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A B S T R A C T   

Ship-at-berth emissions significantly affect air quality and health of human beings in a port and its 
neighbourhood. However, it is challenging to estimate these emissions precisely due to stringent 
data requirements. Shore Power (SP) data, including its actual energy consumption and duration, 
offers useful insights to refine these estimates, but has yet to be fully explored. This study pro-
poses a novel scheme incorporating SP data to improve the accuracy of containership-at-berth 
emission estimates and evaluate emission reduction measures. The findings reveal substantial 
differences among existing emission estimates from identical case studies, highlighting the 
importance of SP data. Additionally, it demonstrates significant emissions from low-load main 
engines and confirms the efficacy of SP in emission reduction. These findings provide valuable 
insights into emission estimation methods and their potential applications in estimating emission 
reduction measures, underlining the importance of policy support in facilitating the SP 
implementation.   

1. Introduction 

Maritime transport is crucial to international trade and the global economy, handling more than 80% of global trade by volume and 
about 70% by value (United Nations, 2018). International shipping, despite being one of the most eco-friendly transportation modes, 
contributed around 10% of the transportation industry’s total emissions in 2022 and roughly 2.1% of global Carbon Dioxide (CO2) 
emissions, as illustrated in Fig. 1 (Singh et al., 2023). Additionally, the shipping industry is a major source of Sulphur Dioxide (SO2), 
Particulate Matters (PM), Nitrogen Oxides (NOX), and other air pollutants, posing further environmental and health risks. It is worth 
noting that ship emissions can travel across borders and impact marine environment and air quality in the surrounding areas of ports 
(Poulsen et al., 2018). Hence, it is a significant challenge to address these emissions, even with increased research efforts over the past 
decade. 

Given the substantial costs involved in equipping ships with emission monitoring equipment on ships (Lee et al., 2020), the 
estimation of ship emissions often relies on data concerning fuel sales, fuel consumption, and ship characteristics. The studies on ship 
emissions are characterised by the following: 1) A significant portion of recent research has been dedicated to evaluating emissions on 
various scales, including global, regional, port, and voyages. For instance, Corbett and Fischbeck (1997) analyse global fleet emissions 
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by ship type, while Starcrest (2023) estimates ocean-going vessel emissions in the port areas. 2) The main methods of estimating ship 
emissions in different phases, classified as top-down and bottom-up approaches, are relatively straightforward (Peng et al., 2024a). 3) 
With stricter regulations on pollution than before, there has been a surge in research concentrated on the application of these methods 
to evaluate the emission reduction measures, including slow steaming, Emission Control Areas (ECAs), the 2020 global sulphur limit, 
renewable energy source, and all-electric ships (Wang et al., 2023b). 

As indicated by He et al. (2023), most ships’ emissions in ports occur at berth, making it a critical and efficient strategy for 
maximally mitigating vessel emissions in ports. However, ship-at-berth emissions have hindered progress in this area due to data 
limitations, a complex berthing process, and a misconception that these emissions are minimal compared to total voyage emissions. 
Shore Power (SP), a system enabling ships to switch off their Auxiliary Engines (AEs) and connect to onshore power grids while docked, 

Abbreviations 

ABs Auxiliary Boilers 
AIS Automatic Identification System 
AEs Auxiliary Engines 
CO2 Carbon Dioxide 
CO Carbon monoxide 
DWT Deadweight Tonnage 
ECAs Emission Control Areas 
EU European Union 
GRT Gross Register Tonnage 
GT Gross Tonnage 
HFO Heavy Fuel Oil 
IMO International Maritime Organization 
LA series report on emission inventory Series Reports on emission inventory for the Port of Los Angeles 
LSHFO Low Sulphur Heavy Fuel Oil 
MEs Main Engines 
MDO Marine Diesel Oil 
MGO Marine Gas Oil 
MCR Maximum Continuous Rating 
NT Net Tonnage 
NOX Nitrogen Oxides 
PM Particulate Matters 
RPM Revolutions Per Minute 
SFOC Special Fuel Oil Consumption 
SOX Sulphur Oxides 
SP Shore Power 
TEU Twenty-foot Equivalent Unit  

Fig. 1. The distribution of global CO2 emissions by sector in 2022 
(Source: EC & IEA). 
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Table 1 
Categories, advantages, disadvantages, applicability, and references of different emission methods.  

Categories Methods Advantages Disadvantages Applicability Refs. 

Ship emissions 
estimation 

Top-down: fuel-based 
method 

Does not require detailed ship 
navigation data; popular in the late 
1990s and early 2000s. 

Heavily depend on the precision of fuel sales data; 
significant inaccuracies can lead to considerable 
uncertainty. 

Best suited for broad, global ship emission 
estimations and provides only approximate 
figures. 

Corbett and 
Fischbeck (1997) 

Top-down: trade-based 
method 

Useful for estimating ship-in-port 
emissions; and focus on cargo or 
passenger throughput at ports. 

Has a large margin of error compared to the fuel-based 
method; less extensively used for overall ship emissions 
estimation. 

More applicable to port-specific emissions 
calculations. 

Liu et al. (2018), Li 
and He (2011) 

Bottom-up: statistical 
method 

Offer enhanced precision and 
spatiotemporal resolution by focusing 
on ship activities and characteristics. 

Depend on the availability of empirical data. More applicable to ship emissions 
calculations in different phases. 

Wang et al. (2024), 
Corbett and Koehler 
(2003) 

Bottom-up: dynamic 
method 

Offer precise references crucial for 
ship design and the formulation of 
emission policies. 

Require utmost precision in data related to different 
operational modes, comprehensive details on ship features, 
navigation, and weather conditions, and advanced data 
processing capabilities. 

Ideal for detailed, specific emission studies, 
requiring high accuracy and resolution, 
especially where comprehensive ship data is 
accessible. 

Shu et al. (2023), 
Peng et al. (2024b) 

Ship-at-berth 
emissions 
estimation 

Methods without 
specific engine type 
consideration 

It is accessible and easy to implement, 
due to the reduction of complexity in 
data collection and processing. 

Oversimplify the complex relationship between engines 
and emissions, leading to estimates that could misinform 
operational decisions. 

Used for a rough estimation of emissions at 
various stages, studying the emission trends 
of ships. 

(Hickman et al., 
1999), Trozzi and 
Vaccaro (2006) 

Methods specifically 
concentrating on AEs 

Offer a more detailed and 
straightforward analysis, and simplify 
the process. 

Neglect emissions from ABs and low-load MEs during berth 
activities, resulting in an incomplete assessment. 

Suited for studies that focus specifically on 
the impact of AEs on air quality, including 
analyses related to SP. 

Nguyen et al. 
(2022), Shu et al. 
(2023) 

Methods take into 
account both AEs and 
ABs 

Provide a more holistic view of 
emissions during specific periods. 

Overlook emissions from low-load conditions of MEs, 
leading to an underestimation of emissions. 

Widely used for assessing emissions during 
ship berthing. 

Chen et al. (2021), 
Starcrest (2023)  

J. W
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is emerging as an effective means to reduce ship-at-berth emissions (Wang et al., 2023a). The growing adoption of SP and the asso-
ciated energy consumption and duration data offer an alternative for estimating ship-at-berth emissions from AEs. This paper in-
corporates real SP energy consumption and duration data (SP data) instead of the estimation of AEs to improve estimations of ship-at- 
berth emission from AEs and then explore to enhance estimations of ship-at-berth emissions from all possible operational engines to 
bridge these research domains. It, thereby, enables a more effective assessment of 10 kinds of classical emission reduction measures (i. 
e., Marine Gas Oil (MGO), Low Sulphur Heavy Fuel Oil (LSHFO), ECA, Outside-ECA, HFO and Scrubber, HFO and SP, MGO and SP, 
LSHFO and SP, ECAs and SP, and Outside-ECA and SP) for types of five pollutants (i.e., CO2, CO, NOX, SO2, and PM). It is imperative to 
note that emissions from SP and AEs are excluded from the estimation when SP is utilised. The intellectual merits of this paper are 
highlighted as follows: 

(1) A thorough review of influential factors and their corresponding parameters allows for the advancement of existing at-berth 
estimation methods, identifying research gaps in the process. 

(2) SP data is employed to improve the methods of estimating ship-at-berth emissions from AEs, thereby replacing traditional 
estimation techniques. 

(3) A practical approach to estimating ship-at-berth emissions is introduced, taking into account AEs, Auxiliary Boilers (ABs), and 
low-load Main Engines (MEs). 

(4) Analysis of the effectiveness and accuracy of the proposed emission estimation method is carried out, including an assessment of 
the roles that emissions from ABs and MEs play. 

(5) Integration of existing ship-related emission reduction measures into the proposed method is to draw useful insights and 
suggestions for promoting and managing SP. 

The structure of the paper is organised as follows: Section 2 provides an in-depth literature review of the state-of-the-art methods of 
estimating ship-at-berth emissions, influential factors, and associated parameters and reveals research gaps. Section 3 outlines an 
enhanced methodology for estimating ship-at-berth emissions from AEs using SP data and introduces a novel and practical scheme for 
ship-at-berth emission estimation from all possible operational engines. Section 4 encompasses case studies and analysis to demon-
strate the performance of the improved AEs’ estimation with SP data, proposed method, and its applications in various reduction 
measures. Finally, Section 5 offers concluding remarks and a discussion on associated policy implications and limitations. 

2. Literature review 

Ship-at-berth emissions are influenced by multiple factors, including types and conditions of the engines, fuel type, ship’s char-
acteristics, berth time, regulations and compliance, and emission reduction measures. Each factor has its own set of specific param-
eters, and it is common for a detail to be affected by several factors. To elucidate this relationship clearly, this paper structures the 
review into three subsections: 1) the current state-of-the-art methods of estimating ship emissions; 2) an exploration of factors and 
their associated parameters; and 3) research gaps are identified at the end. 

2.1. Research progress of ship-at-berth emissions 

Ship emissions estimation is critical for understanding and mitigating the environmental impact of maritime activities. As sum-
marised by Wang et al. (2024), this study outlines the categories, advantages, disadvantages, and applicability of various emission 
estimation methods in Table 1, providing a comparative overview to aid in selecting the most appropriate method for specific emission 
estimation needs. Specifically, the fuel-based method depends on the strong correlation between fuel consumption and emissions, 
integrating data on marine fuel sales with information on ship types, voyage areas, and engine distribution to allocate total emissions. 
The trade-based method estimates ship emissions based on cargo throughput at ports by fitting functions. Despite its utility, the top- 
down method is less commonly employed in ship emissions studies for its broader and more generalised estimate of emissions. 
Conversely, the bottom-up method offers a more granular view by focusing on the actual activities of ships. It incorporates detailed 
data on ship characteristics, technical information, and movements to estimate emissions more precisely. 

Although representing a smaller portion of total ship emissions, the existing methods of estimating ship-at-berth emissions are 
similar to, yet differ from, those of overall ship emissions. This paper divides the estimation methods into distinct classifications based 
on their approaches against engine type considerations: methods that do not differentiate by engine type, those that focus solely on 
AEs, and those that take into account both AEs and ABs. Regarding methods that do not specify engine type, emissions are calculated 
based on the number of sailing days, providing a broad estimate that is easier to apply but may not capture the detailed variations in 
different engine activities (Hickman et al., 1999; Trozzi and Vaccaro, 2006). Methods specifically targeting AEs focus on emissions 
from AEs during ship berthing, which is widely used in the maritime sector today to estimate ship-at-berth emissions. For instance, 
Nguyen et al. (2022) employ bottom-up methods to estimate these emissions at ten major container ports in Southeast Asia, 
considering only the operation of AEs. Methods that take into account both AEs and ABs have recently emerged, providing a more 
comprehensive assessment of ship-at-berth emissions. For example, Chen et al. (2021) utilise default engine loads and emission factors 
for both AEs and ABs to estimate ship-at-berth emissions as part of port emissions. These methods are documented in sources, including 
IMO series reports, Series Reports on emission inventory for the Port of Los Angeles (LA series reports on emission inventory) (Port of 
Los Angeles, 2024), and EPA (2020). They are commonly encountered in port emission assessments. 

J. Wang et al.                                                                                                                                                                                                           
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2.2. Review of influential factors and associated parameters for ship-at-berth emissions 

The assessment of ship-at-berth emissions is shaped by a variety of factors, leading to a range of diverse parameters. Among these, 
the types of ship engines, ranging from AEs, ABs, and MEs, play a crucial role in the overall estimations. AEs are especially significant as 
they power vital onboard systems such as refrigeration, air conditioning, lighting, and the operation of refrigerated containers loading, 
unloading, or when passengers are getting on or off the ships (Zis, 2019). Key parameters for AEs include its installed power (PAE), 
Engine Load (ELAE), and the actual operational power or Load (LAE). ABs play a crucial role in maintaining stable temperatures for fuel 
and the ME’s cylinders, preventing damage from low-temperature shrinkage (Zis, 2019). When a ship is berthed, ABs start operational, 
marking them as significant sources of ship-at-berth emissions. The primary parameter for ABs is their power, denoted as LAB. MEs are 
the primary power source for ships, driving propulsions and being the main emission contributors while navigating. Key parameters for 
MEs’ emissions include the installed ME Power (PME), Engine Load (ELME), Maximum Continuous Rating (MCR), and operational 
power or load (LME). While it is common to assume the MEs are turned off during docking, emerging research, including field studies 
and interviews, shows that MEs often operate at a low load (Kotrikla et al., 2017), significantly impacting emissions of pollutants like 
carbon monoxide (CO) and PM. This review divers into different methods of determining PAE, LAE, LAB, and ME power as outlined in 
Table 2. 

Special Fuel Oil Consumption (SFOC) is a key indicator of a ship’s fuel efficiency, measuring fuel consumption relative to engine 
power in grams per kilowatt-hour (g/kWh). There is a quadratic relationship between SFOC and EL, with the lowest SFOC occurring 
when EL is between 70% and 80%, it can increase up to 1.7 times above the standard value at low loads (Jalkanen et al., 2012; Daniel 

Table 2 
Methods and classifications for determining the power of AEs, ABs, and MEs.  

Engine 
type 

Parameters Methods of determining ME power Classification Refs. 

AEs PAE PAE = f(ship size). Given ship type 
Wang et al. (2007b) and Daniel et al. (2021) 

Default ratio of PME to PAE Default ratio with PME Lee et al. (2021) 
PAE = GRT× PRT Power-to-Tonnage Ratio 

Adamo et al. (2014) 
PAE = f(DWT), PAE = f(GT), andPAE =

f(TEU). 
Multiple regression 

Gligor et al. (2021), Dai et al. (2019), and 
Gutierrez-Romero et al. (2019) 

Empirical data. Consideration of ship types 
and operational modes 

EPA (2020) 

LAE Related to operational mode, types, and 
sizes of vessels, using default values. 

Default value 
Starcrest (2021) 

LAE = GRT× PRT× ELAE. Regression 
Adamo et al. (2014) 

LAE = PAE × ELAE. Regression 
Styhre et al. (2017) 

ABs LAB Overlooked. N/a 
Adamo et al. (2014) 

Integrated with LAE. Merged 
Jalkanen et al. (2012) 

Default ratio of LAE to LAB. Fitting function 
Stolz et al. (2021) 

AIS data with EU monitoring, reporting, 
and verification data. 

Calculated based on extensive 
data 

Yang (2021) 

LAB = f(ship size). Default value 
Zis et al. (2014) 

MEs PME Provided by shipyard. Survey 
Cooper and Gustafsson (2004b) 

PME = f(length, speed,DWT). Fitting function 
IMO (2021) 

Collected from the sister vessels. Default value Tichavska et al. (2019) 
The average power of the same ship type. Default value Faber et al. (2020) 

MCR MCR = f(weight tonnage, ship type). Multiple regression 
Lee et al. (2021) 

MCR = 80%× PME. Default value 
Jalkanen et al. (2009) 

Vessel database. Database Lloyd’s Register of Shipping, China 
Classification Society, American Bureau of 
Shipping, etc. 

Instantaneous 
power 

Related to frictional resistance, wave 
resistance, and turbine resistance. 

Multiple regression Jalkanen et al. (2009) 

Related to speed and resistance. Multiple regression IMO (2021) 
Related to MCR and LME. Multiple regression 

Styhre et al. (2017) 

Note: Gross Register Tonnage (GRT) measures the total internal volume of a vessel, while the Power-to-Tonnage Ratio (PRT) represents the power 
required per unit of tonnage. PAE can be estimated using the formula PAE = GRT × PRT.  

J. Wang et al.                                                                                                                                                                                                           
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Fig. 2. The proposed framework.  
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et al., 2021). Furthermore, ships utilise a range of fuel types, including HFO with 2.7% sulphur content (2.7% HFO), LSHFO with 1% 
sulphur content (1% LSHFO), MGO or Marine Diesel Oil with 0.1% sulphur content (0.1% MGO or MDO), as well as alternative fuels 
like liquefied natural gas, methanol, hydrogen, ammonia, and even nuclear energy. The type of fuel chosen significantly affects fuel 
consumption and emission factors (Faber et al., 2020). It is notably challenging to obtain accurate emission factors due to the high costs 
and complex methodologies involved, as well as the need for detailed and high-quality experimental data. Consequently, current 
calculations often rely on data from earlier studies, such as those by the Swedish IVL Research Institute in 2004 and Entec in 2002 
(Cooper and Gustafsson, 2004a; Cooper and Gustafsson, 2004b). Additionally, the varied characteristics of pollutants increase the 
complexity and uncertainty in estimating emission factors accurately (Starcrest, 2021). 

2.3. Research gaps 

Given the reviews of research progress and influential factors, this paper reveals the following research gaps: 
(1) Current studies often view ship-at-berth emissions as merely part of overall ship emissions, overlooking the unique charac-

teristics and complexities of the berthing phase. 
(2) It is challenging to accurately estimate ship-at-berth emissions due to the need for data on detailed ship and activity, berthing 

duration, and fuel types. 
(3) Operations at low-load MEs are often overlooked without reasonable explanations of their impact on the estimate accuracy. 
(4) Variations in determining the parameters associated with ship-at-berth emissions often result in inconsistent and inaccurate 

results, lacking comparative analysis with the same cases. 
As an important intermediate variable in calculating ship-at-berth emissions, SP data could provide an opportunity to investigate 

ship-at-berth emissions from a new perspective. This paper screens a series of classical and foundational references that employ distinct 
calculations and parameters to estimate ship-at-berth emissions. Based on the reviews by Wang et al. (2024) and Lee et al. (2021), there 
are two primary approaches within the bottom-up method: Fuel Consumption (FC) methods and Energy Output (EO) methods. FC 
methods estimate emissions by considering the total fuel consumed and applying fuel-based emission factors, while EO ones calculate 
emissions based on the energy output and energy-based emission factors. Emissions estimated by FC methods can sometimes be 
converted to EO methods using SFOC. To highlight the difference between them. This paper has categorised the 37 identified methods 
into two groups: FC and EO, labelled as FC-1, FC-2, EO-1, and EO-2. For detailed information, refer to Appendix Table A1. By 
comparing the differences between estimation results derived from these existing methods and real SP data within the investigated 
containerships, this study assesses the reliability of using SP data over traditional methods for estimating ship-at-berth emissions from 
AEs. Based on these comparisons and a thorough literature review, this paper proposes a novel scheme for using SP data to enhance 
emission estimation from all possible operational engines when ships at berth, effectively filling the existing research gaps. 

3. Methodology 

3.1. The research framework 

Rooted in the advancements of SP promotion and application, the research framework of this paper contains three parts: meth-
odology, case studies, and analysis, as displayed in Fig. 2. 

Methodology: This paper first reviews 37 primary methods for estimating ship-at-berth emissions from AEs. Subsequently, it 
utilises actual SP data to enhance and refine these existing estimation methods for AE emissions. Through a comparative analysis of 
identical vessels, this paper evaluates the characteristics of existing methods and demonstrates the reliability of the improved AEs 
emission estimation method. Furthermore, leveraging the strengths of the improved method and insights from the literature review, a 
novel approach is proposed for estimating ship-at-berth emissions. This new method takes into account AEs, ABs, and low-load MEs, 
along with recommended fuel-related parameters, to estimate emissions from all possible operational engines on the ship while at 
berth. Finally, the proposed method is employed to evaluate key emission reduction measures within the maritime industry. 

Case studies: this paper conducts case studies on both a single containership and multiple containerships of varying sizes to 
compare the results derived from the established methods for AEs and improved methods using SP data, including PAE, ELAE, LAE, FCAE, 
SO2, CO2, NOX, PM, and CO. Through extensive statistical and comparative analyses, this paper identifies significant differences among 
existing methods. Additionally, it evaluates the characteristics and reliability of existing methods, proposes effective ways for 
determining input parameters, and confirms the reliability of improved AEs estimation, as verified by IMO, EPA, and LA series reports 
on emission inventories. 

Analysis: Employing vessel characteristics, validated fuel-related parameters, SP data, and the proposed method, this paper assesses 
emissions from AEs, ABs, and low-load MEs for multiple containerships. Taking HFO as the benchmark fuel, the proposed method is 
applied to estimate the effectiveness of 10 classical emission reduction measures, including MGO, LSHFO, ECAs, Outside-ECAs, HFO 
and Scrubber, HFO and SP, MGO and SP, LSHFO and SP, ECAs and SP, and Outside-ECAs and SP, targeting five types of pollutants: CO2, 
CO, NOX, SO2, and PM. Finally, the implications and future research directions for both practical and academic areas are outlined. 

3.2. The proposed method 

Upon investigation with senior crews, it has been noted that the load of MEs is not idle at a zero state in actual ship operations. 
Instead, it continues to operate under low-load conditions (ELME < 20%) for a certain duration, approximately 5% of the total berthing 

J. Wang et al.                                                                                                                                                                                                           
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time (Kotrikla et al., 2017). Such operation suggests that the MEs remain active to fulfil essential operational requirements, such as 
providing electrical power or maintaining the vessel’s position, rather than shutting down entirely. As indicated by the results from the 
LA series reports on emission inventory and IMO-related reports, emissions exhibit significant increases when the ships’ MEs operate 
under such low-load conditions. Surprisingly, these low-load MEs emissions are often neglected in estimations, especially when 
assessing emissions during berthing. 

To address these issues, this paper proposes a new scheme that incorporates AEs, ABs, and low-load MEs to estimate the ship-at- 
berth emissions of CO, CO2, NOx, PM, and SO2, with a particular emphasis on the role of low-load MEs during the berthing period. The 
foundational formula for calculating these emissions is presented in Eq. (1), while the notations and definitions used in this paper are 
detailed in Table 3. After demonstrating the reliability of improving AEs estimation, the real SP energy consumption (EOSP AE) and 
duration (tSP) are considered as the energy output of and duration of AEs (EOSP AE and tSP, respectively). Emissions from AEs (EAE) are 
calculated based on the real EOSP AE and the associated emissions factors (EFe AE). Emissions from ABs (EAB) are determined by the load 
of ABs (LAB), their operation time at berth (tAB,berth), and the corresponding emissions factors (EFe AB); Emissions from low-load MEs 
(EOME− low load) are computed using MCR, engine load (ELME), their operation time at berth (tME), emission factor (EFe ME), and low-load 
emission adjustment factor (LLF). For a detailed explanation, refer to Eqs. (2) to (11). 

E = EAE+EAB+EME− low load (1)  

EOAE = EOSP AE (2)  

EAE = EOSP AE × EFe AE (3)  

LAE = EOSP AE/tSP (4)  

FCAE = EOSP AE × SFOCAE (5)  

EAB = LAB × tAB,berth × EFe AB (6)  

FCAB = LAB × tAB,berth × SFOCAB (7)  

EME− lowload = MCR× ELME × tME × EFe ME × LLF (8)  

FCME = MCR× ELME × tME × SFOCME (9)  

tME,berth = 5% × tberth (10) 

Table 3 
List of notations used in this study.  

Notations Definitions 

C and S The concentrations of carbon and sulphur in fuel (%). 
CVs Coefficient of variation. 
CVCO, CVCO2 , CVFCAE , CVLAE , CVNOx , CVPM, 

and CVSO2 

Coefficient of variation of CO, CO2, FCAE, LAE, NOx, PM, and SO2. 

E Ship-at-berth emissions (g). 
EAB, EAE, and EME− lowload Ship-at-berth emissions from ABs, AEs, and low-load MEs, respectively (g). 
EOAB, EOAE, and EOME− lowload Energy out of ABs, AEs, and low-load MEs, respectively (kW). 
EOSP AE Real SP energy consumption (kWh). 
EF Emission factors. 
EFAB, EFAE, and EFME Emission factors for ABs, AEs, and MEs, respectively. 
EFCO , EFCO2 , EFNOx , EFPM, and EFSO2 Emission factor of CO, CO2, NOx, PM, and SO2, respectively. 
EFe Energy-based emission factor (g/kWh). 
EFe AB, EFe AE, and EFe ME Energy-based emission factors for ABs, AEs, and MEs, respectively (g/kWh). 
EFf Fuel-based emission factor (g/g). 
ELAE and ELME Engine load of AEs and MEs, respectively (%). 
FC Fuel consumption (g). 
FCAB, FCAE, and FCME Fuel consumption of ABs, AEs, and MEs, respectively (g). 
LAB, LAE and LME The load of ABs, AEs, and MEs, respectively (kW). 
LLF Low Load Emission Adjustment Factor, is used to adjust the emissions from MEs operating at low load. 
LLFCO, LLFCO2 , LLFNOx , LLFPM , and LLFSO2 The LLF of CO, CO2, NOx, PM, SO2. 
SFOC Special fuel oil consumption (g/kWh). 
PAE and PME Installed power of AEs and MEs (kW). 
MWRco2 , MWRso2 , and MWRso4 The ratio of the relative molecular mass of CO2, SO2, and SO4, defaulted as 44/12, 64/32, and 7, respectively. 
tberth and tSP The total operation times of vessels while at berth and while connected to SP, respectively (h). It is collected from 

SP data in this paper. 
tAE,berth, tAB,berth, and tME,berth Operation times of AEs, ABs, and MEs at berth, respectively (h). 
ηSO2 

and ηso4 
Conversion rates of SO2 and SO4, defaulted as 97.753 % and 2.247 %, respectively.  
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tberth = tSP = tAE,berth = tAB,berth (11) 

Regarding the specific parameters in this proposed method, vessel characteristics such as MCR, GT, and DWT, etc., are sourced from 
the Sea-Web ports. Parameters related to AEs, including EOSP AE, LAE, and tberth, are collected and calculated from actual SP data. 
Parameters for ABs, such as LAB, are obtained from the annually published LA series reports on emission inventory, which offer timely 
updates and are widely recognised for their authoritative status (Port of Los Angeles, 2024). Fuel-related parameters, including EFe of 
CO2, SO2, and PM, are calculated using Eqs. (12) to (17). EFNOx and EFCO are based on empirical data from multiple authoritative 
reports (EPA, 2020; IMO, 2021). The range of SFOC values across various engine types and fuel categories are summarised in 
Appendix Table A2. It is crucial to note that this study employs a range of values for emission factors to enhance accuracy. For EFPM, the 
value range is selected from the maximum interval derived from Eqs. (14) to (17). Detailed values are provided in Appendix Table A3- 
Table A9. 

EFCO2 = SFOC × C × MWRco2 (12)  

EFSO2 = SFOC × S × MWRSO2 × ηSO2
(13) 

HFO (IMO, 2021): 

EFPM10 = 1.35+ SFOC × (S − 0.0246) × MWRSO4 × ηSO4
(14) 

MGO (IMO, 2021) 

EFPM10 = 0.23+ SFOC × (S − 0.0024) × MWRSO4 × ηSO4
(15) 

HFO (EPA, 2020) 

EFPM10 = 0.5761+ SFOC × S × MWRSO4 × ηSO4
(16) 

MGO (EPA, 2020) 

EFPM10 = 0.1545+ SFOC × S × MWRSO4 × ηSO4
(17) 

To provide a more detailed explanation, Table 4 aid to compare the proposed method with existing methods, focusing on engine 
types and associated parameters. The primary principles are outlined as follows: 

(1) Case studies are employed to compare results and parameters (PAE, ELAE, LAE, FCAE, SO2, CO2, NOX, PM, and CO) from existing 
research methods with those estimated from real SP data to identify issues in current methods, verify the reliability of SP data on 
estimated AEs emissions, and suggest effective ways to determine ship-related parameters. 

(2) Using multiple containerships with HFO as a baseline, this study demonstrates the performance of the proposed method by 
assessing total emissions of ship-at-berth from AEs, ABs, and low-load MEs. 

(3) The proposed method is employed to evaluate the effectiveness of ten classical emission reduction strategies in the shipping 
industry. 

With the considerations of AEs, ABs, and low-load MEs, along with the support of SP data, this proposed method more closely 
reflects reality and provides a comprehensive assessment of ships-at-berth emissions. It highlights the importance of collecting and 
processing SP, offering valuable opportunities for further research and practical applications. 

Table 4 
The comparison between the proposed method and existing methods.  

Methods and parameters Previous methods (AEs, or AEs and ABs) Proposed method (AEs, ABs, and low-load MEs) 

AEs emissions or related source data 
PAE Refer to Table 2. EOSP AE/tberth. 
tberth Extracted from AIS. Investigate from SP data. 
LAE PAE × tberth. EOSP AE. 
EFAE Default value in references. Appendix Table A4 to Table A9. 
EAE EOAE × EFe AE, FCAE × EFf AE or others. EAE = EOSP AE × EFe AE. 
ABs emissions or related source data 
LAB Refer to Table 2. Sourced from LA series reports on emission inventory (Starcrest, 2023). 
EFAB Default value in references. Appendix Table A4 to Table A8. 
EAB LAB × tAB,berth × EFe AB or others. LAB × tAB,berth × EFe AB. 
Low-load MEs emissions or related source data 
Low-load MEs Neglected. Considered. 
MCR Sea-Web ports database. 
ELME 2%-20%. 
tME 5%× tberth. 
EFe ME and LLF Appendix Table A4 to Table A9. 
EME− low load MCR× ELME × tME × EFe ME × LLF.  
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4. Case studies and analysis 

Building upon screening and classification, case studies shed light on the differences in results stemming from existing methods and 
SP data. Then, the proposed method is utilised to verify the role of ABs and low-load MEs in the ship-at-berth emissions. Additionally, it 
is used to assess the efficacy of 10 emission reduction measures across five different pollutants. 

Table 5 
‘Cosco Shipping Sagittarius’ static characteristics.  

Characteristics Description CharacteristicsiTEM Description 
Vessel name Cosco Shipping Sagittarius Construction year 2018 

IMO No. 9783473 Newbuilding price ($) $139,500,000 
Ship type Containership GT 194,864 
Flag Hong Kong, China DWT 202,133 
Shipbuilder Shanghai Waigaoqiao Shbldg NT 115,302 
Keel laid 2015/12/21 TEU 20,038 
Class CCS & DNV-GL Reefer containers 1,000 
ME AE 
MCR 55,000 No. 4 
RPM 72 MCR 3360*2 
Max speed 22 MCR 4500*2 
Service speed 19 AE power 15,720 
Speed & consumption 22 knots &168 tons/day    

Table 6 
Comparative analyses of calculation results.  

Parameters PAE(MW) ELAE(%) LAE(MW) FCAE(kg) CO2(kg) SO2(kg) PM(kg) NOX(kg) CO(kg) 

Actual/estimate value in this study 15.72 14 % 2.20 2,617–4,244 8,390–13,601 4–12 2–4 109–198 3–26 
EO method average 10.92 54 % 4.10 3918 18,501 47 19.6 266 21.3 
FC method average 35.00 46 % 8.52 12,036 40,722 459 63.8 798 124.9 
FC-1 14.78 60 % 8.87 13,040 36,760 117.4 N/A 743.3 N/A 
FC-2 5.75 13 % 0.75 990 3140 19.3 N/A N/A N/A 
FC-3 5.75 50 % 2.87 3810 12,079 N/A N/A N/A N/A 
FC-4 39.11 19 % 7.43 9854 31,335 374.4 24.6 581.4 N/A 
FC-5 12.10 19 % 2.30 3048 9694 115.8 7.6 179.9 N/A 
FC-6 186.06 20 % 37.21 49,791 158,285 2688.7 333.6 3087.0 368.5 
FC-7 152.86 20 % 30.57 40,905 130,037 2208.9 274.1 2536.1 302.7 
FC-8 N/A 20 % N/A 23,299 74,558 233.0 28.0 815.5 230.7 
FC-9 N/A 20 % N/A 9869 31,581 98.7 10.9 621.7 39.5 
FC-10 N/A 20 % N/A 10,556 33,780 105.6 11.6 665.1 42.2 
FC-11 15.72 50 % 7.86 10,847 34,493 412.2 27.1 640.0 N/A 
FC-12 12.16 18 % 2.19 2849 N/A 27.8 4.2 182.5 14.4 
FC-13 1.00 100 % 1.00 1200 3870 12.0 N/A 78.0 N/A 
FC-14 7.00 100 % 7.00 9240 N/A N/A 41.2 N/A 117.6 
FC-15 1.40 100 % 1.40 1554 4982 2.1 1.4 88.1 4.0 
FC-16 1.32 100 % 1.32 1719 5510 4.5 1.8 150.0 4.8 
EO-1 15.72 17 % 2.67 N/A 10,882 2.6 2.9 167.0 17.6 
EO-2 15.72 50 % 7.86 10,847 32,823 40.1 37.7 646.1 N/A 
EO-3 1.00 100 % 1.00 1200 3870 12.0 N/A 78.0 N/A 
EO-4 7.00 100 % 7.00 9240 N/A N/A 41.2 N/A 117.6 
EO-5 17.28 100 % 17.28 N/A 69,984 218.8 14.5 342.1 N/A 
EO-6 38.97 40 % 15.59 N/A 65,474 43.0 28.1 1103.7 N/A 
EO-7 5.50 40 % 2.20 2825 9108 N/A 4.0 N/A N/A 
EO-8 11.55 50 % 5.78 7415 23,909 N/A 10.4 N/A N/A 
EO-9 39.11 19 % 7.43 9854 30,797 189.0 21.8 619.8 49.0 
EO-10 12.10 19 % 2.30 3048 9528 58.5 6.8 191.7 15.2 
EO-11 12.10 19 % 2.30 3048 43.7 N/A N/A N/A N/A 
EO-12 12.16 18 % 2.19 2849 N/A 27.8 4.2 182.5 14.4 
EO-22 N/A N/A N/A N/A N/A 15.6 195.1 372.4 N/A 
EO-13 5.75 15 % 0.86 1500 N/A 22.2 1.6 71.9 5.7 
EO-14 13.50 17 % 2.30 3994 N/A 59.2 4.1 191.4 15.1 
EO-15 11.98 18 % 2.16 3752 8837 28.6 4.9 158.1 14.2 
EO-16 1.04 100 % 1.04 1804 4250 13.8 2.3 76.0 6.8 
EO-17 1.40 100 % 1.40 2436 5762 19.3 3.2 88.2 9.2 
EO-18 3.46 19 % 0.66 1719 9528 29.2 2.5 191.7 15.2 
EO-19 1.32 100 % 1.32 1719 5510 16.8 2.6 61.0 8.7 
EO-20 1.40 100 % 1.40 1554 N/A N/A 1.5 94.1 4.5 
EO-21 1.32 100 % 1.32 1719 5713 4.7 1.8 155.5 4.9  
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4.1. Case studies 

4.1.1. Case 1: A single containership 
It presents a case study of the ‘Cosco Shipping Sagittarius’, which consumed 13,200 kWh of electricity over a six-hour stay at a port 

(China Shipowners’ Association, 2019). According to the Sea-web ports database, Table 5 shows the static characteristics of the 
identified vessel, which are employed in the 37 identified methods and improved AEs estimation with SP data to calculate the ship’s 
emissions during its berthing period. The results are presented in Table 6. 

(1) Analysis of characteristics of existing AEs emission estimation methods. 
Table 7 displays statistical analyses of the calculated results across multiple variables, including PAE, ELAE, LAE, FCAE, SO2, CO2, 

NOX, PM, and CO. Notably, PAE is a critical input variable with a high Coefficient of Variation (CV), indicating significant variability 
compared to ELAE, FCAE, and LAE. This suggests the substantial impact of PAE on emission results. Conversely, ELAE has the lowest CV, 
suggesting the highest consistency. FCAE and LAE also display relatively consistent levels, as evidenced by their CVs. The inclusion of 
ELAE has contributed to adjusting the dispersion levels and enhancing the accuracy of the results. 

Regarding pollutant estimations, CVs can be divided into three groups based on their variability and influencing factors. The first 
group, with high CVs, includes CVSO2 and CVPM, significantly affected by sulphur content in fuel. The second group, displaying more 
consistent CVs, comprises CVNOX and CVCO2 , with CVs slightly lower or equal to those for CVLAE and CVFCAE . The third category, rep-
resented by CVCO, influenced by engine-related factors, falls between the first two groups in variability. In summary, CVSO2 is the 
highest, followed by PM, highlighting the importance of sulphur content in fuel to the larger CVs. As efforts on reduction NOX emissions 
and refinement EF continue, variations in NOX dispersion can be expected in the future, as evidenced by this analysis. 

Combining Table 6 and Table 7 reveals the following key findings: 1) The average estimates from all methods tend to exceed those 
calculated using actual SP data significantly. The overestimation varies widely, ranging from 1.28 to 20 times the actual values. 2) For 
most parameters, except for ELAE, the average estimates derived from FC methods are notably higher than those from EO methods. 
These discrepancies span from 2.08 to 9.77 times, consistent with the findings of previous studies by Lopez-Aparicio et al. (2017) and 
Lee et al. (2021). 3) Utilising the fuel-related parameters from Section 3 results in much narrower estimated value ranges compared to 
other methods, indicating these selected parameters provide more accurate and reliable estimates. 4) Consistent with the previously 
discussed CV groups, the estimated values of CO2 and NOX are more stable than those for SO2, PM, and CO. 5) The estimated output 
indicators, such as SO2, CO2, NOX, PM, and CO, show much greater fluctuations than the input or intermediate parameters, indicating a 
higher potential for estimation errors. This stability can be attributed to the varying emission factors and differences in engine types. 
These findings underscore the complexity of estimating ship emissions during berthing, which is influenced by a multitude of factors. 

(2) Comparative analyses to determine associated parameters, demonstrate the reliability of SP data, and identify reliable existing 
methods. 

In terms of the estimated PAE, Table 2 outlines methods for its determination. Notably, the multiple regression analysis employed by 
Gutierrez-Romero et al. (2019) typically yields significantly higher estimates than other methods. In contrast, methods based on the 
average or default values for specific ship types, as used by Wang et al. (2007b) and Jalkanen et al. (2009), tend to produce lower 
estimates. Staged regression has been demonstrated to be more accurate than non-staged fitting (Gligor et al., 2021). Empirical data 
collected from surveys and shipyards generally provides the most precise estimates. Hence, this paper recommends employing a staged 
fitting method for determining PAE, emphasising the importance of thorough comparison with officially announced ship stage data, as 

Table 7 
Statistical analyses of calculation results.   

No. of Samples Mean Max Min Range Variance CVs 

PAE(kW) 34 20,129 186,064 1000 185,064 1,560,425,065  1.96 
ELAE(%) 37 51% 100% 13% 87% 13%  0.73 
LAE(kW) 34 5789 37,213 657 36,556 67,796,634  1.42 
FCAE(kg) 34 7738 49,791 990 48,800 115,819,848  1.39 
SO2(kg) 31 233 2689 2 2687 375,308  2.55 
CO2(kg) 30 28,871 158,285 44 158,241 1,409,331,064  1.3 
NOX(kg) 31 489 3087 61 3026 465,912  1.4 
PM(kg) 32 36 334 1 332 6182  2.17 
CO(kg) 23 62 368 4 364 10,360  1.65  

Table 8 
Recommended references matching aligning with narrower estimates.  

Pollutants FC methods in reference EO methods in references 

FCAE FC-3, 5, 12. EO-7, 10, 11, 12, 14, 15, 17. 
SOX FC-13, 16. EO-3, 21. 
PM FC-12, 16. EO-1, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. 
CO2 FC-3, 5. EO-1, 7, 10, 15, 18. 
CO FC-9, 10, 12. EO-1, 9, 10, 12, 14, 15, 17, 18, 19. 
NOX FC-5, 12, 16. EO-1, 10, 12, 14, 15, 18.  
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suggested by Yu et al. (2019), to enhance the accuracy of forecasted PAE. As shown in Table 6, the estimation of ELAE during ship 
berthing in port has often been either overlooked or assigned a default value of 1 in recent studies. An increasing number of researchers 
are adopting this default approach, adjusting it for specific ship types and operational modes (Sciberras et al., 2016; Faber et al., 2020). 
This approach has led to a wide variability in ELAE estimates, from 13% to 100%. Generally, ELAE values during the berthing period fall 
within the 15–20% range, aligning closely with the estimated ELAE of 14% for ‘Cosco Shipping Sagittarius’. This suggests this range is a 
more accurate guideline for future research. The overall estimation of LAE in Table 7 is relatively consistent and reflects actual 
operational conditions, with values ranging from 0.66 MW to 37.21 MW. These differences are influenced by variations in PAE and 
ELAE. Inaccuracies in either parameter lead to estimation discrepancies. For instance, Gutierrez-Romero et al. (2019) encounter errors 
due to inaccuracies in PAE estimation, while Sciberras et al. (2016) neglect ELAE, resulting in errors in LAE estimation. 

Table 8 highlights recommended references where the results align with the narrower estimates of FCAE and emissions proposed in 
this study. These results are supported by authoritative research, such as Smith et al. (2015), EPA and ICF (2009), and Starcrest (2021), 
affirming the reasonableness and validity of the proposed method. Estimates of emissions vary widely depending on the methods, 
parameters, and pollutants considered, with some methods yielding significantly higher estimates. However, the estimates derived by 
the ranges of emission factors and real SP energy consumption data in this study exhibit much narrower ranges and greater 
consistency. 

4.1.2. Case 2: Multiple containerships 
The study collects data on 13 containerships during their SP connections from online and surveys, as presented in 

Appendix Table A10, to analyse the results of multiple containerships analysis. Appendix Table A11 displays their static character-
istics, with ship size ranging from 8,452 to 20,038 TEU and keel laying dating from 2007 to 2015. These ships are equipped with 800 to 
1,000 TEU slots for refrigerated containers, accounting for approximately 5% to 11% of their total capacity. 

(1) Analysis of characteristics of existing AEs emission estimation methods. 
Firstly, a trend analysis in Fig. 3 reveals the initial findings. Notably, GT, DWT, NT, and TEU exhibit strong correlations with each 

other, but their correlations with MCR, PAE, and LAE are relatively weaker. PAE is stable and shows low volatility, displaying a phased 
correlation with MCR. The relationship between LAE and PAE is not significant, indicating that LAE is primarily influenced by ship type 
and operational mode (Starcrest, 2021). To understand these findings better, further research with more data and advanced analysis is 
needed. 

Fig. 3. Trend analysis of multi-indicator relationships.  

Table 9 
Comparative analysis of total estimated pollution emissions.  

Emissions (kilograms) Estimated range in existing methods Estimated in this study 

Estimated range Mean CVs FC method average EO method average 

SO2 [22.84, 13830] 1673  1.80 3033 553 [23.61, 57.43] 
PM [15.00, 2661] 292  1.92 401 227 [15.87, 19.06] 
NOX [601.92, 33102] 4810  3.40 7707 2718 [601.92, 15879] 
CO2 [39868, 1681353] 284,893  1.18 388,345 194,373 [55407, 67367] 
CO [43.17, 17662] 1235  2.88 2732 337 [50.45, 102.78]  
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Appendix Table A12 shows the descriptive statistics of outcomes derived from the existing methods. In addition to the findings in 
Case 1, Case 2 reveals that the CVs vary by ship size, with large ships showing higher CVs. However, the average among multiple 
containerships could lower their CVs, indicating that an increase in the number of vessels could reduce discrepancies in the estimation 
and enhance the accuracy. Table 9 provides a comparative analysis of total estimated emissions from the 13 investigated contain-
erships between existing methods and improved estimations based on SP data. This analysis indicates a significant disparity in 
emissions. As observed in Case 1, by application of emission factors with a range of values and the actual LAE, the estimated emissions 
are much narrower, aligning closely with results from the LA series reports on emission inventory, as well as EPA (2020) and IMO 
(2021). This alignment provides strong evidence of the reliability of the proposed method and emission factors. 

The link between ship size and emissions reveals an intriguing pattern (see Fig. 4 and Fig. 5). As ship size increases, both emissions 
per hour (Fig. 4) and emissions per TEU per hour (Fig. 5) initially decrease and then rise. This trend is relatively stable for ships in 
8,455–9,466 TEU. From 10,000 to 14,200 TEU, there is a noticeable drop in emissions per unit, followed by a significant rise at 20,000 
TEU. For instance, SO2 emissions range from 0.04 to 0.08 g/(TEU⋅h) for ships between 8,452 and 10,060 TEUs, drop further to 0.03 to 
0.04 g/(TEU⋅h) for 14,080 TEU ships, but rise to 0.05 g/(TEU⋅h) for 20,038 TEU ships. This indicates a complex correlation between 
ship size and emissions per unit. Ships in the 10,000 to 14,000 TEUs range demonstrate the highest efficiency in emissions, while ships 
outside this range, both smaller and larger, are less efficient. This insight is vital for comprehending the environmental footprint of 
maritime shipping and guiding decisions regarding fleet composition and cargo transportation methods to reduce emissions. 

(2) Comparative analyses to determine associated parameters, demonstrate the reliability of SP data, and identify reliable existing 
methods. 

The average estimated PAE for multiple containerships is approximately 23% lower than the actual values. For Ships 11, 12, and 13, 
the error margin is even smaller, confirming the relationship between the methods and ship size in estimating PAE, and emphasising the 

Fig. 4. Investigation into the correlation between ship size and emissions.  

Fig. 5. Comparison of emissions across various ship sizes (g/(TEU⋅h).  
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importance of considering size-related variations within the same ship type. The estimation of LAE is often much higher than the SP 
energy consumption (EOSP AE), except for using either a reasonable PAE with a matching ELAE, or empirical data. The same trend is 
observed for FCAE, though it is more stable than LAE. Table 10 categories the estimated PAE, LAE, and FCAE based on different methods. 
The methods for determining PAE, LAE, and FCAE identified in Case 1 are grouped into suitable categories for accurate estimation. 
However, other methods may either underestimate or overestimate PAE, LAE, and FCAE. The results for multiple containerships 
regarding associated parameters are consistent with Case 1 but show lower fluctuations. Furthermore, it is essential to highlight that 
emissions at berth are influenced by numerous factors, leading to notable variations even among ships of the same size or within the 
same report series (Starcrest, 2011; Starcrest, 2021; EPA and ICF, 2009; EPA, 2020). Building upon the analysis, this paper has 
identified methods that offer relatively reliable estimates for ship-at-berth emissions. These selected methods are proven to be effective 
and valuable references for future research, as outlined in Table 11. 

4.2. Analysis of the proposed method and its application 

After the establishment of ECA and the 2020 sulphur cap, alternative fuels/measures along with HFO are used for most maritime 
vessels. Hence, this paper utilises HFO as a benchmark to analyse the impacts of transitioning to different fuels on various outcomes 
derived from the proposed method. To ensure accuracy, these analyses utilise data from multiple containerships and calculate the 
average of each estimation to evaluate the results. The research integrates estimations and relevant parameters, including 5 types of 
pollutants (i.e., CO2, CO, NOX, SO2, and PM), alongside 10 kinds of emission reduction measures (i.e., MGO, LSHFO, ECA, Outside- 
ECA, HFO and Scrubber, HFO and SP, MGO and SP, LSHFO and SP, ECA and SP, and Outside-ECA and SP), enabling thorough ana-
lyses. The study provides an exhaustive examination of total fuel consumption, total emissions, and the emissions of each specific 
pollutant from different engines per containership during berthing. Detailed outcomes for each ship type and every emission reduction 

Table 10 
Categories of estimated PAE, LAE, and FCAE.  

Estimated 
parameter 

Category Reference code Primary method Estimated 
ranges 

The mean of 
actual values 

PAE(kW) I FC-6, FC-7. Multiple regression by TEU and GT. [57566, 
81352] 

13,778 

II EO-6, FC-4, EO-9. Power-to-Tonnage Ratio. [23493, 
24193] 

III FC-1, FC-11, EO-1, EO-2, EO-14, FC-12, EO- 
12, FC-5, EO-10, EO-11, EO-18, EO-5 EO-8. 

Empirical data, the latest published table 
lookup data, and staged fitting. 

[11877, 
14120] 

IV FC-3, FC-2, EO-13, EO-7, FC-14, EO-4. Average or defaulted PAE of containerships. [4755, 5747] 
V FC-15, EO-20, EO-17, FC-16, EO-21, EO-19, 

EO-16, FC-13, EO-3. 
Outdated published table lookup data, or 
misunderstanding with LAE. 

[1000, 1204] 

LAE(kW) I FC-6, EO-5, FC-7, EO-6, FC-1. High PAE. [8472, 
16271] 

1241 

II EO-8, FC-11, EO-2. High PAE or high LAE. [6889, 7127] 
III FC-14, EO-4, FC-4, EO-9. Reasonable PAE and ELAE. [4464, 4756] 
IV FC-3, FC-5, EO-10, EO-11, EO-18, EO-1, EO- 

7, FC-12, EO-12, EO-15, EO-14. 
More reasonable PAE and matching ELAE. [2025, 2874] 

V FC-15, EO-20, EO-17, FC-16, EO-21, EO-19, 
EO-16, FC-13, EO-3, EO-13, FC-2. 

Empirical data without considered PAE and 
ELAE. 

[747, 1204] 

FCAE(ton) I FC-9, FC-8, FC-7, FC-6, FC-1. High LAE or high SFOCAE. [12.00, 
40.42] 

[1.33, 1.62] 

II EO-2, EO-8, FC-11 High LAE. [9.30, 9.34] 
III FC-10, FC-14, EO-4, FC-4, EO-9. Reasonable PAE, ELAE, and SFOCAE. [5.54, 6.47] 
IV FC-3, EO-15, EO-14, FC-5, EO-10, EO-11, EO- 

18, FC-12, EO-12, EO-7. 
More reasonable PAE and matching ELAE 

and SFOCAE. 
[2.97, 3.72] 

V EO-17, EO-16, EO-13, FC-16, EO-21, EO-19, 
FC-15, EO-20, FC-13, EO-3, FC-2. 

Empirical data. [0.97, 1.85]  

Table 11 
Suggested approaches for establishing relevant parameters.  

Parameters Proposed FC methods Proposed EO methods 

PAE F-1, 5, 11, 12. EO-1, 2, 5, 8, 10, 11, 12, 14, 15, 18. 
ELAE F-5, 12. EO-1,10,11,12,14,15,18. 
LAE F-2, 3, 4, 5, 12, 13, 14, 15, 16. EO-1,3,4,7,9,10,11,12,13,14,15,16,17,18,19,20,21. 
SFOC F-13, 15, 16. EO-3,13,16,17,19,20,21. 
EFSO2 F-15,16. EO-1,21. 
EFCO2 F-13, 15,16. EO-3,16,17,19,21. 
EFPM F-15, 16. EO-13,19,20,21. 
EFNOX F-13, 15. EO-3,13,16,17,19,20. 
EFCO F-15,16. EO-13,16,17,19,20,21.  

J. Wang et al.                                                                                                                                                                                                           



Transportation Research Part D 134 (2024) 104353

15

Fig. 6. Results of total fuel consumption and emissions when using HFO alone.  

Fig. 7. Comparison of emission reduction measures without SP involving AEs, ABs, and MEs.  
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measure are presented in Figs. 6-8. To assess the effectiveness of SP in reducing emissions, this paper categorises these emission 
reduction measures into two groups: with SP and without SP, allowing for a detailed analysis of each measure. 

4.2.1. The results of HFO as the benchmark fuel 
Results of total fuel consumption and emissions when using HFO are shown in Fig. 6. It reveals that the total fuel consumption from 

HFO is significantly higher (by 80–119%) than those from AEs alone and slightly higher (by 2–28%) than the combined AEs and ABs in 
each containership. Affected by the concentrations of carbon and sulphur in the fuel, the emissions of CO2, and SO2 follow the same 
trend as total fuel consumption when taking into account AEs, ABs, and MEs. Moreover, CO emissions are 430–22,859 % above those 
from AEs alone and 350–21,050 % higher than from the combined AEs and ABs, due to the contributions of engine load. Similarly, 
influenced by both the sulphur concentrations in fuel and engine load, PM and NOX emissions significantly exceed those from AEs 
alone by 53–414% and 18–279%, respectively. Compared to the combination of AEs and ABs, these emissions are still remarkably 
higher (by 3 %-216% for PM and 6–279% for NOX). Consequently, the total emissions from HFO are 79–157% higher than those from 
AEs alone and 3–51% higher than from the combined AEs and ABs, underscoring the critical roles of ABs and MEs in energy con-
sumption during berthing and emphasising the importance of their impact, especially for CO and NOX emissions. Regarding pollutants, 
CO2 emissions account for 84%-97% of total emissions, followed by SO2 which remains within a stable range of 1.34–1.48%. PM 
emissions are the lowest, ranging between 0.18% and 0.41%. With influences from low-load MEs, NOX and CO emissions constitute 
0.92–2.53% and 0.26–13.28%, respectively, with a notably wide range. Additionally, both MEs and AEs are significant sources of NOX 
emissions, with factors such as the engine’s keel laying time, engine type, and fuel type resulting in complex outcomes. Although NOX 
emissions currently represent a relatively small proportion, their impact on environmental and human health is substantial, compa-
rable to that of SO2. With increasing awareness, the industry is likely to focus more on reducing NOX emissions in the future. 

4.2.2. Assessment and analysis of emission reduction measures without SP 
When evaluating different emission reduction measures without SP in comparison to HFO, it is evident that the use of HFO with 

scrubbers effectively meets sulphur emission limits, significantly reducing SO2 and PM emissions by 99% and 98%, respectively (see 
Fig. 7). However, this measure leads to increased total fuel consumption and higher emissions of CO2, CO, and NOX, ultimately 
resulting in an overall increase in total emissions, indicating its lack of environmentally friendly. Conversely, switching to LSHFO, 
Outside-ECA-compliant, and ECA-compliant fuel maintains similar fuel consumption, CO2, CO, and NOX levels as HFO, but the lower 
sulphur content in these alternative fuels significantly decreases SO2 and PM emissions by 59–62% and 38–44% for LSHFO, 80–81% 
and 49–60% for Outside-ECA-compliant oil, and 96% and 87–88% for ECA-compliant fuel, respectively. 

As a result, total emissions from each containership decrease by 1% for LSHFO and Outside-ECA-compliant oil and 1.6% for ECA- 

Fig. 8. Comparison of emission reduction measures with SP involving AEs, ABs, and MEs.  
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compliant oil. Additionally, shifting to MGO also results in a substantial reduction in SO2 and PM emissions by 95–97% and 87%, 
respectively, and slightly lower other metrics, including fuel consumption, total emissions, CO2, CO, and NOX, by 2–6%. These al-
ternatives thus offer sustainable emission reduction measures for containerships, balancing environmental impact with operational 
needs. 

4.2.3. Assessment and analysis of emission reduction measures with SP 
When combining SP with alternative fuels such as HFO/LSHFO/Outside-ECA and ECA fuel oil, the total fuel consumption and 

emissions from ABs and low-load MEs will be the same as those from HFO alone. The fuel consumption and CO2 emissions of SP with 
HFO/LSHFO/Outside-ECA and ECA fuel will be 46–56% less than the baseline of using HFO alone, 0.4–19% for CO emissions, and 
24–85% for NOX emissions (see Fig. 8). Employing HFO with SP reduces SO2 emissions by 46–56%, while LSHFO with SP can yield a 
reduction of 79–82%. Furthermore, Outside-ECA, ECA-complaint oil, and MGO with SP achieve reductions exceeding 90%. Regarding 
PM emissions, HFO with SP cuts PM emissions by 20% to 65%. Compliant fuel outside ECA post-2020 with SP can lead to a reduction of 
more than 60–90%, while MGO with SP achieves a reduction of over 90%. 

The comparative analysis of the application results provides a comprehensive examination of how emission reduction measures 
affect vessel emissions. It highlights the critical roles of ABs and MEs in energy consumption and emissions during berthing, 
emphasising the need for the maritime industry to address NOX emissions. Switching to LSHFO, ECA-compliant, and Outside-ECA- 
compliant fuel, as well as MGO, results in comparable fuel consumption and CO2 levels as HFO but significantly reduces SO2 and 
PM emissions. Additionally, using HFO with scrubbers meets sulphur emission limits but leads to increasing total emissions and fuel 
consumption. The combination of SP with alternative fuels demonstrates the potential for substantial emission reductions, under-
scoring the importance of adopting diverse emission reduction measures to mitigate the environmental impact of ship berthing 
activities. 

4.3. Implications 

The innovative analysis results reveal broad implications that could guide the future development of measures for minimising 
emissions from containerships at berthing. From an application perspective, it underscores the environmental benefits of various 
emission reduction measures, thereby accelerating the promotion of SP. By calculating the costs of installation, maintenance, oper-
ation, and labour, alongside the benefits of fuel savings, incentives, potential revenue from reduced emissions, improvements in human 
health, and enhanced reputation, the integration emissions and cost-benefit analysis enables shipping companies to select the optimal 
strategy for facilitating the industry’s adaptation to evolving energy landscapes and regulatory shifts focused on curbing emissions. For 
port authorities, the findings offer essential empirical evidence to enhance understanding of ship-at-berth emissions and support 
informed policy-making, especially regarding the implementation of SP. This could stimulate increased SP-related initiatives, man-
agement, and emission reduction efforts. Policymakers and other related stakeholders can employ these findings, including the new 
methodology, to harness the impact of ship-at-berth emissions on local air quality and the health benefits associated with emission 
reductions. Such insights will aid in prompt strict emissions controls and a wide adaptation of green technologies in the shipping 
industry, hence fertilising global shipping practices and environmental outcomes. 

Methodologically, the incorporation of SP data into ship-at-berth emission methods offers a novel scheme for studying the char-
acteristics of AEs and estimating ship-at-berth emissions. The proposed method can be extended to investigate ship-at-berth emissions 
from AEs, ABs, and low-load MEs for large ship fleets and other ship types, following further validation and potential adaptation, 
provided SP data is available. Instead of mining AIS data to identify berthing operational mode and times, this method could directly 
utilise SP data, vessel characteristics, and the LA series reports on emission inventory to calculate ship-at-berth emissions, significantly 
reducing the computation cost. With the newly compiled dataset on SP, future researchers can use data fusion, machine learning and 
optimisation algorithms to explore the relationships between emissions and their influence factors, thereby advancing the research 
process related to ship emissions. The results will contribute to the growing body of knowledge on maritime emissions, providing a 
foundation for future research and innovation. 

Taking into account these advancements, ship-at-berth emissions can be accurately estimated using enhanced and expanded ap-
proaches. For instance, by incorporating detailed berthing information, emissions can be precisely calculated based on berth specifics, 
air monitoring of ships while in port, crane handling efficiency, and the analysis of ships’ static and dynamic characteristics. 

Moreover, as SP serves as a vital interface for energy transfer between ports and vessels, it will continue to receive increasing 
attention in the coming years. This review of influencing factors, methodologies, statistics, and comparative analysis could facilitate 
the estimation of emissions when renewable energy sources (such as photovoltaics, wind, hydrogen, batteries, and energy storage) 
supply power to SP throughout a complete lifecycle assessment. This assists in accelerating the transition to a green maritime industry 
and implicates the energy management of ships and ports. 

4.4. Future research directions 

According to the literature review, methods, case studies, and implications, to synthesise the various insights and recommendations 
outlined in the analysis, the following points could emerge as critical areas on the future research agenda in the field of ship emissions: 

4.4.1. Unified ship emission database 
The major sources of information on ship-related emissions are the global ship emissions provided by IMO and Los Angeles port’s 
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emission inventory series reports. Despite these resources, a unified ship emission database for other regions or ports is lacking. With 
the increasing attention on the specific emissions of ships in different operation modes, it is recommended to create a comprehensive 
ship emission database to enable the timely tracking and analysis of ship emissions at various stages with the combination of new 
technology, data fusions of voyage report data, meteorological data, AIS data, and SP data, which would facilitate systematic studies by 
future researchers. 

Table A1 
Literature and associated literature code.  

Reference Code Reference Reference Code Reference 

FC-1 Gligor et al. (2021) EO-4 Jalkanen et al. (2012) 
FC-2 Wang et al. (2007a) EO-5 Sciberras et al. (2016);Yu et al. (2019) 
FC-3 Lu and Huang (2021) EO-6 Adamo et al. (2014) 
FC-4 Lee et al. (2021) EO-7 Kotrikla et al. (2017) 
FC-5 Lee et al. (2021) EO-8 Kotrikla et al. (2017) 
FC-6 Gutierrez-Romero et al. (2019) EO-9 Lee et al. (2021) 
FC-7 Gutierrez-Romero et al. (2019) EO-10 Lee et al. (2021) 
FC-8 Hickman et al. (1999) EO-11 Lu and Huang (2021) 
FC-9 Trozzi and Vaccaro (2006) EO-12 Yang et al. (2021) 
FC-10 Trozzi and Vaccaro (2006) EO-13 Starcrest (2005) 
FC-11 Cooper and Gustafsson (2004b) EO-14 Starcrest (2007) 
FC-12 Yang et al. (2021) EO-15 Starcrest (2008) 
FC-13 Jalkanen et al. (2009) EO-16 Starcrest (2011) 
FC-14 Jalkanen et al. (2012) EO-17 Starcrest (2021) 
FC-15 Faber et al. (2020) EO-18 EPA and ICF (2009) 
FC-16 Smith et al. (2015) EO-19 EPA (2020) 
EO-1 Jian et al. (2017) EO-20 Daniel et al. (2023) 
EO-2 Cooper and Gustafsson (2004b) EO-21 Smith et al. (2015) 
EO-3 Jalkanen et al. (2009)    

Table A2 
Range of SFOCBase value (g/kWh).  

Engine type Fuel type Range of SFOCBase 

ME HFO 175–230 
MGO/MDO 165–210 

AE HFO 195–230 
MGO/MDO 185–225 

AB HFO 305–340 
MGO/MDO 290–320  

Table A3 
Effect of EL on SFOC.  

Reference EL SFOC 

4-Stroke 2-Stroke 

Styhre et al. (2017) >50 % MCR nominal nominal 
25–50 % MCR 1.15* nominal 1.1 * nominal 
<25 % MCR 1.7 * nominal 1.7 * nominal 

Jalkanen et al. (2012) SFOC = SFOCBase • (0.455 • EL2 − 0.71 • EL+ 1.28)

Table A4 
Rang of EFCO2 value in different engine types and fuel types.  

Engine type Fuel type Carbon content EFf CO2 (g/g) EFe CO2 (g/kWh) 

ME HFO/LSHFO  0.8493  3.114 545–716 
ME MGO/MDO  0.8744  3.206 529–673 
AE HFO/LSHFO  0.8493  3.114 607–716 
AE MGO/MDO  0.8744  3.206 593–721 
AB HFO/LSHFO  0.8493  3.114 950–1059 
AB MGO/MGO  0.8744  3.206 930–1026  
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Table A5 
Range of EFSO2 value in different engine types and fuel types (g/kWh).  

Engine type Fuel type Sulphur content EFf SO2 (g/g) EFe SO2 (g/kWh) 

ME HFO 2.43 %-2.6 % 0.0474–0.0507 8.2986–11.6697 
MDO 0.07 %-0.14 % 0.0014–0.0027 0.2254–0.5737 
LSHFO (1 %) 0.01 0.0195 3.4151–4.4884 
ECA 0.001 0.002 0.3220–0.4098 
Outside-ECA 0.005 0.0098 1.7075–2.2442 

AE HFO 2.43 %-2.6 % 0.0474–0.0507 9.2470–11.6697 
MDO 0.07 %-0.14 % 0.0014–0.0027 0.2527–0.6147 
LSHFO(1 %) 0.01 0.0195 3.8053–4.4884 
ECA 0.001 0.002 0.3610–0.4391 
Outside-ECA 0.005 0.0098 1.9027–2.2442 

AB HFO 2.43 %-2.6 % 0.0474–0.0507 14.4632–17.2509 
MDO 0.07 %-0.14 % 0.0014–0.0027 0.3961–0.8743 
LSHFO(1 %) 0.01 0.0195 5.9520–6.6350 
ECA 0.001 0.002 0.5659–0.6245 
Outside-ECA 0.005 0.0098 2.9760–3.3175  

Table A6 
Range of EFPM value in different engine types and fuel types (g/kWh).  

Engine type Fuel type Sulphur content EFPM 

Method 1 Method 2 

ME HFO 2.43 %-2.6 % 1.3391–1.4006 1.2450–1.5167 
MGO 0.07 %-0.14 % 0.1738–0.2040 0.1727–0.2007 
LSHFO(1 %) 1 % 0.8218–0.9481 0.8514–0.9379 
ECA 0.001 0.1838–0.1937 0.1805–0.1875 
Outside-ECA 0.005 0.6409–0.8105 0.7137–0.7570 

AE HFO 2.43 %-2.6 % 1.3391–1.4006 1.3214–1.5167 
MGO 0.07 %-0.14 % 0.1698–0.2009 0.1749–0.2040 
LSHFO(1 %) 1 % 0.8218–0.9022 0.8828–0.9379 
ECA 0.001 0.1805–0.1893 0.1836–0.1899 
Outside-ECA 0.005 0.6409–0.7488 0.7295–0.7570 

AB HFO 2.43 %-2.6 % 1.3330–1.4249 1.7419–1.9665 
MGO 0.07 %-0.14 % 0.1444–0.1844 0.1864–0.2250 
LSHFO(1 %) 1 % 0.5692–0.6496 1.0558–1.1109 
ECA 0.001 0.1595–0.1661 0.2001–0.2048 
Outside-ECA 0.005 0.3018–0.4097 0.8160–0.8435  

Table A7 
Range of EFNOx value in different engine types and fuel types (g/kWh).  

Keel Laid (Tier) Engine Category ME AE AB 

ME AE MGO HFO MGO HFO MGO HFO 

1999 and earlier 
(Tier 0) 

SSD MSD 17 18.1 13.8 14.7 2 2.1 
MSD HSD 13.2 14 10.9 11.6 

2000–2010 
(Tier I) 

SSD MSD 16 17 12.2 13 
MSD HSD 12.2 13 9.8 10.4 

2011–2015 
(Tier II) 

SSD MSD 14.4 15.3 10.5 11.2 
MSD HSD 10.5 11.2 7.7 8.2 

2016 and later 
(Tier III) 

SSD MSD 3.4 3.4–3.6 2.6 2.6–2.8 
MSD HSD 2.6 2.6–2.8 2 2–2.1  

Table A8 
Range of EFCO value in different engine types and fuel types (g/kWh).  

Engine type Engine category Reference (EPA, 2020; EPA and ICF, 2009; Starcrest, 2021) Reference 
(Comer et al., 2017) 

Faber et al., (2020) 
HFO MGO 

ME SSD 1.4 0.54 0.54 0.044 
MSD 1.1 0.54 0.54 0.046 
HSD − − 0.54 0.54 

AE MSD 1.1 0.54 0.54 0.54 
HSD 0.9 0.54 − −

AB AB 0.2 0.2 0.2 0.2  
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4.4.2. Strict regulations on carbon and NOX emissions 
As initiatives for carbon neutrality and carbon peaking gain momentum, ship carbon emissions are expected to receive increased 

attention. Meanwhile, the issue of NOX emissions is likely to face increased restrictions, encouraging the broad adoption and imple-
mentation of measures to reduce both carbon and nitrogen emissions. The application of SP, the methodologies, and the renewable 
energy resources may pave the way for future research trends in ship carbon and nitrogen reduction. 

4.4.3. Expanded application of SP 
Taking into account the diversity of ship sizes and types, it is suggested to conduct further analyses on specific ship types, such as 

cruises, bulk carriers, and tankers. Furthermore, it is crucial for future studies to more closely examine the effects of SP-related policies 
and regulations, as well as the implications of SP’s growing adoption in forthcoming years, on the operational efficiency and effec-
tiveness of ports, with a special emphasis on the quality of port electrical systems. 

5. Conclusion 

Grounded in the advancement of SP promotion and application, this paper critically establishes a scheme for SP data to enhance 
emission estimation of berthed containerships. Structured as a six-step process, this study begins with an extensive literature review to 
identify the state-of-the-art and research gaps in the existing methods of estimating ship-at-berth emissions. Second, ship-at-berth 
emissions from AEs are improved by applying SP data after demonstrating its reliability. Third, a new holistic approach is intro-
duced to incorporate AEs, ABs, and low-load MEs, along with suggested fuel-related parameters and real SP data, to improve the 
accuracy of emission estimations. It is then followed by case studies, including a single containership and multiple containerships, to 
demonstrate the reliability of SP data-based methods over traditional AEs estimation techniques. Based on the average estimations 
derived from multiple containerships using HFO, a comparative analysis is conducted to demonstrate the performance of the proposed 
method and to investigate the effects of prominent emission reduction measures. Finally, the implications and future research 

Table A9 
LLF value in different EL and pollutants.  

EL CO2 SO2 NOX PM CO 

<=2% 1 1 4.63 7.29 9.68 
3 % 1 1 2.92 4.33 6.46 
4 % 1 1 2.21 3.09 4.86 
5 % 1 1 1.83 2.44 3.89 
6 % 1 1 1.6 2.04 3.25 
7 % 1 1 1.45 1.79 2.79 
8 % 1 1 1.35 1.61 2.45 
9 % 1 1 1.27 1.48 2.18 
10 % 1 1 1.22 1.38 1.96 
11 % 1 1 1.17 1.3 1.79 
12 % 1 1 1.14 1.24 1.64 
13 % 1 1 1.11 1.19 1.52 
14 % 1 1 1.08 1.15 1.41 
15 % 1 1 1.06 1.11 1.32 
16 % 1 1 1.05 1.08 1.24 
17 % 1 1 1.03 1.06 1.17 
18 % 1 1 1.02 1.04 1.11 
19 % 1 1 1.01 1.02 1.05 
>=20 % 1 1 1 1 1  

Table A10 
Information of vessels during SP connections.  

Vessel ID Duration (hour) EOSP AE(kWh) LAE(kW) 

Ship 1 6 13,200 2200 
Ship 2 5 4852 970 
Ship 3 17 19,652 1156 
Ship 4 5 6019 1204 
Ship 5 8 9081 1135 
Ship 6 5 6653 1331 
Ship 7 6 8175 1363 
Ship 8 12 10,345 862 
Ship 9 1.2 1320 1100 
Ship 10 4.4 7128 1620 
Ship 11 2.3 2790 1213 
Ship 12 2 2150 1075 
Ship 13 2.3 2070 900  

J. Wang et al.                                                                                                                                                                                                           



TransportationResearchPartD
134(2024)104353

21

Table A11 
Static characteristics of Investigated containerships.  

Ship ID Year of Build Keel Laid GT DWT NT TEU ref C ME AE AB 
MCR RPM Max. Speed Service Speed S&C Stroke No. MCR No. 

Ship 1 2018  2015.12 194,864 202,133 115,302 20,038 1,000 55,000 72 22 19 22&168 2 4 3360*2 + 4500*2 3 
Ship 2 2008  2008.3 114,394 110,038 54,951 10,060 800 68,640 94 25.8 24.8 24&250 2 4 3500 1 
Ship 3 2008  2007.1 114,394 109,950 54,951 10,060 800 68,640 94 25.8 24.8 24&250 2 4 3500 1 
Ship 4 2014  2013.9 99,995 103,668 48,182 9,466 942 56,070 97 25.7 24.5 24.7&210 2 4 3300 N/A 
Ship 5 2013  2012.12 101,063 103,891 49,583 8,508 948 56,070 97 25.7 24.5 24.7&210 2 4 3500 1 
Ship 6 2014  2013.1 99,995 103,668 48,182 9,466 942 56,070 97 26.1 24.5 24.7&210 2 4 3300 N/A 
Ship 7 2013  2012.9 99,995 103,668 48,182 8,452 942 56,070 97 25.7 24.5 24.7&210 2 4 3300 N/A 
Ship 8 2014  2013.5 101,063 104,397 49,583 8,508 948 56,070 97 25.7 24.5 224.7&210 2 4 3300 N/A 
Ship 9 2013  2013.8 99,995 104,262 48,182 8,452 942 56,070 97 25.9 24.5 24.7&210 2 4 3300 N/A 
Ship 10 2013  2013.2 99,995 103,668 48,236 8,452 942 56,070 97 25.7 24.5 24.7&210 2 4 3300 N/A 
Ship 11 2019  2015.7 150,754 146,749 68,520 14,220 1,000 48,900 76 N/A 24 23&168.5 2 4 3650 1 
Ship 12 2015  2014.12 144,651 145,368 66,967 14,080 1000 52,723 79 24.7 23.2 23&175 2 4 2950*2 + 3900*2 1 
Ship 13 2018  2015.9 151,451 146,749 68,253 14,220 1000 48,900 76 N/A 23 23&168.5 2 4 3650 N/A  
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Table A12 
Descriptive statistics of results in multiple containerships.  

Vessel ID PAE LAE FCAE SOX CO2 NOX PM CO 
Average CV Average CV Average CV Average CV Average CV Average CV Average CV Average CV 

Ship 1 20,462  1.92 5869  1.41 12,625  2.38 290  2.27 47,139  2.16 830  2.38 41  2.04 176  2.73 
Ship 2 12,451  1.11 3929  0.91 4903  1.08 104  1.74 18,070  1.03 300  1.12 19  2.06 79  2.92 
Ship 3 12,410  1.11 3889  0.89 16,669  1.08 353  1.74 60,913  1.03 1018  1.13 66  2.06 269  2.92 
Ship 4 10,969  1.04 3515  0.84 4278  0.93 89  1.67 15,309  0.91 256  0.98 17  1.96 69  2.92 
Ship 5 10,883  1.01 3512  0.84 6859  0.94 141  1.64 24,583  0.92 410  0.99 26  1.96 111  2.94 
Ship 6 10,969  1.04 3515  0.84 4278  0.93 89  1.67 15,309  0.91 256  0.98 17  1.96 69  2.92 
Ship 7 10,760  1.01 3471  0.84 5074  0.93 104  1.64 18,160  0.91 303  0.97 19  1.97 82  2.94 
Ship 8 10,820  1.02 3486  0.84 10,230  0.94 210  1.65 36,629  0.92 611  0.99 39  1.97 166  2.94 
Ship 9 10,769  1.01 3473  0.84 1015  0.93 21  1.64 3634  0.91 61  0.97 4  1.97 16  2.94 
Ship 10 10,760  1.01 3471  0.84 3721  0.93 76  1.64 13,318  0.91 222  0.97 14  1.97 60  2.94 
Ship 11 14,727  1.58 4458  1.15 2969  1.72 68  2.06 11,032  1.57 189  1.76 10  1.87 47  2.91 
Ship 12 14,428  1.52 4374  1.11 2510  1.6 57  2.04 9293  1.47 159  1.65 9  1.89 40  2.9 
Ship 13 14,760  1.58 4465  1.15 3096  1.73 71  2.06 11,505  1.58 197  1.77 11  1.87 49  2.91 
Average 12,705  1.23 3956  0.96 6017  1.24 129  1.80 21,915  1.17 370  1.28 22  1.97 95  2.91  
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directions for both practical and academic areas are outlined. Hence, the findings of this study contribute new approaches and insights 
to scientifically and reasonably refining ship-at-berth emission estimates. More specifically, 

(1) The estimation of ship emissions at berth is a complex process influenced by various factors, including ship size, engine type, 
engine category, fuel type, berthing time, and emission reduction measures. 

(2) Estimates from FC methods are generally higher than those from EO ones, with both typically exceeding actual emissions, 
highlighting the importance of utilising SP data to research vessel characteristics and enhance the accuracy of emission estimation 
during berthing mode. 

(3) CO2 and SO2 emissions from ABs during berthing, though slightly lower than from AEs, are major sources of emissions. 
Additionally, emissions like CO, NOX, and PM from MEs during berthing should not be overlooked due to their sensitivity to ME’s low 
load. 

(4) Following the establishment of ECAs and the 2020 regulations, there has been a significant decrease in SO2 and PM emissions 
while CO2 emissions have yet shown a significant reduction. In some cases, an increase instead happens due to the increased fuel oil 
consumption driven by fuel compliance requirements. 

(5) Among various emission reduction measures, the combined use of SP and alternative fuels during ship berthing has shown to be 
preferred in significantly reducing pollutant emissions, presenting a promising avenue for environmental impact mitigation. 

The findings demonstrate that SP is an effective measure for reducing various pollutants from those ships at berth. This implies that 
governments could initially promote SP through incentives for its installation and operation, and subsequently implement regulations 
for specific routes and ship types to show strong feasibility and economic benefits, thereby reducing ship-at-berth emissions (Gong 
et al., 2024). Moreover, integrating multi-emission reduction measures with SP, such as alternative fuels and restructuring the SP 
supply ecosystem, could achieve zero emissions. SP also has the potential to improve energy management for both port and shipboard 
systems, paving the way for efficient and sustainable maritime operations. Additionally, great emphasis should be placed on the 
collection and timely public release of SP data, which may provide new opportunities for further research. 

The proposed method in this paper employs SP data, vessel characteristics, and LA series reports on emission inventory to estimate 
ship-at-berth emissions with a limited sample. However, its applicability to a broader fleet can be feasible after appropriate further 
validation and potential adaptation are undertaken. A significant limitation of this study is the restricted accessibility of public SP data. 
Additionally, methods and parameters used for estimating emissions from ABs and low-load MEs are based on the literature. Despite 
these limitations, the comparative analysis conducted on single-containership and multi-containership models successfully meet the 
research objectives. 
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