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 CURRENT
OPINION Greater mechanistic understanding of the

cutaneous pathogenesis of Stevens–Johnson
syndrome/toxic epidermal necrolysis can shed light
on novel therapeutic strategies: a
comprehensive review
www.co-allergy.com
a,b a,c d e
Emeka D. Ogiji , Nourah Aboheimed , Kehinde Ross , Calum Voller ,
Ryan Sinera, Rebecca L. Jensena, Carol E. Jollya and Daniel F. Carra
Purpose of review

Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) are severe cutaneous adverse drug
reactions (SCARs) characterized by widespread epithelial detachment and blistering, which affects the skin
and mucocutaneous membranes. To date, therapeutic interventions for SJS/TEN have focused on systematic
suppression of the inflammatory response using high-dose corticosteroids or intravenous immunoglobulin G
(IgG), for example. No targeted therapies for SJS/TEN currently exist.

Recent findings

Though our understanding of the pathogenesis of SJS/TEN has advanced from both an immunological and
dermatological perspective, this knowledge is yet to translate into the development of new targeted therapies.

Summary

Greater mechanistic insight into SJS/TEN would potentially unlock new opportunities for identifying or
repurposing targeted therapies to limit or even prevent epidermal injury and blistering.
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INTRODUCTION

Stevens–Johnson syndrome (SJS) and toxic epider-
mal necrolysis (TEN) are severe skin blistering
adverse drug reactions (ADRs) characterized by
widespread keratinocyte death and epidermal
detachment [1]. Reactions are immune-mediated,
type IV (delayed onset) reactions that are CD8þ

T-cell-driven. SJS/TEN has an estimated overall inci-
dence of 5.76 cases permillion person-years [2] and a
mortality rate of 5–25% [3]. They are most caused by
antiepileptics [4], antiuricemics [5] and antibiotics
[6] but have been observed secondary to over 250
licensed small molecules and biologics [7]. Whilst
patients with SJS/TEN are often managed in ITUs,
the skin detachment in TEN can be so severe (>30%
body surface area) that it requires treatment in
specialist burns units [8]. The mean hospital stay
for an SJS patient is 7.0days with 1.7days in an
intensive treatment unit (ITU), rising to 12.6 days
(4.9 in ITU) for TEN [9].
A number of guidelines for the clinical manage-
ment of SJS/TEN have been devised [10–12]. There
remains, however, little consensus on the most
Volume 24 � Number 4 � August 2024



KEY POINTS

� Greater understanding of SJS/TEN pathogenesis will
unlock novel therapeutic options and predisposing
risk factors.

� Advanced skin culture models will facilitate
understanding and provide screening tools for
assessing SJS/TEN therapeutics.

� Significant inter-individual variability exists in SJS/TEN.
Serum/blister-fluid profiling offers a route to
personalized medicine.

Putative novel therapies for SJS/TEN Ogiji et al.
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efficacious treatment regimen. Evidence advocates
the use of corticosteroids [13], cyclosporine [14],
plasmapheresis [15

&

], immunoglobulins [15
&

]. But
these drugs have diverse and nonspecific biological
effects on the systemic inflammatory response in SJS/
TEN, relying on generalized immune suppression,
with evidence suggesting little difference in clinical
outcomes between the different therapies [16].

The use of TNF-a inhibitors, such as etanercept,
has emerged as an effective treatment of SJS/TEN,
with reports of rapid skin re-epithelialization after
use [17]. A recent Cochrane review highlights anti-
TNF therapies as having the most compelling sup-
portive evidence for efficacy in SJS/TEN [18

&&

]. Cur-
rently, however, there is limited clinical trial
evidence to guide practice and, to date, little is
understood about the downstream effect of TNF-a
in SJS/TEN and how it is modulated by anti-TNFs.
Lack of mechanistic understanding means patients
are receiving additional immunosuppression whilst
others remain on oscillating doses of corticosteroid.
This is not an optimal clinical position, but in the
absence of further mechanistic understanding pro-
viding an evidence base for therapeutic advance-
ment, this will likely remain the status quo. One
thing is clear: there are currently no therapies tar-
geting the pathogenic mechanisms of epidermal
detachment in SJS/TEN in use.

The ultimate ambition should be the develop-
ment or repurposing of therapeutics, which can be
administered at the earliest indication of cutaneous
SJS/TENsymptomstoprevent/limit epidermaldetach-
ment. This could also be used alongside systemically
administered immunemodulatorswherever required,
though the aim should be targeted therapy over non-
targeted systemic treatments.

This review discusses howgreater understanding
of mechanistic biomarkers and pathogenesis could
inform the discovery of novel targeted therapeutic
interventions and repurposing of existing agents for
the treatment of SJS/TEN, and highlights some key
examples.
1528-4050 Copyright © 2024 The Author(s). Published by Wolters Kluwe
MECHANISTIC INSIGHT INTO STEVENS–
JOHNSON SYNDROME/TOXIC EPIDERMAL
NECROLYSIS PATHOGENESIS
Significant advances have been made in our under-
standing of the immunological mechanisms behind
SJS/TEN, but gaps in our knowledge, particularly
around the pathogenesis of keratinocyte death and
epidermal detachment still exist. Greater insight into
these aspects could yield significant advances in tar-
geted SJS/TEN therapies where none currently exist.

The proposed downstream effect of many mole-
cules implicated in SJS/TEN is the induction of ker-
atinocyte death. Indeed, apoptotic cell death has
been proposed to have a role in the pathogenesis
of SJS/TEN [19,20],withboth the extrinsic and intrin-
sic pathways leading to caspase-3 activation and
keratinocyte death. The extrinsic pathway utilizes
TNF-a, Fas/FasL and TNF-related apoptosis-inducing
ligands, to bind cell surface death receptors and
activate caspase-8, which in turn activates caspase-
3 associated cell death. In the intrinsic pathway,
CD8þT-cell induced cellular stress leads to the release
of BAX/BAK, stimulating mitochondrial release of
cytochrome c, causing the inactive procaspase-9
cleavage and caspase-3 activation. Caspase-3 can also
be activated by granulysin, perforin, granzyme B and
Fas-ligand released by CD8þ T cells, Natural Killer
(NK) cells and macrophages [19–21].

Necroptotic cell death also contributes to skin
toxicity in SJS/TEN. During the early phases of the
disease, skin-infiltrating CD8þ T cells trigger the
production of lipocalin-2, leading to the formation
of neutrophil extracellular traps (NETs) via NETosis
[22]. During this process, LL-37 is released from
neutrophils causing keratinocytes to express formyl
peptide receptor 1 (FPR1). Released FPR1 makes the
keratinocytes vulnerable to necroptosis and creates
a feedback loop leading to further production of LL-
37 and an amplification of necroptosis [22]. The
potential to repurpose compounds to modulate this
mechanism is discussed in detail as follows. Inter-
action between annexin A1 and FRP1 [23] is thought
to be a trigger for necroptosis. In SJS/TEN causal drug
exposure causes monocytes to secrete annexin A1,
which binds FRP1 on the keratinocyte cell surface
leading to further FRP1 expression [23] and down-
stream necroptosis. Additionally, it has also been
suggested that necroptosis can occur when annexin
A1 is up-regulated [23]. Thus, inhibitory molecules
targeting annexin A1, such as AC-2-26, may repre-
sent a tool to modulate necroptosis in SJS/TEN [24].

A number of immunomodulatory proteins have
been observed as elevated in SJS/TEN patient serum
and/or blister fluid during the acute phase of the
reaction, suggestingaputative role in thepathogenesis
of skin manifestations of SJS/TEN (Table 1). These
r Health, Inc. www.co-allergy.com 219
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includepro-inflammatory cytokines [e.g. TNF-a, inter-
leukin 1 (IL-1), and interferon-g (INF-g)], and soluble
cytolytic proteins (perforin [25,26], granzyme B [26],
and granulysin [27,28]). Additionally, chemokine
receptors/ligands [CC motif chemokine ligand 27
(CCL27), cutaneous T-cell-attracting chemokine
(CTACK), CC motif chemokine receptor 6 (CCR6)
and CCR10] have been shown to be overexpressed
in SJS/TEN, suggesting they may also play a part in
the pathogenesis [29]. Although research, in most
cases, is limited to their roles as biomarkers of SJS/
TEN, many have functions, which are likely to con-
tribute to cutaneous pathogenesis (Table 1). Modula-
tion of these proteins using existing approved
therapeutics may offer novel repurposing opportuni-
ties in SJS/TEN. Indeed, limited clinical assessment of
TNF-a inhibitors etanercept and infliximab, and IL-5
inhibitor benralizumab in SJS/TEN, has already been
undertaken suggesting theymay be viable therapeutic
options [30

&

,31,32
&

].
Increasing evidence is emerging of the pleio-

tropic effects of interleukin 15 (IL-15) in the patho-
genesis of SJS/TEN. Serum IL-15 levels have been
demonstrated to correlate closely with severity and
mortality, and to enhance thecytotoxicityofNKcells
in TEN [33]. Furthermore, studies of SJS/TEN skin
have suggested significantup-regulationof the recep-
tor, IL-15Ra, through which IL-15 elicits its effects
[34]. For this reason, there is currentlymuch focus on
novel therapies targeting IL-15-mediated pathways,
in particular Janus kinase/signal transducers and
activators of transcription (JAK/JAK-STAT) [35]. A
number of JAK inhibitors are already licensed (rux-
olitinib), or in development (tofacitinib) for use in
other inflammatory skin conditions [36] including
psoriasis [37] and atopic dermatitis [38]. As such, JAK
inhibitors offer promise in the treatment of SJS/TEN.
It is not currently clear at this moment in time
whether pan-JAK inhibitors, such as tofacitinib
would be more efficacious than specific JAK inhib-
itors in SJS/TEN but work is ongoing to assess this.

Using appropriate in-vitro, ex-vivo and in-vivo
models, thesemarkers can be evaluated as targets for
the development of novel therapeutic agents for SJS/
TEN.
MECHANISTIC BIOMARKERS OF
STEVENS–JOHNSON SYNDROME/TOXIC
EPIDERMAL NECROLYSIS AS NOVEL
THERAPEUTIC TARGETS

A number of circulatory and tissue-specific bio-
markers of cell/tissue injury in SJS/TEN have been
reported, with many produced as a consequence of
the pathogenesis. However, a number is also thought
to contribute to or exacerbate the damage process.
1528-4050 Copyright © 2024 The Author(s). Published by Wolters Kluwe
As an example, high-mobility group box 1
(HMGB1), a member of the damage-associated
molecular pattern (DAMP) family, is actively
released in its acetylated form by stimulated macro-
phages [79,80] and passively released, in its non-
acetylated form, by dying cells [81,82]. As such,
HMGB1 captures two key events in SJS/TEN patho-
genesis during the abnormal immune response and
the subsequent cell death. Indeed, levels of HMGB1
have been shown to increase in SJS/TEN patient sera
and/or blister fluid [83–85] and decrease in skin
[78

&

,86]. Extracellular HMGB1 can be a potent che-
moattractant for neutrophils, acting as a strong
DAMP signal to stimulate cytokine production,
and potentially serving as an alarm signal within
the T-cell activation cascade [82,87].

HMGB1’s immunological effect depends on
posttranslational redox state of three cysteines at
positions 23, 45 and 106 [82,88], which regulate its
receptor binding. A thiol group on HMGB1 cysteine
106 (disulphide redox form), is essential for both
TLR4/MD2 receptor complex binding and TNF-a
production [87]. While the fully reduced HMGB1
allows the formation of a heterocomplex with che-
mokine CXCL12 which then binds the CXCR4
receptor [89].

The mechanistic role of HMGB1 in SJS/TEN
remains unclear, although studies in other inflam-
matory and immune-mediated conditions (sepsis
[90], rheumatoid arthritis [91] and psoriasis vulgaris
[92]) hint at a possible pathological role. HMGB1
can alter the immune environment and modulate
Treg/Th17 ratio by enhancing Th17 activation to
increase IL-17 production [93,94]. In addition,
HMGB1 redox forms have been found to down-
regulate immune checkpoints (notably CTLA-4)
on Tregs dampening immunosuppressor mecha-
nisms [95]. The ability to alter the immune response
via cytokine production, immune cell recruitment
suggests HMGB1 inhibition, with demonstrably
well tolerated compounds such glycyrrhizin [96],
could be a valid therapeutic target for the preven-
tion of further inflammation and tissue damage in
SJS/TEN.
DRUG REPURPOSING

Recent developments in our understanding of SJS/
TEN pathogenesis have highlighted some interest-
ing opportunities for potential drug repurposing:
Matrix metalloproteinase inhibitors

Matrix metalloproteinase 9 (MMP-9), is overex-
pressed in the skin of SJS/TEN patients, suggesting
a role in the observed epidermal detachment
r Health, Inc. www.co-allergy.com 221
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[97,98,99
&

]. A recent study suggests that elevated
MMP-9 expression in the epidermis, with the subse-
quent increasedcollagenase activity areproposed as a
pathogenic mechanism, underlying the epidermal
detachment seen in SJS/TEN [99

&

]. The study also
suggests that these effects are TNF-a-dependent
andcanbemitigatedby theTNF inhibitor etanercept.
Other MMP-9 antagonists, for example, abemetapir
[100], andecaliximab [101] and Boswellia frereana
[102] extract, could also be potentially repurposed
for SJS/TEN management. The theoretical patho-
genic pathway of TNF-a-induced MMP9-mediated
epidermal detachment and examples of how it could
be therapeutically modulated are shown in Fig. 1.

In addition to small molecule drugs for MMP9
modulation, alternative modalities such as MMP-9-
regulatingmicroRNAs (miRNAs) also offer intriguing
possibilities. Mimics of miR-229 and miR-335 have
been shown to enhance wound recovery in mouse
models of diabetic healing bydown-regulatingMMP-
9 expression [103]. Application of nanoparticles
delivering MMP-9 inhibitory peptidomimetics to
affected areas [104],may also offer effective potential
anti-MMP-9 therapies.
LL-37 and glycosamnioglycans

A role for NETosis in SJS/TEN is evidenced by early
NET accumulation in lesional and perilesional skin,
and by the overexpression of LL-37, an antimicro-
bial peptide of the cathelicidin family, in serum and
FIGURE 1. Putative therapeutic interventions of the proposed
epidermal detachment in Stevens–Johnson syndrome/toxic epider
activity, MMP-9 transcription/expression and activity are highligh

222 www.co-allergy.com
blister fluid, which is not seen in the other SCARs
and blistering disorders [22].

The release of LL-37 both augments NETosis and
induces the necroptotic FPR1-annexin A1 axis in
keratinocytes, eliciting further release of LL-37-ini-
tiating necroptosis in adjacent cells, exacerbating
the injury. Aberrant NET formation has been impli-
cated in the pathogenesis of a number of autoim-
mune conditions (rheumatoid arthritis [105] and
lupus [106]), through the activation of inflamma-
somes by LL-37 and the generation of autoantigens
such as those against the NET-released dsDNA [107].

Indeed, Kinoshita et al. show that, in neutro-
phils derived from healthy volunteers, only SJS/TEN
sera and blister fluid, and not that of heathy con-
trols, triggers NETosis with the ensuing LL-37 release
[43]. As such, LL-37-targeting therapies may hold
promise in their ability to terminate the abnormal
positive feedback loops.

Glycosaminoglycans (GAGs), including the
endogenous skin components dermatan and hya-
luronic acid, are anionic polysaccharides with often
promiscuous activity due to variable sulphation
[108]. The cationic nature of LL-37 renders its anti-
bacterial activity susceptible to inhibition by the
anionic GAGs [109], raising the possibility that their
presence, endogenously or exogenously, may mod-
erate the pathogenesis of SJS/TEN. Indeed, lower
levels of endogenous cutaneous GAGs may repre-
sent a potential risk factor for developing the more
severe SJS/TEN, rather than milder self-resolving
molecular mechanisms of TNF-a-induced, MMP9-mediated,
mal necrolysis. Small molecules which modulate TNF-a
ted in red. Created with BioRender.com.
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maculopapular exanthema during cutaneous drug
hypersensitivity reactions. However, further inves-
tigation of inter-individual variability in endoge-
nous cutaneous GAGs and their correlation with
ADR risk is required.
DEVELOPMENT OF IN-VITRO/EX-VIVO
MODELS OF STEVENS–JOHNSON
SYNDROME/TOXIC EPIDERMAL
NECROLYSIS

Our ability to identify and evaluate new SJS/TEN
therapeutic options is dependent on having appro-
priate experimental tools at our disposal. There is
currently a lack of physiologically relevant in-vitro,
ex-vivo and in-vivo skin models applied to under-
standing of the molecular pathogenesis of SJS/TEN.
Such models could help, not only to characterize
the molecular and cellular basis of pathogenesis but
also be utilized for diagnostic and drug screening
applications.

Traditional 2D skin models typically incorpo-
rate primary human or immortalized keratinocytes
(such asHaCaTs), either in isolation, or co-cultured
with other relevant cell types, (e.g. monocytes
[110], or fibroblasts [111]). Such 2D models have
been previously utilized to elucidate keratinocyte
toxicity tomolecules implicated in SJS/TEN patho-
genesis, such as granulysin [26], TNF-a [78

&

]
and LL-37 [22]. However, in the context of SJS/
TEN, such models are limited in their capability to
recapitulate the complexities of the signalling
between the many different cell types of the skin
and the pathogenesis of epidermal detachment
[112].

Bioengineered human skin equivalents (HSEs)
are 3D skin models, which are composed of primary
human cells (keratinocytes, fibroblasts and/or stem
cells) and components of the extracellular matrix
(ECM) [113]. Two different HSEs are used for
research purposes: epidermal-only equivalents or
reconstructed human epidermis (RHE) and full
thickness skin equivalents with both epidermal
and dermal compartments.

HSEs have been used for a wide range of
research, including psoriasis studies [113,114], and
could feasibly be applied to SJS/TEN. Like SJS/TEN,
the pathophysiology of psoriasis involves an inter-
action between keratinocytes and immune cells,
which can be recapitulated in vitro using 3D skin
models with T cells incorporated between the der-
mal and epidermal layers, mimicking the skin phe-
notype and cytokine/transcription factor profiles
[115].

The advantage ofHSEs over 2Dmodels the ability
to recapitulate epidermal/dermal detachment at the
1528-4050 Copyright © 2024 The Author(s). Published by Wolters Kluwe
basement membrane [116], a key feature of SJS/TEN.
In addition, HSEs offer batch consistency and
absenceof significant variability inmorphology. This
is optimal for drug screening applications, for exam-
ple. Indeed,HSEshavebeenused to identify therapies
for psoriasis, supporting its utility for use in drug
development [117]. These models can also be scaled
up for compound screening using Alvetex scaffold
12-well inserts as exemplified inamelanomaresearch
[118].

Despite the significant advances in skin tissue
equivalents in recent years, the most appropriate
model of skin remains fresh biopsies. However,
obtaining fresh skin from SJS/TEN patients in sig-
nificant numbers, especially at the time of reaction,
is logistically challenging given the rarity of such
reactions. Encouragingly, recent studies have shown
that an SJS/TEN phenotype can be induced in
healthy skin biopsies using sera taken from SJS/
TEN individuals taken at time of reaction
[78

&

,99
&

]. This has the potential to allow mechanis-
tic investigation of SJS/TEN pathogenesis in a
model, which is significantly more accessible to
researchers. In future, it may be possible to produce
skin explant/immune cell co-culture models, which
are an accurate recapitulation of the clinical pheno-
type and could be utilized as a prognostic/causality
tool of for drug screening.
IN-VIVO MODELS FOR PRECLINICAL
EVALUATION

Animal models are a crucial step in evaluating
efficacy and translation of novel therapeutics in
SJS/TEN. Previously, SJS/TEN patient peripheral
blood mononuclear cells (PBMCs) have been intra-
venously injected into mice, which are then pulsed
with causal agents [119]. This model, however, has
limited utility for understanding skin injury and
perturbation in SJS/TEN as symptoms were limited
to ocular toxicity. However, an epidermal-specific
inhibitor of apoptosis protein (IAP)-deficient
mousemodel, which exhibits a TEN-like phenotype
[120] has been reported, which has huge potential
as a tool for the evaluation of SJS/TEN therapies
and for deeper understanding of pathogenic
mechanisms, particularly those mediated by TNF-
a. In-vitro studies in keratinocyte cell lines have
suggested that chemical inhibition of IAPs (using
the SMAC inhibitor BV-6) [78

&

] sensitizes them to
TNF-a-induced toxicity. Variability in cutaneous
IAP expression and thus TNF-a sensitivity could
explain variability in severity if drug hypersensitiv-
ity phenotype. Furthermore, modulation of IAP
expression could represent an additional putative
therapeutic target.
r Health, Inc. www.co-allergy.com 223
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PERSONALIZED TREATMENT REGIMENS
FOR STEVENS–JOHNSON SYNDROME/
TOXIC EPIDERMAL NECROLYSIS
Whilst many different novel therapeutic concepts
could be considered for SJS/TEN,moving forward we
need to consider the application of personalized
treatment regimens. Owing to the heterogeneity
SJS/TEN of patients, the current standard of care,
(e.g. corticosteroids) are only effective in a subset of
FIGURE 2. Hypothetical process for a personalized therape
syndrome/toxic epidermal necrolysis. Patient serum and/or bliste
would provide a detailed assessment of a panel of key immunopr
implicated in SJS/TEN pathogenesis. The panel would then inform
consideration the heterogeneity of the immune response between

224 www.co-allergy.com
individuals. It is likely that keratinocyte death may
be facilitated by all or some of the immunopatho-
logical mediators described above to differing
degrees in different patients. This may account for
the variation in the efficacy for some immunomo-
dulatory treatments.

We now have a significant body of evidence for
the role of cytokines, chemokines and soluble cyto-
toxic proteins in SJS/TEN (Table 1). It is entirely
utic approach for the treatment of acute Stevens–Johnson
r fluid would be sampled and a quick turnaround assay
oteins (cytokines, chemokines and soluble cytotoxic proteins)
a personalized drug regimen which takes into

SJS/TEN patients. Created with BioRender.com.
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plausible that we could utilize data on the levels/
presence of these markers in patient sera and/or
blister fluid, to identify the key protagonists in
any given individual and deliver a truly personalized
regimen of therapeutics (Fig. 2). Given the acute
onset of SJS/TEN, quantification/detection of cyto-
kines and other factors prior to treatment would
require a fast and robust assay, for example, a lateral
flow test. Indeed, studies have already described
such a test for interleukin 6 [121], which could be
adapted to other serum and blister fluid cytokines.

The feasibility of such an approach to person-
alizing SJS/TEN treatment is clearly dependent on
the future development of technologies to form a
rapid panel-based test. However, its application
could have significant benefits in improving patient
outcomes and reducing the adverse effects and var-
iable efficacy of the current systemic therapeutic
options.
TRANSLATION FROM BENCH TO BEDSIDE:
THE CHALLENGES

SJS/TEN is rare and this creates challenges for the
generation of evidence-based treatment, because of
a lack of numbers for both laboratory research and
clinical trials [122]. Accessing patients in a timely
manner particularly for acute reaction sampling,
can be challenging because of logistical limitations.
There is a need for connected clinical and research
resources, including centralized treatment models
and patient registers, which could greatly enhance
research and treatment outcomes in SJS/TEN.

The translation of experimental findings for
novel SJS/TEN therapeutics into clinical application
represents a significant problem. Repurposing of
existing drugs used to treat other inflammatory
conditions looks to be themost realistic way forward
in the short-term, where the requirement for pre-
clinical evaluation is largely negated. Indeed, the
case of TNF-a inhibitor etanercept clinical imple-
mentation demonstrates the effectiveness of this
methodology [31]. There is, however, a demonstra-
ble need to establish the effectiveness of therapeutic
strategies which target the nonimmune-mediated
mechanisms of pathogenesis in SJS/TEN, which will
require significant ambition to achieve.
CONCLUSION

Understanding of the immunological component of
SJS/TEN pathogenesis has advanced at pace in recent
years and provided us with mechanistic biomarkers
which may yet yield targeted therapies. However, a
deeper understanding of the pathogenesis of kera-
tinocyte injury and epidermal detachment has the
1528-4050 Copyright © 2024 The Author(s). Published by Wolters Kluwe
potential to aid the discovery of further novel or
repurposed therapies for SJS/TEN. Furthermore,
given the complexity of SJS/TEN and patient heter-
ogeneity, a personalized approach to targeted thera-
pies should also be considered in order to optimize
short-term and long-term clinical outcomes. In
doing so, we will be able to better equip physicians
with both the information and tools to treat these
often-life-threatening reactions.
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