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d The hands and feet of pterosaurs were adapted to a broad

range of locomotor ecologies

d Early pterosaurs had a scansorial mode of life, which

restricted maximum body size

d Anatomical changes in later pterosaurs led to more effective

terrestrial ability

d Invasion of terrestrial habitats facilitated diverse feeding

ecologies and gigantism
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In brief

Smyth et al. show that pterosaurs exhibit

significant disparity in their hand and foot

morphologies. This indicates that they

occupied a broad range of locomotor

ecologies. Early pterosaurs were adapted

for climbing, while later forms evolved

more effective terrestrial locomotion,

which facilitated diversification and the

evolution of gigantism.
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SUMMARY
Pterosaurs, the first true flying vertebrates, played a crucial role in Mesozoic terrestrial ecosystems. Howev-
er, our understanding of their ability to move around on the ground and, more broadly, their terrestrial paleo-
ecology remains limited. Here, we demonstrate an unexpectedly high degree of variation in the hands and
feet of pterosaurs, comparable with that observed in extant birds. This suggests that pterosaurs were adapt-
ed to a remarkably broad range of non-aerial locomotor ecologies. Small, early, long-tailed pterosaurs
(non-pterodactyliforms) exhibit extreme modifications in their hand and foot proportions indicative of climb-
ing lifestyles. By contrast, the hands and feet of later, short-tailed pterosaurs (pterodactyliforms) typically
exhibit morphologies consistent with more ground-based locomotor ecologies. These changes in propor-
tions correlate with other modifications to pterosaur anatomy, critically, the separation along the midline
of the flight membrane (cruropatagium) that linked the hindlimbs, enabling amuchmore effective locomotory
ability on the ground. Together, these changesmap a significant event in tetrapod evolution: a mid-Mesozoic
colonization of terrestrial environments by short-tailed pterosaurs. This transition to predominantly ground-
based locomotor ecologies did not occur as a single event coinciding with the origin of short-tailed forms but
evolved independently within each of the four principal radiations: euctenochasmatians, ornithocheiroids,
dsungaripteroids, and azhdarchoids. Invasion of terrestrial environments by pterosaurs facilitated the evolu-
tion of a wide range of novel feeding ecologies, while the freedom from limitations imposed by climbing
permitted an increase in body size, ultimately enabling the evolution of gigantism in multiple lineages.
INTRODUCTION

Pterosaurs were a key constituent of Earth’s terrestrial biotas

from the Late Triassic to the end of the Cretaceous (227–66

million years ago [mya]).1–3 The first vertebrates to achieve active

flapping flight, pterosaurs were anatomically and ecologically

diverse and distributed worldwide throughout much of their his-

tory. Traditionally, pterosaurs have been divided into two

groups: ‘‘rhamphorhynchoids,’’ a paraphyletic grade character-

ized by several plesiomorphic features, including a long tail

(Figures 1A and 1C), and pterodactyloids, a derived clade with

a highly reduced tail (Figures 1B and 1C). Increasingly sophisti-

cated phylogenetic analyses4–6 and recent additions to the fossil

record of species such as Douzhanopterus zhengi7 and Propter-

odactylus frankerlae,8,9 posited as ‘‘transitional’’ forms, mean

that these terms are no longer sufficient to describe the morpho-

logical transformations that underpin pterosaur evolutionary
4894 Current Biology 34, 4894–4907, November 4, 2024 ª 2024 The
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history. Consequently, here we have adopted two additional

terms that permit more precise characterization of pterosaur

morphological variation, phylogeny, and evolution. Non-ptero-

dactyliforms, a paraphyletic grouping of early pterosaurs (Fig-

ure 1D), thrived during the early Mesozoic (Late Triassic to Late

Jurassic).4 This grade group is united by a bauplan comprising

a more typically archosaurian skull morphology compared with

later pterosaurs, a short neck, an elongated tail, and a well-

developed fifth pedal digit that supported a membranous

wing panel stretching between the hindlimbs—the cruropata-

gium (Figures 1A and 1C). Pterodactyliform pterosaurs

(Propterodactylus + Douzhanopterus + pterodactyloids) are

distinguished by large, extensively pneumatized skulls, elon-

gated necks, short tails, and reduced fifth pedal digits. These

features become evenmore pronounced among the pterodacty-

loids, which also develop a bifurcated and significantly reduced

cruropatagium (Figures 1B and 1C). Pterodactyloids were the
Author(s). Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. Comparison of autopodial and other anatomical differences between non-pterodactyliform (scaphognathine) andpterodactyliform

pterosaurs (derived ctenochasmatoid)

(A) Paleoart reconstruction of the non-pterodactyliform Scaphognathus crassirostris (Upper Jurassic) in scansorial mode, with autopodia characterized by short

proximal elements and elongated distal elements.

(B) Paleoart reconstruction of the pterodactyliform Balaenognathus maeuseri (Upper Jurassic) in terrestrial mode, with autopodia characterized by elongated

proximal elements and shortened distal elements.

(C) Reconstructions of Scaphognathus (left) and Balaenognathus (right) in dorsal view indicating the principal flight surfaces.

(D) Simplified pterosaur phylogeny indicating the principal taxonomic groups used in this study.

Abbreviations: bp, brachiopatagium; cp, cruropatagium; pp, propatagium. Paleoart by Rudolf Hima.
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most successful group of pterosaurs in the later part of the

Mesozoic (Late Jurassic and Cretaceous).

Although advances have been made in understanding ptero-

saur skeletal and soft tissue anatomy,1–3 phylogeny,10 flight,11,12

and ontogeny,13 their non-aerial locomotor abilities and ecolo-

gies are poorly known. It is generally accepted that grounded

pterosaurs were quadrupedal, with a functional tridactyl digiti-

grade manus and functional tetradactyl plantigrade pedes.14

Uniquely among flying animals, manual digit IV and pedal digit

V were exapted from their original functions to become

flight structures.15,16 However, attempts to identify the terrestrial

capabilities and feeding ecologies of specific clades have

created much controversy,17,18 and the terrestrial abilities of

both non-pterodactyliforms17 and pterodactyliforms are highly

debated.19–21 Despite these controversies, pterosaur hand and

footmorphologies have been largely overlooked,14,22,23 with little

documentation of how these vary across Pterosauria. This
oversight is particularly remarkable considering the fundamental

role they play in locomotion. Comparative analysis of manus and

pes morphologies could provide important new insights into the

ecological roles of pterosaurs within Mesozoic biotas and how

this impacted on contemporaneous vertebrate groups, among

them a plethora of other volant and gliding Mesozoic amniote

groups, including birds.24–26

Hands and feet—or autopodia—perform a wide range of func-

tions, facilitating locomotion across various modes, including

walking, running, jumping, burrowing, swimming, climbing, and

flying.27 Because the functions of autopodia are so closely tied

to specific locomotor modes and ecologies of organisms, the

degree to which locomotor modes influence their morphology

is often greater than in the rest of the appendicular skeleton.28–31

Numerous paleontological studies have employed comparative

datasets of extant tetrapod autopodia to reconstruct the loco-

motory modes of extinct animals.32–36 Until now, the pterosaur
Current Biology 34, 4894–4907, November 4, 2024 4895
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autopodial skeleton (excluding the wing elements) has contrib-

uted little to our understanding of their non-aerial locomotor

ecology, primarily due to lack of available morphometric data

for manual and pedal elements.

In this study, we compiled a comprehensivemorphometric da-

taset for themanus and pes that includes�64 taxa, representing

18/20 principal pterosaur groups and ranging across their entire

history, from the Upper Triassic to Upper Cretaceous (supple-

mental information). The dataset consists, primarily, of length

measurements of phalanges forming digits I–III of the manus

(the ‘‘claw digits’’) and pedal rays I–IV of the pes. Statistical an-

alyses of these data (see STAR Methods) generated numerical

measures of the morphological disparities of the pterosaur

manus and pes that were then framed within a broader context

using a comparative dataset for a wide range of amniotes,

including reptiles, birds, and mammals (supplemental informa-

tion). Among these extant groups, phalangeal proportions—

most notably the relative proportions of the phalanges of manual

and pedal digit III—are strongly correlated with locomotor ecol-

ogy (see STAR Methods). By comparing this dataset with the

same phalangeal proportions for the manus and pes of ptero-

saurs, wewere able to infer their likely non-aerial locomotor ecol-

ogies. Finally, we integrated these results with a phylogenetic

analysis enabling us to use ancestral reconstruction to position

these pterosaur locomotor ecologies within a broader macro-

evolutionary context. The results of this analysis revealed a

macroevolutionary event in which pterodactyloid pterosaurs

invaded terrestrial environments in the Middle Jurassic. This

transition marked the emergence of proficient terrestrial ability

in pterosaurs, triggering a dramatic diversification of dietary

ecologies. Additionally, they achieved an extraordinary range

of body sizes, unmatched by any other flying animals.2,37,38

RESULTS

Disparity in the pterosaurian manus and pes
Morphological patterns of pterosaur autopodial disparity were

examined using multivariate analyses of linear measurements

of the manual and pedal elements that would have contacted

the substrate during non-aerial locomotion. This included the

phalanges of manual digits I–III, as well as the metatarsals and

pedal phalanges of digits I–IV (see STARMethods).Manual digits

I–III exhibit substantial disparity between non-pterodactyliforms

and pterodactyliforms (basal Pterodactyliformes + Pterodacty-

loidea) in principal component analysis (PCA) (PERMANOVA:

p = 1e�6) (Figures 2A and 3A). Principal component 1 (PC 1) re-

flects differences in the relative proportions of proximal and

distal elements of the manual digits, accounting for 65.7% of

the total variance in manual disparity across Pterosauria. Linear

discriminant analysis (LDA) correctly identified 98.0% of speci-

mens. Non-pterodactyliforms possess shortened proximal pha-

langes and elongated distal phalanges, while pterodactyloids

exhibit a contrasting morphology with elongated proximal pha-

langes and reduced distal phalanges.

Disparity in pedal proportions (pedal rays I–IV) is also signifi-

cant (PERMANOVA: p = 0.001) yet shows a high degree of over-

lap in PCA (Figures 2B and 3B). PC 1 largely reflects the relative

length of themetatarsus, with shortermetatarsals corresponding

to lower PC 1 scores and elongated metatarsals associated with
4896 Current Biology 34, 4894–4907, November 4, 2024
higher values. Differences in metatarsal length account for most

of the disparity across Pterosauria (66.6%) and LDA correctly

classified 96.2% of specimens. Non-pterodactyliforms generally

exhibit shorter metatarsals, though exceptions include anurog-

nathids and rhamphorhynchines, which have exceptionally

long metatarsals. Several pterodactyloids, including Diopece-

phalus, ‘‘ornithocheiromorphs,’’ and tapejarids, have relatively

short metatarsals (Figure 3B). PC 2 primarily reflects disparity

in pedal digit proportions comparable with those identified in

the manus plot, with low PC 2 scores indicating elongated prox-

imal phalanges and shortened distal pedal phalanges and high

PC 2 scores indicating the presence of shortened proximal pha-

langes and elongated distal phalanges. When non-pterodactyli-

forms and pterodactyliforms are compared, there is no obvious

separation (Figure 2B), but this overlap is largely due to a few

outlying clades. Most non-pterodactyliform clades exhibit short

proximal and elongate distal phalanges, with the exception of

Triassic and a few Lower Jurassic taxa (Figure 3B). Most ptero-

dactyloid clades possess more elongate proximal and shorter

distal phalanges. The basal pterodactyloidDiopecephalus, tape-

jarids, and the ornithocheiromorph Zhenyuanopterus are again

unusual in having elongated distal pedal phalanges.

To better understand the scale of this disparity in pterosaur

phalangeal proportions, we compared the ratio of pedal phalanx

III-3/pedal phalanx III-1 (or penultimate phalanx/proximal pha-

lanx) across a range of digitigrade and plantigrade amniote

groups, both extant and extinct (Figure 4A). Pedal proportions

were chosen for their persistent use in locomotion, even in

bipedal animals. Unexpectedly, pterosaurs show a greater

disparity (0.54–3.12) than all other groups except for extant birds

(0.25–3.63). Lepidosaurs also exhibit relatively high disparity

(0.21–2.07), while mammals generally show low disparity

(bats = 0.71–1.01; other mammals = 0.39–1.10), with only the

suspensorial sloth (Choloepus sp.) as an extreme outlier (3.00).

Other archosaurs, including pseudosuchians and non-avian di-

nosaurs, exhibit markedly conservative ratios (0.20–0.96).
Phalangeal proportions and their relationship to
locomotor modes
Differences in the relative lengths of the proximal and penulti-

mate phalanges of digit III are closely correlated with preferred

scansorial, arboreal, or terrestrial locomotor modes in amniotes

(Figure 4B).39 Phalanx III-3/III-1 ratios serve as a reliable indicator

that differentiates between grasping/gripping locomotor ecolo-

gies (scansorial and arboreal) and terrestrial locomotor ecologies

(Figure S1). Scansorial and arboreal animals typically possess

short proximal phalanges and elongated penultimate phalanges,

with the principal loading aligned with the long axis of the

digits.40,41 This arrangement of phalanges facilitates extended

reach, enhanced grasping capability, and heightened gripping

forces through elongation of the lever arm, particularly in the

penultimate phalanges.40,41 The adaptive pressures imposed

by terrestrial locomotion, in which the principal axis of loading

is perpendicular to the digits, favors the development of elon-

gated proximal phalanges and shortened penultimate pha-

langes. Configurations of this kind, typical for the manus and

pes of most, but not all, pterodactyloids, aid terrestrial locomo-

tion by improving weight-bearing and stability, reducing loading



Figure 2. Autopodial morphospace across major pterosaur baupl€ane

(A) Biplot showing the first two axes of variation (PC1 and PC2) in the clawed digits of the pterosaur manus (digits I–III).

(B) Biplot showing the first two axes of variation (PC1 and PC2) in the metatarsus and clawed digits of the pterosaur pes (metatarsals and digits I–IV). Green

circles, non-pterodactyliforms; orange squares, pterodactyliforms; Filled squares, basal Pterodactyliformes; open squares, pterodactyloids.

See also Data S1.
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regimes within successive phalanges, and increasing stride

efficiency.27,42

These relationships between phalangeal proportions and lo-

comotor ecologies permit broad inferences to be drawn

regarding the dominant locomotor ecologies of grounded ptero-

saurs, with extant birds chosen as the primary comparator for

likely pterosaur locomotor modes (Figure 5). There are several

arguments in favor of this approach. Birds are the closest extant

relatives of pterosaurs and, more importantly, are the only group

that spans a comparable range of phalangeal proportions to

those exhibited by pterosaurs. Most birds retain the plesiomor-

phic autopodial phalangeal formula across pedal digits I–IV

(2-3-4-5). In mammals and several lepidosaur lineages, the total

number of phalanges in both the manus and pes is reduced;

consequently, their phalangeal formulas differ from those of

birds and pterosaurs. While the manual digits of birds are among

the most heavily modified of any tetrapod group, their digiti-

grade, often-functional tridactyl pedal anatomy is, in many

ways, the closest analog to the pterosaurian manus.

Admittedly, there are some regards in which the hands and

feet of lepidosaurs are more comparable with those of ptero-

saurs, as both groups are quadrupedal and share a plantigrade

pes. However, the combination of small average body size and

a sprawling posture has profound implications for their locomo-

tor functions. Even among those lepidosaurs that we would

characterize as terrestrial, many exhibit manual and pedal

proportions that are more typical of grasping than propulsive lo-

comotor modes. This is because small size, coupled with

sprawled posture, renders many terrestrial environments com-

plex and three-dimensional, necessitating a degree of climbing

proficiency that is not required of larger animals with erect pos-

tures and, critically, in the case of both birds and pterosaurs, the

ability to fly.

DISCUSSION

Evolution of pterosaur terrestrial locomotion
Non-pterodactyliforms

All non-pterodactyliforms are characterized by manual phalanx

III-3/III-1 ratios that indicate an effective grasping and gripping

ability and align with those of extant scansorial amniotes (Fig-

ures 5 and 6). Seemingly at odds with this, basal-most forms, di-

morphodontids, campylognathoidids, and the basal rhampho-

rhynchine Dorygnathus exhibit pedal proportions that are only

slightly less ‘‘terrestrialized’’ than those of other archosaurs (Fig-

ures 5 and 7). This disparity most likely reflects retention of a ple-

siomorphic archosaurian condition in the pes of early pterosaurs.

That scansorial adaptations of themanual digits appeared earlier

and to a greater degree than in the pedal digits is not surprising.

Arboreal/scansorial quadrupeds typically require greater dexter-

ity, grip, and manoeuvrability from their manual digits compared

with their pedal digits.43 The latter primarily function as stable,

weight-bearing supports during climbing.44 Moreover, in
Figure 3. Autopodial morphospace across principal pterosaur clades

(A) Biplot showing the first two axes of variation (PC1 and PC2) in the clawed dig

(B) Biplot showing the first two axes of variation (PC1 and PC2) in the metatarsus

dashed-line hulls, non-pterodactyliforms; squares and solid-line hulls, pterodact

See also Data S1.
pterosaurs, the proportionately larger and more powerful skel-

eto-muscular system of the forelimbs compared to the hind

limbs is consistent with forelimb-dominated locomotion (Fig-

ure 1A). During non-pterodactyliform evolution, pedal phalan-

geal proportions become more scansorial, decreasing the

disparity between the manus and pes (Figure 7).

Among non-pterodactyliforms, two clades became highly

specialized for hyper-scansoriality: anurognathids and scaphog-

nathines. Each independently evolved exceptionally highmanual

and pedal phalangeal ratios reflecting extreme scansorial adap-

tations (Figures 5, 6, and 7). Phalangeal proportions of this kind

are rare among extant amniotes, found only in suspensorial

sloths, scansorial birds and lizards, and the specialized con-

stricting feet of owls.45 Lacking corollary raptorial or suspenso-

rial characters, scansorial birds, such as swifts (Apodidae), offer

the closest extant analogs for anurognathids and scaphogna-

thines, exhibiting pedal morphologies adapted for clinging to

vertical surfaces.46 Moreover, the highly modified pamprodactyl

foot morphology of swifts closely resembles the functionally tet-

radactyl feet of these pterosaurs (Figure 1A).2,47 Extreme adap-

tation for scansoriality in both the manus and pes demonstrates

that anurognathids and scaphognathines were likely among the

least terrestrially adept of all pterosaurs.

Our data indicate that arboreality/scansoriality was the ances-

tral non-aerial locomotor mode for pterosaurs and was retained

by all non-pterodactyliforms (Figures 5 and 6). This interpretation

is consistent with the nature of the flight apparatus of non-pter-

odactyliforms where, in all cases, the fore and hind limbs were

connected via the brachiopatagia and the hind limbs were linked

together by the cruropatagium, supported along its rear margin

by the highly elongate pedal digit V.15,16 As in bats and colugos,

this configuration structurally and functionally forms a single lo-

comotor module that significantly restricts terrestrial locomotion,

in particular limiting the direction and range of the hind limb

movement.48 By contrast, when adopting a scansorial posture,

the hind limbs only need to flex within the plane of the wings,

effectively serving as props or supports without requiring them

to be positioned beneath the body (Figure 1A).

Widespread scansoriality may also help explain the relatively

restricted size of non-pterodactyloids (wingspan 0.2–2.5 m)

compared with pterodactyloids (wingspan 0.2–10 m) (Fig-

ure S2).49,50 Scansoriality is among the most mass-restrictive

of tetrapod locomotor ecologies, imposing various mechanical,

energetic, and environmental demands that limit the maximum

body size. These demands favor smaller sizes that can efficiently

navigate and exploit vertical habitats (Figure S3).51,52

Pterodactyliformes

Two basal pterodactyliforms, Propterodactylus8,9 and Douzha-

nopterus,7 shed light on the evolutionary transition that led to

the pterodactyloid body plan and more-terrestrial locomotor

ecologies. Propterodactylus retains limb proportions and auto-

podial characteristics typical of earlier non-pterodactyliforms,

while the more derived form, Douzhanopterus, exhibits a closer
its of the pterosaur manus (digits I–III).

and clawed digits of the pterosaur pes (metatarsals and digits I–IV). Circles and

yliforms.

Current Biology 34, 4894–4907, November 4, 2024 4899



Figure 4. Variation in phalangeal proportions for principal groups of extant and extinct amniotes

(A) Pedal digit III ratio (penultimate phalanx/proximal phalanx).

(B) Pedal phalanx ratio across bird ecomorphs. See Figure S1 for expanded ecological categories.

See also Data S1.
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Figure 5. Manual phalanx ratio (Mph III-3/III-1) and pedal phalanx ratio (Pph III-3/III-1) across principal pterosaur groups compared with

extant bird ectomorphs
M,manual phalanx ratio; P, pedal phalanx ratio. Manual phalanx ratio values always exceed those for the pes in non-pterodactyliforms, whereas the reverse is the

case for all pterodactyliforms except for Propterodactylus.

See also Data S1.
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resemblance to pterodactyloids, particularly in its phalangeal

proportions (Figures 5 and 6). Douzhanopterus displays signifi-

cantly lower manual and pedal phalangeal ratios compared

with other Late Jurassic non-pterodactyloids. These generalized

proportions indicate a degree of locomotor versatility not present

among non-pterodactyliforms. Although the hands and feet of

Douzhanopterus indicate that it was incapable of sustaining a

scansorial lifestyle, its generalized phalangeal proportions are

consistent with a variety of locomotor ecologies, from grasping

arboreality to partial terrestriality.

Manual phalanx III-3/III-1 ratios of approximately 1.0 or lower

distinguish the clade containing Douzhanopterus and Pterodac-

tyloidea from other non-pterodactyloids (excluding ‘‘ornitho-

cheiromorphs’’). In contrast to more basal forms, members of

this group also exhibit consistently lower manual phalanx ratios

than pedal ratios (Figure 5). These modifications reflect a shift in

pterosaur locomotor ecology away frompredominantly arboreal/

scansorial locomotor modes toward generalist and, ultimately,

terrestrial modes (Figures 5 and 6). Consistently lower manual

phalanx ratios imply that the manual digits were better adapted

for propulsion-dominated terrestrial locomotion than were the

pedal digits. Although this may seem unusual, it is a predictable

consequence of the pterosaur bauplan. Just as the non-ptero-

dactyloid manus shows greater scansorial adaptation, the pter-

odactyloid manus shows greater adaptation to terrestriality.
During terrestrial locomotion, pterodactyloids used a digitigrade

stance on their forelimbs. Due to their notably ‘‘front-heavy’’

build (Figure 1B), this stance exerted greater stress on their

manual digits compared with the plantigrade stance of their

hind limbs. This is evidenced by the deeper impressions of

manus prints comparedwith pes prints in pterosaur trackways.53

The shift to terrestrial locomotor modes in pterodactyloids is

not only evidenced by changes in hand and foot morphology

but also by a suite of other morphological transformations that

characterize the pterodactyloid bauplan. A major reduction in

the extent of the cruropatagium is evidenced by both the atrophy

of pedal digit V and, critically, the bifurcation of the cruropata-

gium along the midline, as revealed by fossilized soft tissues.2,12

This resulted in two structurally and functionally independent lo-

comotor modules wherein the limbs on the left side could be

swung forward and backward, independently of the limbs on

the right side.

The effectiveness of this pivotal development was further

enhanced by additional adaptations toward terrestrial locomotor

efficiency. Although efficient scansorial locomotion benefits

from shorter limbs and short distal elements, elongating

the limbs, particularly the distal elements, is favored for effective

terrestrial movement.27 This phenomenon is evident within

pterodactyloids. These modifications to the limb proportions

improve stride efficiency by improving limb leverage.
Current Biology 34, 4894–4907, November 4, 2024 4901



Figure 6. Ancestral character-state reconstruction of pterosaur manual proportions

Changes in phalangeal proportions for the pterosaur manus exemplified by the manual phalanx ratio (Mph III-3/III-1), mapped onto a time-calibrated reduced

strict consensus tree.

See also Data S1.
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Additionally, positioning limb musculature closer to the body’s

center of mass reduces the moment of inertia and decreases

the energy required for limb oscillation. This is most apparent

in the pterosaur forelimb, where a clear correlation exists be-

tween scansorial manual phalangeal proportions and a relatively

shorter metacarpus, as well as increasingly terrestrial manual

phalangeal proportions and elongation of the distal forelimb (Fig-

ure S4). Although pterosaur forelimb morphology is widely

considered to be primarily adapted for flight, this trend empha-

sizes the extent to which non-aerial locomotion played an impor-

tant role in shaping the morphology of the pterosaur forelimb.

The transition from a scansorial to a terrestrial locomotor

mode also facilitated a fundamental change in pterodactyloid

take-off. Scansorial non-pterodactyliforms could simply launch

into the air from elevated positions, allowing them to initiate flight

without generating significant thrust. During take-off from the

ground, however, pterodactyloids would have needed to
4902 Current Biology 34, 4894–4907, November 4, 2024
generate considerably more thrust to become airborne. One

likely consequence of this was selection for autopodia that

showed a greater degree of terrestrialization, mitigating the

impact of large stresses, particularly upon the manus.

Radiation of pterodactyloids into a broader range of locomotor

ecologies seems to have begun in the Middle Jurassic (Figures 6

and 7), as highly specialized forms are already present in the

earliest Upper Jurassic.54 Although the first pterodactyloids in-

herited locomotor versatility, including some degree of faculta-

tive terrestrial behavior, predominant, or obligate, terrestriality

did not arise from a singular terrestrialization event early in their

evolution. Our results suggest that the earliest pterodactyloids

experimented with a variety of autopodial morphologies. For

example, Diopecephalus combines generalist manual propor-

tions comparable with Douzhanopterus, with scansorial pedal

proportions reminiscent of Propterodactylus. As with many other

major evolutionary transitions, it is likely that the pterodactyloid



Figure 7. Ancestral character-state reconstruction of pterosaur pedal proportions

Changes in phalangeal proportions across the pterosaur pes exemplified by the pedal phalanx ratio (Pph III-3/III-1), mapped onto a time-calibrated reduced strict

consensus tree.

See also Data S1.
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transition was complex and did not follow a simple linear narra-

tive. Moreover, the evolution of predominantly terrestrial loco-

motor ecologies occurred later, and independently, within each

of the four principal pterodactyloid radiations: Euctenochasma-

tia, Ornithocheiroidea, Dsungaripteridae, and Azhdarchoidea

(Figure 7).

Euctenochasmatians were the earliest-branching pterodacty-

loid radiation and rapidly diversified into a broad range of terres-

trial niches. The basal-mostmember of the group,Pterodactylus,

exhibits generalized autopodial proportions, but all more-

derived ctenochasmatoids are strongly terrestrialized, suggest-

ing that they were among the most terrestrially competent of

all known pterosaurs. This interpretation is consistent with tradi-

tional interpretations of ctenochasmatoids as occupying a range
of dietary niches closely associated with marginal aquatic

environments.1–3,18

By contrast, ornithocheiroids appear to have reverted back to-

ward a scansorial mode of life. Most ornithocheiroids possess

autopodial proportions comparable to those of non-pterodacty-

loids. The greatly atrophied pes inmost ornithocheiroid taxa sug-

gests that non-aerial locomotion played a relatively minor role in

their overall ecological strategies. This aligns with the traditional

paleoecological view of the group as specialized soarers adapt-

ed for scavenging or aerial piscivory.18,55 However, highly terres-

trially adapted autopodia evolved in the toothless ornithochei-

roid Pteranodon. This is unexpected, as traditionally

Pteranodon and its closest relatives have been interpreted as

some of the least-adept terrestrial locomotors among all
Current Biology 34, 4894–4907, November 4, 2024 4903
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pterosaurs.3 Our results suggest that this is not the case,

although the implications of our finding for their overall ecology

remain to be determined.

‘‘Germanodactylids’’ (Altmuehlopterus and Germanodacty-

lus), differ significantly in their autopodial anatomy. Altmuehlop-

terus, the least-derived form, retains proportions similar to those

of the basal pterodactyloid Diopecephalus, with a significant

discrepancy between manual and pedal proportions. The auto-

podial proportions of Germanodactylus are more consistent,

typical of a generalist or limited arboreal locomotor ecology. It

seems that although these animals appear quite similar, they

likely occupied different ecological roles.

Dsungaripterids are characterized by remarkably low phalan-

geal ratios, ranking among the lowest of any pterosaurs. This

characteristic suggests a predominantly terrestrial locomotor

ecology, which aligns with their notably terrestrial fore- and hin-

dlimb proportions. Moreover, this interpretation is consistent

with the widely accepted notion that these pterosaurs were

specialized shellfish feeders.1–3

Azhdarchoids show considerable diversity in manual and

pedal morphology. Similar to ornithocheiroids, tapejarids appear

to have reverted to an arboreal/scansorial mode of life, re-

evolving highly derived autopodial proportions characterized

by a generalized manus and a strongly scansorial pes. The

more generalized manual proportions of tapejarids compared

with other scansorial pterosaurs may reflect a transition to a

grasping form of arboreality, necessitated by large body size,

or a biomechanical compromise that facilitated both arboreal/

scansorial locomotion and terrestrial locomotion.

Neoazhdarchians (thalassodromeids, chaoyangopterids, and

azhdarchids) show a trend toward increasing terrestrialization.

All neoazhdarchians exhibit manual proportions similar to those

of other large ground-based pterosaurs and typical of terrestrial

locomotors. The degree of terrestrial adaptation in the neoazh-

darchian pes, particularly in Tupuxuara, is more generalized

and less strongly terrestrialized compared with most other large

ground-dwelling pterosaurs. Among this group, azhdarchids and

chaoyangopterids appear to be most strongly adapted for

terrestrial locomotion. These clades are generally interpreted

as being ground-based feeders, and this is consistent with their

autopodial morphology.20

Pterosaurs and their roles in Mesozoic terrestrial

ecosystems

The evolution of flight opened up new modes of life for the first

pterosaurs but, even before taking to the air, they were already

pioneering new ecological niches. Evolving from as-yet-un-

known gliding ancestors in the Triassic, non-pterodactyliform

pterosaurs were the first, and only, group of archosaurs to effec-

tively exploit arboreal/scansorial niches in the early- to mid-

Mesozoic. Instead of expanding into terrestrial habitats, most

non-pterodactyliform clades consolidated their foothold in arbo-

real/scansorial locomotor ecologies and, over time, became

more mechanically proficient at climbing on inclined and vertical

substrates. Their remarkable success lay in extending typical

archosaurian feeding ecologies—such as invertivory, carnivory,

and piscivory—into new scansorial and aerial habitats.

In theMiddle Jurassic, pterosaurs underwent a significant shift

in their non-aerial locomotor abilities as basal pterodactylforms

began acquiring adaptations conducive to more versatile
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locomotor modes, including facultative terrestriality. Some pter-

odactyloid lineages extended terrestrial adaptations even

further, becoming reliant on terrestrial ecosystems. By achieving

greater locomotor proficiency on the ground, pterosaurs once

again expanded into unexploited ecospace accessible only to

animals adept in both terrestrial locomotion and flight. This inter-

pretation is reinforced by diversification in the pterodactyloid

craniodental morphology, much of which was unlike anything

found among non-pterodactyliforms.

Many pterodactyloid lineages were highly successful during

the latter half of the Mesozoic. Ctenochasmatoids, competent

terrestrial locomotors, occupied a broad range of niches within

shoreline ecosystems for at least 60 million years. Other clades,

such as pteranodontians, dsungaripterids, and neoazhdarch-

ians, diversified in the Late Jurassic and Early Cretaceous. In

particular, neoazhdarchians achieved remarkablemorphological

and ecological diversity, persisting for approximately 80 million

years, through to the end of the Cretaceous. Terrestrial adapta-

tion enabled pterosaurs to achieve some of their most enduring

and spectacular successes, as freedom from size constraints

imposed by scansoriality allowed pterodactyloids to become

much larger, attaining giant size across multiple lineages.

Evidence from the ichnological record strongly supports this

proposed history of pterosaur locomotor ecology. No pterosaur

tracks occur in the first half of the Mesozoic prior to the evolution

of pterodactyloids37, and footprints of non-pterodactyliforms are

entirely absent from the record.56 Pterodactyloid tracks first

appear in the Middle-Late Jurassic, soon after the appearance

of the group (Figures 6 and 7), and quickly become wide-

spread.37 Pterodactyloid footprints remain a persistent feature

of the late Mesozoic terrestrial ecosystems until the end of the

Cretaceous.37

Non-pterodactyliforms appear to have become extinct by the

end of the Jurassic, with only a single putative Cretaceous repre-

sentative (Figure 7). Despite this, some of their ecologies per-

sisted, with ornithocheiroids replacing certain non-pterodacty-

loids as aerial piscivores. Tapejarids re-evolved arboreal/

scansorial autopodial proportions, enabling them to exploit

entirely novel ecological niches by combining scansoriality with

a potentially herbivorous diet.3,57

This study shows that disparity in autopodial morphology

across Pterosauria is much higher than has been previously

appreciated, much greater than that in other groups of Mesozoic

archosaurs, and comparable with that in extant birds. Such di-

versity strongly suggests a wide array of non-aerial ecological

roles within the group, challenging previous conservative as-

sumptions that pterosaurs occupied a relatively restricted range

of niches in Mesozoic ecosystems. Non-pterodactyloids were

typically highly specialized for scansorial lifestyles and were

likely largely absent from terrestrial ecosystems. From the Mid-

dle Jurassic to the Late Cretaceous, pterodactyloids diversified

into more generalized and ultimately terrestrial locomotor

modes, evolving diverse and, in some cases, unprecedented

feeding strategies. Throughout their 160-million-year history,

pterosaurs continually innovated new ecological niches. The

shift from predominantly scansorial to primarily terrestrial ecolo-

gies in pterosaurs occurred during the Middle Jurassic. This

period also saw several amniote groups, such as scansoriopter-

ygids, avialans, volaticotherins, and gliding eleutherodontids,
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evolving toward more arboreal and aerial lifestyles. To under-

stand how pterosaurs may have interacted with these emerging

clades, it is crucial to gain a deeper understanding of their non-

aerial ecologies in addition to their flight capabilities.
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ImageJ v1.53u Schneider et al.58 https://imagej.net/ij/

MorphoSource.org MorphoSource https://www.morphosource.org/

Past v4.17 Hammer et al.59 https://www.nhm.uio.no/english/research/resources/past/
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R R Development Core Team62 https://cran.r-project.org/
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Comparative data from extant taxa was retrieved from the published literature and from the 3D data repository MorphoSource. Addi-

tional data for extant birds was collected by R.S.H.S. from the bird skeleton collections in the Natural History Museum at Tring, UK.

See data collection section below and Data S1 for more information.

METHOD DETAILS

Data collection
Metric data for pterosaurs was obtained by direct measurement of specimens, from scaled photographs using ImageJ v.1.53u58 and

from the published literature. Most metric data for other amniote groups were compiled from existing publications.24,32,63–65 To

enhance their phylogenetic and locomotor representativeness these datasets were augmented by additional data frommuseum col-

lections, recent literature, and the 3D data repository MorphoSource.org.

Autopodial function and locomotor assignment
The primary autopodial function in extant tetrapods was assigned based on ecologies presented in the datasets, as well as literature

review. Occasionally, traditional ecological categorisations were found to be inappropriate for autopodial function. For instance, the

marine iguana (Amblyrhynchus cristatus) is commonly assigned a semi-aquatic ecology, yet this designation does not align with its

primary autopodial function. Among lepidosaurs, aquatic locomotion primarily relies upon tail propulsion, with the autopodia per-

forming a secondary and relatively minor role. In the case of the marine iguana, autopodial morphology is adapted for a saxicolous

(rock-traversing) function, so shows morphology typical of a grasping (climbing) rather than a propulsive (aquatic) mode. Likewise,

many birds are characterised as possessing an aerial hawking ecology, but this locomotor ecology is largely independent from the

function of the pedal digits.

Differences in phalangeal proportions serve as a reliable indicator that differentiates between grasping/gripping autopodial func-

tions (scansorial, raptorial, and arboreal) and propulsive functions (terrestrial, wading, and aquatic). However, it can be difficult to

distinguish between some functions within the grasping and propulsive groups, as it is important to consider that these functions

are far from exclusive. Autopodia that show propulsive adaptations are rarely limited to a single locomotor mode. For example,

waders (a specialized form of walking) and foot-propelled swimmers are generally adept terrestrial locomotors, with rare exception.

Similarly, autopodia adapted for grasping are not necessarily limited to a single function. For example, almost all raptorial birds are

also arboreal, with similar underlying mechanics involved in grasping both prey and perches. Thus, the high degree of overlap be-

tween these two categories is not surprising.

It would be overly artificial and unrepresentative to exclude aquatic andwading birds from the terrestrial locomotor group, or rapto-

rial birds from the arboreal locomotor group, simply because their feet perform additional functions. As such, two figures are used to

illustrate both reduced and expanded ecological categories (Figures 4B and S1). To illustrate the differences in body size range

among these expanded avian locomotor ecologies, especially the restricted size distribution in scansorial and arboreal taxa, we

use femur length as a proxy for overall body size (Figure S3).

To demonstrate that proportional changes in pterosaur autopodial morphology align with other indicators of locomotor

ecology in the limb skeleton, manual phalanx ratio (Mph III-3 / III-1) was plotted against the degree of distal forelimb elongation

(MC IV / (humerus + radius)). This analysis reveals a distinct correlation between scansorial manual phalangeal proportions and a

shorter metacarpus, which is linked to enhanced climbing efficiency. Conversely,27 more terrestrial manual phalangeal proportions

are associated with an elongated distal forelimb, contributing to greater walking efficiency (Figure S4).
e1 Current Biology 34, 4894–4907.e1–e3, November 4, 2024
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QUANTIFICATION AND STATISTICAL ANALYSIS

Morphometric data and analyses
The pterosaur manus multivariate dataset includes 101 pterosaur specimens, representing 43 taxa, while the pedal dataset con-

tains 38 taxa based on 79 specimens. A secondary dataset, containing only the phalanges of manual and pedal digit III was

created for several reasons. First, consistent patterns in phalangeal proportions are observed across all digits in pterosaurs,

such that the morphological patterns in digit III are representative of the other digits. This observation allowed us to include all

taxa wherein manual and/or pedal digit III are complete, irrespective of the completeness of other digits, significantly expanding

the taxonomic breadth of the secondary data set. Secondly, extensive datasets for manual and pedal digit III are available for

extant groups, enabling direct comparison with pterosaurs. The non-pterosaur comparative dataset contains the following

taxa: 187 extant mammals (240 specimens); 377 extant lepidosaurs (401 specimens); 11 extant and 12 extinct pseudosuchians

(65 specimens); 166 non-avialan dinosaurs (359 specimens); 57 Mesozoic avialans (100 specimens); 855 extant birds (942

specimens).

Morphometric analyses were conducted in Past 4.17,59 using a set of linear measurements of the autopodia that would have con-

tacted the substrate during non-aerial locomotion. This included the phalanges of manual digits I-III, as well as the metatarsals and

pedal phalanges of digits I-IV. Manual digit IV (the wing-finger) and the fifth metatarsal, along with its pedal digit, were excluded from

analyses as these elements, heavily modified and incorporated within the flight apparatus, were not used during non-aerial

locomotion.

Variation in the relative proportions of the lengths of the proximal and penultimate phalanges is a major source of disparity in

both the pterosaur manus and pes. The functional and ecological underpinnings of this variation are well-documented, and large

datasets exist for digit III across a wide range of extant groups with known primary autopodial functions and locomotor ecologies,

allowing for direct comparison.24,32,63–65 This pattern is consistent across all digits, so the morphology of a single digit can be

adopted as representative of other digits. Consequently, restricting data collection to manual and pedal digit III permitted the

compilation of a more comprehensive dataset for pterosaurs. Manual phalanx III-3/III-1 ratios were calculated for 134 pterosaur

specimens representing approximately 53 taxa, and pedal phalanx III-3/III-1 ratios for 148 specimens representing approximately

56 taxa. In both cases taxon sampling included representatives from 18/20 principal pterosaur groups, with the exceptions of Lon-

chodectidae and Nyctosauridae, clades for which the autopodia are entirely unknown or very poorly preserved (see Phylogenetic

analysis and taxonomy).

While relative metatarsus length is the primary source of disparity in the pterosaur pes, the possible correlates between metatarsal

length and locomotor ecology are less clearly constrained than those relating to phalangeal proportions, especially concerning flying

vertebrates,66 with similar increases or decreases in relative length occurring across disparate locomotor ecologies. Metatarsal pro-

portions are also heavily influenced by stance and gait, which likely has a confounding influence on any ecological comparison made

across taxa.27,67 For these reasons, disparity and ecomorphological comparisons between pterosaurs and other groups of amniotes

were restricted in this study to variation in phalangeal proportions.

To minimise the impact of collection bias when comparing the distribution of phalanx ratios across amniote groups, a mean value

was used for those taxa represented by multiple individuals. In multivariate analyses, morphometric data was normalised to mitigate

the influence of absolute body size on the results. Individual elements from manual digits I–III were divided by the total length of

manual digit III (MPh III-1 + III-2 + III-3 + III-4), while pedal elements were divided by the total length of pedal ray III (MT III + PPh

III-1 + III-2 + III-3 + III-4) (Smyth and Unwin, unpublished data).

Change in pterosaur body size through time was estimated using humerus length as a proxy (Figure S2). Each taxon is represented

by the largest known humerus. Taxa represented only by highly immature individuals were excluded. The plotted age for each taxon

was the midpoint calculated from maximum and minimum ages obtained from a literature search.

Phylogenetic analysis and ancestral reconstruction
To locate changes in autopodial morphology within an evolutionary framework, we analysed a modified version of the pterosaur

morphological character matrix (Smyth & Unwin, under review), which was expanded to include asmany pterosaur OTUs as possible

in which the manual or pedal digits are preserved. This resulted in 95 active taxa with Euparkeria capensis designated as the out-

group. The matrix contains 187 characters, 41 of which were treated as ordered. The analysis was performed in TNT version

1.660 using a two-phase tree searching procedure.5 See supplemental information for more details.

The resulting strict consensus tree (Figure S5) was time-calibrated using the DatePhylo function of the R package strap,

version 1.6-0,61 R version 4.3.0.62 First and last appearance dates were obtained from a literature search. Branches were scaled

using the ‘equal’ method which eliminates zero-length branches by sharing duration from the more basal non-zero-length

branches.61 The time-scaled tree was pruned in R to produce two trees that include only those pterosaurs for which manus

data are available and only those pterosaurs for which pes data are available. Ancestral character-state reconstructions were

performed by mapping manus and pes data onto the pruned time-calibrated phylogenies using the contMap function in

phytools.68
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Taxonomic definitions
Pterosauria: the most inclusive clade exhibiting fourth metacarpal and digit hypertrophied to support wing membrane synapomor-

phic with that in Pterodactylus antiquus.69,70 Monofenestrata: the most inclusive clade exhibiting confluent external naris and

antorbital fenestra synapomorphic with that inPterodactylus antiquus.71 Pterodactyliformes themost inclusive clade containingPter-

odactylus antiquus but notDarwinopterus modularis.4 Pterodactyloidea: themost inclusive clade exhibiting metacarpus at least 80%

the length of the humerus synapomorphic with Pterodactylus antiquus.70,72
e3 Current Biology 34, 4894–4907.e1–e3, November 4, 2024


	Hand and foot morphology maps invasion of terrestrial environments by pterosaurs in the mid-Mesozoic
	Introduction
	Results
	Disparity in the pterosaurian manus and pes
	Phalangeal proportions and their relationship to locomotor modes

	Discussion
	Evolution of pterosaur terrestrial locomotion
	Non-pterodactyliforms
	Pterodactyliformes
	Pterosaurs and their roles in Mesozoic terrestrial ecosystems


	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and subject details
	Method details
	Data collection
	Autopodial function and locomotor assignment

	Quantification and statistical analysis
	Morphometric data and analyses
	Phylogenetic analysis and ancestral reconstruction
	Taxonomic definitions




