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Abstract.—Relationships among species in the tree of life can complicate comparative methods and testing adaptive 
hypotheses. Models based on the Ornstein-Uhlenbeck process permit hypotheses about adaptation to be tested by allowing 
traits to either evolve toward fixed adaptive optima (e.g., regimes or niches) or track continuously changing optima that 
can be influenced by other traits. These models allow estimation of the effects of both adaptation and phylogenetic inertia—
resistance to adaptation due to any source—on trait evolution, an approach known as the “adaptation-inertia” framework. 
However, previous applications of this framework, and most approaches suggested to deal with the issue of species non-
independence, are based on a maximum likelihood approach, and thus it is difficult to include information based on 
prior biological knowledge in the analysis, which can affect resulting inferences. Here, I present Blouch, (Bayesian Linear 
Ornstein-Uhlenbeck Models for Comparative Hypotheses), which fits allometric and adaptive models of continuous trait 
evolution in a Bayesian framework based on fixed or continuous predictors and incorporates measurement error. I first 
briefly discuss the models implemented in Blouch, and then the new applications for these models provided by a Bayesian 
framework. This includes the advantages of assigning biologically meaningful priors when compared to non-Bayesian 
approaches, allowing for varying effects (intercepts and slopes), and multilevel modeling. Validations on simulated data 
show good performance in recovering the true evolutionary parameters for all models. To demonstrate the workflow of 
Blouch on an empirical dataset, I test the hypothesis that the relatively larger antlers of larger-bodied deer are the result 
of more intense sexual selection that comes along with their tendency to live in larger breeding groups. While results 
show that larger-bodied deer that live in larger breeding groups have relatively larger antlers, deer living in the smallest 
groups appear to have a different and steeper scaling pattern of antler size to body size than other groups. These results 
are contrary to previous findings and may argue that a different type of sexual selection or other selective pressures 
govern optimum antler size in the smallest breeding groups. [adaptation; Bayesian; Ornstein-Uhlenbeck; phylogenetic 
comparative methods; Stan.]

Since Felsenstein (1985), it has been widely recognized 
that phylogenetic relatedness among species can com-
plicate comparative studies and testing of adaptive 
hypotheses (Hansen 1997; Harvey and Pagel 1998; 
Butler and King 2004; Hansen and Orzack 2005; Hansen 
and Bartoszek 2012). A wide variety of approaches have 
been suggested to deal with the issue of species non- 
independence (see O’Meara 2012 and references 
within), though the pattern of evolution will dictate 
whether such approaches are needed (Westoby et al. 
1995; Ricklefs and Starck 1996; Björklund 1997; Hansen 
and Orzack 2005; Hansen et al. 2008; Uyeda et al. 2018), 
as originally argued by Felsenstein (1985). Hansen 
(1997) introduced a model of adaptive evolution based 
on the Ornstein-Uhlenbeck process. In this model, 
hypotheses about adaptation can be explored by allow-
ing traits to either evolve toward fixed adaptive optima, 
where lineages have been assigned a priori to a particu-
lar niche (see Uyeda and Harmon 2014 for more on this 
point) or track continuously changing optima that can 
be influenced by other traits (Hansen et al. 2008). A key 
motivation for the use of Ornstein-Uhlenbeck models in 
phylogenetic comparative studies is the ability to esti-
mate the effects of both adaptation and phylogenetic 
inertia—resistance to adaptation due to any source—on 

trait evolution, and the approach has been coined the 
“adaptation-inertia” framework (Hansen et al. 2008).

Most previous approaches to modeling trait evolu-
tion toward optima influenced by continuous or cat-
egorical predictors are based on maximum likelihood 
approaches (e.g., Butler and King 2004; Bartoszek et 
al. 2012; Beaulieu et al. 2012; Hansen and Bartoszek 
2012; Pienaar et al. 2013), with some notable exceptions 
(Uyeda and Harmon 2014; Clavel et al. 2015; Höhna 
et al. 2016; Ross et al. 2016; Uyeda et al. 2017; Bastide 
et al. 2021). This includes the current version of Slouch 
(Stochastic Linear Ornstein-Uhlenbeck Comparative 
Hypotheses) (Hansen et al. 2008; Kopperud et al. 2020), 
which allows for the testing of adaptive hypotheses 
using both categorical (i.e., adaptive regimes) and con-
tinuous predictor data, and the multivariate implemen-
tation of the OU model, mvSlouch (Bartoszek et al. 2012, 
2023).

Complementing Uyeda and Harmon (2014), taking a 
Bayesian approach to phylogenetic comparative meth-
ods has several distinct advantages that are embedded 
in Bayesian statistics. First, if we have prior informa-
tion about biologically relevant parameters, Bayesian 
statistics provide a natural way to incorporate it. For 
example, non-Bayesian approaches implicitly assume 
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that prior distributions are flat by design, which may or 
may not be a realistic assumption. Placing informative 
priors on parameters allows us to restrict parameter 
space to regions to test specific hypotheses or that can 
be judged meaningful in a particular biological context 
(Uyeda and Harmon 2014), such as quantitative genetic 
models (Lande 1976; Uyeda and Harmon 2014). Priors 
can also be used to remedy previously identified issues 
in fitting evolutionary models to phylogenetically 
structured data (Ho and Ané 2014; Cornuault 2022) 
such as likelihood ridges due to correlated parameters 
(Uyeda and Harmon 2014). Second, Bayesian meth-
ods provide improved tools to observe and ways to 
estimate uncertainty. The parameter estimates them-
selves may not be better, or more accurate, than those 
produced in a maximum likelihood framework, but 
we have a clearer understanding of uncertainty in the 
Bayesian framework (McElreath 2020). Third, taking a 
Bayesian approach provides methods to easily incor-
porate uncertainty at multiple levels via multilevel or 
hierarchical models (Gelman and Hill 2006). For exam-
ple, incorporating variation within and among species 
in the allometric relationship among traits, or using 
partial pooling—pooling information across groups—
to produce more accurate estimates of optima. Fourth, 
the parameter estimates themselves are arguably more 
understandable and do not rely on assumptions about 
repeated sampling. For example, the phylogenetic half-
life, t1/2, quantifies the average time for the trait to evolve 
half the distance from the ancestral state value to the 
primary optimum. In a maximum likelihood approach, 
uncertainty around the point estimate is often quanti-
fied by reporting 2-unit support surfaces, the range of 
parameters for which the log-likelihood is no more than 
two units away from the maximum likelihood (Hansen 
et al. 2008). Using a Bayesian approach, an n% compati-
bility interval or region (CI) is the interval within which 
the unobserved parameter values fall with n probabil-
ity. This is arguably a more intuitive metric than the 
alternative, which could aid in biological interpretation. 
Finally, the posterior distribution of parameters can eas-
ily be incorporated as data in downstream analyses.

Here, I present Blouch (Bayesian Linear Ornstein-
Uhlenbeck models for Comparative Hypotheses), a 
package for studying adaptive evolution using Ornstein-
Uhlenbeck models. Blouch builds on the R package 
Slouch (Hansen et al. 2008; Kopperud et al. 2020) but 
places its approach within a Bayesian framework and 
implements several features not currently available in 
existing phylogenetic comparative methods. While the 
front-end component of Blouch is written in R (R Core 
Team 2024), the nuts and bolts are written in the lan-
guage Stan (Carpenter et al. 2017), which allows esti-
mation of Bayesian models using Markov chain Monte 
Carlo (MCMC) methods based on the Hamiltonian 
Monte Carlo sampler. Hamiltonian Monte Carlo offers 
advantages over Metropolis-Hastings and Gibbs sam-
plers as it allows for more efficient sampling of com-
plex models, including needing less samples to describe 
the posterior distribution, reduces autocorrelation, and 

contains internal checks of efficiency and accuracy 
(Nishio and Arakawa 2019).

I first briefly discuss the models implemented in 
Blouch, and then introduce the use and meaning of prior 
distributions for the estimated parameters within a bio-
logically meaningful framework. I then present the new 
features that are introduced in this package. Extensive 
validation of Blouch is included in the Supplementary 
Material available in the Dryad data repository 
(https://doi.org/10.5061/dryad.rv15dv4dx) and the 
project GitHub site (see below), but here I use a simu-
lated dataset to compare implemented models and to 
demonstrate the workflow. Finally, to demonstrate its 
use on an empirical dataset, I test the hypothesis that 
the relatively larger antlers of larger-bodied deer are the 
result of more intense sexual selection that comes along 
with their tendency to live in larger breeding groups.

Overview of Blouch

Implemented Models

Following Hansen (1997) and Hansen et al. (2008), 
Blouch models evolution in the response trait as an 
Ornstein-Uhlenbeck process around a primary opti-
mal state that is a function of the predictor variables, 
which can be mapped as (fixed) adaptive regimes on 
the phylogeny (i.e., multi-optima models; Hansen 1997; 
Butler and King 2004) or modeled as evolving follow-
ing a Brownian-motion process (Hansen et al. 2008). 
For continuous predictors, Blouch follows the approach 
of Grabowski et al. (2016; 2023) in implementing both 
the model of adaptive evolution introduced by Hansen 
et al. (2008) and the model of constrained evolution 
(termed the direct effect model here as in Grabowski et 
al. 2023) introduced in Hansen and Bartoszek (2012; see 
also Grabowski et al. 2016, 2023b), which is appropriate 
for testing allometric hypotheses.

Below is the simple stochastic multi-optima model 
of the Ornstein-Uhlenbeck process to aid in the sub-
sequent discussions. Following Hansen (1997), Blouch 
models the evolution of a response variable as an 
Ornstein-Uhlenbeck process toward a primary optimal 
state that is a function of categorical predictor variables 
(e.g., social systems) mapped as regimes on the phylog-
eny, a relationship expressed as the stochastic differen-
tial equation:

dy = −α (y− θ(z))dt+ σydBy

where dy is changes in the response variable, y, over 
a small time interval, dt, α is the rate of adaptation 
of y toward the optimum θ, modeled as a function of 
the categorical predictors mapped on the phylogeny, 
z, and can be expressed as the phylogenetic half-life, 
t1/2 = ln (2) /α, dB is a white-noise process (indepen-
dent normally distributed random changes with mean 
0 and unit variance) and σy  is the standard deviation of 
the random changes, which can be expressed as the sta-
tionary variance, v = σ2

y/ (2α), the equilibrium variance 
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of an Ornstein-Uhlenbeck process evolving around a 
stationary selective optimum, θ.

Further details on implementations of Ornstein-
Uhlenbeck models are included in the Supplementary 
Materials, with new implementations described below.

Use and Meaning of Priors in the Adaptation-Inertia 
Framework

As suggested by Ho and Ané (2014) and recently 
explored by Cornuault (2022) (see also Uyeda and 
Harmon 2014), priors for parameters in Bayesian 
approaches to fitting Ornstein-Uhlenbeck models such 
as the rate of adaptation, α, can affect posterior esti-
mates for a variety of model parameters due to inter-
actions between parameters. For example, Cornuault 
(2022) showed that using a prior concentrated at one 
or the other extreme values of α, translating to nearly 
instantaneous adaptation or a Brownian motion pro-
cess, affects the marginal posterior distribution of α
, regardless of whether the data was generated under 
Brownian motion or instantaneous adaptation. These 
extreme priors on α also affect the standard devia-
tion of random changes, σ, and the estimated selective 
optima, θ, though in complex ways that vary across the 
parameters (Cornuault 2022). However, as stressed by 
Cornuault (2022) and expanded on by Grabowski et 
al. (2023b), interpretation of parameters in Ornstein-
Uhlenbeck models is fundamentally important for valid 
inference, such as by transforming parameters into bio-
logically understandable units (e.g., from time−1 for α 
to time for t1/2) and setting reasonable and biologically 
informed values on priors as discussed below.

Blouch allows prior probability distributions to be 
placed on parameters in meaningful units for mac-
roevolutionary models, including the half-life (t1/2), 
stationary variance (v), selective optima (θ), and the 
optimal and direct effect slopes (Hansen et al. 2008). 
Below, I discuss the interpretation of each parameter 
and provide suggestions for setting appropriate prior 
distributions. Note that for any analyses, prior predic-
tive simulations should always be conducted to deter-
mine sensible values.

Phylogenetic half-life (t1/2).—The degree of phylogenetic 
correlation in the model residuals is estimated from the 
data and measured by the phylogenetic half-life (t1/2), 
which estimates on average how long it takes to evolve 
half-way from the ancestral state to a new optimum 
given a regime shift. Because Blouch scales tree height 
to one for analyses as part of its setup, extreme values 
on priors for t1/2 are equivalent to whether one assumes 
adaptation occurs quickly, with very small values of 
t1/2, or increasingly slowly, with t1/2 values >>> 1 (tree 
height), suggesting the data or residuals are increas-
ingly following a Brownian motion process. Though 
this may vary depending on the research question, 
setting an initial prior that includes both nearly instan-
taneous adaptation and between one to multiple tree 

heights is a conservative approach. For example, setting 
an initial prior on t1/2 that is a Lognormal distribution 
where the lower 10% is equivalent to 10% of tree height, 
and the upper 10% starts at one to multiple times the 
height of the tree (see Grabowski et al. 2023a for a sim-
ilar setup). In the empirical Cervidae example given 
below, the tree height is 14 Ma. Following this guide, 
a reasonable initial prior would have 10% of the values 
of the distribution less than about ~ 1.4 Ma and about 
10% of the values greater than 14 Ma when transformed 
back to the original unscaled tree height.
Stationary variance (v).—The stationary variance esti-
mates the variance around a selective optimum at 
equilibrium—the expected among-species variance for 
species that evolved for a long time in a constant niche 
(Hansen 2008). It is reasonable to assume that the cur-
rent among-species variance in the response variable 
might give an indication on the prior for v. Thus, a non-
informative prior for v could be a uniform prior with 
limits from zero to about 4 times this variance (Gelman 
et al. 2013) but using an exponential or half-t distribu-
tion can permit prior information to be included more 
easily and could produce more biologically realistic 
results. Given a multi-level model such as introduced 
below with a relatively small number of groups (i.e., 
regimes or niches), a uniform prior may lead to high 
estimates of variance parameters, and a distribution 
from the half-t family of prior distributions is recom-
mended, such as a half-Cauchy (Gelman 2006). It is 
important to note that, like any parameter, inspection of 
the posterior distribution of v may provide new knowl-
edge as to the appropriateness of this prior distribution 
for further analysis (Gelman 2006). In the validation 
and simulation steps below, the true values for v are set 
at a small number (0.01), which may be less realistic for 
models with long half-lives as the two parameters are 
correlated (Hansen 2008) but allow model performance 
given changing values of t1/2 to be determined. For these 
simulations, an exponential prior was used with rela-
tively large rate values after inspecting the posterior 
distributions.
Primary optima in multi-optima models (θ).—In the case 
of multi-optima models, optima are estimated based 
on the observed values of the response variable (Y) and 
two or more selective regimes placed on a phylogeny. 
A reasonable prior would thus be centered at the mean 
value of Y, and a standard deviation informed by the 
biological hypotheses being tested. For example, one 
approach would be to use a normal distribution cen-
tered on the mean Y with a standard deviation of 1 if 
the hypothesized maximum difference between the 
estimated optima was ~ 2 units. This prior allows for 
95% of the probability to be two units less and two units 
more than the mean, allowing for an informed but rea-
sonably wide prior.

Optimal and evolutionary slopes.—In the adaptation 
model, the response variable evolves according to an 
Ornstein-Uhlenbeck process toward an optimal state 
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that is modeled as a function of the predictor variable. 
This model estimates the optimal and evolutionary 
regressions, the former the relationship between the 
response and predictor that would be achieved if the 
response was able to adapt fast enough to perfectly 
track changes in the predictor—the best fit of θ on X—
the latter is the generalized least square regression of 
the response on the predictor and is influenced by both 
adaptation and inertia—the best fit of Y on X (Hansen et 
al. 2008). The optimum here is now the optimal regres-
sion line, and the half-life is thus an average estimate 
of how long it takes for a maladapted species evolve 
half the distance to the optimum. If adaptation is nearly 
instantaneous, the optimal and evolutionary slope will 
converge, with the latter diverging from the former 
whenever there is a lag in adaptation—quantified by t1/2. 
For a phylogeny scaled to unit height, a short half-life (a 
small percentage of the length of the phylogeny) means 
that the response variable rapidly adapts toward θ. A 
very long half-life (i.e., ~ multiple times the length of the 
phylogeny) means the model converges on Brownian 
motion. As instantaneous adaptation is akin to no phy-
logenetic effect, a reasonable prior for the optimal slope 
might be a normal distribution centered on the ordinary 
least squares slope with a standard deviation based on 
prior predictive simulations compared to the spread of 
the data. The evolutionary slope is the product of the 
optimal slope and ρ , the phylogenetic correction factor 
(Hansen et al. 2008), which provides a metric to esti-
mate the effects of phylogenetic inertia. A value of ρ = 1 
would mean there are no effects and the evolutionary 
slope and the optimal slope converge, with decreasing 
values of ρ  leading to decreasing values of the evolu-
tionary slope. Based on this justification, the prior on 
the evolutionary slope might be a normal distribution 
centered around this product with a scale informed by 
prior predictive simulations. On the other hand, as the 
evolutionary slope is directly related to this product, 
a deterministic definition might be more appropriate. 
Blouch can be coded to include both formulations but 
here the results shown are based on the deterministic 
definition.

Direct effect slope.—In the direct effect model, changes in 
the continuous predictor are associated with an immedi-
ate correlated response in the response variable, which 
can be used to test for allometric constraints (Hansen 
and Bartoszek 2012; Grabowski et al. 2016, 2023a). 
Biologically, the direct effect model can be thought of as 
a single-optimum model where the optimum is along 
the slope of the regression line, with t1/2 measuring the 
phylogenetic inertia of the model residuals around that 
optimum, and v measuring the stationary variance pre-
dicted from the model. Note that there is no empirical 
reason we expect to have correlated residuals in this 
model—these effects are not built into the model itself—
and hence no reason to expect t1/2 > 0. Correlated resid-
uals as an empirical finding may arise from a variety of 
influences (Hansen and Bartoszek 2012). For example, 

we might expect that the species residuals from the 
model are being pulled toward the regression line; for 
example, selection might lead to species with greater 
and greater values of Y for a given X to be less fit, but 
this is not built into the model. As changes in the pre-
dictor (X) lead to immediate changes in the response 
variable (Y) mediated by the direct effect slope parame-
ter b, we expect the intercept and slope parameters to be 
similar to an ordinary least squares regression. Hence, 
reasonable priors on the intercept and the slope would 
be centered on these values, with standard deviations 
based on prior predictive simulations compared to the 
spread of the data as for the adaptive model.

New Features

Multilevel multi-optima and varying effects models.—For 
multi-optima models or models that are a combination 
of multi-optima and continuous predictors, Blouch can 
fit multilevel models (also called hierarchical models) 
that allow information to be shared across regimes 
and permit different types of varying effects models 
(Gelman 2005; Gelman et al. 2013; McElreath 2020) 
where the intercept and slope terms are allowed to dif-
fer from regime to regime. In multilevel models, the 
estimated parameters are viewed as a sample from a 
common population distribution of parameters, which 
have their own parameters known as hyperparame-
ters. Here the priors on the parameters are adaptively 
learned from the data, rather than being chosen before-
hand. For example, the regime optima, θreg[i],for a given 
species i, could be modeled as θreg[i] = Normal

(
θ̄, σ

)
, 

with θ̄  the hyperparameter and is the prior for the aver-
age regime and σ the standard deviation among the 
regimes. By learning about each regime simultaneously 
across the population of regimes, multilevel models 
allow information to be shared across these groupings, 
based on the variation among the regimes. Known as 
partial pooling, this facility can improve accuracy of 
the parameter estimates. Multilevel models can pro-
vide improved estimates for analyses with imbalance 
in sampling, provide estimates of variation within and 
among groups, and balance overfitting—where mod-
els learn too much from the data—and underfitting—
where models learn too little from the data (Gelman 
and Hill 2006; McElreath 2020).

Below is the mathematical model definition for the 
simplest multilevel model that allows partial pooling 
across regimes and varying intercepts across regimes 
for the multi-optima model:

Yi ∼ MVNormal (ui,V)

ui = dmXiθreg[i]

dmXi = f
(
t1/2,T

)

θreg[i] = Normal
(
θ̄ ,σ

)

θ̄ ∼ Normal (0, 1)
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σ ∼ Exponential (5)

V = g
(
t1/2, v,T

)

t1/2 ∼ logNormal (log (0.25) , 0.25)

v ∼ Exponential (20)

where Yi is the observed species values with a mul-
tivariate Gaussian distribution with mean ui and vari-
ance/covariance matrix V , ui is defined as the product 
of dmXi and the optima θreg[i], with dmXi a design matrix 
derived in Hansen (1997) with the number of rows 
equal to the number of species and number of columns 
equal to the number of θ, and elements giving the sum 
of weights of segments on the tree T where the optima 
was θreg[i] and is a the result of a function of the phyloge-
netic half-life, t1/2 , and the phylogeny, T. θreg[i] is a vector 
with each element the optimal value for a given regime 
and has a normal distribution centered on θ̄  with stan-
dard deviation σ, V is the variance/covariance matrix 
defined as in Hansen (1997) and is the result of a func-
tion of t1/2, the stationary variance, v, and T. The priors 
above are examples that match those used in the simu-
lation study below.

For multilevel multi-optima models combined with 
direct effect and/or adaptive predictors and varying 
effects, Blouch allows for covariance between optima/
intercepts and slopes using a 2-dimensional multivar-
iate Gaussian distribution. Below is the simplest mul-
tilevel multi-optima direct effect model that allows 
partial pooling across the parameters across regimes. 
This model includes varying intercepts across the 
regimes but also varying slopes for the direct effect 
predictor, X, and includes a joint population of varying 
intercepts and slopes.

Yi ∼ MVNormal (ui,V)

ui = dmXiθreg[i] + Xiβreg[i]

[
θreg[i],βreg[i]

]
∼ MVNormal

([
θ̄, β̄

]
, R, [σθ,σβ ]

)

dmXi = f
(
t1/2,T

)

θ̄ ∼ Normal (0, 1)

β̄ ∼ Normal (0, 0.25)

σθ ∼ Exponential (1)

σβ ∼ Exponential (1)

Rho ∼ LJKCorr (4)

V = g
(
t1/2, v,T

)

t1/2 ∼ logNormal (log (0.25) , 0.25)

v ∼ Exponential (20)

All notation is the same as defined above with the 
addition of ui is now determined by the sum of the 
product of dmXi and θreg[i], and Xi  and βreg[i], the latter of 
which is the direct effect slope that varies per regime. 
θreg[i] and βreg[i] now have a joint multivariate Gaussian 
distribution centered on θ̄  and β̄ with correlation matrix 
Rho and standard deviation for the optima of σθ and for 
the slopes σβ . The prior for Rho is the Lewandowski-
Kurowicka-Joe distribution, a standard prior for cor-
relation matrices (Lewandowski et al. 2009).

Because of difficulties in exploring the posterior dis-
tribution of multilevel models, reparametrizing the 
model to extract the hyperparameters (e.g., θ̄ ) from their 
role as priors can aid in convergence time and improve 
performance (McElreath 2020; Stan Development Team 
2024a). For multilevel models, one approach is switching 
to a non-centered parameterization (Papaspiliopoulos 
et al. 2007) to separate parameters. Both the standard 
and non-centered parameterizations are included in the 
package, and researchers will need to determine the 
most efficient model for their own dataset. All mathe-
matical model definitions for the implemented models 
are included in the Supplementary Materials.

Measurement error.—Ignoring measurement error in the 
predictor and response variables can lead to decreased 
precision and for the predictors, bias in the estimated 
regression slopes (Fuller 1987; Hansen and Bartoszek 
2012; Silvestro et al. 2015). While Slouch and various 
other approaches include the ability to account for 
measurement error if quantified as standard errors in 
either response trait or continuous predictors based 
on derivations presented in Hansen and Bartoszek 
(2012), Blouch incorporates measurement error using 
a Bayesian approach by treating the true quantities as 
missing data to be estimated (Clayton 1992; Richardson 
and Gilks 1993).

Model comparison.—Blouch allows the out-of-sample pre-
dictive accuracy of a fitted model to be evaluated using 
standard Bayesian approaches based on either approx-
imate Leave-One-Out Cross-Validation or Information 
Criterion by calculating the pointwise log-likelihood 
values and returning them in the posterior (see Bürkner 
et al. 2021 for more on this calculation). This includes 
Pareto-Smoothed Importance Sampling (PSIS), which 
is an efficient approximation of Leave-One-Out Cross-
Validation (Vehtari et al. 2017), and Widely Applicable 
Information Criterion (WAIC), which converges on 
cross-validation given increasing sample size but differs 
in that it approximates K-L divergence, the additional 
uncertainty introduced by using probabilities from one 
distribution to describe another distribution (Watanabe 
2010). Both can be calculated using the R package loo 
(Vehtari et al. 2024) using the Blouch output and both 
give a way to estimate the degree of overfitting—i.e., 
making poor predictions due to learning too much from 
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a sample. In addition, Blouch allows for the calculation 
of Bayes Factors, the ratio of the marginal likelihoods—
the probability of the observed data given the model—
using the R Package bridgesampling (Gronau et al. 2020) 
(see the Supplementary Materials for extended dis-
cussion of both approaches). Bayes Factors were used 
previously in model selection in Bayesian phylogenetic 
comparative methods (e.g., Uyeda and Harmon 2014), 
but work (Lindley 1957; Jeffreys 1998; Lartillot 2023) 
suggests that the use of Bayes Factors may be conser-
vative in model selection when used with vague priors. 
Pulling back to the big picture, all methods discussed 
here (and others such as AIC or BIC) are measures of 
how well the model will perform in predicting new 
data—estimates of how well it makes out-of-sample 
predictions. Thus, they should be used for model com-
parison, not model selection, as differences between 
the models may be instructive. It should be noted that 
if a multilevel model is best at prediction over a non- 
multilevel model, this result is based on how the data 
is structured—the sample size, the number of optima, 
etc.—differences between models do not automati-
cally correspond to a biological meaning. This does not 
mean that in all cases there is no biological meaning for 
a multilevel model being preferred—it just depends on 
the biological context. In addition, prediction is not the 
same as causal inference, and models that are best at 
prediction may be highly confounded (see McElreath 
2020 for an exploration of this point). Finally, the use 
of predictive accuracy for model comparison in phy-
logenetic comparative methods is highly complex and 
unresolved due to the structure of the data (Roberts 
et al. 2017). Here, I use Pareto-Smoothed Importance 
Sampling and Bayes Factors to compare models, the 
former because it also provides a metric for assessing 
the reliability of the approximation in the form of Pareto 
k diagnostics (see Supplemetary Material; Vehtari et al. 
2017), the latter based on their previous use in similar 
Bayesian phylogenetic comparative methods (Uyeda 
and Harmon 2014; Uyeda et al. 2017)

Prior and posterior predictive checks.—Prior predictive 
checks generate predictions from the model using only 
the prior distribution(s) in order to assess whether the 
priors are appropriate—they are equivalent to running 
the model without data (Gabry et al. 2019). Posterior 
predictive checks generate data according to the pos-
terior predictive distribution and compare it to the 
observed data to assess the fit of the model (Gabry et 
al. 2019). Blouch includes Stan functions to run prior 
and posterior predictive checks for each of the included 
models and their use is demonstrated below in the sim-
ulation and empirical examples.

Details

The R package RStan (Stan Development Team 
2024b) provides the R interface between R and Stan. 
Blouch builds on the R code from Slouch (Hansen 1997; 
Hansen et al. 2008; Kopperud et al. 2020). Basic phy-
logenetic data formatting is accomplished by the R 

package treeplyr (Uyeda and Harmon 2023), as well as 
various functions from the R package ape (Paradis et al. 
2004) and geiger (Harmon et al. 2007) as part of the data 
setup step. Blouch provides a convenience R function 
set.converge.regimes to manually place regimes on a 
given phylogeny, which labels internal nodes and adds 
tip regime information to the dataset.

Blouch contains a series of different Stan functions that 
can be run depending on whether there are direct effect 
or adaptive predictors, multi-optima models, or com-
binations between the models, and R helper functions 
to format the data for Stan—decisions on which model 
to run should be made based on the research question 
and biological hypotheses about relationships between 
the factors. Supplementary Table S1 introduces all user 
functions included in Blouch v1.0.

Blouch, including R functions, functions written in 
the probabilistic programming language Stan, and 
vignettes demonstrating its functionality, is available at 
GitHub.com. Data files used in the empirical analyses 
are included in the Blouch package, but they are also 
available in the Dryad data repository.

Validation

I validated all models on simulated data and report 
diagnostics in the Supplementary Material and all 
results can be replicated using code available on 
GitHub.com. To summarize, all Blouch models were 
able to recover true parameter values with reasonable 
accuracy in simulated data with half-lives varying from 
0.1 to 0.25 to 0.75—from relatively fast adaptation to 
approaching Brownian motion—and across a range of 
regime and predictor numbers.

Simulation Example

To demonstrate the workflow of Blouch, a 100-tip 
tree was created by randomly subsampling from the 
301 tip ultrametric molecular primate phylogeny from 
10kTrees (consensus tree from version 3; Arnold et 
al. 2010), which was then scaled to unit length. This 
methodology follows that of Cressler et al. (2015), who 
argued that an approach based on a known phylog-
eny will provide simulated trees that are more real-
istic than those generated using a pure birth model. 
Four evolutionary regimes were painted on this tree 
(Supplementary Fig. S1a), with θ = (1, 2, 3, 4), and 
β = (0.75, 0.5, 0.35, 0.25). Half-life was set at 10% of tree 
height, which is a reasonably fast evolution, with v at 
0.01 as discussed above. As this example will be of the 
multi-optima adaptive model with varying effects, data 
for the predictor (X) were generated using the fastBM 
function from the R package phytools (Revell 2011) set-
ting an instantaneous variance of the Brownian-motion 
process (σ2) to 1. Data for the response (Y) was gener-
ated using a generative model based on the same model 
Blouch uses to estimate the parameters conditional on 
the simulated values of X and the known parameter 
values. Measurement error was added to both the 
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response and predictor variables by simulating from 
a normal distribution centered on 0 with a standard 
deviation of 0.01, which was added to the data, and 
the same value (0.01) inputted into Blouch as the esti-
mated measurement error for each species value. Two 
different models were fit to this simulated dataset: a 
multilevel multi-optima adaptive model with vary-
ing effects and a non-multilevel version of this model. 
Priors were set following the guidelines discussed 
above, and the Supplementary Materials provides full 
prior specifications.

I ran 2 independent chains for 4000 generations for 
each model. As autocorrelation within chains increases 
uncertainty in the parameter estimates, the effective 
sample size statistic (n_eff) is an estimate of the number 
of independent draws within a chain that would lead 
to the same expected precision as the current estimate 
(Carpenter et al. 2017). It has been suggested that n_eff 
could be as low as 10, but 100 should suffice for many 
purposes (Gelman et al. 2013). In addition to indicating 
the convergence of chains for each parameter visually 
using traceplots, convergence was quantified using 
the potential scale reduction statistic, R̂, which will 
be close to 1.0 when the chains have converged to the 
same stationary distribution (Carpenter et al. 2017) and 
less than 1.1 has been suggested as an appropriate cut-
off (Gelman et al. 2013). Models were compared using 
Pareto-smoothed Importance Sampling and Bayes 
Factors.

Empirical Example

Tsuboi et al. (2024) collected an expansive dataset 
on antler size and body size and generated a new 
Cervidae phylogeny to test the hypothesis of Gould 
(1973) that the elaborate antlers of the Irish Elk were 
the result of a positive allometric relationship with 
body size. I supplemented this dataset with data on 
Cervidae breeding group size from Plard et al. (2011) 
and Clutton-Brock et al. (1980) to test the hypothesis 
that antler size is influenced by sexual selection by 
using breeding group size as a predictor of antler size. 
As formulated by Clutton-Brock et al. (1980), the spe-
cific hypothesis is that the relatively larger antlers of 
larger-bodied deer are the result of more intense sex-
ual selection that comes along with their tendency to 
live in larger breeding groups. Following Tsuboi et al. 
(2024), the relationship between posterior skull length, 
a proxy for body size, and antler volume is hypothe-
sized to be allometric, and thus, the direct effect model 
is a reasonable choice. Following Hansen (2014), as 
sexual selection would likely not cause an immedi-
ate change in either body size or antler volume, the 
multi-optima model is indicated. The hypothesized 
causal relationship between these 3 variables is shown 
in the directed acyclic graph (DAG; Fig. 1).

Thus, to estimate the direct causal effect of breed-
ing group size on antler volume, I controlled for con-
founding from posterior skull length and phylogeny as 
indicated by the DAG by stratifying by these factors. I 

A

B

P

R

u

Figure 1. Directed Acyclic Graph (DAG) of the hypothesized relationship between the variables in this analysis. Here, posterior skull 
length (P), a proxy for body size, is directly influencing antler volume (A), and both P and A are directly influenced by breeding group 
size (B). In addition, all 3 variables are influenced by unobserved confounds (u), with the phylogenetic relationships among the species 
(R), influencing u.
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reduced the phylogeny of Tsuboi et al. (2024) from their 
original 46 species to the 30 species that had matching 
breeding group size data and scaled this to unit height. 
Regimes were reconstructed on the phylogeny using the 
Ancestral Character Estimation (ace) function from the  
R package ape (Paradis et al. 2004), which produces  
the scaled likelihoods of ancestral states for each node 
of the phylogeny (Supplementary Fig. S1b; Pagel 1994). 
I chose the rate model for the transition rate matrix 
from 3 possibilities: equal rates, symmetric, and all 
rates different—with model selection performed using 
AIC. While using a technique like Stochastic Character 
Mapping might be preferable to include uncertainty 
in regime placement (Nielsen 2002; Huelsenbeck et al. 
2003) for this simple example, nodes were assigned the 
maximum likely character state estimated from the ace 
function, using the equal rates transition matrix, which 
had the lowest AIC score.

Based on a plot of the data, I tested whether a varying 
intercepts and varying slopes model (varying effects) 
might be the most appropriate, fitting both the multi-
level multi-optima direct effects model with varying 
effects and the non-multilevel version of this model. 
I also fit the multilevel multi-optima direct effects 
model with varying intercepts and the standard multi- 
optima direct effects model (Grabowski et al. 2023a), as 
was done in previous analyses (Bartoszek et al. 2012; 
Hansen 2014). Neither of the latter two models allow 
for varying slopes, and I use this example to explore 
model comparison in Blouch.

Priors were set following the guidelines discussed 
above, and the Supplementary Materials provide the 
full prior specifications. I ran 2 independent chains for 
4000 generations for each model and assessed conver-
gence following the approach used for the simulation 
example above. Models were compared using Pareto-
smoothed Importance Sampling and Bayes Factors.

All X/predictor values for the simulations and empir-
ical analyses were mean centered so that the intercept 
represents the average interspecific Y value at the aver-
age interspecific X value (Pélabon et al. 2014). For the 
Cervidae analyses, this would translate to mean inter-
specific species antler volume at the mean interspecific 
species posterior skull length.

Results

Simulation Results

All parameters for all models had effective sample 
sizes greater than 1000, suggesting the chains were run 
at an appropriate length (Supplementary Tables S2 and 
S3). Along with convergence indicated visually using 
traceplots (Supplementary Fig. S2), R̂ was 1.0 for all 
parameters (Supplementary Tables S2 and S3). Results 
(Fig. 2; Supplementary Fig. S3; Supplementary Tables 
S2 and S3) show good performance at recovering true 
parameter values, and comparisons of the prior and 
posterior distributions indicate that the models extract 

a good deal of information from the data. This includes 
the estimated covariance between residuals from the 
regression, which quickly decreases with time from the 
most recent common ancestor as expected (MRCA; Fig. 
2c). The largest deviations in the estimated intercept 
and slope parameters from the true values are seen in 
the group with the smallest sample size and least spread 
along the X axis—the second regression line from the 
top in Figure 2d. This result is expected based on the 
nature of the sample, but it is notable that the 89% com-
patibility interval still includes the true values, and the 
interval expands as it moves away from the data as it 
should. Model comparisons performed using Pareto-
smoothed Importance Sampling show that both mod-
els (Supplementary Table S4; Supplementary Fig. S4) 
produce reasonable Pareto shape values (k ~<0.7), indi-
cating that the approximations are reliable (Vehtari et 
al. 2017), but there is no substantial difference between 
these two models in their predictive performance (95% 
CI of the difference between expected log pointwise 
predictive densities: −0.9–1.3). The two species with 
consistently high Pareto shape values across the mod-
els are Daubentonia madagascariensis, the sole member 
of the lemur family included in the phylogeny, and 
Tarsius bancanus, the only tarsier included—both are 
distinct due to their long period of independent evo-
lution (first long blue and red branches from the top 
in Supplementary Fig. S1a), and their distinct nature 
undoubtably leads to difficulties in predicting their 
values. On the other hand, Bayes Factors show that the 
varying effects model is best supported with a Bayes 
Factor of 63.8 compared to the multilevel version of the 
same model. The best model results using Bayes Factors 
are reported in the main text, with other model results 
reported in the Supplementary Material.

Prior predictive checks show a generally reasonable 
fit between the data and data generated from the priors, 
though a few larger true values suggest using the larger 
scale on some priors may be warranted (Supplementary 
Fig. S5a). Posterior predictive checks show that the 
model is well fit as it generates data that are a close 
approximation of the true dataset (Supplementary Fig. 
S5b).

Empirical Results

Because of difficulties in exploring the posterior for 
the multilevel models, I used the non-centered ver-
sion of both, which are included as part of the Blouch 
package (Supplementary Table S1). All parameters had 
effective sample sizes greater than 1000, suggesting 
the chains were run at an appropriate length (Table 1; 
Supplementary Tables S5–S7). Along with convergence 
indicated visually using traceplots (Supplementary Fig. 
S6), R̂ was 1.0 for all parameters (Table 1; Supplementary 
Tables S5–S7). Pareto-smoothed Importance Sampling 
model comparison results suggest that all models are 
similar in their out-of-sample predictions as the dif-
ference between their expected log pointwise pre-
dictive density is similar to or less than the standard 
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error of the difference (Supplementary Table S8). 
However, a few high values of the Pareto k diagnostic 
for all models suggest that these results are not reliable 
(Supplementary Fig. S7). Bayes factor model compar-
isons found the multi-optima direct effect model with 
varying effects was best supported with a Bayes Factor 
of 9.4 over the standard multi-optima direct effect 
model, 14.4 over the multilevel multi-optima direct 

effect model with varying effects, and 55.0 over the 
multilevel multi-optima model with varying intercepts. 
The best model results using Bayes Factors are reported 
in the main text, with other model results reported in 
the Supplementary Material. Prior predictive checks 
show a reasonable fit between the data and data gener-
ated from the priors for the best model, suggesting that 
the priors are appropriate (Supplementary Fig. S5c). 
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Figure 2. Results for the simulated dataset using the multi-optima adaptive model with varying effects include color-coded prior versus 
posterior plots for (a) Phylogenetic half-life (t1/2); (b) Stationary variance (v); (c) Covariance between residuals from the regression as a reflection 
of time since MRCA; and (d) Posterior predicted means (black lines) and 89% compatibility intervals (light gray region) for the optimal 
intercepts and slopes. Species values for each regime are shown in colored circles matching legend colors in Supplementary Figure S1a, with 
prior predictive simulation results for the intercept and slope shown in light gray lines. The dotted lines are the true values of the parameters.
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Posterior predictive checks show that the model is well 
fit as it generates data that are a close approximation of 
the true dataset (Supplementary Fig. S5d).

Results for the best-supported model (Supplementary 
Fig. S8; Table 1; see also Supplementary Figs. S9–S11) 
show the 95% compatibility interval for t1/2 does not 
contain 0, and the uppermost limit is below tree height 
(95% CI: 0.15–0.39), suggesting antler volume adapts 
to breeding group size in a pattern that differs from 
instantaneous adaptation and Brownian motion. While 
the two larger breeding group sizes (“3-5” and “>5”) 
have similar slopes, 4.5 ± 0.6 and 4.6 ± 0.6, respectively, 
the smallest group size (“1-2”) has a slope of 7.3 ± 0.8 
(Fig. 3). The posterior difference (contrast) between the 
smallest and medium size group slopes is 2.8 (95% CI: 
0.7–4.7), reliably above 0.

Discussion

Here, I introduced Blouch, a Bayesian approach to 
testing adaptive hypotheses and estimating the evolu-
tionary relationships among traits. Validation results 
(see Supplementary Material) show good recovery 
across all included models of true parameter values 
across a range of half-lives, with increasing compat-
ibility intervals around estimated parameters given 
increasing half-lives as expected (Hansen 1997; Hansen 
et al. 2008). Simulation results show good recovery of 
true parameter values using multi-optima adaptive 
models with varying effects (Fig. 2; Supplementary Fig. 
S3; Supplementary Tables S2–S3).

For the empirical Cervidae data, the multi- 
optima direct effect model with varying effects was the 
best-supported model using Bayes Factors. Based on 
a phylogeny height of 14 Ma, results show that antler 
volume adapts to breeding group size in a pattern that 
differs from instantaneous adaptation and Brownian 
motion, with a mean of 3.4 Ma [95% CI: 2.1–5.5]. This 
is a relatively fast adaptation and might reflect strong 
sexual selection in this group. For the 3 breeding group 
sizes, the smallest had a substantially steeper slope 
than either of the two larger sizes, contrary to previous 

findings (e.g., Clutton-Brock et al. 1980). Dividing the 
slope by 3 to account for the dimensionality of volume 
relative to length shows that all breeding groups have 
strong positive allometry, with the smallest 2.4 and both 
larger groups about 1.5 (see also Gould 1973; Plard et al. 
2011). These results mean that doubling body size pre-
dicts a quintupling of antler size in the smallest group 
but only a tripling in the larger groups. These findings 
may paint a different picture of sexual selection and 
antler size in the Cervidae when compared to previous 
analyses.

Larger-bodied species are hypothesized to have 
larger breeding groups than smaller-bodied species 
and evolve larger antlers relative to body size because 
of more intense sexual selection (Clutton-Brock et 
al. 1980). This result was supported using both non- 
phylogenetic methods (Clutton-Brock et al. 1980), 
accounting for phylogeny by assuming a Brownian-
motion process (Plard et al. 2010), and an Ornstein-
Uhlenbeck process (Bartoszek et al. 2012; Hansen 2014), 
with all showing relative antler size increased in species 
with larger group sizes. While not directly comparable 
due to the current analysis using an updated phylog-
eny and posterior skull length as a proxy for body size 
rather than error-prone body size estimates used pre-
viously (discussed in Tsuboi et al. (2024)), note that the 
most relevant study, Hansen (2014), used an approach 
(Slouch), which currently only allows intercepts, not 
slopes, to vary across groups.

The current findings suggest that species in the small-
est group size evolve relatively larger antler size with 
increases in body size. Thus, species in smaller breeding 
group sizes may be undergoing a different magnitude 
or type of sexual selection when compared to larger 
groups. For example, antler size in breeding group sizes 
of 1–2 individuals may be more strongly influenced by 
female preference rather than male-male competition, 
and differences among group sizes may be complex 
(Wong and Candolin 2005). Alternatively, larger-bodied 
deer in the smallest group may require relatively larger 
antlers if inter-male competition increases at a different 
rate with increasing body size—relatively larger ant-
lers may offer more protection against injury required 

Table 1. Marginal posterior distribution of the parameters from the multi-optima direct effect model with varying effects for the Cervidae 
dataset including breeding group size as a predictor.

Parameter Mean (95% CI) SD n_eff R̂

t1/2 0.24 (0.15–0.39) 0.06 3820 1
v 0.2 (0.1–0.36) 0.07 2751 1
θ1 0.15 (−0.91–1.18) 0.53 1982 1
θ2 0.26 (−0.1–0.63) 0.18 3906 1
θ3 0.54 (0.07–1.02) 0.24 2840 1
β1 7.25 (5.59–8.82) 0.83 1958 1
β2 4.46 (3.38–5.64) 0.58 3925 1
β3 4.61 (3.45–5.85) 0.61 2641 1

Results include mean and 95% compatibility interval (CI), the standard deviation of the mean (SD), the effective sample size statistic (n_eff), 
and the potential scale reduction statistic, R̂. Estimated parameters include the phylogenetic half-life (t1/2) [in units of tree height], the stationary 
variance (v) [in units of squared trait units (log Antler Volume (l)) per unit tree height], the estimated optima/intercepts for increasing breeding 
group sizes (θ1−3)) [in units of log Antler Volume], and the corresponding slopes (β1−3)) [in units of log Antler Volume per unit change in log 
Posterior Skull Length (cm)].
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at a larger size (Clutton-Brock et al. 1980). The inclu-
sion of breeding group size as a predictor and allowing 
variation in intercepts and slopes across groups may 
also explain the previous finding that the relationship 
between log-transformed antler size and body mass 
is quadratic, rather than linear (Lemaître et al. 2014). 
While it was suggested that larger-bodied males have 
relatively smaller antlers than expected from a linear 
allometric relationship, which could be due to allocat-
ing energy away from growth and reproduction and 
toward maintenance, a different scaling relationship 
in the smallest breeding groups provides an alterna-
tive explanation (Fig. 3) (see also Lemaître et al. 2015; 
Packard 2015).

These results should be taken with caution for several 
reasons. First, unlike Bayes Factors, Pareto-smoothed 
Importance Sampling results suggest all tested models 
are making similarly (in)accurate predictions. This lat-
ter result is likely because there are only a small num-
ber of observations in some of the breeding groups (7 

species in size 1–2; 10 species in size 3–5; 13 species in 
size > 5) and leaving out one observation changes the 
posterior too much to give an accurate prediction of 
its value—as reflected by the large Pareto k diagnostics 
(Supplementary Fig. S7). In addition, placing breed-
ing groups into qualitative regimes is crude, and their 
reconstruction on the phylogeny is likely inaccurate, as 
previously noted (Hansen 2014). The higher slope in the 
smallest breeding group size is driven by two species—
the relatively large antlers in Muntiacus vuquangensis 
and the large antlers and large posterior skull length of 
Axis kuhlii (Fig. 3). Given more or finer-level informa-
tion on breeding group size from a larger number of 
Cervidae species would thus be informative. Another 
option would be robust regression (Gelman et al. 
2013)—using a likelihood function that is less sensitive 
to outliers that are often present in small sample sizes. 
These can have a greater impact on the shape of the pos-
terior compared to other points and can be minimized 
using this technique.
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Figure 3. Antler volume as a function of breeding group size stratifying for posterior skull length and phylogeny. Regression lines show 
posterior means and match the key on the right, with a shaded area showing the 89% compatibility interval of the means, and with prior 
predictive simulation results for the intercept and slope shown in light gray lines. The 2 larger breeding group sizes (“3-5” and “>5”) have 
similar slopes, 4.5 ± 0.6 and 4.6 ± 0.6, respectively, while the smallest group size (“1-2”) has a slope of 7.3 ± 0.8.
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This empirical example naturally brings up the issue of 
sample size required for Blouch and other Bayesian phy-
logenetic comparative methods. Thirty species as in the 
dataset used here is generally considered small for phylo-
genetic analyses (Hansen et al. 2008; explored in Bartoszek 
et al. 2023). However, using a Bayesian approach allows 
the determination of how much information the data 
contains about the parameter of interest—if the model 
extracts very little information from the data, the posterior 
distribution will resemble the prior. Additional diagnos-
tics such as those used here (i.e., Pareto shape values) pro-
vide further feedback about both the sample and model. 
As a general answer, the question of which model to use 
comes down to what hypotheses or research questions 
one is trying to test. If the research question is: “Is there 
a different relationship between antler size and body size 
for different breeding group sizes?” a model incorporating 
both phylogeny, adaptation, allometric relationships, and 
varying effects is consistent with this question. As argued 
previously (see Grabowski et al. 2023b), it is always better 
to use a method that fits the biological question at hand, 
rather than a simpler and more tractable model that does 
not.
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