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A B S T R A C T

This study aims to develop a novel and fully data-driven approach to analyse the maritime accidents risk 
influential factors (RIFs) by integrating Association Rule Mining (ARM) and Complex Network (CN) modelling. 
Firstly, a comprehensive dataset comprising 21,206 maritime accident records from Marine Accident Investi-
gation Branch and Transportation Safety Board is collected and processed to serve as the foundational data 
source supporting the development of the new approach. Secondly, a novel Combined Association Rule Mining 
method is proposed to extract the interconnections among RIFs, with the mined results mapped into a CN 
framework. Finally, two importance ranking algorithms, namely the PageRank-Information-Entropy algorithm 
and edge betweenness centrality, are applied to identify the key RIFs and their information transmission paths. 
By simulating deliberate and random attacks within networks, a robustness analysis is conducted to further 
explore the evolution of RIFs. The findings reveal that ship-related factors demonstrate greater centrality and 
connectivity, exerting a more substantial influence on information propagation within the network structure. The 
robustness analysis illustrates that strategic node and edge removals are effective in preventing risk propagation. 
It therefore makes contributions to the development of a theoretical basis for stakeholders to develop cost- 
effective preventive measures against specific RIFs, ultimately enhancing maritime safety.

1. Introduction

In recent years, the rising volumes of maritime trade have exposed 
this sector to a heightened risk of maritime accidents. According to data 
from the European Maritime Safety Agency (EMSA), the period spanning 
2014 to 2021 witnessed a total of 21,173 reported maritime casualties 
and accidents, resulting in substantial human and property losses [1].

Despite extensive efforts made by various stakeholders in this 
domain, the state of maritime safety remains critical due to many un-
certainties. In essence, maritime accidents arise from a complex inter-
play of multiple Risk Influential Factors (RIFs) including, but not limited 
to ship conditions [2], weather conditions [3], geographical factors [4], 
navigational elements [5], and more recently, emerging cyber risks [6]. 
These factors mutually influence each other, leading to a sequence of 
events that ultimately result in an accident. Although maritime safety 
authorities and global shipping companies have dedicated considerable 

resources to enhance safety standards and service quality (e.g., 
increasing automation on board ships and coordinating with relevant 
organisations to strengthen regulations and emergency responses), ac-
cidents still occur [7]. The occurrence of an accident necessitates a 
thorough investigation, which involves collecting facts and data, ana-
lysing gathered information, determining root causes, prioritizing 
contributing factors, and formulating conclusions and recommendations 
[8]. Key to the success of any such accident investigation is the identi-
fication of the key RIFs, given their high degree of interdependence and 
dynamic nature. Therefore, the primary aim of this study is to develop a 
novel data-driven approach to enable effective assessment of key RIFs of 
maritime accidents, addressing today’s fast-changing shipping opera-
tions of high uncertainty. This study analyses maritime accident RIFs 
from a global systematic perspective with a focus on the interactive 
network features of the RIFs and hence, differs from previous analyses in 
the literature that tends to focus on local independent considerations. 
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Furthermore, the novelty of this study lies in the systematic analysis of 
comprehensive accident data that supports the development of new 
approaches.

This study’s structure is organised as follows: Section 2 critically 
assesses the literature on both maritime accident RIFs studies and data- 
driven approaches to accident analysis. In Section 3, research data is 
methodically presented, and a hybrid approach using Association Rule 
Mining (ARM) and Complex Network (CN) modelling is also proposed. 
Based on the topological and robustness analysis from the analytical 
framework, the results are demonstrated in Section 4. Section 5 dis-
cusses the results and presents implications. Finally, the conclusions are 
presented in Section 6.

2. Literature review

2.1. Research on RIFs in maritime safety

The evolution of maritime safety research has refined the identifi-
cation of RIFs contributing to maritime accidents. Table 1 outlines the 
main findings from an in-depth literature review, based upon repre-
sentative research papers corresponding to different RIFs and their 
respective findings.

The critical review results reveal that the primary data sources in the 
above papers are the accident investigation statistics from worldwide 
maritime authorities, which typically contain detailed explicit infor-
mation such as the condition of the vessels involved, environmental 
factors at the time of the accidents, and the consequences. Based on 
these contents, researchers can summarise these accidents and extract 
relevant RIFs.

From a systematic review, current research on this topic can be 
further categorised into studies with and without human factors based 
on the RIFs involved. On the one hand, human factors are recognised as 
critical contributors to maritime accidents. However, analysing the in-
fluence of human factors in the evolution of an accident requires an in- 
depth survey during the accident investigation phase, which is some-
times challenging due to their complication and qualitative features. 
Often, human-related data mainly exist in textual form in the accident 
investigation reports and is challenging to conduct any in-depth quan-
titative analysis due to lacking an uniform statistical standard. Conse-
quently, some studies attempted to manually extract human information 
from accident investigation reports to address the incompleteness of 
such data [10,21,22]. Although the manual extraction manner based on 

expert experience and surveys can reflect real-world scenarios to a 
certain extent, it inherently introduces subjectivity and further uncer-
tainty into the analysis.

On the other hand, studies on objective factors serves as an effective 
approach to exploring the representative and independent RIFs in 
maritime accidents, based on historical data [15,23,24]. The rationale 
behind this approach is that known statistics can provide valid and 
objective validation and support for the introduction of new methods. A 
data-driven approach relies on actual data than subjective judgement, 
reducing personal or cultural biases in the analysis process. At the same 
time, it improves the reproducibility and credibility of the research. 
Despite these advancements, it still has a discernible limitation in the 
absence of a global analysis of the interactive and dynamic effects 
resulting from multiple RIFs. Therefore, these highlight the need to 
explore maritime accident RIFs from the dynamic and objective 
perspectives.

2.2. Research on modelling methods of maritime accident analysis

A diverse range of methods has been applied in the literatures of 
modelling accident analysis, including both traditional and emerging 
methods. These are reviewed below in turn.

2.2.1. Traditional methods
Traditional maritime accident analysis methods typically explore the 

causes of accidents through qualitative or subjective evaluations. Such 
methods include Human Factors Analysis and Classification System 
(HFACS) [25], Analytic Hierarchy Process (AHP) [26], Technique for 
Order of Preference by Similarity to Ideal Solution (TOPSIS) [27] and 
fuzzy theory [28]. These methods have proven effective in incorporating 
expert knowledge, leading to results that align with real-world sce-
narios. The underlying mechanisms and processes of these methods are 
generally identifiable. For instance, an innovative study demonstrated 
the adaptability of the modified HFACS for Passenger Vessel collisions 
(HFACS-PV) analysis [29]. Wu et al. [30] proposed a fuzzy-TOPSIS 
framework to assess safety control measures under complex naviga-
tion conditions. Oraith et al. [31] analysed the human factors affecting 
pilot operations using AHP, and the hierarchical structure of the study 
was established mainly through the utilization of questionnaires and 
expert knowledge.

Despite the valuable contributions of such traditional methods, they 
suffer from a notable limitation due to their reliance on expert judgment 
for determining structural elements or weighting factors. It is important 
to acknowledge that variations in preferences among different experts 
will lead to disparate outcomes. This inherent drawback can impact the 
accuracy of assessments, leading to the need for novel solutions.

2.2.2. Emerging methods
To improve the objectivity, accuracy, and capability to predict po-

tential risks, data-driven approaches have emerged, attracting 
increasing attention [32]. Contemporary maritime safety research has 
applied different approaches, such as regression analysis (e.g., linear 
regression and logic regression), cluster analysis (e.g., K-means), 
tree-structured algorithms (e.g., accident trees and decision trees), 
network-structured algorithms (e.g., Bayesian networks and CN) and 
mining algorithms (e.g., text mining and ARM) to comprehensively 
assess risks during ship navigation [28]. To facilitate comparative 
analysis, Table 2 summarises different data-driven methods, high-
lighting their strengths and weaknesses, especially in light of their 
performance of the target methods.

Research on maritime accidents can benefit to some extent from the 
analysis of accidents in other transport modes, including railways [43] 
and aviation [44]. These studies have adeptly incorporated CN to the 
research on transport safety by abstracting real accident causation and 
relationships into nodes and edges within networks. This abstraction 
allows for the application of CN theory to enhance the explanatory 

Table 1 
Relevant papers related to different RIFs.

RIFs Refs. Findings

Ship type [3,9,10] Due to a lack of resistance and resilience to 
hazardous situations, fishing vessels are generally 
recognised to be vulnerable. Furthermore, ships 
carrying special and hazardous goods are more 
susceptible to fires, explosions and cargo leakages 
during accidents than other types, hence being 
easier to cause serious environmental pollution and 
loss of human lives.

Ship parameter [2,9,11,
12]

Parameters such as ship size, engine power and 
gross tonnage show a correlation with maritime 
accidents.

Accident type [13–15] In general, sinking is considered as the type of 
accident that results in the most casualties. While 
issues like cargo or fuel leakage due to collisions, 
explosions or mechanical damages are equally 
critical.

Weather and 
climate

[16–18] Severe wind and wave conditions increase the 
probability of maritime accidents and exacerbate 
their severity.

Channel 
condition

[4,19,20] Channel conditions, such as navigational density, 
channel width and depth, increase the risk of 
collisions and contact between ships, especially in 
port areas and inland waterways.
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power of risk analysis.
In the maritime safety research domain, although Sui et al. [41] and 

Sui et al. [45] have explored the topological characteristics of maritime 
traffic situational awareness by employing CN, the process of estab-
lishing CN remains unclear in terms of data quality and quantity, 
parameter setting and model validation. These drawbacks are inherent 
in the CN method. To address these issues, Lan et al. [42] utilised the 
rule mining capability of ARM to improve the evidence of the CN 
structure. ARM, a common data mining technique in unsupervised 
learning, exhibits capacities to uncover relationships between data to 
extract valuable insights. Hence ARM can assist in identifying contrib-
uting factors and exploring links within accident investigation, miti-
gating certain limitations of CN as a foundational modelling approach 
[37]. However, the main objective of Lan et al. [42] was to predict the 
severity of accidents through a subsequent random forest approach. 
Consequently, the topological analysis of that study was primarily dis-
cussed from the perspective of node degree, making it leaving research 
rooms of fully capturing a comprehensive global topology pattern and 
the evolution of robustness.

2.3. Research contributions

Both the in-depth reviews pertaining to the RIFs of maritime acci-
dents and the modelling methods reveal a pressing need for a new 
analytical framework to address the issues such as the lack of a data- 
driven approach to objectively conduct the topological and robustness 
analysis of maritime accident RIFs. Therefore, this paper aspires to 
enrich the field of maritime accident investigation by harnessing 
cutting-edge methodologies, across the following distinct dimensions: 

1. An up-to-date and comprehensive database is established. Maritime 
accident analysis suffers from incomplete and non-comprehensive 
databases, resulting in the existing results often biased [10,42]. A 
new maritime accident database containing 21,206 accidents from 
the Marine Accident Investigation Branch (MAIB) in UK and the 

Transportation Safety Board (TSB) of Canada spanning the period 
between 2010 and 2023 is established as the data source. A thorough 
data quality assessment is conducted to evaluate the reliability of the 
database.

2. Both the ARM’s ability to uncover implicit relationships and the CN’s 
prowess in visualising and analysing intricate relationships are 
explored simultaneously to enable their individual advantages 
incorporated in this new maritime accident research framework. A 
novel Combined Association Rule Mining (CARM) method is devel-
oped to identify associations at the factor level. Alongside state-level 
associations, this study addresses the prevailing uncertainties sur-
rounding the causal factors and evolution mechanisms of maritime 
accidents from both macro- and micro- perspectives.

3. A comprehensive analytical framework encompassing model con-
struction, topological analysis and robustness analysis is proposed. 
Six parameters are utilized to measure the topology within this 
framework. The innovative PageRank-Information-Entropy (PIE) 
algorithm and edge centrality metric are used to rank key nodes and 
edges, providing a theoretical basis of robustness analysis.

4. To facilitate a dynamic accident evolution assessment, the reach-
ability matrix (RM) is developed as a novel criterion for evaluating 
robustness. The Monte Carlo simulation algorithm and the impor-
tance ranking results are applied to implement both random and 
deliberate attacks on nodes and edges for the first time. A comparison 
of the decrease in robustness using the PIE method versus existing 
methods demonstrates the superiority of the proposed framework in 
this study.

3. Methodology

Towards achieving a systematic exploration of maritime accident 
RIFs, the methodology of this study involves database development, as 
well as ARM and CN modelling. The methodological framework of this 
study is shown in Fig. 1.

Table 2 
Relevant papers based on different data-driven methods.

Refs. Methods Application Advantage Disadvantage

[9] Ordered logistic regression 
(OLR)

A regression technique to evaluate the 
relationship between maritime accident 
severity and RIFs.

Applicable to ordered categorical dependent 
variables (e.g., severity), highly interpretable and 
does not require the linearity assumption.

Multiple covariance issues between 
RIFs, and high data quality 
requirement.

[33] HFACS and Bayesian 
network (BN)

A hybrid methodology to investigate 
human and organizational factors in 
collision accidents.

Ability to incorporate the hierarchical framework 
with quantitative analysis.

Model validation issues and 
sensitive to missing data.

[34] Object-oriented BN A quantitative risk assessment of 
navigational accidents in ice-covered 
Arctic waters

Ability to reflect relationships between RIFs and 
quantify their impacts.

Additional decision-making 
methods are needed to evaluate the 
effectiveness.

[35] Text mining An algorithm capable of extracting 
keywords from accident reports.

Ability to extract information from unstructured 
data.

Computationally complex, data 
quality issues and limited 
explicability.

[36,
37]

ARM A comparative analysis between two ARM 
algorithms.

Suitable for large-scale data and discovering implicit 
relationships.

Difficult to explain results based 
solely on model parameters.

[38] ARM An algorithm to mine the critical factors 
of ship total loss accidents.

Ideal for initial exploration and discovering implicit 
relationships.

Complexity increases with data 
volume and variety.

[24] BN A data-driven model to analyse the RIFs of 
maritime accidents.

Strong predictability and explainability. Computationally complex for a large 
network, expert/manual 
intervention.

[39] A Direction-Constrained 
Space-Time Prism (DC-STP) 
approach

An approach for examining moving 
objects with respect to space and time, 
modelling collision risk.

Applicable to multi-ship involved risk evaluation Computational efficiency for a more 
complex scenario needs to be 
improved.

[40] Least Absolute Shrinkage and 
Selection Operator (LASSO) 
and BN

A data-driven combined method to 
investigate the human fatigue.

Strong explainability and easy to handle multiple 
data types.

Limited data and sensitive to 
missing data.

[41] CN A framework to evaluate marine traffic 
situation.

Ability to visualise and model complex relationships 
and couple with other models.

Lacks a basis for network 
establishment and systematic 
dynamic evaluation.

[42] CN A comprehensive framework to 
investigate key factors in collision 
accidents.

Ability to model and visualise complex relationships. Lacks systematic topological 
analysis and dynamic evaluation.
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3.1. Research data

The data used in this study are from two sources: the MAIB 
(https://www.gov.uk/government/organisations/marine-accident-i 
nvestigation-branch) and the TSB (https://www.tsb.gc.ca/eng/stats/ma 
rine/data-6.html). Both authorities specialise in the investigation of 
transport accidents and maintain comprehensive datasets over an 
extended timeframe and encompassing a multitude of cases, which 
provides a sufficient sample size for this study. The reason of using both 
databases is to minimize data bias introduced by using only one data-
base, and both databased apply similar statistical standards. Moreover, 
it needs to be recognised that the data used in this study is in CSV format, 
sourced directly from official maritime accident statistics. While both 
datasets record limited information on human errors, as such informa-
tion is not mandatory in their investigation process. To keep the 
completeness of the developed database and develop an innovative data- 
driven framework, this study will focus on the evolution of objective 
factors that have been identified in both data sources during the accident 
process, which will provide an interesting view on accident prevention.

3.1.1. Data processing
The database released by the TSB contains all maritime accident data 

recorded by the Marine Safety Information System (MARSIS) from 
January 1995 to July 2023, with some exceptions and deletions due to 
protections of third party, personal and privileged information [46]. The 
database published by the MAIB contains maritime accident data 
recorded from January 2013 to December 2021. To ensure the relevance 
and timeliness of the study, as well as to avoid potential bias stemming 

from data processing, the databases are processed as follows: 

(1) Data Selection: Accident data from 2010 onwards in the TSB 
database (due to the large amount of missing information in the 
previous data), and from 2013 onwards in the MAIB database, in 
total of 21,206 accidents, are selected for analysis. This dataset 
includes 17,923 accidents from TSB and 3283 accidents from 
MAIB. A visualisation of the distribution of the accident data is 
shown in Fig. 2, with red scatter points indicating the locations of 
accidents.

(2) RIFs Selection and Classification: In the original MAIB and TSB 
databases, each row represents an accident record, and each 
column represents a RIF. Considering the feasibility of the data-
base and the desire to select the most comprehensive RIFs 
possible, this study, referring to relevant literature [10,47,48] 
and actual accident statistics, selects 13 RIFs in total. Meanwhile, 
a comprehensive maritime accident RIFs classification criterion is 
established in Appendix 1. 

Specifically, the criterion contains two types of factors: internal 
and external. The former predominantly revolves around the 
inherent attributes of ships and the nature of accidents. Since the 
classification criteria for ship type and accident type from the 
MAIB and TSB are generally consistent, in addition to applying 
the official classification criteria, this study harmonizes related 
duplicated or synonymous items. Similarly, external factors pri-
marily pertain to navigational conditions. Both the MAIB and TSB 
employ similar criteria and units for categorising natural light, 

Fig. 1. The methodological framework.
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sea state, wind and visibility, and therefore, the original catego-
risation is retained.

(3) Handling Missing Data: The original databases contain missing 
items. To avoid bias arising from data processing methods, such 
as data deletion or imputation, the missing data is tackled 
through the ARM approach (see Section 3.2 for a detailed 
description). Data cleaning is then executed on the remaining 
data according to the classification system established in Ap-
pendix 1, to obtain the maritime accident database used for 
analysis.

3.1.2. Data quality assessment
Assessing the data is essential to validate its reliability and quality. 

This study makes use of the following data quality assessment (DQA) 
from the perspectives of quantitative [49–51], qualitative [49,52,53], 
and narrative assessments [52]. The specific dimensions of each 
assessment are shown in Section 4.1, with specific descriptions and 
formulas provided in Appendix 2.

3.2. Association rule mining (ARM)

ARM is an algorithm for mining potential relationships in the data. 
Similar to other machine learning methods (e.g., the TAN-BN model), 
ARM learns and identifies patterns to reveal insights hidden behind large 
datasets that may be difficult to discover intuitively by manual analysis. 
Commonly used ARM algorithms include FP-Growth [54], Apriori [36,
55] and Eclat [38]. Although these different algorithms exhibit slight 
variations in terms of their runtime and mining patterns, they consis-
tently produce identical outcomes. According to the literature [56], the 
Apriori algorithm has demonstrated excellent performance in various 
simulations and hence will be chosen to mine association rules among 
RIFs in this study.

Specifically, an association rule (AR) contains items Ai and Bj in this 
study, representing different states of the different RIFs, respectively. In 
the ARM method, there are three parameters that correspond to the 
patterns of the RIFs namely: support, confidence and lift, see Eqs. (1)–(3)
[38]. The Apriori algorithm is an iterative algorithm that searches for 
the frequent item sets by examining them layer by layer. The search 
process depends on the thresholds of minimum support and minimum 
confidence.

Support
(
AiBj

)
signifies the probability of the co-occurrence of items 

Ai and Bj: 

Support
(
AiBj

)
=

NAiBj

N
(1) 

where: 

AiBj represents the simultaneous occurrence of items Ai and Bj;
NAiBj represents the count of accidents where Ai and Bj co-occur;
N represents the total accidents count.

Confidence
(
Ai⇒Bj

)
is the conditional probability of item Bj occurring 

when item Ai is observed. 

Confidence
(
Ai⇒Bj

)
=

Support
(
AiBj

)

Support
(
Bj
) (2) 

where Ai⇒Bj represents the AR between item Ai and item Bj.
Lift
(
Ai⇒Bj

)
is defined as the ratio of Confidence

(
Ai⇒Bj

)
to 

Support
(
Bj
)
. A lift value greater than one signifies a strong positive as-

sociation, a strong negative association is indicated by a value less than 
one and when the value equals 1, there is no discernible association 
between the RIFs. 

Lift
(
Ai⇒Bj

)
=

Confidence
(
Ai⇒Bj

)

Support
(
Bj
) (3) 

However, as previously noted, convectional ARM techniques pri-
marily deliver results at a micro-level, i.e., items in the rules correspond 
to states of the different RIFs, and fail to capture associations at a higher, 
factor level. To overcome this limitation, this study introduces a novel 
algorithm, the Combined Association Rule Mining (CARM) method, 
which improves traditional ARM. The pseudocode for CARM is detailed 
in Table 3. Unlike traditional ARM outputs, CARM not only identifies but 
also elevates associations to the factor level. To quantify how anteced-
ents influence consequences at this level, a new metric is proposed, the 
Joint Conviction (JC), which is defined as Eq. (4). 

JC(A⇒B) =
∑

i

∑

j
Conviction

(
Ai⇒Bj

)
×

Support
(
Ai⇒Bj

)

∑
i
∑

jSupport
(
Ai⇒Bj

) (4) 

where Conviction
(
Ai⇒Bj

)
= 1 − Support

(
Bj
)
/1 − Confidence

(
Ai⇒Bj

)
. 

Conviction measures the ratio between the occurrence frequency of Ai 
when Bj does not occur and the independent occurrence frequency of Ai 

and Bj when the rule is not applicable. It thus reflects the dependency of 

Fig. 2. Distribution of maritime accidents recorded by MAIB and TSB.
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the consequent on the antecedent within an AR. A key attribute of 
conviction is its asymmetry concerning the support of the itemsets, 
implying that for the rules "Ai⇒Bj" and "Bj⇒Ai", despite identical sup-
port and confidence, their conviction values can differ significantly, 
thereby revealing deeper insights into rule evaluation.

In Eq. (4), A and B represent different RIFs, while Ai and Bj denote 
distinct states of these RIFs. The JC metric synthesizes these conviction 
values across all state pairs, weighting them by their occurrence prob-
abilities to provide a comprehensive measure of influence at the factor 
level. This approach not only enhances interpretability by aggregating 
different state convictions into a unified metric but also ensures 
robustness against the influence of anomalous state pairs, offering a 
more stable measure of association.

3.3. Complex network

Based on the ARM and CARM methods, the ARs between the states of 
the RIFs and the CARs between the RIFs are obtained. In this section, 
antecedents, consequents and the relationships between them are 
extracted as nodes and edges in networks, respectively. The established 
CN models can reveal the network structure by explaining topological 
characteristics, identifying key nodes and edges within the network, and 
leading to a better understanding of accident evolution mechanisms.

3.3.1. Complex network development
In this study, a network can be expressed as G = (N,E), where N =

{
n1, n2,…, np

}
represents the set of nodes (i.e., the states of RIFs or the 

RIFs), and E =
{
e1, e2,…, eq

}
represents the set of edges. The network is 

considered as an adjacency matrix G. If there is a total of p nodes, there 
are p × p elements in the matrix G, as shown in Eq. (5): 

G =

⎡

⎣
g11 ⋯ g1p
⋮ ⋱ ⋮

gp1 ⋯ gpp

⎤

⎦ (5) 

where gAiBj = wAiBj × eAiBj , wAiBj represents the weight of the directed 
edge from node Ai to node Bj, eAiBj represents the index of the AR from 
node Ai to node Bj, as illustrated in Eq. (6). 
{

eAiBj = 1, If Ai⇒Bj exists
eAiBj = 0, otherwise (6) 

The direction of the edges can in practice symbolize a chain reaction 
triggered by a change in the state of one RIF caused by another RIF. The 
realisation of this reaction relies on the abstract information transfer 
along the edges. Thus, the direction in the network model will be in line 
with the sequence of “antecedents” and “consequences” in the mined 
ARs and CARs. To enhance the theoretical basis for modelling complex 
network, this study also maps the ARM and CARM results to the CN 
model through weights, i.e., wAiBj = Confidence

(
Ai⇒Bj

)
and wAB =

JC(A⇒B).

3.3.2. Network topological characteristics
In the field of accident investigation, the topological analysis of CN 

has proved effective in identifying key RIFs, and different values of 
parameters can effectively distinguish the functions of different RIFs 
[42]. In this study, parameters comprising degree, strength, centrality 
and the clustering coefficient are discussed in turn, to provide a 
comprehensive analysis of the RIFs network. 

(1) The degree quantifies the number of edges connected to a node, 
which encompasses both incoming (i.e., in-degree) and outgoing 
(i.e., out-degree) links. Correspondingly, the algebraic sum of 
edge weights can be expressed by a parameter named strength, 
including both in-strength and out-strength. As basic statistical 
parameters among the network structure, both degree and 
strength characterise the activity level of a RIF in the network 
[43]. In practice, nodes with high degree and strength values tend 
to raise a more pronounced influence on other factors through 
changes in their own properties during accident evolution.

(2) Degree centrality (DC) serves as a direct index to measure the 
centrality, assisting in identifying critical RIFs in the network 
from the perspective of connectivity [57].

(3) Node closeness centrality (NCC) reflects the proximity of a node 
to other nodes, facilitating the detection of RIFs with high in-
formation dissemination rates [42].

(4) Node betweenness centrality (NBC) reflects the hubness and 
transitivity of a node, i.e., a series of changes that may be induced 
through a given condition. To compute NBC, it is necessary to 
compute node betweenness (NB) and subsequently normalise it.

(5) Clustering coefficient (CC) quantifies the likelihood of neigh-
bouring nodes being connected to each other, which thereby can 
be used to measure the level of clustering in a network [43]. In 
conventional road traffic networks, the CC is typically used to 
assess congestion and traffic mobility [58,59]. While in the ac-
cident network established in this study, the function of the CC is 
to discover small-world structures and community structures, 
thus measuring the closeness of the network and discovering 
those RIFs that are prone to interact with each other.

3.3.3. Importance ranking of RIFs
To achieve a dynamic analysis of the information transmission of 

RIFs during the occurrence of maritime accidents, this study uses 
PageRank-Information-Entropy (PIE) algorithm and edge betweenness 
centrality (EBC) to further identify and rank key nodes and edges 
comprehensively.

(1) PageRank-Information-Entropy (PIE) algorithm
PageRank algorithm is a classical ranking method considering the 

global link structure to assess the importance of nodes [60]. Contrasts 
with other topological approaches (e.g. DC, NCC, NBC) which are only 
based on local neighbourhood information, the PageRank algorithm 
initiates by assigning the initial PageRank values to each node in the 
network, reflecting their initial importance or centrality within the 
network. Subsequently, the PageRank algorithm iteratively refines these 
values until they converge to stable values [61]. The PageRank value is 
calculated as shown in Eq. (7): 

PRi = β
∑

j∈N

eji

dout
j

PRj +
1 − β

p
(7) 

where β ∈ [0, 1) represents a damping factor to ensure the randomness in 
traversing nodes, eji represents the edge from node j to node i, dout

j rep-
resents the out-degree of node j, PRi represents the PageRank value of 
node i, and p represents the number of nodes.

The traditional PageRank algorithm exhibit its ranking ability in 
terms of computational efficiency and simplicity. However, it assesses 

Table 3 
The pseudocode of CARM algorithm.

Algorithm 1: Combined Association Rule Mining algorithm

Input: Dataset, DS; Minimum support threshold, min_sup
Output: CARs
1 Begin
2 Calling Association Rule algorithm (Apriori)
3 Return association rules that satisfy min_sup and lift > 1, AR
4 Generate two matrices C and S with Conviction

(
Ai⇒Bj

)
and Support

(
Ai⇒Bj

)
as 

elements, respectively, based on the AR
5 Use Eq. (4) to perform scaling nodes operations are performed on C and S based 

on factors states to form new joint matrices, JC
6 Change the diagonal of JC to all Zeros, CAR
7 Transforming CAR matrix into association rule format
8 Return CARs
9 End
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the importance of nodes in a single dimension, and which has certain 
limitations in the context of complex and dynamically changing network 
environments. Therefore, based on the traditional PageRank algorithm 
and inspired by the mutual information theory (a concept of calculating 
the information interaction between nodes [62]), this study proposes an 
innovative node importance ranking method, i.e., the PIE algorithm. 
The pseudocode for the PIE algorithm is detailed in Table 4.

Specifically, in the PIE algorithm, the PageRank value is treated as 
the initial information retained by each node. Then, a PageRank infor-
mation matrix (PIM) is developed to achieve the weighted assignment of 
information, as shown in Eqs. (8) and (9): 

PIM =
(

γij

)

p×p
(8) 

γij = PRi ×
wij

∑
k∈Nwik

(9) 

where k denotes a node connecting with node i, γij denotes information 
element between node i and node j, and wij denotes the edge weight 
between node i and node j.

Based on the PIM, the PageRank mutual information (PMI) between 
any two connected nodes can be calculated by Eq. (10): 

PMIij = ln

(∑
k∈Nγij

∑
k∈Nγkj

)

(10) 

Then, the PIE value of each node can be then calculated by Eq. (11): 

PIEi =
∑

k
PMIik −

∑

k
PMIki (11) 

Therefore, the improved PIE algorithm introduces a multidimen-
sional understanding of RIFs importance from different computational 
levels. The PIE algorithm combines the mutual information between 
nodes on the basis of calculating the PageRank value, which means that 
it not only takes into account the number and quality of edges, but also 
integrates the strength and direction of information transfer between 
nodes. This not only helps to identify nodes that are traditionally 
"important", but also nodes that play a key role in information transfer, 
network influence and structural stability. The superiority of the PIE 
algorithm over the traditional methods on importance rank is validated 
in the experimental section.

(2) Edge betweenness centrality (EBC)
Correspondingly, key edges within the network bear increased re-

sponsibilities and act as connecting nodes. Therefore, the objective of 
edge identification is to reveal the paths in the network that are most 
critical for the transmission of abstract information, resources, or flows. 
Cutting off these key edges could potentially halt the ongoing evolution 
of accidents. Existing methods for ranking edges have their own focus, 
such as edge information centrality for evaluating the efficiency of 
communication networks, edge flow centrality for traffic network path 
identification and edge clustering coefficients for community detection. 
For the abstracted maritime accident evolution network, EBC can be 
used to identify bridges or bottleneck paths, which is in line with the aim 
of this study [63]. In general, calculating the EBC involves considering 
the frequency of occurrence of a particular edge in the information 
transfer process (i.e., the number of times that a particular edge lies on 
the shortest path between any two nodes) and this requires the 
computation of the edge betweenness (EB) first, followed by normal-
isation to obtain the EBC, as illustrated in Eqs. (12), (13): 

EBev =
∑

i,j,v∈N
ev∈E
i∕=j∕=v

σij(ev)

σij
(12) 

EBCv =
EBv

(p − 1)(p − 2)
(13) 

where σij(ev) represents the number of the shortest paths between node i 
to node j through edge ev. σij represents the total number of the shortest 
paths between node i to node j.

3.3.4. Robustness
Network robustness refers to the ability to retain functionality even 

when a portion of nodes or edges fails [63]. In the maritime accident 
RIFs network, a complete connecting path represents a complete chain 
of accident causation, leading to the occurrence of an accident. In this 
context, network robustness distinguishes itself from previous applica-
tions. This concept here represents the ability of the accident evolution 
network to resist external corrections. Such corrections can refer to 
manual control of corresponding RIFs within one accident causation 
chain so as to avoid further evolution of the accident. Therefore, a high 
robustness level in this study actually denotes a negative effect on 
mitigating accidents in reality. If the failure of a specific RIF in the 
network can effectively block the formation of an accident causal chain, 
the likelihood of an accident occurring should gradually decrease as the 
robustness diminishes. In this study, the reachability matrix (RM) is 
developed as a criterion for evaluating the robustness and defined as 
Eqs. (14) and (15): 

RM =

⎡

⎣
rm11 ⋯ rm1p

⋮ ⋱ ⋮
rmp1 ⋯ rmpp

⎤

⎦ (14) 

rmij =

{
1,RIF i can reach RIF j

0,RIF i cannot reach RIF j (15) 

Subsequently, the RM calculates the reachability and the network 

Table 4 
The pseudocode for the PIE algorithm.

Algorithm 2 PageRank-Information-Entropy algorithm

Require: A network G = (N,E); a damping factor β; max iterations maxiter; 
convergence threshold epsilon.

Ensure: PageRank-Information-Entropy of each node PIE
1: Initialize the PageRank value for each node PRi = 1/p
2: for iteration from 1 to maxiter do
3: pre PR = PR
4: for each node i do
5: sum = 0
6: for each node j do
7: if eij = 1
8: sum+ = pre PRj/dout

j

9: end for
10: PRi = (1 − β)/p+ β× sum
11: end for
12: error = 0
13: for each node i do
14: error+ = abs(PRi − pre PRi)

15: end for
16: if error < epsilon
17: break
18: end for
19: Calculate the PageRank mutual information: 

PIM =
(

γij

)

p×p
; γij = PRi ×

wij
∑

k∈Nwik

20: Initialize the PageRank mutual information between each pair of nodes PMIij =
0

21: for each node i do
22: for each node j do
23: if i ∕= j and there is a shortest path from node i to node j
24: PMIij = ln

(∑

k∈N
γij /
∑

k∈N
γkj

)

25: end for
26: end for
27: Initialize the PageRank information entropy of each node PIEi

28: for each node i do
29: PIEi =

∑

k
PMIik −

∑

k
PMIki

30: end for
31: return PIE

Y. Cao et al.                                                                                                                                                                                                                                     Reliability Engineering and System Safety 254 (2025) 110636 

7 



robustness, as shown in Eqs. (16) and (17): 

Reachability = (ones)1 ×p⋅RM⋅(ones)p× 1 (16) 

Robustness =
Reachabilityafter

Reachabilitybefore
(17) 

where (ones)1 ×p represents a 1-row p-column matrix with all elements 
equal to 1, (ones)p× 1 represents a p-row 1-column matrix with all ele-
ments equal to 1. In this study, the failures in nodes and edges are 
simulated by random and deliberate attacks. Both random and delib-
erate attacks will be conducted on the nodes and edges within the 
network to assess changes in network robustness [64]. Therefore, in Eq. 
(17), Reachabilityafter represents the reachability after attacks, and 
Reachabilitybefore represents the reachability before attacks.

During random attacks, the Monte Carlo simulation algorithm is used 
to randomly generate failed nodes and edges, respectively. The number 
of such failed nodes and edges is gradually increased from one to all, 
thereby spanning the entire network. The experiment is repeated 100 
times to obtain the complex network robustness changes. While during 
deliberate attacks, nodes and edges of both networks are attacked based 
on the importance ranking results obtained from Section 3.3.3, respec-
tively. Then, the attacked nodes or edges are removed from the network 
at each iteration, and the robustness of the network is calculated. 
Particularly, results from two other commonly used node ranking 
methods (i.e., the traditional PageRank algorithm and the Weight 
LeaderRank algorithm), together with the Monte Carlo random simu-
lation are obtained and compared to validate the superiority of the PIE 
algorithm.

Distinguishing from realistic networks, such as transport networks or 
grid networks, this is an innovational attempt to measure the perfor-
mance of maritime accident evolution networks by the reachability 
between nodes. In this study, the existence of a connection between two 
nodes indicates that the occurrence of one RIF causes another RIF, and a 
complete reachability path of RIFs represents a complete accident 
causation chain. As attack strategies are implemented (i.e., simulating 
the measures to be taken in practice), some connections may be severed 
or some nodes may be removed, both of which result in poorer network 
reachability, which in turn reduces robustness. Therefore, the robust-
ness variations in this study demonstrate changes in the network per-
formance before and after the attacks, thus revealing the impact of RIFs 
in the evolution of maritime accidents at the network science level.

4. Results

4.1. Data assessment results

The maritime accident RIFs database used in this study contains a 
total of 21,206 accidents. Specifically, the database records 13 RIFs with 
a total of 221,412 items. To assess the feasibility of the database, the 
results obtained through the DQA are presented in Table 5.

Overall, all quantitative assessments results exceed 50 %, and both 
qualitative and narrative assessments yield commendable results, 
thereby validating the overall reliability and suitability of the database.

Specifically, the values of consistency and relevance reach the values 
of 93.8 % and 87.9 % in the quantitative assessment, a testament to the 
alignment between the RIFs selected for this study and those found in 
the original TSB and MAIB databases. In addition, the completeness 
value is 79.8 % since there are 44,627 missing items and 221,412 known 
items in the entire database. As an acceptable result, this score ensures 
that this study is not biased due to the large amount of missing data. 
However, the accessibility value of the database is relatively low, pri-
marily due to the selective extraction of the information from the orig-
inal MAIB and TSB databases.

This extraction also affects the accuracy of qualitative analysis to 
some extent. Some RIFs are obtained by integrating a range of variables 

at different levels. For example, "ship type" in the original MAIB data-
base has four sub-levels of categorisation, while this study integrates 
them into a single RIF. Furthermore, since the databases are sourced 
from the MAIB and the TSB, which are the official investigating orga-
nisations for maritime accidents in the UK and Canada respectively. The 
widely applied investigation system has been modified over decades and 
recognised by the academic community, carrying credentials and 
interpretability. Moreover, the maritime accident investigation reports 
are published or recorded on average 12.47 days after the accident. This 
also validates the timeliness and accuracy of these accident reports.

In addition, a 10 % data sample is randomly selected for narrative 
assessment. It is found that 76.8 % of the sample contains more than 50 
words of narrative description of the relevant accident. The complete-
ness of the data within the sample stands as 81.2 %, which is similar to 
the overall completeness value, further reinforcing its reliability.

In light of these findings, the maritime accident database established 
in this study can be considered reliable and feasible for the in-depth 
analysis. The analytical framework of this study is shown in Fig. 3.

4.2. Association rule results

After completing the DQA, the Apriori algorithm and the CARM al-
gorithm are used to explore the association relationships among the 
states of RIFs and the RIFs. It is important to note that the results of both 
algorithms are influenced by the parameter settings. Optimal thresholds 
for support and confidence are crucial to strike a balance between 
capturing meaningful associations and avoiding noise. After several 
trials and with reference to a similar study [42], the minimum support 
and confidence thresholds are set to 0.1 and 0.3, respectively. The 
maximum restriction length is set to two, ensuring that each node rep-
resents only one RIF.

The association rules are programmed in Python. By calling "Apriori" 
package and running “CARM algorithm” and inputting the database, 
115 ARs and 75 CARs are mined. The distribution of these ARs is visu-
alized in Fig. 4, with the horizontal coordinate representing the support, 
the vertical coordinate representing the confidence, and the size of the 
scatter point indicating the lift. In addition, the top ten ARs and CARs 
ranked by the confidence and the JC values are shown in Tables 6 and 7, 
where the terms of "Antecedents" and "Consequents" represent the con-
ditions and results in Eqs. (1)–(3).

Fig. 4 reveals that the ARs are centrally distributed within the sup-
port range of 0.1–0.25 and the confidence range of 0.3–0.65. By ana-
lysing the data in Table 6, it can be found that the top ten ARs are all 
related to internal factors. Specifically, one AR is related to "ship type", 
five ARs are associated with "gross tonnage", six ARs pertain to "hull 
materials", and eight ARs are connected to "length". This suggests a 
strong correlation between a ship’s inherent characteristics with the 

Table 5 
The DQA results of research data.

Classifications Dimension Results

Quantitative 
assessment

Accessibility 61 %
Consistency 93.8 %
Completeness 79.8 %
Relevance 87.9 %

Qualitative 
assessment

Accuracy 67.9 %
Credentials The source of the data comes from official 

accident investigation agencies (MAIB and 
TSB) and can therefore be considered 
reliable.

Timeliness 12.47days
Interpretability Both the MAIB and the TSB provide 

corresponding explanatory documents, and 
the standards they use are internationally 
recognized and universal.

Narrative 
assessment

Narrative Detailed

Y. Cao et al.                                                                                                                                                                                                                                     Reliability Engineering and System Safety 254 (2025) 110636 

8 



occurrence of the accident. Particularly, both SL3 (length > 200 m) and 
GT2 (gross tonnage > 3000t) exhibit confidence exceeding 0.99. This 
observation aligns with the conventional perception that larger and 
longer ships generally have greater cargo carrying capacity [10]. 
Distinguished from the subjective experience, the ARM approach offers 
a theoretical basis to reveal these patterns. Moreover, the associations 
between the RIFs are highly coupled and cross-cutting, which likewise 
indicates potential accident evolution process. For example, from the 
results of ARs, an association chain can be integrated by multiple 
identified associations, e.g., from GT0 (gross tonnage < 500t) to SL0 
(length < 50 m) to H2 (hull materials of GRP) to A3 (Hull/machinery 

damage). This may represent a practical scenario for a small ship with 
the hull material of GRP, which has a favourable risk to the accident type 
of hull/machinery damage based on the historical data.

4.3. Complex network development

Based on the ARM and CARM results, two directed weighted complex 
networks are built: Fig. 5 illustrates the established CN at the state level 
consisting of 22 nodes and 115 edges; and Fig. 6 illustrates the estab-
lished CN at the factor level consisting of 10 nodes and 75 edges. The 
details of each node can be found in Appendix 1.

Fig. 3. The analytical framework.

Fig. 4. The distribution of ARs.

Y. Cao et al.                                                                                                                                                                                                                                     Reliability Engineering and System Safety 254 (2025) 110636 

9 



Figs. 5 and 6 position nodes primarily based on their node degree, 
with nodes having higher node degree located at the centre of the 
network. An overall analysis of both networks exposes the inter-
connectivity of the maritime accident RIFs. There exists the information 
dissemination, energy exchange, interaction or other forms of connec-
tivity among these RIFs. These abstract behaviours can in practice be 
responded to as a change in the state of one factor triggered by another. 
The information transfer efficiency of network in Fig. 5 is 0.484, 
significantly surpassing the transfer efficiency of a stochastic network of 
a similar size, which is approximately 0.26. This suggests that infor-
mation in the network is more readily available, and nodes are more 
likely to swiftly influence each other quickly. Such a well-connected and 
efficiently propagated evolution network poses a great challenge in ef-
forts to reduce the accident rates.

4.4. Topological analysis

Based on the established networks, this study further investigates six 
topological parameters for both the state-level network and the factor- 
level network, as visualised in Figs. 7 and 8 respectively. Topological 
analysis offers insights from a static network science theoretical 
perspective.

Specifically, node degree and node strength indicate the diversity of 
interactions between nodes. Although there are twice as many nodes for 
internal factors as external factors, the mean values of node degree for 
internal and external factors are similar, at 10.43 and 10.47 in Fig. 7, 
and at 15.17 and 14.75 in Fig. 8, respectively. This suggests that the two 
types of factors have comparable degrees of connectivity and interaction 
in both networks. Notably, the nodes with the largest degree and 
strength are H0 (hull materials with steel), followed by GT2 (gross 
tonnage > 3000t), GT0 (gross tonnage < 500t) and SL0 (length < 50 m) 
in Fig. 7. Similarly, in Fig. 8, GT (gross tonnage), L (location), H (hull 
materials) are the nodes with the largest degree and SL (length), GT and 
H have the largest strength. Conversely, the nodes with the smallest 
node degree are SL1 (50 m < length < 100 m), A10 (non-accidental 
events) and NL1 (nightlight), all of which are 1 and all have an in-degree 
value of 0. This suggests that these nodes only pass interaction infor-
mation to other nodes without receiving information from other nodes. 
Both figures theoretically indicate that SL, GT, L and H are four RIFs 
which interact with most other nodes, and practically reveal that the 
reliable RIFs including a ship’s inherent properties are the basis for its 
safe navigation.

Furthermore, from the perspective of centrality metrics, H0 (hull 
materials with steel) has the highest DC, NCC and NBC in Fig. 7. In Fig. 8, 
the nodes with highest DC, NCC and NBC are GT (gross tonnage) and L 
(location). Taking H0 as an example, as the central node of the whole 
network at state level, it not only has the highest degree of proximity to 
other nodes, but also services as a bridge that connects multiple nodes. 
Therefore, from the theoretical point of view, a change in the state of H0 
significantly influences the efficiency of information transfer within the 
network, potentially affecting the stability of the network and acceler-
ating the transfer of information about the risk of accidents. From a 
practical perspective, such changes can make it more difficult for the 
ship to respond to emergencies, potentially leading to maritime acci-
dents. Hence, regardless of the ship’s scenario or characteristics, any 
alteration in the state of the steel hull (e.g., damage) can impact the 
ship’s stability and manoeuvrability.

Table 6 
Top 10 ARs at state level ranked by confidence.

Rank Antecedents Consequents Support Confidence Lift

1 SL3 GT2 0.1119 0.9937 3.0286
2 GT0 SL0 0.4906 0.9875 1.7778
3 SL2 GT2 0.1848 0.9859 3.0048
4 H2 SL0 0.1959 0.9834 1.7705
5 SL2 H0 0.1831 0.9766 1.7530
6 GT2 H0 0.3203 0.9761 1.7522
7 SL3 H0 0.1095 0.9732 1.7469
8 SL1 H0 0.1048 0.9673 1.7364
9 ST0 SL0 0.3325 0.9591 1.7266
10 H2 GT0 0.1907 0.9569 1.9260

Table 7 
Top 10 CARs at factor level ranked by JC.

Rank Antecedent Consequent JC

1 SL GT 0.9231
2 L SL 0.8400
3 ST GT 0.8319
4 GT SL 0.7960
5 ST H 0.7778
6 SL H 0.7683
7 GT H 0.7551
8 L A 0.7466
9 ST SL 0.7280
10 H GT 0.7175

Fig. 5. The established CN at state level based on ARs.

Fig. 6. The established CN at factor level based on ARs.
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The CC is a value between 0 and 1 and indicates how closely the 
nodes in the network are connected to each other’s neighbours. In Figs. 7 
and 8, SL3 (length > 200 m), SL2 (100 m < length < 200 m), H2 (hull 
materials with GRP), SA1 (10years < ship age < 20years), A3 (hull/ 
machinery damage) and A (accident type) have a CC of 1, which in-
dicates that the neighbouring nodes of these nodes are equally inter-
connected. The network in this study is structured as a functional 
network, and the high CC indicates that the nodes belong to the same 
functional module or community and have similar attributes. This 
concept can be verified from a practical standpoint. For example, GRP, 
also known as fibre reinforced plastics, is commonly used in the con-
struction of small and medium-sized ships, such as sailboats and yachts. 
Although this material reduces the cost and weight of the ship and im-
proves the manoeuvrability, it is still less reliable and stronger than 
steel. As the ship ages, the GRP hull structure becomes increasingly 
susceptible to deterioration, consequently elevating the likelihood of 
hull/machinery damage.

4.5. Ranking analysis

To stop the evolution of risk and to prevent accidents quickly and 
effectively, key nodes and edges in the network need to be analysed.

4.5.1. The identification of key nodes
The importance of each node is calculated based on the PIE algo-

rithm as shown in Tables 8 and 9. Notably, in addition to L (location), 
the top five nodes in both tables are all internal factors, highlighting the 
pivotal role that the ship factors play in maritime accident RIFs network. 

In addition, W0 (clear weather), V3 (good visibility) and NL0 (daylight) 
are the top ten external factors in Table 8. This suggests that environ-
mental factors also have a substantial influence on the occurrence of 
maritime accidents. Indeed, in the public’s perception, bad weather is 
dangerous for ship navigation and it inevitably leads to heightened 
alertness among crews. Conversely, in good weather conditions, as 
demonstrated by W0 (clear weather), V3 (good visibility) and NL0 
(daylight), it is still crucial to strengthen the safety management and 
enhance the vigilance of the crew, which can effectively delay the risk 
evolution and reduce the accident rate.

4.5.2. The identification of key edges
This study ranks the risk evolution paths (i.e., edges) in the network 

based on the EBC values. The top ten edges of both levels are shown in 
Tables 10 and 11. At state level, Table 10 indicates that the most 
important edges are: H0 (hull materials with steel) to SA3 (ship age > 30 
years), W0 (clear weather) to GT2 (gross tonnage > 3000t) and H0 (hull 
materials with steel) to W0 (clear weather) and so on. While at factor 
level, the top five edges in terms of importance are all related to A 
(accident type), which reveals the impact of different RIFs on different 
types of accidents. It is worth noting that in CN structures, although 
edges do not account for real causal relationships between nodes, it can 
be assumed that they interact with each other by conveying abstract 
information. For example, it is hard to explain which specific in-
teractions between the edges W0 (clear weather) and GT2 (gross 
tonnage > 3000t) will have in the event of a maritime accident. How-
ever, it is possible to mitigate the transfer of information when W0 and 
GT2 co-occur. In other words, taking precautions may reduce the 

Fig. 7. Topological analysis at state level.
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likelihood of accidents from occurring to some extent.
In addition, edges with higher EBC take more tasks as intermediaries 

in the network, which suggests that most information transmission flows 
through these edges. When these edges are blocked, the structure of the 
network changes significantly. Therefore, when certain factors cannot 
be directly prevented or controlled, the goal of preventing accidents can 
still be achieved by blocking the corresponding edges.

Fig. 8. Topological analysis at factor level.

Table 8 
Nodes importance ranking at state level based on PIE values.

Rank Nodes PIE value Rank Nodes PIE value

1 H0 34.8426 12 A3 − 2.2148
2 SL0 27.3330 13 H2 − 3.2483
3 GT0 26.5579 14 ST5 − 4.8115
4 GT2 25.4225 15 L3 − 6.2813
5 ST1 20.5494 16 L0 − 8.7096
6 ST0 14.2072 17 SL2 − 14.7766
7 W0 11.6229 18 SL1 − 19.4954
8 SA3 10.5691 19 NL1 − 26.2393
9 V3 5.1661 20 A10 − 28.7740
10 NL0 3.2614 21 SL3 − 30.0016
11 L1 0.3546 22 SA1 − 35.3343

Table 9 
Nodes importance ranking at factor level based on PIE values.

Rank Nodes PIE value

1 GT 5.6694
2 H 5.4458
3 SL 4.8041
4 L 2.2828
5 ST 1.0992
6 SA − 1.5149
7 NL − 3.5242
8 W − 3.5247
9 V − 4.5039
10 A − 6.2336

Table 10 
Edges importance ranking at state level based on EBC.

Rank Edges EBC Rank Edges EBC

1 (’H0′, ’SA3′) 0.0757 6 (’NL1′, ’H0′) 0.0390
2 (’W0′, ’GT2′) 0.0510 7 (’A10′, ’H0′) 0.0390
3 (’H0′, ’W0′) 0.0466 8 (’W0′, ’SL0′) 0.0376
4 (’SA3′, ’ST0′) 0.0413 9 (’W0′, ’GT0′) 0.0376
5 (’SL1′, ’H0′) 0.0390 10 (’GT0′, ’W0′) 0.0358

Table 11 
Edges importance ranking at factor level based on EBC.

Rank Edges EBC Rank Edges EBC

1 (’A’, ’GT’) 0.0226 6 (’SL’, ’NL’) 0.0205
2 (’A’, ’L’) 0.0226 7 (’A’, ’SL’) 0.0198
3 (’GT’, ’A’) 0.0217 8 (’ST’, ’V’) 0.0196
4 (’H’, ’A’) 0.0217 9 (’V’, ’ST’) 0.0192
5 (’L’, ’A’) 0.0217 10 (’SL’, ’A’) 0.0190
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4.6. Robustness analysis

Maritime accidents occur as a result of a combination of multiple 
RIFs, which can be abstractly represented in the network structure as the 
successful transmission of information along a complete link that ulti-
mately triggers a maritime accident. Therefore, disrupting the maritime 
accident RIFs network and reducing the stability of the network can stop 
the evolution of accidents to some extent. In this study, nodes and edges 
will be attacked respectively.

4.6.1. Node attacks
In this study, two strategies, random attacks with Monte Carlo 

simulation and deliberate attacks sorted by node importance are adop-
ted to attack the established maritime accident RIFs evolution networks. 
To validate the effectiveness of the proposed PIE algorithm, deliberate 
attacks are conducted based on the ranking results from two other 
classical methods, i.e., the PageRank algorithm and the WLR algorithm. 
The changes of both networks’ robustness are recorded, as shown in 
Fig. 9.

From Fig. 9, it is evident that the network robustness gradually de-
creases with an increasing number of failed nodes, regardless of random 
attacks or deliberate attacks. A comparison of the two strategies reveals 
that deliberate attacks result in faster and more severe damage to the 
network than random attacks. Specifically, in deliberate attacks, the 
robustness of both networks drops faster to 0 according to the results of 
the PIE algorithm. It demonstrates that the importance ranking result 
based on the PIE algorithm is more reasonable and effective as accidents 
can be stopped by controlling fewer nodes in response to this result. For 
example, at the state level, once the number of failed nodes exceeds 12, 
the robustness of the entire network drops to 0 based on the PIE algo-
rithm, while both deliberate attacks based on the PageRank algorithm 
and the WLR algorithm require 14 failed nodes and random attacks 
require 21 nodes. In practice, the result based on the PIE algorithm 
implies that when more than 12 nodes with higher importance are 
controlled, the ship will be in a relatively safe state, with a low occur-
rence probability of a maritime accident. Therefore, this highlights the 
effectiveness of targeted prevention and control of key RIFs in pre-
venting maritime accidents from occurring.

4.6.2. Edge attacks
Similar to node attacks, this study also attacks the edges and records 

the robustness changes for both networks (see Fig. 10). It is re- 
emphasised here that the concept of network robustness represents the 
ability of the maritime accident evolution network to resist external 
corrections, and that a high robustness has a negative impact on miti-
gating accidents. From Fig. 10, at the state level, when the number of 
failed edges reaches 45, the network robustness decreases by 8.72 % for 
random attacks and 60.59 % for deliberate attacks. At this point, the 
network still maintains high robustness with random attacks, and the 
network robustness significantly decreases only when more than 70 
edges are randomly attacked. At the factor level, although the rapid 
declines of robustness under random attacks and deliberate attacks 
appear with a same number of failed edges, the robustness level of 
deliberate attacks is always lower than that of random attacks when 
more than 20 edges failed. Therefore, deliberate attacks damage both 
networks faster than random attacks. Fig. 10 also highlights that 
although deliberate attacks can rapidly reduce network robustness, the 
robustness can only reach at 0 when all edges are attacked since it is 
based on network reachability as an indicator, and reachability is 
greater than 0 as long as any edges exist in the network.

In addition, the changes in network robustness with deliberate at-
tacks exhibit a stepwise decrease, indicating that the network robustness 
remains stable within a certain range of failed edges. Only when the 
number of failed edges exceeds that range does network robustness 
decrease dramatically. To investigate changes in network structure 
when network robustness remains constant, this study calculates the 
change in the average shortest path length (AL) of the network during 
deliberate attacks (as shown in the red line in Fig. 10). Fig. 10 indicates 
that changes in AL of the network and changes in the network robustness 
are synchronised. However, when the network robustness remains 
constant, the AL of the network starts to increase, since deliberate at-
tacks on edges are based on the order of magnitude of EBC, which is 
calculated based on the number of shortest paths through the edge. 
Therefore, edge failure directly changes the shortest path length be-
tween nodes, while the reachability between nodes in the network does 
not necessarily change immediately.

Although deliberate attacks on edges do not break the network 
directly, they can impede the interaction among RIFs. Consequently, 
edge attacks can reduce the probability of maritime accidents, especially 
when node attacks are challenging to implement directly. For example, 
at the state level, one of the interaction paths is as follows: NL1 
(nightlight) → H0 (hull materials with steel) → W0 (fog weather) → GT0 

Fig. 9. Robustness based on attacks of network nodes.
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(gross tonnage <500t) →A3 (hull/machinery damage). In general, it is 
very difficult to take direct action on individual nodes to make them fail, 
since both weather conditions and ship parameters are objective. 
However, it is possible to stop the accident chain from evolving by 
taking practical measures to cut off W0 (fog weather) → GT0 (gross 
tonnage < 500t). More specifically, small ships with a gross tonnage of 
less than 500t may face challenges like limited visibility, navigation, or 
signal transmission in foggy weather, and most small ships are not 
equipped with radar or an Automatic identification System (AIS). This in 
turn can make it difficult to identify other ships, obstacles, or buoys. This 
may increase the risk of collision with other ships, docks, dykes, etc., 
leading to ship damage. Therefore, if ship operators and crews can take 
appropriate measures, such as using navigational equipment to help the 
ship navigate, slow down or pause, this will effectively stop the evolu-
tion of maritime accidents.

5. Discussion and implications

The findings from this study underscore the complexity and inter-
connectivity of risk factors in maritime accidents, as evidenced by the 
small-world characteristics of the maritime accident RIFs networks, 
cross-checking with findings from other studies [42,65], while they 
reveal new insights beyond the state of the art. Notably, both the net-
work’s average path length of 2.06 steps in the state level and a high 
aggregation coefficient suggest a tightly-knit structure that is prone to 
chain reactions leading to accidents. These properties underscore the 
critical need for reliability engineering strategies that address systemic 
vulnerabilities rather than isolated factors.

Specifically, both topological and ranking analyses highlight the role 
of ship-related factors—such as failures or specifications in hull mate-
rials, gross tonnage, and ship length—in contributing to the occurrence 
of accidents. For instance, GRP (Glass Reinforced Plastic)-constructed 
ships show a high risk for the occurrence of hull or machinery failure, 
demonstrated by identified associations. Through comparative analysis, 
the findings in this study are also consistent with several relevant studies 
in the maritime safety domain. For example, both studies of [47] and 
[10] considered ship parameters (e.g., GT) as one of the most critical 
RIFs. Particularly, these studies highlight the vulnerability of small ships 
(e.g., small fishing vessels), which are less resistant to the overall 
development of an accident, and where risks can rapidly evolve into an 
accident. Such scenarios include, but are not limited to high winds and 
waves, collisions or an emergency situation. This finding can be re-
flected in the importance ranking of GT (gross tonnage < 500t) and SL0 
(ship length < 50 m) in this study. In response to these insights, it is 
essential to implement specific measures to mitigate risks accordingly. 

For example, shipowners should enhance preventive maintenance pro-
grams by conducting regular and comprehensive inspections, particu-
larly for critical structural and mechanical components. Moreover, 
shipbuilders should adapt more robust materials and designs to meet the 
demands of tough operational environments that ships have to face. 
From a regulatory perspective, authorities should establish more 
rigorous construction and operational standards for small ships, enforce 
frequent safety inspections, and encourage the installation of advanced 
navigational aids and safety equipment on board. Additionally, crew 
members should undergo specialized training focused on emergency 
response procedures under high-risk scenarios, ensuring readiness to 
handle severe weather and collision risks.

Furthermore, the robustness analysis reveals that such nodes as ship 
age (SA3: ship age > 30 years) and environmental conditions (W0: clear 
weather), act as central hubs in the network, which is not yet the case 
with existing studies. These findings imply that failures of these nodes 
could significantly diminish the system’s ability to propagate risk. As a 
result, implementing stricter safety protocols for aging vessels is crucial. 
This includes increasing the frequency of inspections beyond regulatory 
minimums, targeting critical areas such as the hull, machinery, and 
navigation systems. Additional operational restrictions, such as limiting 
the operation of aging vessels in high-risk weather conditions or busy 
shipping lanes, can reduce accident likelihood. Moreover, technological 
upgrades—such as retrofitting ships with modern monitoring system-
s—can provide early warnings for potential mechanical failures. Ship-
ping companies could also consider gradually phasing out ships that 
exceed a certain age threshold to avoid elevated risks associated with 
older vessels. However, the influence of favourable weather conditions 
on accident occurrence seems to present a paradoxical risk factor. 
Despite the intuitive belief that poor weather increases accident risk, the 
analysis shows a higher occurrence of accidents in clear weather con-
ditions, possibly due to reduced vigilance. This unexpected finding calls 
for heightened vigilance during routine operations in clear weather, 
emphasising the need for continuous safety protocols. Shipping com-
panies should develop and enforce standard operating procedures 
(SOPs) that include maintaining high situational awareness, even in 
seemingly favourable conditions. This can be reinforced through regular 
drills and scenario-based training for crew members, where compla-
cency risks are specifically addressed. Furthermore, adopting automated 
alert systems that monitor and report operational anomalies in real time 
can help mitigate human errors during periods of lower vigilance.

Lastly, the comprehensive analytical framework employed in this 
study has been proven to be effective. In Section 2.2.2, this study has 
reviewed some studies that used ARM methods [36,38], CN methods 
[41,45] and coupled methods [42] to analyse maritime accidents. The 

Fig. 10. Robustness based on attacks of network edges.
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convectional ARM technique delivers results at a micro-level, i.e., items 
in ARs are states of the different RIFs, while the newly proposed CARM 
algorithm improves the extraction of association rules to a macro-level 
(i.e., the factor level). Association rules for both dimensions are 
extracted and used to build the corresponding networks in this study. 
Without limiting to the traditional static topology analysis, this study 
innovatively applies the attack-based robustness analysis method from 
traffic networks [63] to the established maritime accident RIFs evolu-
tion networks. Compared with existing methods, the importance 
ranking results of the new PIE algorithm exhibit superiority, where 
corresponding node deliberate attacks can prevent accidents by con-
trolling fewer RIFs. Therefore, the network analysis of maritime acci-
dents in this study not only demonstrates the interdependencies among 
risk factors but also informs the development of targeted interventions. 
By concentrating on high-impact nodes and employing a holistic 
approach to risk management, maritime safety stakeholder groups can 
better interrupt potential pathways leading to accidents, thereby 
enhancing overall system safety and reliability.

6. Conclusion

The increasing volume of maritime trade has unfortunately been 
accompanied by a heightened risk of maritime accidents. Hence un-
derstanding the RIFs in reported maritime casualties and accidents is 
crucial for significantly improving maritime safety.

This study proposes an analytical framework to provide a compre-
hensive analysis of maritime accident RIFs and explore the evolutionary 
mechanisms of maritime accidents. Based on a critical literature review, 
the contributions of this study in the terms of data, objectives, models 
and analysis are highlighted. Subsequently, 21,206 accident reports for 
the last 10 years are introduced to the quantitative framework inte-
grating ARM and CN. By conducting topological analysis, the maritime 
accident RIFs network has been recognised as an active, high connec-
tivity and functional community network with rapid information 
transmission. Meanwhile, as a dynamic evolution process, targeted 
control and prevention have proven effective in mitigating accidents. 
Finally, building upon the discussions and implications, the risk control 
measures are developed.

In future, the limitations of this current study can be improved. 
Applying a larger scale global maritime accident dataset and including 
human factors will improve its universal acceptance. A text mining 

technique may help to extract human factor information from accident 
investigation reports and avoid human interventions. Furthermore, the 
established network model in this study is a benchmark in understand-
ing the role of RIFs in maritime accidents. More detailed and accurate 
modelling can be undertaken by considering the engagement of more 
RIFs and the weight on edges. Nevertheless, the framework proposed in 
this study will prove invaluable to maritime regulators in order to 
improve safety and the authors recommend its incorporation into safety 
management systems.
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Appendix 1

Maritime accident RIFs classification criteria

Variables Indexes Statements Indexes Refs.

External factors Month M 1–12 M1-M12 NA
Location L Port L0 [66,67]

Open sea L1
Coastal water L2
Inland water L3

Nature light NL Daylight NL0 [68] TSBM16P0362
Nightlight NL1
Twilight NL2

Sea state SS 0 Calm glassy (0 m) SS0 MAIB 26–2017 
MAIB 22–20171 Calm rippled (0 – 0.1 m) SS1

2 Smooth (0.1 – 0.5 m) SS2
3 Slight (0.5 – 1.25 m) SS3
4 Moderate (1.25 – 2.5 m) SS4
5 Rough (2.5 – 4 m) SS5
6 Very rough (4.0 – 6.0 m) SS6
7 High (6.0 – 9.0 m) SS7
8 Very High (9.0 – 14.0 m) SS8
9 Phenomenal (over 14 m) SS9

(continued on next page)
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(continued )

Variables Indexes Statements Indexes Refs.

Ice covered SS10
Wind force WF 0 Calm (0–1 knot or 0–1 m/s) WF0 MAIB 26–2017 

MAIB 22–2017 
MAIB 20–2017

1 Light air (1–3 knot or 1–2 m/s) WF1
2 Light Breeze (4–6 knot or 2–3 m/s) WF2
3 Gentle Breeze (7–10 knot or 4–5 m/s) WF3
4 Moderate Breeze (11–16 knot or 6–8 m/s) WF4
5 Fresh Breeze (17–21 knot or 9–11 m/s) WF5
6 Strong Breeze (22–27 knot or 11–14 m/s) WF6
7 Near Gale (28–33 knot or 14–17 m/s) WF7
8 Gale (34–40 knot or 17–21 m/s) WF8
9 Strong Gale (41–47 knot or 21–24 m/s) WF9
10 Storm (48–55 knot or 25–28 m/s) WF10
11 Violent Storm (56–63 knot or 29–32 m/s) WF11
12 Hurricane (+64 knot or +33 m/s) WF12

Visibility V Very poor - Vis < 0.5 nm V0 MAIB 26–2017 
MAIB 22–2017Poor - 0.5 ≤Vis < 2.0 nm V1

Moderate - 2.0 ≤Vis < 5.0 nm V2
Good - 5.0 ≤ Vis < 25.0 nm V3
Very good - Vis ≥ 25.0 nm V4

Weather W Clear W0 MAIB 26–2017 
MAIB 22–2017Fog W1

Overcast W2
Rain W3
Snow W4
Thunder/storm/lightning W5

Internal factors Accident type A Capsizing / Listing A0 [68,69]
Collision A1
Contact A2
Hull/machinery damage A3
Fire / Explosion A4
Floating object A5
Flooding / Foundering A6
Grounding / Stranding A7
Cargo/shift/loss/released A8
Loss of control A9
Non-accidental events A10

Ship type ST Fishing ships ST0 [10,47]
Cargo ships ST1
Navy ships ST2
Passenger ships ST3
Recreational ships ST4
Service ships ST5
Other ships ST6

Length SL 0–50m SL0 [3,68]
50–100m SL1
100m-200m SL2
200m+ SL3

Gross tonnage GT 0–500t GT0 [10,66]
500–3000t GT1
3000t+ GT2

Ship age SA 0–10 years SA0 [10,66]
10–20 years SA1
20–30 years SA2
30 years+ SA3

Hull materials H Steel H0 [3,68]
Wood H1
GRP (Glass Fiber Reinforced plastics) H2
Aluminium alloy H3
Composite materials H4
Ferro cement H5
Other materials H6

Appendix 2

Data quality assessment system

Categories Dimension Description Formula

Quantitative 
assessment

Accessibility Accessibility reflects the ease of access to the data. 
Assessing the accessibility of data quantifies the 
number of data without further modification.

Accessibility =
1 × Nexplicit + 0.8 × Nimplicit + 0.2 × Ninferred

Nvariables
× 100% 

Where Nexplicit represents the number of existed variables, Nimplicit represents the 

(continued on next page)
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(continued )

Categories Dimension Description Formula

number of newly created variable, Ninferred represents the number of modified 
variable, Nvariables represents the number of the total variables.

Consistency Consistency is concerned with the continuity of data 
collection, recording and updating. Assessing data 
consistency helps to estimate that accident data 
remains consistent in concept, value domain and 
format.

Consistency =
1 × Nconsistent + 0.8 × Nrecoded + 0.2 × Nnewly coded

Nʹ
variables

× 100% 

Where Nconsistent represents the variables with the same manner in each dataset, 
Nrecoded represents the number of recoded variables, Nnewly coded represents the 
number of newly coded variables. Nʹ

variables represents the number of used variables.
Completeness In the maritime accident database, assessing data 

completeness helps to investigate the usability of the 
data.

Completeness = 1 − Pmissing 

Where Pmissing represents the arithmetic average of missing values percentage.

Relevance Relevance reflects the degree to which the data are 
relevant to the objective of this study.

Relevance =
1

Ncategories

∑Ncategories

i=1
Nrelevant, i

Nrequest,i 

Where Ncategories represents the number of categories in which the required (ideal) 
datasets are grouped, Nrelevant, i represents the number of relevant datasets in 
category i, Nrequest,i represents the number of requested datasets in category i.

Qualitative 
assessment

Accuracy The accuracy of data reflects the extent to which it is 
accurate, true and free from error.

Accuracy =
Naccuracy

Nvariables
× 100% 

Where Naccuracy represents the number of variables that are accurate.
Credentials Credentials reflect the extent to which data is obtained 

from reliable data sources.
NA

Interpretability Assessing the interpretability of data requires that the 
data are clearly presented in terms of language, 
notation, units and definitions.

NA

Timeliness Timeliness reflects the extent to which data is up to 
date. Assessing the timeliness of data requires 
consideration of the time gap between the moment an 
accident occurs and the moment it is recorded.

Timeliness =

∑Nrecord
i=1

(
Treport, i − Toccurrence, i

)

Nrecord 
Where Treport, i represents the time of accident i reported, Toccurrence, i represents the 
time of accident i occurred.

Narrative 
assessment

Narrative In this study, 10% of the accident data will be selected 
as a sample for narrative assessment. This sample will 
be used to calculate narratives of more than 50 words 
and to check whether they provide information about 
the variables identified in the dataset (1 if yes, 0 if no).

Narrative =
1

Nvariables

∑Nvariables

j=1

Nrecord, j

Nrecord
× 100% 

Where Nrecord, j represents the number of accident statistics where variable j exists.

Data availability

Data will be made available on request. 
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