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A B S T R A C T

Although uncertainties expressed in texts within QSAR studies can guide quantitative uncertainty estimations, 
they are often overlooked during uncertainty analysis. Using neurotoxicity as an example, this study developed a 
method to support analysis of implicitly and explicitly expressed uncertainties in QSAR modeling studies. Text 
content analysis was employed to identify implicit and explicit uncertainty indicators, whereafter uncertainties 
within the indicator-containing sentences were identified and systematically categorized according to 20 un-
certainty sources. Our results show that implicit uncertainty was more frequent within most uncertainty sources 
(13/20), while explicit uncertainty was more frequent in only three sources, indicating that uncertainty is 
predominantly expressed implicitly in the field. The most highly cited sources included Mechanistic plausibility, 
Model relevance and Model performance, suggesting they constitute sources of most concern. The fact that other 
sources like Data balance were not mentioned, although it is recognized in the broader QSAR literature as an area 
of concern, demonstrates that the output from the type of analysis conducted here must be interpreted in the 
context of the broader QSAR literature before conclusions are drawn. Overall, the method established here can be 
applied in other QSAR modeling contexts and ultimately guide efforts targeted towards addressing the identified 
uncertainty sources.

1. Introduction

Quantitative structure-activity relationships (QSARs) are an in silico 
toxicology approach that aims to establish relationships between de-
scriptors of chemical structure and biological activities (e.g., toxicity) or 
properties. The implicit assumption is that structurally similar chemicals 
should have similar activities/properties and the trends can be identified 
and modeled within groups of molecules (Cronin and Madden, 2010). 
QSARs have the potential to support the reduction in the use of animal 
testing in different assessment contexts aimed toward characterizing 
and/or predicting chemical toxicity (Belfield et al., 2021; Cronin et al., 
2019b; Patlewicz et al., 2013). There are increasing calls to incorporate 
QSAR predictions in the assessment of chemical toxicity (e.g., within the 
European Food Safety Authority (EFSA), 2010), Health Canada (2023), 
and the US National Research Council (2007)). However, it is recognized 
that it will be difficult to address complex endpoints with QSAR alone. 

An example is the prediction of neurotoxicity, given the unreliability of 
animal models in assessing this endpoint for reasons such as interspecies 
differences in brain morphology or differences in biological functions 
between humans and animals (EFSA, 2010; EFSA et al., 2021; Fritsche 
et al., 2018). Worth et al. (2011a,b) state that no single QSAR model (or 
in combination) seems adequate to predict the neurotoxic potentials of 
chemical compounds. The shortcomings of QSAR models have led to 
increasing demands to analyze and communicate uncertainties in QSAR 
models and model predictions of complex endpoints such as neurotox-
icity to support efforts aimed at addressing the uncertainties (Belfield 
et al., 2023; Cronin et al., 2019a,b; Piir et al., 2018; Sahlin et al., 2011; 
Schultz et al., 2019; Vighi et al., 2019).

Researchers express uncertainties in various ways, including the use 
of words that implicitly or explicitly qualify or represent the author’s 
confidence in the content of the information communicated or alter 
precision implied in a measured numerical value (Flari and Wilkinson, 
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2011; Levin et al., 2004). As defined in Table S1, explicit uncertainties 
are expressed directly as gaps, unknowns, or quantitative confidence 
measures regarding, for example, model predictivity (e.g., “it is uncer-
tain” and “more data are needed”) and are consequently easily detected 
(Flari and Wilkinson, 2011; Sahlin et al., 2011). In contrast, implicit 
uncertainties are expressed indirectly in a subtle manner (or uninten-
tionally) – e.g., through words such as “probably”, “maybe”, and 
“might”. While understanding the implicitly and explicitly expressed 
uncertainties can provide valuable nuance and guide quantitative un-
certainty estimations, these uncertainties are not easily discerned and 
can, therefore, be easily overlooked during analysis or interpretation of 
QSAR predictions (Flari and Wilkinson, 2011; Levin et al., 2004; Zerva, 
2019). In other words, at present, it is difficult to elucidate whether 
modelers use linguistic expressions to indicate how certain they regard 
the current state of knowledge of QSAR models and the information 
regarding, for example, input data, parameters, and prediction outputs 
(Flari and Wilkinson, 2011). To support systematic and transparent 
accounting of uncertainties in QSAR predictions, we here develop a 
method that makes it possible to identify and, based on our previously 
developed framework (Achar et al., 2024a), systematically categorize 
implicit and explicit uncertainties expressed in texts in studies applying 
QSARs for chemical toxicity predictions.

Research on uncertainty indicators and how they can influence the 
perceived certainty of information in written statements exists across 
different research areas. For example, Markkanen and Schröder (1997), 
Varttala (2001), and Zerva (2019) explore the use and interpretation of 
uncertainty expressions that qualify confidence in statements in lin-
guistic and behavioral studies, Stortenbeker et al. (2019) analyze the 
influence of the use of uncertainty expressions by doctors on patient 
anxiety during doctor-patient communication, while Ferson et al. 
(2015), Rubin (2007), and Zerva (2019) explore the use of machine 
learning to identify probability phrases and numerical uncertainty ex-
pressions. Scholars such as Flari and Wilkinson (2011) and Levin et al. 
(2004) highlight the utility of implicit and explicit uncertainty in-
dicators as markers when identifying uncertain information in scientific 
texts or written statements. In this study, we follow what is held to be 
best practice when identifying uncertainty communicated within a 
statement, which is to first identify uncertainty indicators and then 
analyze the uncertainty in information in a statement based on how the 
indicators relate to and affect the conveyed information (Flari and 
Wilkinson, 2011; Hillen et al., 2017; Levin et al., 2004; Stortenbeker 
et al., 2019; Zerva, 2019).

Uncertainty estimation in QSAR modeling falls into two major cat-
egories: aleatoric uncertainty and epistemic uncertainty (see the defi-
nitions in Table S1). While the former cannot be eliminated through 
additional data, the former can (at least in theory) be eliminated through 
additional data or knowledge (Gajewicz et al., 2015; Scalia et al., 2020; 
Wang et al., 2021; Zhong et al., 2022). In this study, we focus on 
epistemic uncertainty, as it is regarded to be more problematic in QSAR 
modeling exercises – e.g., with respect to understanding whether a 
model is fit-for-purpose, availability of relevant and reliable data to 
provide more insights into chemical structure-activity relationships, or 
interpretation of the mechanism of action of chemical compounds 
(Cronin et al., 2019a,b; Sahlin et al., 2013). Methods for analyzing 
epistemic uncertainties in chemical risk assessment fall into three broad 
tiers: qualitative, deterministic, and probabilistic methods, for which 
qualitative analysis of uncertainties is considered the first step in any 
uncertainty analysis exercise (EFSA, 2006; Sahlin et al., 2013; World 
Health Organization and International Programme on Chemical Safety 
(WHO/IPCS), 2018).

While qualitative analysis of epistemic uncertainty is an important 
first step in uncertainty analysis, QSAR studies predicting the toxicity of 
chemical compounds have hitherto focused on quantitative aspects. For 
example, in QSAR mutagenicity prediction, Hung and Gini (2021)
applied Bayesian reasoning to quantify epistemic uncertainty in model 
input data – i.e., uncertainty related to the amount of data used for 

modeling and the availability of specific chemical information in the 
modeling data. Zhong et al. (2022), during QSAR development, applied 
the Gaussian process to quantify epistemic uncertainty with respect to 
the inclusion or exclusion of specific chemicals in the model training set. 
Similarly, Wang et al. (2021) and Zhang and Lee (2019) estimated 
epistemic uncertainty using Bayesian statistics – i.e., distributional un-
certainty emanating from QSAR models’ lack of recognition of the in-
formation in test sets, and uncertainty due to sparse or imbalanced 
distribution of data in model training sets. However, to our knowledge, 
little (if anything) has been done to qualitatively identify or categorize 
uncertainties that are expressed in statements in QSAR modeling 
studies. This is problematic as systematic and transparent accounting of 
uncertainties in QSAR modeling requires analyzing and addressing both 
quantitative and qualitative uncertainties (EFSA, 2006; Sahlin et al., 
2013; WHO/IPCS, 2018).

Using the neurotoxicity endpoint as an example, the aim of this study 
was to develop a method that allows for systematic and transparent 
accounting for implicit and explicit uncertainties in QSAR modeling of 
chemical toxicity. The choice for neurotoxicity was based on the fact 
that, similar to other complex toxicological endpoints, it suffers from 
limited experimental data, which leads to higher epistemic uncertainty 
(Madden et al., 2020; Worth et al., 2011a). It is also well recognized that, 
presently, models such as QSARs struggle to accurately predict neuro-
toxicity given the complex nature of the underlying biological mecha-
nisms (Bal-Price et al., 2018; Fritsche et al., 2018; Gadaleta et al., 2022; 
Madden et al., 2020; Worth et al., 2011a); thus, making uncertainty 
analysis important for QSAR modeling of neurotoxicity. Accordingly, 
implicit and explicit uncertainty indicators, expressed in peer-reviewed 
papers on the QSAR modeling of neurotoxicity, were first identified. The 
indicators were then used to identify implicit and explicit uncertainties. 
The identified uncertainties were then systematically categorized ac-
cording to the uncertainty sources proposed by Achar et al. (2024a). 
This allowed us to identify uncertainty sources that were most 
commonly highlighted by researchers. By identifying and categorizing 
the implicit and explicit uncertainties, we contend that this method can 
be used to draw attention to epistemic uncertainties in QSAR modeling 
of specified endpoints, here illustrated by neurotoxicity. Our hope is that 
the information gained from our study can be used to inform 
decision-support initiatives by modelers and regulatory authorities 
when identifying research needs and the type of data required to reduce 
or eliminate uncertainties.

2. Methodology

2.1. Uncertainty indicators

Levin et al. (2004) proposed four categories of implicit uncertainty 
indicators in chemical risk assessment: epistemic, inferential, contentual 
and conditionalizing implicit uncertainty indicators (definitions of the 
indicators are provided in Fig. S1). We considered the concepts 
described for the ‘implicit epistemic uncertainty indicators’ to be 
directly relevant to our study, as our aim is to identify epistemic un-
certainties. However, our initial analysis suggested that researchers 
commonly do not distinguish between epistemic uncertainty (e.g., “it is 
presumed that …“) and inferential uncertainty indicators (e.g., “on this 
basis, it is presumed that …“). We therefore decided to also include 
inferential indicators as part of epistemic indicators (a detailed expla-
nation and definition is given in Table S1, Text S1 and Fig. S1 of the 
Supplementary material). Furthermore, the concept of explicit epistemic 
uncertainty indicators (e.g., qualitative or quantitative statements such 
as “we don’t know” and it is uncertain”) described by Sahlin et al. (2011)
and (Stortenbeker et al., 2019) was adopted to identify explicit uncer-
tainty indicators (see detailed explanation in Text S1 of the Supple-
mentary material).

Fig. 1 outlines the process used in the present study to identify and 
categorize implicit and explicit uncertainties. This started with the 
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sourcing of peer-reviewed papers (section 2.2), followed by the identi-
fication of epistemic explicit and implicit uncertainty indicators (section 
2.3), whereafter these indicators were used to highlight uncertainty in 
QSAR neurotoxicity papers (section 2.4). Finally, with the goal of sup-
porting systematic and transparent accounting of uncertainties, we used 
the uncertainty sources we recently proposed (Achar et al., 2024a) (see 
Section 2.5) to categorize the identified implicit and explicit 
uncertainties.

2.2. Selecting peer-reviewed papers for analysis

A search was conducted in the Web of Science Clarivate database 
using the following keywords and Booleans: neurotox* (TOPIC) AND 
QSAR (TOPIC), while excluding review papers. This led to the identifi-
cation of 75 papers. Duplicates were excluded whereafter titles and 
abstracts were skimmed, and the following inclusion criteria were used: 
the paper had to (1) be published in a peer-reviewed journal, (2) be an 
original research article, (3) apply QSAR model(s), (4) address neuro-
toxicity assessment of a chemical (including drugs), and (5) be in the 
English language. After reading the papers in their entirety, 20 papers 
that met the selection criteria were selected for analysis (see the Sup-
plementary material for the list of 20 papers). These articles were added 
to the Zotero reference management tool (version 6.0.36).

2.3. Identification of implicit and explicit uncertainty indicators

Implicit epistemic uncertainty indicators were identified through 
line-by-line text coding of the methods, results, discussion, and 
conclusion sections of the papers identified under section 2.2. These 
sections were selected as they are the locations in a paper where one 
would expect authors to describe the model(s), modeling data, param-
eters and variables applied in their study, report and discuss the study 
findings/modeling output, and draw conclusions about the study. Three 
coders (first, third and fourth authors) independently coded each of the 
20 papers (Table S2), identifying, color-marking, and recording implicit 
and explicit indicators. Each coder reviewed each paper at least twice 
until no new indicators could be discovered. Thereafter, the intercoder 
agreement measure, calculated as the percent agreement, was estimated 
using Krippendorff’s Alpha (αk) (Krippendorff, 2004) on the web-based 
K-Alpha Calculator developed by Marzi et al. (2024). The measure re-
lates to whether the coders agreed if the coded texts were indicators and, 

if yes, whether the indicators qualified to be categorized as explicit or 
implicit epistemic indicators. All conflicting issues were identified, dis-
cussed, and resolved before the final list of indicators was recorded 
(Table S2). We describe the uncertainty indicator identification pro-
cedure in more detail in the Supplementary materials (Text S2). The risk 
of double coding was reduced by checking whether an 
indicator-containing sentence was repeated in different sections of a 
paper (e.g., identical phrases could be used in the Results and Discussion 
and the Conclusion sections).

2.4. Identification of implicit and explicit uncertainties

The indicator-containing sentences and the context in which the 
indicators appear were used to interpret and describe the implicit or 
explicit uncertainties communicated in these sentences; this was 
collaboratively performed by the first and second authors. Inspired by 
the process proposed by Zerva (2019), we started by first noting the 
location of uncertainty indicators in the indicator-containing sentences, 
followed by identifying the central piece of information communicated 
in the sentences. This information was identified by reading each paper 
in its entirety to get a general idea about the study, and then each 
indicator-containing sentence and, when necessary, an entire paragraph 
containing the indicator-containing sentence. Next, we interpreted how 
each indicator modified the central piece of information. The assump-
tion is that if the central piece of information is modified by the indi-
cator, then the information becomes uncertain (Zerva, 2019). An 
example of how the descriptions of the uncertainties were developed is 
illustrated in Table 1 (Step 1–3) using two of the indicator-containing 
sentences from two of the 20 studies (i.e., Estrada et al., 2001; Zhang 
and Lee, 2019).

2.5. Categorization of the identified uncertainties

This study systematically categorized each of the uncertainties 
identified under Section 2.4 guided by the 20 uncertainty sources 
(Table 2) established within a framework we recently developed to 
systematically categorize general sources of uncertainty across different 
in silico toxicology methods (Achar et al., 2024a; in press). The frame-
work conceptualizes uncertainty as a multi-source phenomenon that is 
associated with recognized QSAR components and modeling processes 
(see Fig. S2); thus making it a valuable tool in this study to facilitate 

Fig. 1. The steps undertaken to identify and categorize implicit and explicit uncertainties in peer-reviewed papers that apply QSAR to predict the neurotoxicity of 
chemical compounds.
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mapping out of diverse sources of uncertainty in QSAR modeling exer-
cises. In applying the framework, however, we note that Data accuracy 
was considered not just to entail the measure of correctness of data in 
relation to a “true value” (as defined in the framework – Table 2) but also 
such measure in relation a “distribution of true values”. This adjustment 
was necessary to accommodate the different (implicit or explicit) de-
scriptions of data accuracy in the 20 analyzed studies. For example, 
Turabekova et al. (2008), in “The bad fitting to correlation line for those 
compounds can be explained by possible errors […]” (Table S2), 
implicitly mention data accuracy with respect to “distribution of true 
values”. In contrast, Cronin (1996) in “[…] most confidence intervals 
are between 10% and 30% of the original value” (Table S2) explicitly 
mention it with respect to a “true value”.

2.5.1. The categorization process
We illustrate how the categorization was performed by referring to 

the examples in Table 1. For the implicit uncertainty category, the 
interpretation of uncertainty was not just based on the understanding of 
the message communicated in the indicator-containing sentence but the 
overall message in the paragraph containing the sentence or adjacent 
paragraphs as well. Accordingly, we interpreted the uncertainty (Step 3; 
Table 1) as: the effect of smaller molecules, relative to larger molecules, 
is uncertain (where molecular size is characterized using molecular 
weight descriptor), and (2) there is also uncertainty in knowledge about 
mechanistic interaction of the smaller molecule (relative to larger 
molecules) in the nervous system to inform judgments about their ef-
fects. In other words, as implicitly expressed by Zhang and Lee (2019), 
uncertainty in the sentence is not only about the effect of the neuro-
toxicant molecules (due to exposure), but also the understanding of the 
mechanistic complexity of the molecules. These uncertainties fit well 
under the description of two of the uncertainty sources in Table 2: 
“Activity/potency”, which is described as the “Measure of elicited 
toxicological effect or adverse effect, degree of the effect, or the ability 
of a chemical to exert an effect”; and “Mechanistic plausibility”, which is 
described as “Toxic causal pathways of chemicals, involving the iden-
tification of molecular initiating events/key events linked causally to a 
target endpoint”.

In the explicit uncertainty category in Table 1, the uncertainty noted 
in Step 3 relates to the evidence supporting the claim that the studied 
chemicals caused neurotoxic effects in mice. This fits well under the 
description of the uncertainty source “Activity/potency evidence”, 
which is described as “Available evidence to support the predicted 

activity/potency” (Table 2); thus, this uncertainty was categorized as 
“Activity/potency evidence”. The categorization process was under-
taken for all uncertainties identified under section 2.4. The distribution 
and frequencies of the categorized implicit and explicit uncertainties 
were quantified afterward.

3. Results

3.1. Intercoder agreement

From the two papers (i.e., Amnerkar and Bhusari (2010) and Schmidt 

Table 1 
Steps followed to identify uncertainties implicitly and explicitly expressed in the 
indicator-containing sentences.

Implicit uncertainty Explicit uncertainty

Indicator-containing 
sentence

“It demonstrates that a 
smaller molecule is more 
likely to cause adverse 
effect to the nervous 
system” (Zhang and Lee, 
2019; p 4).

“Unfortunately, there is not 
enough experimental data 
to corroborate these 
findings” (Estrada et al., 
2001; p 457).

Step 1: Noting the 
indicator

“more likely” “there is not enough 
experimental data”

Step 2: Identifying the 
information 
communicated

In this context, smaller 
molecules are more likely 
to cause adverse effects to 
the nervous systems than 
larger molecules

A group of chemicals were 
found to induce 
neurotoxicity in the test 
animal (i.e., mouse)

Step 3: Interpreting 
how the indicator 
modifies the 
information

The indicator modifies 
information by implicitly 
clarifying that it cannot be 
guaranteed that smaller 
molecules will cause more 
adverse effects than larger 
molecules.

The indicator modifies 
information by explicitly 
clarifying that “there is not 
sufficient experimental data 
to corroborate” that the 
studied chemicals will 
induce neurotoxicity in 
mice.

Table 2 
Sources of uncertainty (arranged in alphabetical order) relatable to practices and 
features common to in silico toxicology modeling (adopted from Achar et al. 
(2024a) – under review – with permission from the authors).

Uncertainty sources Definition of the uncertainty sources

Activity/potency Measure of elicited toxicological effect or adverse effect, 
degree of the effect, or ability of a chemical to exert an 
effect on a receptor

Activity/potency 
evidence

Available evidence to support the predicted activity/ 
potency

Applicability domain Boundaries within which a model can be applied and 
provide reliable and accurate predictions (e.g., adequacy of 
chemical structure space or category to predict effects of 
similar chemicals)

Chemical similarity Resemblance or commonality between chemical 
compounds, e.g., in terms of functional groups and 
chemical structure

Chemical structure Quality (e.g., in terms of relevance) of chemical structures 
or substructures with respect to a set prediction

Coverage of ADME 
activities

Consideration of ADME activities in biological systems, 
including effects of metabolites

Data accuracy The extent to which measured data deviates from its true 
value

Data balance Ratio between the number of chemicals in categories in 
training dataset – chemical categories with known 
activities (toxicants) and known non-activities (non- 
toxicants)

Data relevance Data contain target information (e.g., kinetics and 
metabolic property) suitable for modeling or adequate for 
the interpretation of model predictions

Data reliability Reproducibility of data between test approaches/sources, 
or reproducibility of the methodology used in generating 
the data

Data quantity Amount of data - whether data is sufficiently available
Data validity Acceptability of the method used to generate data relative 

to set guidelines or whether the method measured what it 
was intended to measure

Descriptor 
concordance

Degree of agreement between descriptors and other 
chemical features or chemical toxicokinetic or 
toxicodynamic properties

Descriptor relevance Extent to which physicochemical or molecular descriptors 
are considered toxicologically relevant, or suitable for 
deriving chemical properties or for a specific prediction 
task

Extrapolation Making predictions beyond the range of the observed/ 
known data (e.g., toxicity data) in attempts to obtain new 
unknown data

Mechanistic 
plausibility

Toxic causal pathways of chemicals, involving the 
identification of molecular initiating events/key events 
linked causally to a target endpoint

Metabolic domain Consideration of production or presence of metabolites as 
part of chemical interaction with biological systems

Model performance Predictivity of a model or how well a model can predict 
outcomes of interest, which can be evaluated through, for 
example, an internal/external validation or quantitatively 
using the measure of statistical fit

Model relevance Transferability of a model or model prediction to a different 
prediction context (e.g., regulatory application or 
prediction of new compounds)

Model structure A model endogenous representation, such as mathematical 
formulations (e.g., equations or graphs), choice of 
algorithms, precision of numerical approximations, and 
relationships between variables
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et al. (2004)) used for coding practice (see Supplementary Text S2 for 
details about the practice session), the three coders agreed 90% of the 
time on whether a statement, phrase, or word identified was an indicator 
of epistemic uncertainty and, if so, whether the indicator qualified to be 
categorized as implicit or explicit (αk = 0.87, 95% CI; N = 3). The in-
dicators identified during the practice session (Text S2) and the coder 
agreement scores are shown in Table S3. Similar results were obtained in 
the coding of the 20 papers, where the three coders, on average, agreed 
87% (82–94%; account for each paper) of the time that the identified 
indicators represented implicit epistemic uncertainty (αk = 0.86, 95% 
CI; N = 3), which, according to Krippendorff (2004), is satisfactory.

3.2. Occurrence of uncertainty indicators

Table S2 (second and fifth columns) shows the full list of implicit and 
explicit indicators (bolded in the sentences) identified from the 20 
analyzed studies. A summary of their frequency of occurrence is pro-
vided in Table 3. A total of 406 indicators were identified: The majority 
(75.6%; 307) of these were implicit, and the rest (24.6%; 99) were 
explicit. A number of words/phrases implicitly expressing uncertainty 
were repeated across the 20 studies, with “suggest(s/ed/ing)”, “may”, 
and “may be” being the most common, while words/phrases like “im-
plies” and “unlikely to” being among the least common (Table S2).

3.3. Variation in the occurrence of implicit and explicit uncertainty 
sources between publications

The use of the indicators identified under section 2.3, combined with 
the process described in section 2.4, allowed for the identification of 
implicitly and explicitly expressed uncertainties within indicator- 
containing statements. Each of the identified uncertainties was aligned 
(i.e., grouped according to) at least one of the uncertainty sources in 
Table 2 (each is henceforth identified by the uncertainty source it is 
categorized under) (Tables S2 and 4th and 7th columns). All but two of 
the uncertainty categories were not represented among the recorded 
uncertainty sources (Data validity and Metabolic domain). A summary 
of the distribution of the categorized implicit and explicit uncertainty 
sources across the 20 studies is provided in Table S4. The calculated total 
number of occurrences of uncertainty sources in both implicit and 
explicit categories was 162, of which 104 (64%) were implicit and 58 
(36%) explicit. None of the uncertainty sources occurred in all the 20 
analyzed studies nor was any pattern observed as related to co- 
occurrence. For example, although uncertainties related to Coverage 
of ADME effects and Extrapolation occurred in 5 of the 20 studies, they 
only co-occurred in two of them (Table S4). The most commonly 
occurring implicit uncertainty sources were Mechanistic plausibility and 
Model relevance, while Data balance and Data accuracy recorded the 

Table 3 
Examples of the implicit and explicit uncertainty indicators (bolded in the sentences) identified in the 20 analyzed studies (see Table S1 for the raw data). The data is 
arranged in the order of the publication numbers presented in Table S2.

Study 
#

Implicit uncertainty indicator (bolded in the 
sentence)

Page 
#

Frequency Explicit uncertainty indicator (bolded in the sentence) Page 
#

Frequency

1 These results may indicate a certain probability 
that compound 11 is a multitarget ligand.

1398 9 This mx-QSAR has excellent goodness-of-fit statistics […] with 
sensitivity (Sn), specificity (Sp), and accuracy (Ac) > 80%.

1394 1

2 The proposed QSAR model can be a possible 
supporting tool […]

50 20   

3 […] group that potentially explains the high 
number of incorrect predictions.

429 9 These results indicate that it is currently difficult to predict 
[…]

429 7

4 Surprisingly, the above equation suggests a lack of 
relationship with hydrophobicity.

105 46 […] many of these data are not available at 25 ◦C […] 106 11

5 In the case of dioxane, that is outlier for models (2) 
and (3), we can think that neurotoxicities […]

454 5 Unfortunately, there is not enough experimental data […] 457 5

6 […] cochlear development and potentially resulting 
in permanent auditory loss.

7 16   

7 Probably, the less unfavorable contacts of the ketal 
group inside the sub-pocket […].

4 15 Unfortunately, none of these models succeeded in finding 
compounds more potent […]

3 2

8 To a certain extent, this indicates that the 
structural diversity of our compounds is high […]

167 7 Although the predictive power of our model is not the best 
[…]

168 2

9 […] toxicokinetic properties of the chemical may 
play an important role in the neurotoxicity […]

7 21 […] the imbalance dataset was further adjusted […] 4 12

10 […] (62.5%) were inferred to be associated with 
Parkinson’s disease […].

3309 18 […] cannot be easily explained by reduction of dopaminergic 
neuronal cells

3312 10

11 One compound may lead to 1 or more statistical 
cases because it may give different outcomes [ …]

1872 7 This linear equation presented good results […] with overall 
Accuracy in training series above 90%.

1872 1

12 The use of enzymes from different tissues and species 
is a potential limitation of the study.

232 6 However, the whole picture of influence is rather 
complicated.

236 1

13 The results obtained from the predicted model could 
be attributed to the experimental verifications.

313 12 […] – MnAChE still remain unexplored. 309 2

14 One tentative explanation for this event could be 
related to increased hydrogen […]

3800 11 The anticonvulsant mechanism of the semicarbazones is not 
clearly defined.

3399 2

15 The width of the REP range can be roughly 
interpreted as the lowest possible value […]

19 10 […] experimental data are lacking adds another layer of 
uncertainty to the NEF predictions.

14 7

16 It appears that no high-potency PCB congeners with 
EC2x values ≪0.2 μM exist.

359 23 Because of the poor predictivity of the pEC50 QSAR, and 
concerns […]

358 9

17 The bad fitting to correlation line for those 
compounds can be explained by possible errors 
[…]

11 23 […] no substantial features have been identified that 
would help to distinguish […]

5 10

18 This is suggestive of the potential for increased 
potency […]

277 5 The source of the IC50 values […] may provide some 
uncertainty.

230 5

19 […] structural fragments has a high possibility to be 
neurotoxicant.

5 25 The ECFP_10 and eight molecular descriptors were not able to 
better describe the property […]

4 7

20 The results suggest that nHAcc and nHDon may be 
obviously associated with drug-induced […]

6042 17 Admittedly, these methods are not perfect because they […] 6043 7

   Total =
305

  Total = 99
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lowest number (each 1/104). Among the explicit uncertainty sources, 
Model performance was most common while seven of the sources were 
only mentioned once (Table S4).

3.4. Frequency of uncertainty sources

EFSA et al. (2021) recommend the adoption of three tiers to describe 
analyzed uncertainty: (1) describe uncertainties collectively (i.e., com-
bined uncertainty for an assessment as a whole), (2) describe un-
certainties separately with regards to the main parts of the assessment, 
and, where possible, (3) describe uncertainties with regards to the 
smaller parts of the assessment. In this study, we followed these steps to 
describe the frequencies of the uncertainty sources.

3.4.1. General distribution of uncertainty sources
The total number of times a specific uncertainty source (i.e. implicit 

and explicit) was expressed in the 20 studies is given in Fig. 2. Mecha-
nistic plausibility was by far the most common, with over 90 occur-
rences, followed by a group of four sources that were referred to in about 
50 occurrences (Descriptor concordance, Model relevance, Model per-
formance, and Activity/potency. These results suggest that a large 
number of uncertainties in QSAR prediction of neurotoxicity fall within 
these frequently cited sources. In contrast, Data balance, Data accuracy, 
and Chemical similarity were among the least frequently cited sources, 
not to mention Data validity and Metabolic domain, which were not 
expressed in the analyzed papers, suggesting that these uncertainty 
sources are not of great concern to researchers in the field.

3.4.2. Comparison of frequencies relating to implicit and explicit 
uncertainty

The frequencies of uncertainty sources expressed implicitly and 
explicitly were analyzed in order to determine the extent of any varia-
tion (Fig. 3). The most frequent uncertainty source that was implicitly 
expressed was Mechanistic plausibility (73/310). Other high-frequency 
sources included Descriptor concordance (51/310), Model relevance 
(39/310), Activity/potency (32/310), and Model performance (27/ 

310). As noted earlier, Data validity and Metabolic domain were not 
cited in any of the analyzed studies. Among sources that were explicitly 
referenced, Model performance was the most frequent one (20/102), 
followed by other sources such as Data quantity (18/102), Activity/ 
potency (16/102), and Mechanistic plausibility (12/102). In contrast, 
Data accuracy, Chemical structure, and Model structure (each occurring 
only once) were among the least frequent. Similar to the implicitly 
expressed uncertainty sources, Data validity and Metabolic domain were 
not referred to at all. Implicit and explicit mentions were equally com-
mon for 2/20 of the sources (i.e., Data accuracy and Extrapolation), 
while explicit mentions were more common for only 4/20 sources (i.e., 
Data quantity, Data balance, and Activity/potency evidence) (see 
Fig. 3). Taken together, the analysis shows that implicit mentions were 
more common for the majority of the uncertainty sources (13/20; 65%), 
which indicates that uncertainty is more commonly expressed implicitly 
in QSAR studies predicting neurotoxicity of chemicals.

4. Discussion

QSARs for toxicity prediction have become ubiquitous in chemical 
safety assessment. Understanding the uncertainties in QSAR models and 
their predictions is a vital and fundamental part of assessing the quality 
and robustness, or otherwise, of a model for their successful use, for 
instance, in regulatory contexts. This study evaluated 20 papers relating 
to QSARs for neurotoxicity prediction to assess the occurrence of im-
plicit and explicit uncertainties expressed in them. The study results are 
discussed below.

4.1. Contribution of implicit versus explicit uncertainty sources to the 
overall uncertainty sources

Figs. 2 and 3 indicate a variety of uncertainty sources and the 
different frequencies in which they are mentioned, ranging from rela-
tively frequent to no mention at all. These results raise three questions: 
Why are the uncertainties variably expressed? What is the contribution 
of the implicit versus explicit uncertainty sources to the overall 

Fig. 2. Frequencies of the combined (implicit + explicit) uncertainty sources. The data are arranged from the highest to the lowest value, according to the magnitude 
of the combined frequencies.
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uncertainty? With respect to uncertainty communication in QSAR 
studies predicting neurotoxicity, what is the possible explanation for 
why implicit uncertainty is more frequently expressed than explicit 
uncertainty?

According to Han et al. (2011) and Maxim (2015), the first question 
(i.e., Why are the uncertainties variably expressed?) can be answered by 
considering the tendency of studies to prioritize communicating 
particular uncertainties over others, or the inherent difficulty of 
including all relevant uncertainties in a study. A similar observation has 
been made within modeling contexts. For example, studies have found 
that there is a higher tendency to communicate uncertainties related to 
model parameters than those related to, for example, extrapolation of 
laboratory experimental data to humans or field settings, suitability or 
robustness of models or model structure for an intended prediction, or 
inaccuracies in the experimental design used for data generation 
(Maxim, 2015; Moschandreas and Karuchit, 2002; National Research 
Council, 2009; Verdonck et al., 2005). According to Kirchner et al. 
(2021), this commonly results from modelers’ assumption that the 
added value of including particular uncertainty sources is not worth it, 
as it may push models to unrealistic and extreme boundary solutions, or 
for reasons such as resource or computational constraints.

The answer to the second question – i.e., What is the contribution of 
the implicit versus explicit uncertainty sources to the overall uncer-
tainty? – can be deduced from the distribution of the frequency datasets 
in Figs. 2 and 3, which indicates that the frequencies of the implicit 
uncertainty sources were generally more than explicit sources. Based on 
the analyzed studies and with respect to these results, it can thus be 
concluded that implicit uncertainties contributed more to the overall 
uncertainties. Indeed, these results are consistent with the frequencies of 
the indicators, which were more in the implicit uncertainty category 
than the explicit uncertainty category (Table 2). Previous research re-
ported similar findings. For example, Flari and Wilkinson (2011), in the 
text analysis of uncertainties expressed in EFSA documents on health 
risk assessments, found more implicit uncertainties (972/1133) than 
explicit uncertainties (161/1133). Stortenbeker et al. (2019) also 
recorded ≈1.54-fold more implicit uncertainties than explicit un-
certainties during physician explanations of medical symptoms to 

patients.
The third posed question is: With respect to uncertainty communi-

cation in QSAR studies predicting neurotoxicity, what is the possible 
explanation for why implicit uncertainty is more frequently expressed 
than explicit uncertainty? To answer this question, as a starting point, it 
might be useful to consider possible reasons why modelers would pref-
erentially express uncertainties implicitly. Studies on uncertainty 
communication in scientific studies offer different explanations that may 
be relevant to this discussion. For example, according to Dhami and 
Mandel (2022), the preference to implicitly communicate uncertainties 
is based on modelers’ attempts to maintain the perceived credibility of 
their research, especially in the event that erroneous predictions are 
made. For instance, using the phrase “it may not occur” to express un-
certainty about unexpected prediction output may lead to less credi-
bility loss than “there is uncertainty about the predicted results”. van der 
Bles et al. (2020) and the National Academies of Sciences, Engineering 
and Medicine (2017) similarly interpreted the tendency for implicit 
communication of uncertainty, or reluctance to communicate uncer-
tainty, to stem from researchers’ efforts to avoid signalling incompe-
tence or inviting criticism regarding their research based upon the 
presence of uncertainties. In the context of our study, the reluctance to 
openly communicate uncertainties could also be taken more broadly to 
imply uncertainty communication bias among QSAR modelers of 
neurotoxicity (Steijaert et al., 2021); this is based on their prioritization 
to communicate implicit sources over explicit sources. Cronin et al. 
(2019b) noted that such bias can negatively affect QSAR models and 
their use. For example, implicit recognition of uncertainties in the pre-
diction output can give users (e.g., regulators) a false sense of accuracy 
in the output, or else make it difficult to identify model inputs that 
require additional data to reduce propagated uncertainties in the 
outputs.

The variation in the frequencies of implicit versus explicit un-
certainties also reflects a paradox between the preference to implicitly 
communicate uncertainty for reasons such as the perceived negative 
consequences of explicit communication of uncertainty (Dhami and 
Mandel, 2022), and the need to explicitly communicate uncertainty to 
enhance transparency about risk and uncertainty (EFSA et al., 2021; 

Fig. 3. Frequency of the uncertainty sources in the implicit and explicit uncertainty categories (arranged according to the magnitude of frequency of im-
plicit sources).

J. Achar et al.                                                                                                                                                                                                                                   Regulatory Toxicology and Pharmacology 154 (2024) 105716 

7 



Flari and Wilkinson, 2011). Our study aligns with this call to explicitly 
communicate uncertainty. We argue that implicit communication of 
uncertainties associated with the QSAR prediction of neurotoxicity un-
dermines transparent assessment of, for example, the validity of the 
models as well as their accuracy. An explicit expression of uncertainty is 
particularly important during fitness-for-purpose evaluation of QSAR 
models, as this can guide explicit characterization of relevant un-
certainties to improve defensibility of a predicted output and provide a 
critical basis for informed decision-making on the need for appropriate 
measures to reduce potential risk of neurotoxicants and the nature of the 
measures (Belfield et al., 2021; Cronin et al., 2019b; WHO/IPCS, 2018).

4.2. Level of concerns raised about the uncertainty sources

The data presented in Fig. 2 suggest that Mechanistic plausibility 
constitutes the area of most concern for uncertainty for QSAR modeling 
of neurotoxicity. To our knowledge, no study has specifically targeted 
analysis of uncertainty in QSAR prediction of neurotoxicity of chem-
icals; nevertheless, scholars have expressed concern about uncertainties 
in mechanistic characterization of substances, which corroborates our 
findings. For example, Crofton et al. (2022), in their review of the cur-
rent status of the application of in silico approaches towards develop-
mental neurotoxicity, suggest that the incomplete understanding of the 
underlying mechanisms behind the emergence of adverse outcomes 
seems to constitute uncertainties in understanding adverse outcomes 
pathways related to developmental neurotoxicity. Others have similarly 
suggested that the inability to identify or interpret the mechanisms of 
actions of neurotoxicants, to an extent, contributes to uncertainties in 
neurotoxicity assessment (Mundy et al., 2015; Worth et al., 2011a). This 
especially seems to be the case for developmental neurotoxicity, where 
exposure to neurotoxicants during brain development or the develop-
mental window further complicates the understanding of the underlying 
mechanisms of the adverse effects (Bal-Price et al., 2018; Fritsche et al., 
2018; Mundy et al., 2015).

Our study also suggests that other highly cited uncertainty sources 
(e.g., Descriptor concordance, Model relevance, and Model perfor-
mance) also constitute major areas of concern for uncertainty in relation 
to neurotoxicity prediction. For example, a number of QSARs have been 
developed to support neurotoxicity prediction based on the statistical 
correlation between blood-brain barrier penetration of compounds, and 
specific neuronal bioactivities (Worth et al., 2011a). Most of these 
models are based on descriptors such as in vivo Log BB (blood-brain 
barrier), Log PS (permeability-surface area), unbound brain-to-plasma 
partitioning coefficient, as well as physicochemical descriptors (e.g., 
lipophilicity, hydrogen bonding, and polar surface area) (Crofton et al., 
2022). However, the predictive performance (and consequently the 
relevance) of the individual or combined models is considered limited. 
Such limitations have been attributed to, for example, a lack of (rele-
vant) data to establish robust models and inadequacy of the descriptors 
to support the interpretation of observed adverse effects (Crofton et al., 
2022; Worth et al., 2011a,b). Elsewhere, Bal-Price et al. (2018) note that 
the fact that there are only a few QSAR studies on the effects of chemical 
compounds on the peripheral and central nervous systems, suggests 
uncertainties in the characterization of hazard and risk potential 
neurotoxicants.

Taken collectively, given the limited research on uncertainty in 
QSAR prediction of neurotoxicity of chemicals, our findings provide a 
tentative conclusion that the frequencies with which the four sources 
(Mechanistic plausibility, Descriptor concordance, Model relevance, and 
Model performance) are cited reflect the state of uncertainty of most 
concern in this field, and possibly a reflection of their importance in the 
OECD Principles for the Validation of QSARs (OECD, 2007) or their role 
in regulatory application of the models. It is, therefore, reasonable that 
when setting priorities aimed at addressing uncertainties within the 
field, especially under conditions of limited resources, these sources 
should be the primary focus.

A number of uncertainty sources shown in Fig. 2 had relatively low 
frequencies, with two of them not cited at all. Notably, some of these 
low-frequency sources are related to elements that are commonly 
considered in model training and test sets (i.e., data balance, accuracy, 
validity and chemical similarity). The importance of these uncertainty 
sources is well recognized, given their direct influence on the level of 
model predictive accuracy, reliability, and adequacy (Cronin et al., 
2019b; Madden et al., 2020; Pham et al., 2019; Worth et al., 2011b). An 
example is uncertainty related to Data validity, which emanates from 
the quality of the experimental studies from which QSAR modeling data 
are obtained (Achar et al., 2024b; Belfield et al., 2021; Cronin et al., 
2019a,b; EFSA, 2006; Karmaus et al., 2022; Madden et al., 2020; Nelms 
et al., 2020; Pham et al., 2019; WHO/IPCS, 2018; Worth et al., 2011b). 
The fact that this uncertainty source was not mentioned in the 20 
studies, even though it is recognized as a high concern uncertainty 
source (Worth et al., 2011b), shows that its analysis must be reviewed in 
light of relevant literature before drawing conclusions about how to 
prioritize research needs within the field of QSAR prediction of neuro-
toxicity; otherwise, further uncertainty might be introduced into model 
predictions interpretation. Furthermore, where applicable, we believe it 
might be most useful for modelers to refer to “ignorance”, or lack of 
knowledge. For example (in this case of Data validity and Metabolic 
domain), acknowledge that uncertainties related to these sources are not 
considered in a study due to modelers’ lack of knowledge around them 
or, if that is the case, acknowledge that these sources are not accounted 
for reasons such as to make model prediction less complex or easy to 
interpret.

4.3. Further consideration of the categorized uncertainty sources

In chemical risk assessment, regulatory authorities such as EFSA 
(2006) and WHO/IPCS (2018) recommend that each uncertainty be 
analyzed at one of the three tiers: qualitative, deterministic, or proba-
bilistic. Initially, uncertainties may be analyzed qualitatively to support 
initial judgements about the extent of the uncertainties or support 
subsequent steps on quantitative estimation of the uncertainties to the 
extent that is scientifically feasible (EFSA, 2006; WHO/IPCS, 2018). The 
emphasis here is that it might not be possible to treat all uncertainties 
quantitatively and that qualitative consideration of uncertainties can 
give insights into unquantifiable uncertainties, as well as their impact on 
the overall confidence associated with the assessment outcomes. The 
critical question in handling such an impact is whether the level of un-
certainty or level of confidence is acceptable. While we did not explore 
the level of uncertainty in the analyzed studies (based on, for example, 
the weight, type, and consistency of scientific evidence presented (EFSA, 
2010)), for the sake of our discussion here, we assume that the magni-
tude of the frequencies of the uncertainty sources (Fig. 2) reflects the 
possible level of uncertainty.

The question above cannot be answered without clearly defining the 
context in which a decision has to be made. The guidance provided by 
the OECD constitutes a conceptual basis through which one can judge 
the acceptability of the characterized uncertainty: the OECD principles 
for the validation of QSARs describe information that is considered 
useful for assessing the models and model predictions for regulatory 
purposes (OECD, 2007). The OECD’s (Q)SAR Assessment Framework 
(QAF) also provides guidance to assess QSAR results from multiple 
predictions to facilitate the characterization of levels of uncertainty 
associated with different models and model prediction elements based 
on semi-quantitative uncertainty scales (i.e., “low”, “medium”, or 
“high”), as well as support the determination of whether the charac-
terized levels of uncertainty are acceptable within a given context of 
regulatory decision-making (Gissi et al., 2024; OECD, 2023). However, 
considering that these guidance in themselves do not define criteria for 
characterizing uncertainty, it is challenging to define fixed acceptability 
criteria, as this depends on the intended regulatory use of a model or 
model predictions (Achar et al., 2024b; Belfield et al., 2021; Cronin 

J. Achar et al.                                                                                                                                                                                                                                   Regulatory Toxicology and Pharmacology 154 (2024) 105716 

8 



et al., 2019b). For example, high-level uncertainty might be tolerated in 
hazard screening to inform risk assessment but not in the mechanistic 
characterization of a model prediction, which requires high levels of 
certainty, reliability and model validation (Bal-Price et al., 2018; Bel-
field et al., 2021). The OECD Handbook (Annex 1) provides guidance 
regarding areas within neurotoxicity assessment that might tolerate 
different levels of uncertainty levels (OECD, 2018). The templates pro-
posed in the literature (Belfield et al., 2021; Cronin et al., 2019b) also 
provide useful guidance to developers and users of QSARs on possible 
ways of judging the acceptability in regulatory decision-making con-
texts. Defining criteria to judge the acceptability of the characterized 
uncertainty sources is, however, beyond the scope of our study – it thus 
remains for future studies to explore this topic by defining how the 
different levels of uncertainty can fit into a defined decision context.

4.4. Implication of the proposed method for uncertainty analysis in QSAR 
modeling

The uncertainty identification and categorization structure proposed 
in our study provides a method for identifying implicit and explicit 
uncertainties expressed in QSAR modeling studies. The method points to 
one major implication for modelers and decision-makers navigating 
uncertainties expressed in the studies. That is, analysis of implicitly or 
explicitly expressed uncertainties is a three-step process. When 
analyzing these uncertainties, assessors should: (1) first identify uncer-
tainty indicators and (2) then analyze the corresponding uncertainty 
communicated within the context of the indicators, whereafter (3) these 
uncertainties are categorized in a systematic manner. As discussed in our 
studies, identifying uncertainties through this process can help identify 
an important blind spot in the analysis of uncertainty within QSAR 
modeling – i.e., lack of transparent accounting of uncertainty. Further-
more, when it comes to epistemic uncertainty, Janzwood (2023) em-
phasizes the need to develop methods that enable analysis of as much 
uncertainties as possible in order to inform decision-makers not only 
about the presence of the uncertainties but also regarding their sources. 
We believe that the three-step process described in our study is rigorous 
to capture a wide range of uncertainty sources expressed in QSAR 
modeling studies.

Our study also highlights that quantitative analysis of uncertainty, 
which is widely considered important and recommended in the litera-
ture, can only provide a partial account of uncertainty sources within 
QSAR modeling. Based on the outcome of our study, it seems reasonable 
that QSAR modeling studies should accompany quantitative uncertainty 
analysis (e.g., probabilistic uncertainty analysis) with our proposed 
uncertainty analysis method in order to account for uncertainties that 
are not possible to quantify (EFSA, 2006; WHO/IPCS, 2018). To our 
knowledge, our study is the first to develop such a method; the findings 
from our study may thus prove useful (especially in regulatory contexts) 
in further assessment of the level of confidence in a study outcome.

While research is important in addressing areas of uncertainties, the 
implicit expression of uncertainties still creates difficulties in evaluating 
or drawing conclusions on the level of confidence in models and their 
predictions (Flari and Wilkinson, 2011; Levin et al., 2004; Zerva, 2019). 
A possible way to improve transparency about these uncertainties is to 
employ systematic ways (as described in our study) of identifying and 
categorizing the uncertainties and, where possible, quantifying the un-
certainties. Where uncertainties cannot be quantified, we recommend 
that, at minimum, QSAR modeler should acknowledge this uncertainty 
explicitly – this is in line with the working principles of EFSA, where 
transparency in communicating uncertainty is inextricably linked to the 
credibility of any reported risk assessment output (EFSA, 2006).

4.5. Potential limitations of the developed method and future work

While our study presents a promising and reproducible method, a 
few questions remain unanswered. First, we assume that implicit 

uncertainty is expressed through hedging words. This means we do not 
distinguish between expressions where the authors are genuinely un-
certain about something and when it is more a matter of convention. 
Vold (2006) notes that hedging words and expressions in English can 
indicate cautiousness, tentativeness, or politeness; thus, such expres-
sions do not necessarily signal uncertainty; instead, they can form part of 
the convention of expressing politeness or a humble attitude in academic 
writing. Providing this distinction was out of the scope of our study but 
poses a challenge for future studies intending to automate the identifi-
cation of uncertainty indicators – this challenge was also highlighted by 
Shanahan et al. (2006). To address this weakness, like EFSA (2006), we 
recommend harmonizing uncertainty expressions to minimize incon-
sistent perceptions of uncertainty in QSAR modeling studies. This can be 
facilitated by including glossaries of the qualitative expressions used and 
defining whether each expression implies uncertainty. Additionally, it is 
important for each study to clearly characterize the possible impact of 
uncertainties attributed to the expressed uncertainties and where such 
impact cannot be characterized, it is necessary to report that this is the 
case and that the conclusions drawn from an assessment are conditional 
on assumptions about the expressed uncertainties.

Although our study concludes that uncertainties related to Data 
validity and Metabolic domain sources were not expressed in the studies 
(see Figs. 2 and 3), it is also possible that the conceptual breadth of 
uncertainty indicators used in our study was not adequate to capture 
these uncertainties. A possible way to overcome this challenge is to 
complement the use of the indicators with other ways of analyzing un-
certainty, including a systematic analysis of the quality, type, consis-
tency, and amount of the evidence presented by the researchers in the 
analyzed studies about particular claims. EFSA et al. (2021) similarly 
recommended incorporating different methods for uncertainty analysis 
to improve the quality and robustness of the analysis.

Finally, from the definition of Model performance by Achar et al. 
(2024a) (see Table 2), we assumed that only epistemic factors influence 
model performance. In reality, however, it can also be the case that such 
an influence (in)directly arises from, for example, data variability. While 
it is important to make this distinction in order to accurately charac-
terize the context in which uncertainty in model performance is 
considered, this was not done by Achar et al. (2024a); thus presenting a 
potential limitation of the use of the study. It is also important to note 
that, as explained under Section 1, we used neurotoxicity because it is a 
complex endpoint that is presently difficult to predict (especially in 
mechanistic terms) in QSAR. This suggests that the data distributions in 
Figs. 2 and 3 might depend on the endpoint used. This potential varia-
tion was not explored in the current study but remains for future studies 
to investigate.

5. Conclusion

This study aimed to identify and categorize implicit and explicit 
uncertainties expressed in studies that use QSAR models to predict the 
neurotoxicity of chemical compounds. It was found that most of the 
identified indicators were implicitly expressed (310), compared to those 
expressed explicitly (102). This indicates that, within studies on QSAR 
prediction of neurotoxicity of chemicals, it is considerably more com-
mon to express uncertainties implicitly than explicitly. Four uncertainty 
sources were most commonly referred to: Mechanistic plausibility, 
Descriptor relevance, Model performance, and Model relevance. This 
suggests that researchers are concerned about uncertainties related to, 
for example, predicting the adverse health risks of compounds based on 
mechanistic knowledge, the applicability of models (e.g., in terms of 
their relevance), developing models that can adequately predict external 
data sets or in vivo data, and the descriptors used in model development 
and predictions. It was noted that some of the uncertainty sources that 
were rarely noted, or not noted at all (e.g. Data validity and Metabolic 
domain) are in fact flagged as a concern in the broader QSAR literature 
as areas that researchers commonly overlook. This implies that while 
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analysis of expressed uncertainty can help identify areas of un-
certainties, conclusions can only be drawn after the output has been 
analyzed in light of the broader QSAR literature. Overall, the findings 
from our study cannot only be used to guide modelers during modeling 
processes to prioritize uncertainty sources for uncertainty analysis based 
on the magnitude of their frequencies but also facilitate a structured 
dialogue between modelers and decision-makers about the need for 
more research to improve existing models or develop new ones that can 
reduce these uncertainties.
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