less understandable. This approach is applied to the rest of the 
nodes as well.

Region Eastern Asia, Europe, Middle east & North Africa, North America, Other “Regions” experiencing fewer than three cyber-attacks are collectively 
categorized under the “other” state. The selection of regions is based on the 
frequency of cyber-attacks as well as the focus maritime entities in different areas 
of the world. For instance, Europe encompasses all territories surrounding the 
European continent, spanning both Western and Eastern Europe. While, Eastern 
Asia concentrates solely on this specific part of the continent, encompassing 
Southeast Asian countries due to the dense concentration of maritime entities in 
this region. This concept applies similarly to other regions across the globe.

Cyber threat 
origin

China, Iran, Nigeria, North Korea, Russia, Other, Unknown It’s important to clarify that identifying origin countries in cyber-attacks doesn’t 
necessarily implicate the involvement of their states. The attribution is based on 
tracking the cyber-attack to a specific location. 
“Countries” involving fewer than three cyber-attacks are collectively categorized 
under the “other” state.

Consequence Major, Minor Consequences are categorized as “major” if they cause substantial disruption to 
the targeted entity’s operations, resulting in significant physical and financial 
damage, as well as serious data theft and credential compromise. Conversely, 
attacks with less severe consequences are attributed to the “minor” category. To 
clarify this categorization, the NotPetya ransomware attack on Maersk, a major 
cyber-attack causing a $300 million loss, exemplifies significant consequences. 
Similarly, the hacking of India’s Jawaharlal Nehru Port Container Terminal in 
February 2022, resulting in a five-day shutdown, underscores “major” 
repercussions. Conversely, less impactful incidents, either successfully thwarted 
or quickly recovered from, are labelled as “minor” cyber-attacks (Benmalek, 
2024).

Year 2001–2023 –
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3) Expert judgment and domain knowledge: Experts can offer insights 
that are not visible in data or literature alone, aiding in capturing the 
subtle complexities of the domain. In this study, we sought assistance 
from two experts with substantial knowledge and experience in this 
domain and requested their approval of the selected SRIFs.

4) Model testing and validation: By creating a preliminary TAN-based 
BN with the initially selected SRIFs and testing its performance, 
the least relevant factors can be identified. By eliminating these 
irrelevant factors and continuously refining the model through iter-
ative adjustments based on performance metrics and the D-separa-
tion technique, the final SRIFs are selected. For example, we initially 
considered the factor “months of the year” to determine if it 
contributed to the occurrence of cyber threats. After running the 
model and testing this factor’s influence on the target node, we found 
it to be irrelevant and ineffective. Therefore, it was excluded from the 
study.

For detailed information about the cyber SRIFs, their states, and 
descriptions, refer to Table 3.

3.3. Data-driven BN structure learning process

BN is an advanced graphical inference technique capable of 
modeling both subjective and objective data, taking into account the 
uncertainty associated with them. As a formal probabilistic approach, 
BN can also depict the causal relationships among random variables by 
employing conditional probabilities (Yang et al., 2018). In the con-
struction of BN models, two primary approaches are typically employed. 
One of them relies on a data-driven method, where the connections 
between nodes are identified based on the inherent patterns within the 
data, often extracted through machine learning processes. The second 
approach is grounded solely in expert judgment, where the model is 
built based on the knowledge and experience of experts. In this method, 
it is the experts who determine the relationships between nodes, 
deciding which nodes are interconnected. In situations where a sub-
stantial amount of data is available, the data-driven approach tends to 
surpass the expert judgment approach. This is because employing 
empirical data helps minimize inherent biases associated with expert 
judgment.

This study aims to construct a BN structure by adopting the data- 
driven approach. This method seeks to capture various relationships, 
encompassing dependencies and interdependencies among different 
identified SRIFs. The literature presents diverse approaches that have 
been introduced and implemented for constructing BN using a data- 
driven approach. These approaches exhibit distinct strengths and 
weaknesses, influenced by factors such as the nature and volume of the 
data, the complexity of the network, the number of nodes and arrows, 
the extent of dependencies, and the validation methods employed, 
among others (Meng et al., 2022).

This paper employs the TAN Bayes algorithm, a data-driven 
approach among existing methods for constructing BN. TAN estab-
lishes a tree structure among features, with each node representing a 
feature and edges denoting dependencies between features. Typically, 
this tree is formed by designating the feature with the highest mutual 
information with the class variable as the node, followed by the addition 
of edges between features based on their mutual information with the 
class variable. TAN is designed to capture more realistic dependencies 
between features, offering greater flexibility compared to the conven-
tional Naive Bayes model, while still maintaining computational effi-
ciency. This algorithm is especially advantageous in scenarios where 
strong dependencies among features cannot be adequately addressed by 
the stringent independence assumption of Naive Bayes networks (NBN).

To elucidate this concept, a straightforward demonstration illus-
trating the disparity between NBN and TAN can be observed in Fig. 2. In 
NBN, attribute nodes are devoid of edges, thus capable of representing 
zero conditional dependencies. However, the assumption of conditional 

independence is overly rigid for real-world scenarios. When confronted 
with intricate attribute dependencies, this can lead to classification bias. 
For instance, in our scenario, the target node is defined as cyber threats 
with other attributes linked to it. Under the NBN framework, there are 
no interdependencies between the region and the year, thereby over-
looking spatial-temporal considerations. TAN relaxes this independence 
assumption, extending NBN from a zero-dependence tree to a dependent 
maximum weighted spanning tree, purportedly enhancing classification 
performance compared to NBN.

To summarize the advantages of the TAN technique over alternative 
training methods, it can be analyzed from three distinct perspectives. 
Firstly, regarding interpretability, the tree structure in TAN offers a clear 
graphical representation of feature dependencies. This clarity facilitates 
the interpretation of model predictions and enhances the understanding 
of variable relationships. Secondly, in terms of robustness, TAN dem-
onstrates greater resilience to irrelevant features compared to other 
techniques like traditional Naïve Bayes or general BN. Its tree structure 
aids in filtering out extraneous information, focusing instead on perti-
nent feature dependencies, thereby improving model performance and 
mitigating overfitting. Lastly, in terms of efficiency, despite its increased 
complexity relative to Naïve Bayes, TAN remains relatively quick to 
learn. This efficiency renders it suitable for datasets with moderate to 
large numbers of features, where fully learning the joint distribution 
could be computationally cumbersome, time-consuming, and costly 
(Jiang et al., 2012; Ren and Guo, 2023; Wu, 2018).

The conceptual foundation of this approach is detailed in the work of 
Friedman et al. (1997). To succinctly outline the fundamental steps in 
TAN learning, the process involves several key stages (Fan et al., 2020) 
which are demonstrated in Fig. 3. Its application in the context of 
maritime cybersecurity risk is detailed in the ensuing section.

Initially, the data is categorized into different classes known as SRIFs 
as represented in Table 3. Subsequently, data cleansing is performed, 
involving the removal of irrelevant entries and identification of missing 
data. Following this, the target node, representing the class variable for 
classification and serving as the starting point for tree modeling, is 
selected. In this case, the cyber threat is selected as the target node to 
understand how various factors contribute to the likelihood of different 
attacks occurring on various maritime targets. The qualitative structure 
of the TAN network is then established based on the mutual information 
between different nodes. Mutual information measures the statistical 
dependence between two variables. In the context of TAN, mutual in-
formation is used to quantify the relationship between each attribute 
and the class variable (target node). The mutual information between 
two variables X and Y is calculated as the reduction in uncertainty about 
X when the value of Y is known, and vice versa. It is commonly defined 
using entropy, a measure of uncertainty in a random variable. The 
mutual information between two discrete random variables X and Y is 
given by (Cover and Thomas, 2005): 

I(X;Y)=
∑

x∈X

∑

yϵY
P(x, y)log

P(x, y)
P(x)P(y)

(1) 

where P(x, y) is the joint probability mass function of X and Y, and P(x) 

Fig. 2. The illustrative comparison between NBN and TAN structure learning.
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and P(y) are the marginal probability mass functions of X and Y, 
respectively. For instance, calculating mutual information between 
cyber threats and target entities reveals which types of entities are most 
frequently targeted by specific threats. This process is also carried out 
for all other nodes in the network concerning the target node.

Furthermore, with the class variable established, the relationships 
among various pairs of variables are discerned by computing conditional 
mutual information. This helps identify the most informative parent 
variable for each attribute in the network.

The conditional mutual information between two discrete random 
variables X and Y given Z is given by (Shannon and C.E. C. E., 1949): 

I(X;Y /Z)=
∑

x∈X

∑

y∈Y

∑

zϵZ
P(x, y, z)log

P(x, y/z)
P(x/z)P(y/z)

(2) 

As an example, the conditional mutual information between “origin 
countries” and “region” given the factor “year” reveals that cyber- 
attacks originating from certain countries are more prevalent in spe-
cific regions during particular years. This will help identify trends and 
hidden patterns among different contributing factors.

After obtaining the pairwise conditional mutual information, the 
maximum spanning tree algorithm is utilized to build a tree structure 
over the attributes in TAN. This typically involves employing heuristic 
algorithms like Prim’s or Kruskal’s algorithm, aiming to connect all at-
tributes while maximizing the total weight of edges and minimizing 
network complexity (Cormen, 2009). Subsequent connections are made 
by calculating conditional mutual information among the remaining 

variables, ensuring that the tree structure reflects the most significant 
informational relationships. For instance, if the conditional mutual in-
formation between regions and target entities is high, an edge is added 
between them. This process continues for other pairs like victim coun-
tries and origin countries, ensuring each node is part of the spanning tree 
with cyber threats as the central node.

The parameter learning phase is executed to determine the condi-
tional probability table for each node. Commonly employed methods for 
parameter learning and CPT acquisition in TAN encompass Maximum 
Likelihood Estimation, Bayesian Estimation, Expectation-Maximization, 
Markov Chain Monte Carlo, Structural EM, and others (Ji et al., 2015). 
The selection of a specific method hinges on factors such as the data’s 
characteristics, computational resources, and assumptions regarding the 
data’s underlying distribution. In this study, Bayesian estimation is 
chosen due to the completeness of the database, the absence of missing 
data, and the method’s recognized accuracy and efficiency. The final 
stage encompasses model evaluation through three sub-steps: inference, 
classification decision, and fine-tuning. Inference calculates joint prob-
abilities using the trained TAN model, guiding classification. Class labels 
are assigned based on the highest probability. Fine-tuning adjusts pa-
rameters to enhance predictive accuracy and robustness, ensuring 
optimal TAN model utilization in real-world scenarios.

3.4. Model validation process

Ensuring the reliability and effectiveness of the constructed model, 
accurately depicting the relationships between nodes, involves the 
implementation of various validation techniques. These techniques 
encompass comparative analysis, data splitting, metric analysis, and 
sensitivity analysis.

3.4.1. Comparative analysis and data splitting technique
The aim of comparative analysis in BN validation is to ensure the 

competitiveness and efficacy of the model against the established 
methods in the field. This boosts confidence in its validity by assessing 
its performance against other relevant models. Various methods can be 
used; for example, comparing it with conventional approaches or widely 
used algorithms in cybersecurity. In this study, due to limited quanti-
tative methodologies for maritime cyber-attacks, predicted probabilities 
are contrasted with statistical counterparts, aiming for consistency and 
reliability. In another approach for validation purposes, the data- 
splitting technique, or train-test split, has been implemented, which 
involves dividing a dataset into training and testing subsets. This allows 
assessment of how well a model generalizes to new data (Joseph, 2022). 
Typically, 80% of the data is used for training, enabling the model to 
learn relationships and structure. The remaining 20% is reserved for 
testing, evaluating the model’s performance on unseen data. Accurate 
predictions on this set indicate model validity (Li et al., 2024a,b). 
Splitting data ensures robust evaluation and enhances confidence in the 
model’s ability to perform effectively on real-world data.

3.4.2. Metric analysis
An alternative method worth considering for validating BN models is 

the use of metric analysis. This approach employs diverse quantitative 
measures to assess the alignment between the constructed BN model and 
real-world data. It offers a thorough evaluation of the model’s predictive 
abilities and its effectiveness in capturing patterns within the data. In 
this study, four widely recognized metrics have been chosen for this 
purpose, namely Precision, Recall, F-measure, and Specificity. These 
metrics are computed using the derived confusion matrix, which en-
compasses predictions categorized as true positives, true negatives, false 
positives, and false negatives (Hu et al., 2016). The confusion matrix 
serves as a comprehensive summary of the BN model’s predictions, 
juxtaposing them against the actual class labels in the dataset. In the 
matrix, the rows denote the actual classes, while the columns represent 
the predicted classes. The term “confusion” matrix is apt as it illustrates 

Fig. 3. TAN structure learning process.
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where the model might experience confusion or make errors in its pre-
dictions. Primarily, the key consideration is the overall accuracy of the 
model, which is directly derived from the confusion matrix. This metric 
signifies the total percentage of correct predictions made by the model. 
Put simply, it calculates the ratio of instances that were correctly pre-
dicted to the total number of instances. An accuracy rate exceeding 90 
percent is generally regarded as indicative of a reliable model. The rest 
of the measures are described in Table 4 with their corresponding for-
mulas (Powers and Powers, 2011).

3.4.3. Sensitivity analysis
Undoubtedly, sensitivity analysis is widely recognized as a crucial 

technique for validating developed models, and BN models are no 
exception. Sensitivity analysis involves monitoring the output as 
changes are introduced to the input. In this scenario, slight adjustments 
are made to the values assigned to the variables within the BN, and the 
model’s outcomes are examined to ensure they respond accordingly. 
Additionally, this analysis aids in identifying the most significant vari-
ables that exert the greatest influence on the target node. In this paper, 
sensitivity analysis is conducted through four primary approaches, 
which include mutual information, joint probability, True Risk Influence 
(TRI) (Alyami et al., 2019), and variation testing.

Within the realm of BN, mutual information, as its name suggests, is a 
metric that measures the level of dependence or information shared 
between two random variables. It measures the extent of interdepen-
dence or shared information between two specific variables in the 
network. A greater mutual information value signifies a more robust 
association, implying that alterations in the values of one variable are 
likely to exert a more significant influence on the other. This information 
proves valuable for comprehending the consequences of varying inputs 
on the overall behavior of the BN.

In order to pinpoint the crucial variables in a BN that exert the most 
significant influence on the target node, this paper adopts the TRI 
technique proposed by Alyami et al. (2019). TRI is defined as the 
average of High-Risk Influence (HRI) and Low-Risk Influence (LRI) 
values. The computation of these values involves specific procedures: 
HRI is determined by elevating the probability of the state of a random 
SRIF with the most substantial impact on the target node, identified 
through joint probability, and subsequently reducing the original value 
of the specific state of the target node. LRI follows a similar process, but 
the variable chosen has the least substantial impact on the target node. 
This approach is based on the rationale that conventional sensitivity 
analysis, wherein different values are assigned to the states of the nodes 
under investigation while keeping the states of other nodes constant, is 
generally suitable for nodes with only two states. In the case of nodes 
with multiple states, changing values in this manner becomes 

challenging. Consequently, identifying only two states with the highest 
and lowest values among others appears more pragmatic for applying 
the traditional method of sensitivity analysis.

The final method utilized for sensitivity analysis in this paper is 
referred to as minor variation testing. This straightforward approach 
adheres to two fundamental principles (Zhang et al., 2013):

Axiom A: A marginal increase or decrease in the prior probabilities of 
each tested node should result in a proportional increase or decrease in 
the posterior probability of the target node.

Axiom B: The overall impact of incorporating probability variations 
from the evidence should be at least as substantial as the impact from a 
subset of the evidence.

In accordance with these axioms and meeting their criteria, a minor 
alteration, not exceeding the value of the smallest state among all SRIFs, 
is systematically applied to different nodes. These nodes are prioritized 
based on mutual information results. The process is iteratively per-
formed for all nodes while preserving previous outcomes. The gradual 
shifts in results signify the cumulative impact of probability variations in 
the input.

4. Results

4.1. TAN-based BN modeling construction

Employing the identified SRIFs outlined in Table 3 and designating 
the cyber threats as the target node, the TAN model for maritime 
cybersecurity is constructed. This modeling process was carried out 
using Netica software (Netica, 2019), as illustrated in Fig. 4. The 
resulting model adeptly captures and signifies the probabilistic de-
pendencies among various variables, employing a specific structure 
conducive to streamlined computations. Following the model’s estab-
lishment, it undergoes a data-driven procedure wherein the diagnostic 
and prognostic capabilities of the model are activated based on the 
feeding of prior data, enhancing its practical utility.

4.2. Model validation

Using the concepts and validation methodologies described in Sec-
tion 3.4, the constructed BN model for cyber threats undergoes valida-
tion to assess its accuracy in both diagnostic and prognostic capabilities. 
Table 5 presents a comparison between the results of statistical analysis 
and the TAN model, revealing a substantial level of agreement.

The findings indicate that ransomware emerges as the most preva-
lent form of cyber-attacks in stationary maritime infrastructures, fol-
lowed by hacking, malware, phishing, and DDOS. It’s important to 
highlight that all the recorded DDOS attacks occurred within seaports. In 
the case of vessels, the two most frequent cyber-attacks are spoofing and 
jamming, respectively. Regarding cyber threats against vessels, certain 
regions worldwide are more susceptible than others. Jamming incidents 
are frequently observed in Eastern Asia, while spoofing tends to be more 
prevalent in the seas around Europe and Northern America. In terms of 
time, the recent years, specifically over the past five years, have wit-
nessed a notable increase in cyber-attacks, reaching a peak in 2020 and 
2021. This trend suggests a continuous upward trajectory. These initial 
findings suggest that BN outperforms statistical analysis. BN demon-
strates the ability to identify causal relationships and the interdepen-
dence of various variables, showcasing its superiority in this context. 
Another validation method utilized in this phase is the D-separation 
technique. D-separation (or Directed Separation) is a key concept in BN 
modeling, used to determine conditional independence between nodes. 
It helps in assessing whether two variables are independent given 
certain evidence, making it essential for reasoning within the network 
(Yu et al., 2021). After the BN is initially constructed, D-separation is 
applied to examine correlations between any two nodes in the network. 
For instance, when the “cyber threat” node is observed, the nodes 
“Target” and “Region” become independent, meaning they are 

Table 4 
The validation metrics.

Measure Formula Description

Precision True positive
True positive + False positive

The accuracy of positive predictions, 
expressing the percentage of true 
positives among all instances that 
the model has predicted as positive.

Recall True positive
True positive + False negative

Assesses the model’s ability to 
capture all relevant instances by 
calculating the ratio of true positives 
to the sum of all actual positive 
instances.

F-measure 2×
Precision × Recall
Precision + Recall

Represents a balance between 
precision and recall, providing a 
single metric that considers both 
false positives and false negatives.

Specificity True negative
True negative + False positive

Measures the ability of the model to 
correctly identify negative instances 
by calculating the ratio of true 
negatives to the sum of true 
negatives and false positives.
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D-separated and conditionally independent. Conducting similar ana-
lyses across other nodes and connections helps to validate the BN 
structure, ensuring its rationality.

To assess the prognostic capability of the developed model, a data 
splitting process is employed by reserving 20 percent of the collected 
data for testing. The model is trained using the remaining 80 percent of 
the data. The resulting confusion matrix, as depicted in Table 6, reveals 
an overall accuracy exceeding 93 percent, with a perfect predictability 
rate of 100 percent for the majority of the target states. This indicates a 
high level of success in the model’s ability to make accurate predictions 
and underscores its reliability for prognostic purposes.

After obtaining the accuracy rate from the confusion matrix, an 
additional metric is utilized to validate the model’s reliability, known as 
the Kappa coefficient, often referred to as Cohen’s Kappa (Cohen, 1960). 
This statistical measure evaluates the degree of agreement between two 
raters or observers when categorizing or classifying items. In the context 
of this paper, the aim is to quantify the agreement between predicted 
and actual results. By applying the Kappa coefficient formula and 

incorporating relevant values, such as the expected proportion of 
agreement and the observed proportion of agreement derived from the 
confusion matrix (representing overall accuracy), the calculated Kappa 
coefficient is 0.92. The result suggests a remarkable degree of consis-
tency in the model, as per Landis and Koch (1977), where a coefficient 
exceeding 0.8 is deemed ideal. This underscores a level of agreement 
that far exceeds what might be expected through random chance.

In line with the information provided in the validation section, Fig. 5
displays diverse performance metrics for each cyber-attack based on an 
analysis of the confusion matrix. Notably, the model’s precision is 
remarkably high, reaching 100% for the majority of cyber-attacks and 
maintaining satisfactory values above 75% for the rest. Concerning 
Recall, hacking and malware exhibit values of 66.6% and 75%, 
respectively, while other types of attacks achieve a perfect 100%. The F- 
measure, a metric that harmonizes precision and recall, surpasses 75% 
across all categories, with the majority scoring above 90%, indicating a 
well-balanced assessment of the model’s performance. As previously 
mentioned, a higher specificity contributes to enhanced model robust-
ness. Specifically, DDoS, hacking, jamming, and phishing showcase a 
specificity of 100%, while malware, ransomware, and spoofing, though 
around 96%, still indicate substantial robustness. An analysis of these 
performance metrics highlights the notable reliability and robustness 
exhibited by the developed model.

During the next phase of the validation process, the strength of the 
relationship between cyber threats and other SRIFs is assessed by 
measuring mutual information, as detailed in Table 7. Significantly, the 
analysis indicates that the factor of “year” emerges as the most im-
pactful, far surpassing the influence of “target” and the “countries falling 
victim” to cyber threats. This underscores the paramount importance of 
temporal considerations, the type of targets and the readiness of cyber 

Fig. 4. TAN-based BN model of cyber attacks.

Table 5 
Comparative analysis of historical and TAN results.

Attack type Historical data (%) TAN results (%) Accuracy (%)

DDOS 6.80 6.52 95.8
Hacking 19.1 19.6 97.4
Jamming 8.70 8.70 100
Malware 14.8 14.5 98
Phishing 11.7 12.3 95.1
Ransomware 24.1 23.9 99.2
Spoofing 14.8 14.5 98
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defense abilities of countries in comprehending and addressing cyber-
security challenges, with a notable distinction in the significance of 
these factors.

Based on the details outlined in Section 3.4, the joint probability of 
the target node (referred to as cyber threats) and other relevant variables 
across different nodes is computed and displayed in Table 8. Altering the 
values of various states in nodes induces corresponding changes in the 
states of the target node. The extent of these variations is contingent 
upon the significance of the states influencing the target node. To 
facilitate clarity and highlight the most and least influential factors, bold 
formatting is applied to the highest and lowest values for both types of 
terrorist attacks. The joint probability analysis yields valuable insights: 
seaports are predominantly targeted by DDOS attacks, whereas ran-
somware incidents are more common in the context of shipping com-
panies. Spoofing, on the other hand, tends to disrupt the normal 
operation of vessels. From a temporal perspective, the early years saw 
DDOS as the dominant cyber-attack type on stationary infrastructures 
like seaports; however, in recent years, ransomware has gained traction 
among attackers. This trend extends to vessels, which were previously 
disrupted by jamming but now face spoofing, considered a more so-
phisticated version of jamming. Spatially, European and North Amer-
ican seaports are more targeted by ransomware, while phishing and 
malware emerge as typical cyber threats for Asian targets. Further in-
sights on this matter will be expounded upon in Section 5.

Taking into account the noteworthy findings highlighted in bold 
from the joint probability analysis, the TRI for all SRIFs is computed 
using the procedure outlined in Section 3.4, and the outcomes are pre-
sented in Table 9. The results underscore that the factor “year” emerges 
as the most influential, significantly impacting the target node. In 
comparison to other SRIFs, “year” obtains the highest TRI value by a 
substantial margin for all types of cyber-attacks. Following, the victim 

country stands out as the second most important variable, with “target” 
trailing closely. The remaining SRIFs can be ranked in the following 
order: region, cyber threat origin, and, finally, consequence. These 
findings shed light on the relative importance of these factors in 
assessing cyber threats in the context of the maritime industry.

In the final stage of the validation process, the developed BN model 
undergoes sensitivity testing. Following the ranking obtained through 
mutual information, each variable is systematically adjusted, starting 
from the least important to the most crucial, with a 3 percent incre-
mental change, and the resulting impact on the target node states is 
observed. Fig. 6 illustrates the gradual increase in the elements of the bar 
chart for all types of cyber threats, clearly indicating that the model 
responds to the changes in a discernible manner. This sensitivity testing 
further validates the robustness and adaptability of the BN model in 
capturing the dynamics of the interrelated variables and their influence 
on the target states.

Table 6 
Confusion matrix of predicted results.

Actual Actual total Accuracy rate (%)

DDOS Hacking Jamming Malware Phishing Ransomware Spoofing

Predicted DDOS 3 0 0 0 0 0 0 3 100
Hacking 0 4 0 1 0 1 0 6 66.6
Jamming 0 0 3 0 0 0 0 3 100
Malware 0 0 0 3 0 0 1 4 75.0
Phishing 0 0 0 0 3 0 0 3 100
Ransomware 0 0 0 0 0 7 0 7 100
Spoofing 0 0 0 0 0 0 5 5 100
Total 3 4 3 4 3 8 6 31 93.3

Fig. 5. The performance metrics for different cyber-attacks.

Table 7 
Mutual information between cyber threats and other SRIFs.

Node Mutual information Percentage (%) Variance of belief

Cyber threat 2.69722 100 0.7011338
Year 0.24606 9.12 0.0165646
Target 0.06310 2.34 0.0028549
Victim country 0.03683 1.37 0.0016443
Consequence 0.03446 1.28 0.0012589
Region 0.02861 1.06 0.0012553
Cyber threat origin 0.01744 0.646 0.0007828
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Table 8 
The joint probability.

DDOS Hacking Jamming Malware Phishing Ransomware Spoofing

Target
Off-shore structure 6.76 20.6 8.74 14.9 14.1 22.3 12.5
Other 6.58 18.0 8.51 16.3 13.5 24.9 12.2
Port 10.5 22.6 8.22 11.8 8.68 28.5 9.75
Shipping company 4.22 21.0 5.46 16.3 16.4 28.7 7.84
Vessel 5.21 15.2 13.3 13.2 8.60 13.9 30.7
Year
2001 17.7 15.4 10.5 13.6 12.6 16.5 13.6
2002 8.29 28.9 9.87 12.8 11.9 15.5 12.8
2008 8.29 28.9 9.87 12.8 11.9 15.5 12.8
2010 5.54 9.67 6.60 51.3 7.93 10.4 8.55
2011 8.43 14.7 10.0 26.0 12.1 15.8 13.0
2012 6.16 21.5 14.7 19.0 17.6 11.5 9.51
2013 15.5 13.6 9.25 24.0 11.1 14.5 12.0
2014 7.24 37.9 8.62 11.2 10.4 13.5 11.2
2015 6.70 23.4 7.97 10.3 28.8 12.5 10.3
2016 9.19 16.0 38.3 7.09 6.58 8.60 14.2
2017 6.31 33.0 3.75 9.73 31.6 5.90 9.73
2018 6.37 16.7 15.2 14.8 4.56 17.9 24.6
2019 3.37 5.87 4.01 15.6 9.63 25.2 36.4
2020 2.37 20.7 2.82 3.66 3.39 48.8 18.3
2021 2.38 16.6 2.84 25.7 10.2 31.2 11.0
2022 5.25 18.3 6.25 4.05 18.8 39.3 8.10
2023 12.9 22.5 5.11 6.62 6.14 40.2 6.62
Victim country
Australia 5.93 23.3 7.52 11.4 10.1 30.2 11.5
Belgium 6.60 16.3 8.37 15.2 11.3 26.7 15.5
Canada 9.64 20.3 8.69 13.2 11.7 23.1 13.3
China 6.77 16.7 8.58 13.0 11.6 18.8 24.5
Germany 6.11 21.3 7.75 11.8 12.6 28.6 11.9
Israel 8.57 21.0 10.8 13.7 12.2 19.8 13.8
Japan 6.06 24.0 7.68 20.2 10.4 19.9 11.7
Netherland 8.39 17.2 8.84 13.4 11.9 23.8 16.4
Other 3.67 16.1 7.36 17.6 16.8 28.3 10.2
Russia 6.61 16.3 8.38 15.3 11.3 18.4 23.8
Singapore 6.73 20.0 8.53 13.0 16.6 22.1 13.0
South Korea 5.41 18.7 18.5 20.5 11.3 15.0 10.5
UK 6.54 21.7 6.89 10.5 15.1 22.0 17.3
Ukraine 7.01 17.3 8.88 18.8 12.0 19.5 16.5
USA 6.74 22.8 5.32 9.58 8.51 34.0 13.1
Cyber threat origin
China 6.68 19.6 8.55 16.5 14.4 19.8 14.4
Iran 7.54 19.3 9.02 14.1 12.3 22.5 15.2
Nigeria 6.96 17.9 8.90 13.9 17.7 20.6 13.5
North Korea 6.47 18.9 13.3 16.9 11.3 19.2 13.9
Other 6.15 21.2 7.36 14.0 10.8 28.1 12.4
Russia 6.87 15.5 7.69 14.6 10.5 24.3 20.7
Unknown 5.58 22.9 7.10 12.5 10.8 29.3 11.9
Consequences
Major 5.03 20.4 9.11 16.4 12.7 28.6 7.84
Minor 8.02 18.7 8.28 12.6 11.9 19.2 21.2
Region
Eastern Asia 5.18 18.4 11.9 20.6 14.0 15.1 14.8
Europe 5.58 16.4 6.70 11.7 12.6 29.6 17.5
Middle east & North Africa 7.99 21.3 10.6 16.3 13.1 17.6 13.1
North America 7.93 21.3 6.82 11.2 9.95 28.9 13.9
Other 6.60 21.8 7.82 12.8 11.8 27.2 11.9

Table 9 
TRI of SRIF for different cyber threats.

DDOS Hacking Jamming Malware Phishing Ransomware Spoofing Average

Year 7.67 16.02 17.74 23.82 14.11 21.45 14.89 16.53
Victim country 2.99 3.95 6.59 5.46 4.15 9.50 7.15 5.68
Target 3.14 3.70 3.92 2.25 3.90 7.40 11.43 5.11
Region 1.41 2.70 2.60 4.70 2.03 7.25 2.80 3.36
Cyber threat origin 0.98 3.70 3.10 2.20 3.60 5.05 4.40 3.29
Consequence 1.50 0.85 0.42 1.90 0.40 4.70 6.70 2.35
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5. Discussions, implications, and future research directions

5.1. Discussions

5.1.1. Different types of cyber-attacks
Examining the compiled database obtained from MCAD and utilizing 

the BN model built from this information, seven distinct cyber threats 
were discerned within the maritime sector. These include DDOS, hack-
ing, jamming, malware, phishing, ransomware, and spoofing. Notably, 
ransomware stands out as the most prevalent threat, accounting for 
nearly 25% of all documented incidents, followed by hacking, which 
comprises almost one-fifth of the total attacks. Through the utilization of 
the model and scenario analysis, valuable information and insights are 
acquired. For instance, by elevating the probability of ransomware to 
100%, an effort is made to discern the primary contributing factors 
influencing the selected state of the target node. Illustrated in Fig. 7, the 
probabilities associated with various states of other SRIFs undergo 
changes, signaling specific insights. Concerning the target, ransomware 
exhibits a preference for targeting shipping companies and seaports. 
This preference can be rationalized by the fact that ransomware at-
tackers commonly demand cryptocurrency payments to restore access to 
compromised systems, compelling companies and seaports to poten-
tially pay the ransom to mitigate downtime and operational disruptions. 
In terms of time, an examination of the past four years reveals a notable 
surge in ransomware incidents, with the peak occurring in 2020. 
Analyzing the geographical distribution of these attacks, Europe 
emerges as the primary target, closely followed by North America. 
Among the specific nations affected, the United States, Australia, and 
Germany stand out as the top three victim countries experiencing ran-
somware incidents. Notably, a significant majority of these cyber- 
attacks fall into the category of major incidents, underscoring the 
severity of their consequences. This temporal and geographical analysis 
highlights the alarming trend of ransomware activity over the specified 
period and emphasizes the global impact of these malicious incidents.

Applying a methodology similar to the one employed for ransomware, 
valuable insights can be derived concerning other cyber threats. Particu-
larly noteworthy are DDoS attacks, renowned for their disruptive impact, 
all meticulously documented within the realm of seaports, causing dis-
ruptions to their regular operations. Fig. 8 represents the corresponding 

values for different SRIFs when the DDoS cyber-attack is set as 100 
percent. Notably, the majority of these attacks have been directed at U.S. 
seaports, with a discernible origin traced back to Russia. Examining the 
timeline, a significant surge in DDoS attacks has been observed in 2023, 
underscoring the critical nature of the situation during this period.

The patterns observed in hacking, malware, and phishing incidents 
exhibit striking similarities concerning their targets and consequences. 
However, when viewed through a temporal lens, hacking records appear 
to be distributed relatively evenly over the past five years. In contrast, 
malware incidents reached their peak in 2019, and phishing incidents 
were most pronounced in 2017. In terms of spatial distribution, Eastern 
Asia emerges as a focal point for malware and phishing activities, 
collectively accounting for one-third and one-fourth of all incidents 
worldwide, respectively. This geographical concentration underscores 
the significance of Eastern Asia in the prevalence of these cyber threats 
on a global scale.

When considering cyber-attacks such as jamming and spoofing that 
specifically target vessels, two prominent countries, namely North Korea 
and Russia, have been identified as leading actors in deploying these 
tactics against maritime targets. The prevalence of jamming incidents 
has notably affected the majority of South Korean vessels, consequently 
establishing Eastern Asia as the region with the highest frequency of 
jamming events from a geographical standpoint. Spoofing, character-
ized as a more sophisticated form of jamming, has witnessed prevalent 
usage, particularly in European seas, over the past five years. Russia, in 
particular, is acknowledged as a trailblazer in employing spoofing at-
tacks against vessels in these maritime regions.

5.1.2. Top cyber SRIFs
Taking into account the findings presented in Table 9, the top cyber 

SRIFs, ranked according to their TRI values, are identified as the year, 
victim country, and target. Identifying the “year” as the foremost influ-
ential factor in cyber SRIFs highlights the importance of considering the 
temporal dimension when assessing cyber threat trends in the maritime 
domain. Over the last five years, nearly 60% of recorded cyber-attacks 
have exhibited a significant surge, peaking in 2020 and 2021. This 
pattern indicates a consistent upward trend. In contrast, attacks from the 
years preceding 2016 contribute only 15% to the overall recorded in-
cidents. Given this pattern, the primary explanation that arises is the 

Fig. 6. Sensitivity analysis of BN model.
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technological advancement, the increasing digitization of systems, and the 
substantial reliance of the maritime sector on network-based communi-
cations and applications. The evolution in technology broadens the po-
tential targets and expands the attack surface for cybercriminals to take 
advantage of vulnerabilities. Emerging digital systems may not possess 
sufficient cybersecurity protections when compared to traditional analog 
or manual operations. Another factor to consider is the evolving tactics, 
techniques, and procedures employed by cyber-attackers over time. They 
continually refine their approaches to circumvent security measures, with 
methods becoming more sophisticated as defenses strengthen. Addition-
ally, there is an increased collaboration among cybercriminals, who have 
established their own networks to exchange information, knowledge, and 
experience, facilitating the execution of cyberattacks. Furthermore, the 
accessibility and ease of use of hacking tools online have reduced the re-
sources required for cyberattacks, enabling even less skilled attackers to 
target maritime infrastructure. From a different perspective, the response 
time of regulations and the industry lags behind the pace of evolving cyber 
threats. The emergence of new cyber threats often precedes the estab-
lishment of new regulations or industry best practices to address them, 
providing attackers with a window of opportunity. To further analyze the 
dependence of specific years and types of cyberattacks, Fig. 9 illustrates 
the distribution of various cyberattacks in the maritime industry from 
2016 to 2023. The evolving trend in maritime cyber threats is evident, 
with different attack types peaking at different times. Significant increases 
in specific attack types underscore the dynamic nature of these threats and 
highlight the need for adaptive and robust cybersecurity measures in the 
maritime industry. In 2016, jamming attacks reached an extremely high 
percentage, nearly 70%, significantly higher than any other type of attack 
that year. This suggests a specific vulnerability or focus on jamming at-
tacks in the maritime sector during this period. Conversely, the more 

sophisticated version of jamming, known as spoofing, shows an increasing 
trend in subsequent years, reaching its peak in 2021. In 2017, phishing 
incidents saw a substantial increase, accounting for nearly 50% of the 
reported cases. This highlights a shift or escalation in targeting individuals 
within the maritime industry during this year. However, the number of 
phishing incidents began to decrease in the following years, which can be 
attributed to improved cybersecurity training and increased awareness of 
these types of threats among individuals in the industry. As seen over the 
past few years, ransomware attacks have gained popularity among cyber 
attackers, spiking dramatically in 2020 and accounting for almost 60% of 
all cyber incidents. Despite moderate fluctuations, ransomware has 
continued to be the most frequent cyber threat up to the present. This 
marks ransomware as the dominant threat in the maritime sector, likely 
reflecting broader global trends in cybercrime where ransomware has 
become increasingly prevalent. For the other types of cyber threats, the 
trend has followed an oscillating pattern over the years, indicating a 
consistent underlying threat. Overall, scrutinizing the temporal dimension 
of cyber threats highlights the importance of historical data in under-
standing and predicting future threats. This emphasizes the necessity of 
continuous monitoring and regular updates to cybersecurity strategies to 
effectively address the most pressing vulnerabilities. Furthermore, “year” 
has been an important influetial factor in other maritime security studies 
such as maritime terrorism risk analysis (Mohsendokht et al., 2024) and 
cargo theft from freight supply chains (Liang et al., 2022).

The recognition of “country” as the second most significant SRIF un-
derscores the crucial role of national and governmental readiness in 
dealing with cyber-attacks. Unlike physical terrorist attacks, which are 
often prevalent in developing countries or regions facing political or eco-
nomic instability, cyber-attacks are predominantly observed in developed 
nations, with the USA having the highest number of recorded incidents. 

Fig. 7. Ransomware cyber-attack scenario.
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Fig. 8. DDoS cyber-attack scenario.

Fig. 9. The distribution of cyberattacks over the past 8 years.
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This observation can be understood from different angles. Firstly, it relates 
to the widespread use of advanced, high-tech digital systems across 
various sectors of the maritime industry, such as seaports, shipping com-
panies, offshore structures, and transportation vessels. These technological 
advancements are typically more prevalent in developed countries, 
rendering them more susceptible to cyber-attacks. Secondly, the nature of 
cyber-attacks is characterized by the absence of geographical constraints. 
This means that an attacker from any part of the world can pose a threat to 
the infrastructure of a victim country, regardless of the distance between 
them. Thirdly, when considering ransomware as the most prevalent form 
of cyber-attacks, the wealth of developed countries renders them attractive 
targets for such incidents, serving as a means of fundraising for cybercri-
minals. The financial resources and economic strength of these developed 
nations make them tempting targets for malicious actors seeking monetary 
gains through cyber extortion. This highlights the need for advanced 
preparedness measures at a national and governmental level to address 
cyber threats effectively.

The third cyber SRIF is linked to the nature of the target. Through the 
data-driven approach, five distinct maritime targets have been identified 
as susceptible to cyber-attacks, including ports, shipping companies, ves-
sels, off-shore structures and others. Among these, shipping companies, 
encompassing various businesses involved in the global supply chain, 
emerge as the primary focus of cyber threats, followed by ports as the main 
hub for maritime transportation. This heightened susceptibility can be 
attributed to several key factors. Firstly, these entities are pivotal strategic 
assets that hold a central role in the global supply chain, rendering them 
attractive targets for cyber attackers aiming to disrupt international trade 
and commerce. Secondly, the complex operations within shipping com-
panies and ports, involving a multitude of stakeholders, diverse cargo 
types, and complex logistics, create an environment with increased op-
portunities for cyber vulnerabilities. Additionally, the extensive scale of 
operations in shipping and port activities contributes to a broader attack 
surface, making them more vulnerable to cyber threats compared to 
smaller maritime structures. Furthermore, the nature of sensitive infor-
mation handled by shipping companies and ports, encompassing details 
about cargo, routes, and logistics, adds to their attractiveness as targets. 
This valuable data can be exploited by cyber attackers for financial gain, 
operational disruption, or ransom demands, a trend substantiated by the 
prevalence of frequent ransomware cyber-attacks in this sector. This em-
phasizes the urgent need for stakeholders, governments, and decision- 
makers to redirect their focus towards the vulnerable sectors of the 
maritime industry and allocate sufficient resources to fortify them against 
potential cyber-attacks. It is imperative to implement proactive measures 
and robust cybersecurity strategies to safeguard the critical functions of 
shipping companies and ports, thereby ensuring the resilience and security 
of the global supply chain.

5.1.3. Comparative examination of research findings
In this section, a succinct comparison between the current research 

outcomes and those of various relevant studies in the domain is conducted. 
The aim is to underscore the commonalities, distinctions, and compre-
hensiveness of each study, thereby accentuating the significance of our 
work. For this purpose, seven recent journal papers centered on cyberse-
curity risk assessment are selected. These papers have developed quanti-
tative frameworks that yield comparable result categories. The categories 
encompass various aspects, including distinct cyber-attack types, data 
classifications, diverse types of SRIFs, targets, application domains, pri-
oritization of cybersecurity factors, analysis of SRIF interdependencies, 
and implications within the domain, as delineated in Table 10. As evident, 
the present paper offers a more comprehensive perspective on the afore-
mentioned categories, providing a more realistic depiction of results 
attributed to its reliance on objective data for analysis.

5.2. Implications

The implications derived from the study’s findings are discussed 

across technical and organizational perspectives.
From a technical standpoint, considering the widespread occurrence of 

ransomware, it is crucial for maritime stakeholders, particularly shipping 
companies and seaports, to prioritize robust cybersecurity measures to 
safeguard against ransomware attacks. To achieve this, effective measures 
include implementing routine backups, utilizing network segmentation, 
ensuring offline storage, and providing employee training. In the context 
of DDoS attacks, investments in scalable infrastructure, anomaly detection 
systems, and collaboration with internet service providers can help miti-
gate their impact (De Neira et al., 2023). Generally, maintaining 
up-to-date software and deploying real-time threat monitoring systems 
utilizing AI for detecting unusual network activities, indicative of a 
cyber-attack, enables prompt action and enhances the defensive capabil-
ities of the target (Boudehenn et al., 2021; Caprolu et al., 2020; Freire 
et al., 2022; Laso, 2022). In dealing with cyber threats such as hacking, 
phishing, and malware, mitigating risks involves conducting regular se-
curity audits and employing robust security measures like strong pass-
words and multi-factor authentication. It is essential for shipping 
companies and ports to stay vigilant by keeping anti-virus software 
up-to-date and offering training on identifying phishing attempts. Addi-
tionally, implementing mechanisms such as email filtering and validation 
can enhance the ability to identify and block phishing attempts (BIMCO, 
2018). To safeguard against the risks of jamming and spoofing, vessels 
should adopt precautionary measures, including the formulation of con-
tingency communication plans and adherence to best practices concerning 
navigational systems. Specifically, it is advisable to incorporate GPS signal 
authentication mechanisms to counteract potential jamming and spoofing 
attacks. Additionally, enhancing the security of vessel communication 
systems can be achieved through the implementation of advanced 
encryption protocols. To proactively address cyber threats, vessels are 
encouraged to deploy intrusion detection systems that can identify and 
respond to potential security breaches (Kessler et al., 2018; Struck and 
Stoppe, 2021).

From an organizational standpoint, it is worth considering some useful 
insights drawn from this study. Examining the experiences of comparable 
industries, adopting and integrating a comprehensive cybersecurity 
framework tailored to maritime operations, such as the C2M2 and CSF 
frameworks (Gourisetti et al., 2020), which encompass identification, 
protection, detection, response, and recovery, appears advantageous. 
Given the prevalence of diverse cyber threats across various regions, 
sharing threat intelligence and implementing region-specific cybersecurity 
measures help enhance the overall resilience of the maritime industry 
(Meland et al., 2021). Collaborating with cybersecurity experts to develop 
and implement comprehensive cybersecurity policies and incident 
response plans is also advisable. Additionally, recognizing the geopolitical 
implications of cyber threats and advocating for international cooperation 
to strengthen global cybersecurity resilience is essential. Within this 
framework, fostering international collaboration, sharing information, and 
conducting joint exercises to address the transnational nature of cyber 
threats in the maritime domain can be effectively achieved. It is clear that 
there are still lessons to be gleaned from each incident. Given the limited 
history of maritime cyber threats and the tendency of some sectors to 
avoid reporting cyber-attacks to preserve their image and reputation, 
establishing clear and accessible channels for reporting cyber incidents is 
crucial to cultivate a culture of transparency and prompt response 
(Cormen, 2009). This necessitates bolstering international partnerships to 
exchange intelligence on threats and cooperate on strategies to mitigate 
cyber threats (Al Ali et al., 2021). In pursuit of this goal, backing cyber-
security education at the national level to improve the overall security 
stance of the maritime sector, and offering regular cybersecurity training 
for all personnel, along with ensuring employees are proficient in identi-
fying signs of attacks, must all be enacted from an organizational stand-
point (Ahvenjärvi et al., 2019).

Looking at the various technical and organizational measures out-
lined above, it is clear that successfully tackling cyber threats in the 
maritime sector necessitates a comprehensive approach covering both 
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technological and institutional angles. A multifaceted cybersecurity 
strategy that integrates robust technical safeguards along with organi-
zational policies and procedures is vital for building a resilient defense 
system capable of withstanding the complex and rapidly advancing 
cyber threat landscape. No single solution can fully address the issue, 
but rather a combination of technical defenses and organizational pro-
cesses working in tandem will be key to effectively counteracting 
cyberattacks targeting the maritime industry.

In summary, the current study pioneered the use of micro-level risk 
factors to quantify maritime cybersecurity risk levels, accurately 
reflecting real-world threats. By employing a data-driven analysis, it 
captured intricate dependencies and enabled quantitative analysis, 
enhancing statistical inference and model validation. The adaptable 
model, validated through various techniques, demonstrated efficacy and 
offered valuable insights, making it highly applicable in predicting and 
mitigating cybersecurity risks.

5.3. Future research directions

The potential future research directions of cybersecurity, with a 
focus on data-driven BN, involve several key areas. Firstly, there’s an 
emphasis on advanced threat detection and prediction, utilizing so-
phisticated BN models integrated with real-time data sources and ma-
chine learning techniques. Additionally, data-driven BNs can enhance 
cyberattack attribution and forensic analysis, aiding in tracing the origin 
and methods of attackers more effectively. Integration with machine 
learning algorithms further strengthens predictive capabilities, while 
incorporating threat intelligence offers a context-aware approach to 
threat analysis and response. Finally, exploring BNs in human-centric 
security involves analyzing user behavior to identify insider threats. 
These research directions can contribute to the advancement of cyber-
security in the era of data-driven BN models, helping organizations 
better protect their digital assets and respond effectively to evolving 
cyber threats. Furthermore, there exists another prominent subject 
within the realm of maritime security that warrants consideration in 
future research endeavors. The concept of security is commonly cate-
gorized into two realms: physical security and cyber security. However, 
it is crucial to recognize that these domains are interconnected and 
should not be examined in isolation. A significant concern for the 
maritime industry is the coordinated use of both cyber and physical 
attacks to undermine its security. In such scenarios, the potential for 
causing substantial damage to the maritime supply chain and the 
resulting consequences is heightened. Looking back historically, the port 
of Antwerp experienced instances of combined cyber-physical attacks, 
where intruders infiltrated port offices, concealed advanced data 

interception devices such as key loggers, and subsequently exploited the 
breach to remotely access sensitive logistics data (Roberts, 2019). This 
incident underscores the importance of adopting a comprehensive 
perspective that considers potential vulnerabilities from various angles, 
rather than focusing solely on one aspect of security. In pursuit of this 
objective, future research should concentrate on pinpointing potential 
scenarios involving combined cyber-physical attacks, identifying vul-
nerabilities from diverse perspectives, creating a platform for a 
comprehensive assessment of risks associated with combined 
cyber-physical threats, formulating suitable security measures, and un-
dertaking cost-benefit analyses.

6. Conclusion

This paper introduces an innovative approach to assessing cyberse-
curity risks in maritime infrastructures, including off-shore structures, 
seaports, shipping companies, and vessels. By conducting a thorough 
literature review and utilizing real data, based on the open-source 
MCAD database, which documents incidents of cyber threats in the 
maritime domain, the key SRIFs are identified, and a distinct data-driven 
BN model is constructed. The model assists in successfully analyzing the 
potential cybersecurity risks posed to different sectors of the maritime 
industry. The validation of the developed model involves employing a 
diverse set of techniques, including comparative, data splitting, metric 
and sensitivity analyses. The outcomes of these analyses affirm the 
model’s strong robustness and reliability. In the examination of the 
cybersecurity model, ransomware emerges as the most prevalent form of 
cyber-attacks in stationary maritime infrastructures, followed by hack-
ing, malware, phishing, and DDOS. For vessels, the predominant cyber 
threats consist of spoofing and jamming, in that order. Moreover, it 
becomes evident that three significant SRIFs—specifically, year, coun-
try, and target—exert substantial influence on the target node. Based on 
the results, it can be concluded that developed nations, while potentially 
spared from physical terrorist attacks, face cybersecurity threats that 
jeopardize their maritime infrastructures, especially shipping companies 
and seaports. The findings of the study provide valuable insights for 
stakeholders and government entities, contributing to a better compre-
hension of cybersecurity issues concerning various elements of the 
maritime industry. This knowledge has the potential to fortify preven-
tive measures and improve emergency management strategies. 
Furthermore, the study highlights the necessity for additional explora-
tion within maritime cybersecurity, outlining potential avenues for 
future research and indicating the limitations within existing studies. 
However, it is to be noted that the current study’s limitation lies in its 
reliance on a relatively modest list of the recorded maritime cyber 

Table 10 
Research findings and outcomes comparison.

Literature Gunes et al. 
(2021)

Uflaz et al. 
(2024)

Tam and 
Jones (2019)

Park et al. 
(2023b)

Svilicic et al. 
(2019)

Yoo and Park 
(2021)

Schauer et al. 
(2019)

Current paper

Cyber-attacks B, D A, B, C, D, G A, B, C, G A, B, D, E, NP NP A, B, E, F A-G
Type of data Subjective Subjective Subjective Subjective Subjective Subjective Subjective Objective
SRIF 4, 5, 6, 9, 10, 

11
4, 5, 6, 9, 11 3, 4, 5, 6, 7, 9, 

11
5, 9, 10, 11 4, 5, 6, 9, 10, 

11
4, 6, 10, 11 3, 4, 5, 6, 7, 9, 10, 

11
1–9

Target SP VS VS GN VS VS GN SP, SC, VS, OS, ED, 
SB, MO

Domain Specific General General General Specific General General Global
Importance ranking No Yes No Yes Yes Yes Yes Yes
Interdependency 

analysis
No No No No No No No Yes

Implications Technical Technical Technical Technical, 
organizational

Technical Technical, 
organizational

Technical, 
organizational

Technical, 
organizational

Cyber-attacks: (A: DDOS; B: Hacking; C: Jamming; D: Malware; E: Phishing; F: Ransomware; G: Spoofing; NP: No particular attack).
Target: (SP: Seaport; SC: Shipping company; VS: vessel; OS: Off-shore structures; ED: Energy distributers; SB: Shipbuilding firms; MO: Managerial organization; GN: 
General).
SRIF: (1. Region; 2. Country; 3. Perpetrator; 4. Scenario; 5. Cyber-attack type; 6. Target; 7. Successful attack; 8. Temporal trend; 9. Consequence; 10. Prevention ability; 
11. Security risk level.
Domain: (Specific: Focusing on a case study; General: No particular case study; Global: applicable in a global scale).

M. Mohsendokht et al.                                                                                                                                                                                                                         Ocean Engineering 312 (2024) 119078 

17 



incidents in the most comprehensive database in the field so far, which 
might not encompass all possible attack scenarios. To enhance the 
recognition and management of cyber threats in this sector, it is crucial 
to keep updating the database and consider integrating expert judgment, 
data-driven analysis, and insights from other relevant fields in future.
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