

LJMU Research Online

Cox, AM, Langan-Evans, C, Jenkins, D, Reale, R, Pelly, F and Slater, GJ

Body Mass Management Practices of Olympic Weightlifting Athletes

http://researchonline.ljmu.ac.uk/id/eprint/24821/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Cox, AM, Langan-Evans, C, Jenkins, D, Reale, R, Pelly, F and Slater, GJ (2024) Body Mass Management Practices of Olympic Weightlifting Athletes. International Journal of Sport Nutrition and Exercise Metabolism. pp. 1-9. ISSN 1526-484X

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Introduction

1 Olympic weightlifting (OWL) is one of seven weight-category sports in the Olympic Games, 2 accommodating a wider range of categories than any other sport. In each weight category, an athlete's 3 heaviest successful attempt in both the snatch and clean and jerk is combined, and the athlete with the 4 highest combined weight wins the competition. OWL is unique amongst weight category sports, given 5 the critical role velocity and force play in defining success (Fry et al., 2006).

6

7 Athletes in weight-category sports typically use a range of acute weight loss (AWL i.e., weight loss 8 undertaken in the final days and hours prior to competition) and/or chronic weight loss (CWL i.e., 9 weight loss in the weeks to months prior to competition) strategies. Athletes may use these strategies to 10 compete in a category lighter than their habitual training weight, under the premise this provides a 11 competitive advantage over smaller opponents (Burke et al., 2021). Concerns have been raised about 12 the health and performance implications of the body mass (BM) management practices employed by 13 these athletes (Artioli et al., 2010; Reale et al., 2018). AWL has been linked to adverse health outcomes 14 (Barley et al., 2019; Barley et al., 2018; Berkovich et al., 2019; Kasper et al., 2019), and in some cases, 15 death (Centers for Disease & Prevention, 1998). The majority of research exploring the BM 16 management practices of athletes in weight category sports has remained focused on combat sports 17 (Anyzewska et al., 2018; Barley et al., 2019; Brito et al., 2012; Connor & Egan, 2019; da Silva Santos 18 et al., 2016; Franchini et al., 2012; Hillier et al., 2019; Matthews et al., 2019; Park et al., 2019; Reale et 19 al., 2018). Less is known about the BM management practices of athletes in OWL, despite the former 20 being a summer Olympic Games event for over 100 years.

21

OWL athletes physical traits are less impacted by acute compromises in hydration status (Barley et al., 2018) and muscle energy reserves (Barley et al., 2018; Pallarés et al., 2016; Reale et al., 2018; Schytz et al., 2023). This may leave OWL athletes curious about the use of common AWL strategies targeted at the manipulation of total body water (TBW). Indeed, the most commonly used methods reported by powerlifters include water loading (Campbell et al., 2023; Nolan et al., 2022) and fluid restriction 27 (Campbell et al., 2023; King et al., 2023; Kwan & Helms, 2022; Nolan et al., 2022). Although the 28 physical demands of powerlifting and OWL are similar (Gee et al., 2023; Keogh et al., 2007; Serrano 29 et al., 2019), OWL has a shorter time between weigh-in and competition, and a shorter competition 30 duration (Burke et al., 2021), which may impact the athletes' ability to recover from any AWL 31 strategies. These individual sport nuances, including time frame between weigh-in and competition, 32 the requirement for repeat weigh-ins, and culture of weight loss, makes inferring athlete practices and 33 outcomes between sports inappropriate (Burke et al., 2021; Reale et al., 2017). To our knowledge, only 34 one other study has assessed the BM management practices of OWL athletes, undertaken on a small 35 sample of athletes using a tool not validated for that population (Gee et al., 2023). Our research group 36 has recently validated a rapid weight loss questionnaire in OWL athletes (Cox et al 2024), creating an 37 opportunity to better explore the BM management practices of OWL athletes.

38

This study aimed to investigate the BM management practices of competitive male and female OWL athletes using a validated questionnaire (Cox et al 2024). It was hypothesised OWL athletes compete in a weight category lighter than their habitual training weight, achieved via a range of acute and/or chronic BM management practices. It was also hypothesised athletes of higher calibre would be more likely to use AWL practices and that there would be no impact of sex on BM management practices.

44

45 **Methods:**

46 Competitive male and female OWL athletes (>18 years) at Queensland state championships in Brisbane, 47 Australia, were invited to complete an anonymous online questionnaire (voluntary response sampling). 48 The survey was advertised for seven days prior to the competition on social media platforms, including 49 Instagram and Facebook. Additionally, eight flyers were posted around the competition venue, featuring 50 a QR code for easy access to the questionnaire. To facilitate survey completion, two iPads were made 51 available for athletes. Announcers at the event also promoted the survey. A designated location was 52 manned throughout competition hours where athletes were encouraged to fill out the survey. The survey 53 was retrospective in nature, asking athletes to focus on competitions during the previous two years. This 54 research project was approved by the Human Research Ethics Committee (University of the Sunshine

Coast, Australia); ethics approval number S221696, and participants provided informed consent after
having the study explained either verbally and/or in writing.

57

58 The survey used in this investigation has previously been validated in OWL athletes (Cox et al, 2024).
59 It was comprised of five different sections including demographics, training and competition history,
60 weight history (maximum and usual weight loss), source of influence on BM management strategies
61 and BM management practices i.e., retrospective exploration of usual practices. Athlete's responses
62 were collected online via Qualtrics Core XM survey software (Qualtrics LLC, Provo, Utah).

63

64 While athletes were required to specify their usual competition weight category in the previous two 65 years, these categories were subsequently consolidated by researchers into the following four weight 66 category groups for both sexes. Light weight (\leq 73kg for male athletes, \leq 55kg for female athletes), 67 middle weight (>73kg to \leq 96kg for male athletes, and >55kg to \leq 71kg for female athletes), heavy 68 weight (>96kg to \leq 109kg for male athletes and >71kg to \leq 87kg female athletes) and superheavy weight 69 (+109kg for male athletes, and +87kg for female athletes). The calibre of each athlete was classified 70 using a recognised tiering system, where 1 denotes recreational level and 5 indicates world-class 71 standing (McKay et al., 2022).

72

73 Statistical analysis:

74 Descriptive statistics (i.e., mean, standard deviation (SD), range and frequency analysis) were used to 75 represent subject characteristics and responses to survey questions providing ordinal and nominal data. 76 Numeric values for the question 'how much weight do you usually lose in the 24 hours, week, month 77 and two months prior to competition', were provided as a range. When analysed, the mean of the range 78 was used, e.g., 0-1 = 0.5kg. The result for the question related to source of influence was consolidated 79 by researchers into three groups, 'highly influential' (highly influential and very highly influential 80 questionnaire responses), 'a little influential', and 'not influential'. The questionnaire response 'unsure' 81 was removed for analysis. For analysis of calibre, tiers were consolidated into two groups, (tiers 1-2, 82 and tiers 3-5). A one-way ANOVA was used to compare influence against independent variables (sex,

athlete calibre, weight category group). When a significant effect was identified (P = <0.05), post hoc testing was performed using Chi-Square test for independence. Frequency analysis for male and female BM practices were split into 'currently using' and 'not using' and compared against independent variables. When a significant effect was identified (P = <0.05), post hoc testing was performed using Spearman's Rho test.

88

89 **Results:**

90 Of the 174 athletes who initiated the survey, 25 incomplete data sets (n = 23 did not identify if they had 91 made weight, n = 2 did not answer sources of influences/BM practices) were removed from all analysis. 92 A descriptive analysis of the remaining athletes is presented in Table 1, while athlete calibre is presented 93 in Table 2. Lower calibre athletes were more likely to use low fibre (P = .014; r = .218), spitting (P =94 .003; r = .290) and sauna (P = .010; r = .245) to make weight. Of the 149 athletes, 76% of athletes 95 have previously used CWL and/or AWL strategies to make weight. Three of these athletes 96 acknowledged failing to make weight for a competition.

97

In the previous two years, 51% (n = 68) of athletes had competed at a BM outside of their usual category. The most common reasons for competing in another weight category are specified in Table 3. Sources of information influencing the BM management practices of OWL athletes are presented in Table 4. Female athletes identified dietitians/nutritionists as a highly influential source of information (P =0.009; r = -.250), but there were no other differences identified according to athlete calibre, weight category or training age/competition age.

104

Table 5a and Table 5b present the self-reported BM management methods and timeframe of use amongst female and male athletes, respectively. The most prevalent practices used by females included gradual dieting (83%), fluid restriction (71%), a low carbohydrate diet (52%) and low food weight/high calorie options (51%). Males identified gradual dieting (74%), fluid restriction (71%) and low food/high calorie food options (55%) as their most commonly used practices. Female athletes were more likely to 110 use gradual dieting (P = .043; r = -.192) and were less likely to increase their exercise (P = .063; r = -111 .177) and utilise fasting (P = .035; r = .201) in comparison to their male counterparts.

112

113 **Discussion:**

114 This is the first study to assess the BM management practices of both male and female OWL athletes 115 prior to competition using a tool validated specifically for an OWL population. The majority of OWL 116 athletes competed at a BM lighter than their habitual training weight, aligning with other preliminary 117 findings in OWL athletes (Gee et al., 2023) and other weight category sports (Alderman et al., 2004; 118 Anyzewska et al., 2018; Artioli et al., 2010; Brito et al., 2012; Campbell et al., 2023; Connor & Egan, 119 2019; Franchini et al., 2012; Hillier et al., 2019; King et al., 2023; Kwan & Helms, 2022; Matthews et 120 al., 2019; Nolan et al., 2022; Park et al., 2019; Reale et al., 2018). Usual BM loss (2-3%) achieved in 121 the week before competition is similar to that identified in other weight category sports with a shorter 122 post weigh-in recovery period (<3 hours) (Campbell et al., 2023; Reale et al., 2018). Athletes used a 123 combination of both CWL and AWL strategies, with gradual dieting, fluid restriction and low food 124 weight/high calorie options being the most commonly used strategies. Sex differences were noted for 125 gradual dieting, fasting and increase in exercise. Lower calibre athletes were more likely to use AWL 126 practices (sauna, spitting, low fibre diets) to make weight. These practices did not vary by weight 127 category.

128

129 While the majority of OWL athletes acknowledged the use of AWL strategies, especially those 130 promoting loss of TBW, the BM reductions were similar to that potentially achieved during a normal 131 training session (Gee et al., 2023; Keogh et al., 2007; Serrano et al., 2019). Typical BM loss observed 132 in the week prior to competition aligns with current American College of Sports Medicine guidelines 133 (<3% of total BM) (Burke et al., 2021). However, outliers were evident, with a small number of athletes 134 reporting typical losses of up to 8% of BM in the week prior to competition, similar to typical losses 135 identified in combat athletes (Morton et al., 2010; Reale et al., 2018). Adverse health outcomes have 136 been identified in combat sports athletes undertaking similar amounts of AWL (Franchini et al., 2012; 137 Kasper et al., 2019). Athletes with a short post weigh-in recovery period (\leq 3 hours) have been advised against AWL of greater than 5% of total BM (Burke et al., 2021), presumably due to potential adverse
effects on health and performance. However, without an understanding of an athletes' post-weigh-in
recovery practices, it is difficult to pass comment on the potential performance implications, warranting
further investigation in OWL athletes.

142

143 Manipulation of TBW is common amongst weight category sport athletes, given it has the capacity for 144 large and rapid fluctuations that directly impact BM (Sawka et al., 2005). The reliance on fluid 145 restriction observed in OWL athletes (Durguerian et al., 2016; Gee et al., 2023) is similar to reports in 146 other weight category sports (Anyzewska et al., 2018; Brito et al., 2012; Connor & Egan, 2019; Gee et 147 al., 2023; Matthews et al., 2019; Park et al., 2019; Reale et al., 2018). While the majority of combat 148 sport athletes (Reale et al., 2018) undertake additional exercise to facilitate AWL, a minority of OWL 149 athletes engaged in additional exercise (Table 5a and 5b), similar to reports in powerlifting (Campbell 150 et al., 2023; Kwan & Helms, 2022; Nolan et al., 2022). Interestingly, a similar proportion of OWL 151 athletes used passive sweating (saunas and hot baths) to reduce TBW. The limited use of aerobic 152 training in OWL (King et al., 2023) may likely influence the preference for passive techniques. Passive 153 sweat loss may have greater deleterious impact on physiological and psychological function (altered 154 mood states) (Barley et al., 2018; Benton, 2011; Durguerian et al., 2016), and performance, posing a 155 more serious recovery challenge (Barley et al., 2018). Indeed, passive sweating techniques have been 156 shown to increase the risk of heat-related illnesses, especially in athletes, who have a brief recovery 157 period (less than 3 hours), and lose more than 3% of total BM (Barley et al., 2019).

158

Manipulation of gastrointestinal (GI) content is another common AWL strategy used amongst athletes in weight category sports (Brito et al., 2012; da Silva Santos et al., 2016; Nolan et al., 2022; Reale et al., 2017). Approximately one-third of OWL athletes manipulated their GI contents to promote BM loss, a practice which is more prevalent among combat (Reale et al., 2018) and powerlifting athletes (Nolan et al., 2022). A small proportion (10%) of OWL athletes resorted to laxatives to alter GI contents in the day prior to competition, similar to previous reports in combat sports (Artioli et al., 2010; Filaire et al., 2007), and recent OWL literature (Gee et al., 2023). While laxatives can efficiently clear faecal matter, they can adversely influence exercise capacity (Holte et al., 2004). A low-fibre diet (<10g of
fibre over 5-7 days) can also be effective in clearing GI contents and has been linked to an estimated
0.7% decrease in total BM (Foo et al., 2022). Given its ability for repeatable use, with no apparent
adverse performance implications, and only minimal physiological disturbances (decreased satiety)
(Foo et al., 2022), a low-fibre diet is potentially a BM management strategy that could be considered
by more OWL athletes.

172

173 OWL athletes utilise gradual dieting as a means of making weight, similar to results observed in athletes 174 in combat (Reale et al., 2018) and strength-based sports (Campbell et al., 2023; King et al., 2023; Kwan 175 & Helms, 2022; Nolan et al., 2022). Gradual dieting involves a systematic reduction in energy intake 176 over an extended time period, and is often complemented by an increase in exercise to promote steady 177 weight loss, while preserving muscle mass and avoiding metabolic disruptions (Mountjoy et al., 2023). 178 Energy expenditure inherent to OWL training is similar to that in powerlifting, but likely less intensive 179 than endurance and combat sports (King et al., 2023). While these strategies may reduce the immediate 180 physiological stressors of AWL, if not managed appropriately could result in low energy availability, 181 and associated adverse health (Mountjoy et al., 2018) and performance implications related to relative 182 energy deficiency in sport (REDs) (Benton, 2011; Kasper et al., 2019; Mountjoy et al., 2023). The 183 majority of research addresses the prevalence, magnitude and performance implications of AWL 184 strategies amongst athletes (da Silva Santos et al., 2016; Kasper et al., 2019), but few address the 185 impacts of CWL in weight category sports (Langan-Evans, Germaine, et al., 2021; Mountjoy et al., 186 2023). Further research into the methods and impact of gradual dieting amongst OWL athletes is 187 warranted, including the risk of low energy availability and subsequent REDs.

188

Male OWL athletes did not identify preference for any one source of influence over their BM management practices which contrasts with combat athletes, where coaches and training partners have been consistently identified as influential (Campbell et al., 2023; Connor & Egan, 2019; Kwan & Helms, 2022; Nolan et al., 2022; Reale et al., 2018). This may stem from former athletes transitioning into coaching roles, perpetuating pre-existing cultural attitudes within weight category sports (Brown 194 et al., 2012; Filaire et al., 2007; Purcell et al., 2022; Reale et al., 2018). Interestingly, female OWL 195 athletes highlighted dietitians/nutritionists as very influential, indicating that evidence-based advice 196 regarding BM management practices is deemed as impactful. Female OWL athletes were more likely 197 to focus on CWL, utilising gradual dieting, with less reliance on AWL strategies, including fasting and 198 increased exercise. This variation in preference could be indicative of wider sex-based differences in 199 dietary habits and approaches (Brown et al., 2012; Grzymislawska et al., 2020). Indeed, females often 200 place a greater emphasis on nutrition and actively managing their BM, likely influenced by societal 201 expectations that prioritise appearance and body image (Brown et al., 2012; Grzymislawska et al., 202 2020). The existing body of research is yet to feature sex-based interventions within weight category 203 sports (Langan-Evans, Reale, et al., 2021).

204

205 Limitations

206 This study used a BM management questionnaire for which construct validity was recommended during 207 data capture (Cox et al., 2024), possibly by capturing biochemical measures to confirm the athlete's 208 hydration and energy status. Unfortunately, this was deemed too intrusive and costly to implement 209 directly prior to competition. In hindsight, incorporating a rapid weight loss score (Artioli et al., 2010) 210 to measure the 'intensity of application' for each AWL and CWL strategy may have been beneficial. 211 Such a scale would offer a means of facilitating a more straightforward comparison with other studies 212 (Artioli et al., 2010; Berkovich et al., 2019; Nolan et al., 2022; Reale et al., 2017). It is recognised that 213 self-reported data can be susceptible to recall bias (Althubaiti, 2016). Measures were taken to mitigate 214 this by validating the questionnaire specifically for OWL athletes, specifying timeframes, avoiding 215 leading questions, and utilising the imminent OWL competition to enhance recall (Althubaiti, 2016). It 216 should be noted that only a third of the OWL athletes surveyed in this study compete at a national or 217 international level. This underrepresentation could potentially skew the observed relationships between 218 athlete calibre and weight loss methods. Thus, the impact of athlete calibre on BM management 219 practices in OWL warrants further exploration, especially in international competitions.

220

221 Conclusion

222 This research offers new insights into the BM management practices of OWL athletes, identifying that 223 the majority (76%) of athletes compete at a BM lighter than their habitual training weight. The 224 prevalence and magnitude of weight loss (2-3%) achieved in the week before competition are trends 225 consistent across sex, athlete calibre and weight category. Athletes use a combination of both CWL and AWL strategies, with gradual dieting, fluid restriction and low food weight/high calorie options being 226 227 the most commonly used strategies. Lower calibre athletes were more likely to use AWL practices 228 (sauna, spitting, low fibre diets) to make weight. While male athletes acknowledged a wide-ranging 229 impact from various influences on their BM management practices, females sought guidance from 230 dietitians/nutritionists, which may reflect sex differences in dietary habits and approaches. This may be 231 important to consider in any subsequent interventions used to influence an athlete's BM management 232 practices. Further research into the recovery practices of athletes following weigh-in is warranted and 233 should be complemented by an exploration of the performance implications of OWL athletes BM 234 management practices.

				We	ight Category						
		Male			Female						
	Light Weight (n = 5)	Middle- Weight (n = 38)	Heavy- Weight (<i>n</i> = 9)	Super heavy Weight (n = 3)	Light Weight (<i>n</i> = 18)	Middle-Weight (n = 49)	Heavy-Weight (<i>n</i> = 23)	Super Heavy weight $(n = 4)$			
Age (y)	34±8	29±11	38±16	31±3	33±14	32±11	32±10	24±5			
Weight (kg)	81.4±6.6	84.1±10.1	101.8 ± 7.7	110 ± 28	55.7±3.9	67.2±5.4	81.7±6.4	117.3±24			
Height (cm)	172.6±2	174.9 ± 5.9	185.4±9.1	182±9.5	155.3±4.6	163.5±6.8	170.2±6.4	171±3			
Age began practicing OWL	21±6	23±8	25±8	17±6	29±12	27±9	$28\pm\!8$	18±9			
Age began competing in OWL	22±5	24±9	28±9	17±6	30±12	28±10	29±9	18.9			
Competitions in the past 12 months?	5±3	3±2	2 ± 1	2 ± 2	3±1	3±2	3±3	2 ± 1			
Athletes that have made weight before.											
n (%)	5 (100)	28 (74)	6 (67)	3 (100)	18 (100)	34 (69)	16 (70)	1 (25)			
What is the most weight you have ever los	st to compete (kg	g)?				~ /					
Mean ± SD	4±1.3	4.3±1.9	4.5±2.3	9±2.6	2.2 ± 0.9	3.4±1.7	3.7±2.7	2			
Range	2-5	2-8	2-8	7-12	1-5	1-9	1-11				
What is the most weight you have ever los	st in the week be	fore competition	n (kg)?								
Mean ± SD %	1.8 ± 0.4	3±1.4	4.5±2.6	4.7±1.5	$1.7{\pm}0.8$	2 ± 1.7	2.2±1.2	1			
Range %	1-2	1-7	2-8	3-6	1-3	1-5	1.5				
How much do you usually lose in the last	24 hours before	competitions (kg	g)?								
Mean ± SD %	1.5 ± 1.1	1±0.8	2.8±2.7	2.2 ± 1.2	0.9 ± 0.5	0.6 ± 0.4	0.7±0.4	0.5			
Range %	0.5-3.5	0.5-3.5	0.5-7.5	1.5-3.5	0.5-1.5	0.5-1.5	0.5-1.5				
How much do you usually lose in the last	week before cor	npetitions (kg)?									
Mean ± SD %	1.1±0.5	2±1.3	3±2.5	2.2 ± 1.2	1.1 ± 0.8	1.3±0.8	1.4±0.7	1.5			
Range %	0.5-1.5	0.5-5.5	0.5-7.5	1.5-5.5	0.5-3.5	0.5-3.5	0.5-3.5				
How much do you usually lose in the last	month before co	mpetitions (kg)?	2								
Mean ± SD %	3.5±1.3	2.1±1.6	2.7±0.5	3.5±2	1.9 ± 1.4	$1.9{\pm}1.4$	2.1±1	1.5			
Range %	1.5-5.5	0.5-5.5	0.5-7.5	1.5-5.5	0.5-5.5	0.5-5.5	0.5-3.5				
How much do you usually cut in the last 2	months before	competitions (kg	()?								
Mean ± SD %	3.1±2.2	2.3±2	2.5±0.5	2.2 ± 2.9	1.8 ± 1.5	$1.9{\pm}1.6$	2.4±1.7	3.5			
Range %	0.5-5.5	0.5-7.5	0.5-7.5	0.5-5.5	0.5-5.5	0.5-5.5	0.5-5.5				
How much do you usually regain in the w	eek after compe	tition (kg)?									
Mean \pm SD %	1.5±0.3	2.4±1.2	2.5±1.4	4.2±2.9	$1.4{\pm}0.7$	1.7±1	2 ± 1	1			
Range %	1-2	0-5	1.5-5	2-7.5	0-2.5	0-4	1-4				

Table 1: Olympic weightlifting (OWL) athletes characteristics according to weight categories.

	Calibre**	Male <i>n</i> = 55 (%)	Female <i>n</i> = 94 (%)	
	Tier 5	0 (0)	3 (3)	
	Tier 4	8 (15)	4 (3)	
	Tier 3	13 (24)	24 (26)	
	Tier 2	28 (51)	38 (40)	
	Tier 1	6 (11)	25(27)	
238 239 240 241	*(McKay et al., 2022) T active. ** All P = >0.05	Fier 5: World Class; Tier 4: Elite/Internation	onal level; Tier 3: National Level; Tier	2: Trained/developmental; Tier 1: Recreational
242				
243				
244				
245				
246				
247				
248				

Table 2. Calibre of Olympic Weightlifting athletes who completed the questionnaire.*

Table 3. Rationale for Olympic weightlifting athletes competing in a different weight category than their usual weight category (n = 68).

Reasons:	Female (%)	Male (%)
Did not need to make weight for that competition	24	19
It was too difficult to make weight for that competition	28	5
Wanted to be more competitive in a different weight category	12	9
Wanted to increase/decrease lean mass/fat mass into the next body weight category	7	10
To qualify for states/nationals/international competitions	7	6
Returning to sport from injury	6	4
No longer competitive in the weight category	3	2
Lack of understanding on how to make weight into a different category	2	0
Other*	16	9

252 *Health reasons, increase in height

253

Table 4. Frequency analysis of the persons/sources who are influential on the weight management behaviours reported by participants in Olympic

255 weightlifting.

		Male <i>n</i> = 42		Female <i>n</i> = 69					
Person/Source	Not Influential	A little	Highly	Not Influential	A little	Highly			
		Influential	Influential		Influential	Influential			
Dietitian/Nutritionist	23	4	14	20	10	40*			
OWL Coach	19	11	12	22	26	20			
PT/Other coach	30	10	2	43	15	7			
Internet	29	8	3	48	16	3			
Journal articles/Textbooks	28	8	5	45	18	6			
Social Media	31	7	1	55	10	3			
OWL/Training partner	28	8	4	44	16	8			
Doctor	37	1	1	64	3	1			
Parents/partner	37	2	2	64	3	2			
Other: Self-trial and error			3			4			

6 For analysis, nutritionist (n = 2) was collapsed into dietitian; partner (n = 1) was collapsed into parents. * P = .006; r = .019.

256 257

Weight loss methods	Never used	I don't use anymore	<1 day	<2 days	<3 days	<4 days	<1 week	<2 week	<3 weeks	<4 weeks	>4 weeks
Chronic weight loss											
Gradual Dieting	4	8	1			4	5	10	5	14	18
Increase exercise	31	6		1	1	2	12	2	3	6	5
Acute gut content manipula	ation										
Skipping 1-2 meals	39	10	8	6	2			3			1
Low fibre	42	4	5	6	5	4	3				
Low wt/high calorie*	32	1	15	6	3	2	7	2			1
Laxatives	57	6	1	2			3				
Acute total body water man	nipulation										
Restrict fluid	12	8	40	7		1	1				
Hot baths	38	5	15	5	1	1	3				
Saunas	33	5	14	7	2		6	1		1	
Heated rooms	62	3	1	1		1	1				
Water loading	33	12	2	2	2	8	9			1	
Low carbohydrate diet	27	7	4	5	4	6	13	1		1	1
Low salt	33	4	3	6	4	3	16				1
Wearing rubber suits	67	1	1								
Spitting	55	4	10								
Other											
Fasting	43	11	7	4		1	1	2			
Diuretics	66	2		1							
Diet pills	69										
Fat burners	63	5									1
Vomiting	67	2									

Table 5a. Frequency analysis of self-reported methods of body mass loss and timeframe of use amongst female athletes (n = 69).

259 *Low weight/high calorie option

260

261

Weight Loss Methods	Never used	I don't use anymore	<1 day	<2 days	<3 days	<4 days	<1 week	<2 week	<3 weeks	<4 weeks	>4 weeks
Chronic Weight Loss											
Gradual Dieting	9	3			1		3	7	5	7	7
Increase exercise	27	3	1				1	3	2	3	2
Acute gut content mani	pulation										
Skipping 1-2 meals	19	5	6	2	2	1	3	1		1	2
Low fibre	30		2	4	3	1	2				
Low wt/high calorie	19		11	3	4		2	1		1	1
Laxatives	36	1	4		1						
Acute total body water	manipulation										
Restrict fluid	8	3	24	6			1				
Hot baths	20	9	8				1			1	3
Saunas	19	8	8	1		2				1	3
Heated rooms	34	5	2	1							
Water loading	20	7	2	4	3	1	5				
Low carbohydrate	19	3	2	4	3	2	6	1		1	1
Low salt	23		4	5	2	2	3	3			
Wearing rubber suits	36	4	1					1			
Spitting	34	4	4								
Other											
Fasting	19	6	10	1	1		2			1	2
Diuretics	37	3	1	1							
Diet pills	41	1									
Fat burners	41	1									
Vomiting	41	1									

Table 5b. Frequency analysis of self-reported methods of body mass loss and timeframe of use amongst male athletes (n = 42).

263 *Low food weight/high calorie food option

- 264 Acknowledgements: The authors would like to thank the Olympic weightlifting athletes who
- completed the survey.
- 266 Authorship: The authors' responsibilities were as follows; AC, GS, FP, DJ, RR, and CLE helped in
- the study concept and design; AC and GS in the acquisition of data; AC and GS assisted in analysis and
- interpretation of data; GS helped in drafting the manuscript; AC, GS, FP, DJ, RR, and CLE assisted in
- the critical revision of the manuscript for important intellectual content, and GS in study supervision.
- 270 AC had full access to all the data in the investigation and takes responsibility for the integrity and the
- accuracy of the data analysis.
- 272 **Conflict of interest:** The results of this investigation are presented clearly, honestly, and without
- 273 fabrication, falsification, or inappropriate data manipulation. The main author AC business does
- sponsor Queensland Weightlifting events otherwise there are no conflicts of interest to declare.
- 275 **Funding sources:** There were no funding sources for the present investigation.
- 276 **Protocol:** Nil required
- 277 **References**
- Alderman, B., Landers, D. M., Carlson, J., & Scott, J. R. (2004). Factors related to rapid weight loss
 practices among international-style wrestlers. *Med Sci Sports Exerc*, *36*(2), 249-252.
 <u>https://doi.org/10.1249/01.MSS.0000113668.03443.66</u>
- Althubaiti, A. (2016). Information bias in health research: definition, pitfalls, and adjustment
 methods. J Multidiscip Healthc, 9, 211-217. <u>https://doi.org/10.2147/JMDH.S104807</u>
- Anyzewska, A., Dzierzanowski, I., Wozniak, A., Leonkiewicz, M., & Wawrzyniak, A. (2018). Rapid
 Weight Loss and Dietary Inadequacies among Martial Arts Practitioners from Poland. Int J
 Environ Res Public Health, 15(11). https://doi.org/10.3390/ijerph15112476
- Artioli, G. G., Gualano, B., Franchini, E., Scagliusi, F. B., Takesian, M., Fuchs, M., & Lancha, A. H.,
 Jr. (2010). Prevalence, magnitude, and methods of rapid weight loss among judo competitors.
 Med Sci Sports Exerc, 42(3), 436-442. <u>https://doi.org/10.1249/MSS.0b013e3181ba8055</u>
- Barley, O. R., Chapman, D. W., & Abbiss, C. R. (2019). The Current State of Weight-Cutting in Combat Sports-Weight-Cutting in Combat Sports. *Sports (Basel)*, 7(5).
 https://doi.org/10.3390/sports7050123
- Barley, O. R., Chapman, D. W., Blazevich, A. J., & Abbiss, C. R. (2018). Acute Dehydration Impairs
 Endurance Without Modulating Neuromuscular Function. *Front Physiol*, 9, 1562.
 https://doi.org/10.3389/fphys.2018.01562
- Benton, D. (2011). Dehydration influences mood and cognition: a plausible hypothesis? *Nutrients*,
 3(5), 555-573. <u>https://doi.org/10.3390/nu3050555</u>
- Berkovich, B. E., Stark, A. H., Eliakim, A., Nemet, D., & Sinai, T. (2019). Rapid Weight Loss in
 Competitive Judo and Taekwondo Athletes: Attitudes and Practices of Coaches and Trainers.
 Int J Sport Nutr Exerc Metab, 29(5), 532-538. https://doi.org/10.1123/ijsnem.2018-0367
- Brito, C. J., Roas, A. F., Brito, I. S., Marins, J. C., Cordova, C., & Franchini, E. (2012). Methods of
 body mass reduction by combat sport athletes. *Int J Sport Nutr Exerc Metab*, 22(2), 89-97.
 <u>https://doi.org/10.1123/ijsnem.22.2.89</u>

303	Brown A. I. Parman K. M. Budat D. A. & Craighead I. W. (2012). Disordered eating
303	prefectionism and food miles. Est Paken, 12(1), 247, 252
205	perfectionism, and rood rules. Eur Benav, $15(4)$, $547-555$.
206	$\frac{\text{nups://doi.org/10.1010/j.ealben.2012.05.011}}{Durles I. M. Sleter C. J. Methaws I. I. Larger Evens C. & Herswill C. A. (2021). ACSM$
207	Burke, L. M., Slater, G. J., Matthews, J. J., Langan-Evans, C., & Horswill, C. A. (2021). ACSM
307	Expert Consensus Statement on Weight Loss in Weight-Category Sports. Curr Sports Med
308	<i>Rep</i> , 20(4), 199-217. <u>https://doi.org/10.1249/JSR.00000000000831</u>
309	Campbell, P., Martin, D., Bargh, M. J., & Gee, T. I. (2023). A comparison of rapid weight loss
310	practices within international, national and regional powerlifters. <i>Nutr Health</i> ,
311	2601060231201892. <u>https://doi.org/10.117//02601060231201892</u>
312	Centers for Disease, C., & Prevention. (1998). Hyperthermia and dehydration-related deaths
313	associated with intentional rapid weight loss in three collegiate wrestlersNorth Carolina,
314	Wisconsin, and Michigan, November-December 1997. MMWR Morb Mortal Wkly Rep, 47(6),
315	105-108. https://www.ncbi.nlm.nih.gov/pubmed/9480411
316	Connor, J., & Egan, B. (2019). Prevalence, Magnitude and Methods of Rapid Weight Loss Reported
317	by Male Mixed Martial Arts Athletes in Ireland. Sports (Basel), 7(9).
318	https://doi.org/10.3390/sports7090206
319	da Silva Santos, J. F., Takito, M. Y., Artioli, G. G., & Franchini, E. (2016). Weight loss practices in
320	Taekwondo athletes of different competitive levels. J Exerc Rehabil, 12(3), 202-208.
321	https://doi.org/10.12965/jer.1632610.305
322	Durguerian, A., Bougard, C., Drogou, C., Sauvet, F., Chennaoui, M., & Filaire, E. (2016). Weight
323	Loss, Performance and Psychological Related States in High-level Weightlifters. Int J Sports
324	Med, 37(3), 230-238. https://doi.org/10.1055/s-0035-1555852
325	Filaire, E., Rouveix, M., Pannafieux, C., & Ferrand, C. (2007). Eating Attitudes, Perfectionism and
326	Body-esteem of Elite Male Judoists and Cyclists. J Sports Sci Med, 6(1), 50-57.
327	https://www.ncbi.nlm.nih.gov/pubmed/24149224
328	Foo, W. L., Harrison, J. D., Mhizha, F. T., Langan-Evans, C., Morton, J. P., Pugh, J. N., & Areta, J. L.
329	(2022). A Short-Term Low-Fiber Diet Reduces Body Mass in Healthy Young Men:
330	Implications for Weight-Sensitive Sports. Int J Sport Nutr Exerc Metab, 32(4), 256-264.
331	https://doi.org/10.1123/ijsnem.2021-0324
332	Franchini, E., Brito, C. J., & Artioli, G. G. (2012). Weight loss in combat sports: physiological,
333	psychological and performance effects. J Int Soc Sports Nutr, 9(1), 52.
334	https://doi.org/10.1186/1550-2783-9-52
335	Fry, A. C., Ciroslan, D., Fry, M. D., LeRoux, C. D., Schilling, B. K., & Chiu, L. Z. (2006).
336	Anthropometric and performance variables discriminating elite American junior men
337	weightlifters. J Strength Cond Res. 20(4), 861-866, https://doi.org/10.1519/R-18355.1
338	Gee, T. I., Campbell, P., Bargh, M. J., & Martin, D. (2023). Rapid Weight Loss Practices Within
339	Olympic Weightlifters, J Strength Cond Res. 37(10), 2046-2051.
340	https://doi.org/10.1519/JSC.00000000004507
341	Grzymislawska, M., Puch, E. A., Zawada, A., & Grzymislawski, M. (2020). Do nutritional behaviors
342	depend on biological sex and cultural gender? Adv Clin Exp Med. 29(1), 165-172.
343	https://doi.org/10.17219/acem/111817
344	Hillier M Sutton L. James L. Moitabedi D. Keav N. & Hind K (2019) High Prevalence and
345	Magnitude of Rapid Weight Loss in Mixed Martial Arts Athletes Int I Sport Nutr Exerc
346	Metab 29(5) 512-517 https://doi.org/10.1123/jisnem 2018-0393
347	Holte K Nielsen K G Madsen J L & Kehlet H (2004) Physiologic effects of bowel
348	preparation Dis Colon Rectum 47(8) 1397-1402 https://doi.org/10.1007/s10350-004-0592-1
349	Kasper A M Crighton B Langan-Evans C Riley P Sharma A Close G L & Morton I P
350	(2019) Case Study: Extreme Weight Making Causes Relative Energy Deficiency
351	Dehydration, and Acute Kidney Injury in a Male Mixed Martial Arts Athlete. Int I Sport Nutr
352	Exerc Metab 29(3) 331-338 https://doi.org/10.1123/ijsnem 2018-0029
353	Keoch I W Hume P A Pearson S N & Mellow P (2007) Anthronometric dimensions of male
354	powerlifters of varying body mass I Sports Sci 25(12) 1365-1376
355	https://doi.org/10.1080/02640410601059630

- King, A., Kwan, K., Jukic, I., Zinn, C., & Helms, E. (2023). The general nutrition practices of
 competitive powerlifters vary by competitive calibre and sex, weight, and age class. *Eur J Nutr.* https://doi.org/10.1007/s00394-023-03233-6
- Kwan, K., & Helms, E. (2022). Prevalence, Magnitude, and Methods of Weight Cutting Used by
 World Class Powerlifters. *J Strength Cond Res*, *36*(4), 998-1002.
 https://doi.org/10.1519/JSC.00000000004199
- Langan-Evans, C., Germaine, M., Artukovic, M., Oxborough, D. L., Areta, J. L., Close, G. L., &
 Morton, J. P. (2021). The Psychological and Physiological Consequences of Low Energy
 Availability in a Male Combat Sport Athlete. *Med Sci Sports Exerc*, 53(4), 673-683.
 https://doi.org/10.1249/MSS.00000000002519
- Langan-Evans, C., Reale, R., Sullivan, J., & Martin, D. (2021). Nutritional Considerations for Female
 Athletes in Weight Category Sports. *Eur J Sport Sci*, 1-13.
 <u>https://doi.org/10.1080/17461391.2021.1936655</u>
- Matthews, J. J., Stanhope, E. N., Godwin, M. S., Holmes, M. E. J., & Artioli, G. G. (2019). The
 Magnitude of Rapid Weight Loss and Rapid Weight Gain in Combat Sport Athletes Preparing
 for Competition: A Systematic Review. *Int J Sport Nutr Exerc Metab*, 29(4), 441-452.
 https://doi.org/10.1123/ijsnem.2018-0165
- McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L.,
 Sheppard, J., & Burke, L. M. (2022). Defining Training and Performance Caliber: A
 Participant Classification Framework. *Int J Sports Physiol Perform*, *17*(2), 317-331.
 https://doi.org/10.1123/ijspp.2021-0451
- Morton, J. P., Robertson, C., Sutton, L., & MacLaren, D. P. (2010). Making the weight: a case study
 from professional boxing. *Int J Sport Nutr Exerc Metab*, 20(1), 80-85.
 https://doi.org/10.1123/ijsnem.20.1.80
- Mountjoy, M., Ackerman, K. E., Bailey, D. M., Burke, L. M., Constantini, N., Hackney, A. C.,
 Heikura, I. A., Melin, A., Pensgaard, A. M., Stellingwerff, T., Sundgot-Borgen, J. K.,
 Torstveit, M. K., Jacobsen, A. U., Verhagen, E., Budgett, R., Engebretsen, L., & Erdener, U.
 (2023). 2023 International Olympic Committee's (IOC) consensus statement on Relative
 Energy Deficiency in Sport (REDs). *Br J Sports Med*, *57*(17), 1073-1097.
 https://doi.org/10.1136/bjsports-2023-106994
- Mountjoy, M. L., Burke, L. M., Stellingwerff, T., & Sundgot-Borgen, J. (2018). Relative Energy
 Deficiency in Sport: The Tip of an Iceberg. *Int J Sport Nutr Exerc Metab*, 28(4), 313-315.
 https://doi.org/10.1123/ijsnem.2018-0149
- Nolan, D., Lynch, A. E., & Egan, B. (2022). Self-Reported Prevalence, Magnitude, and Methods of
 Rapid Weight Loss in Male and Female Competitive Powerlifters. *J Strength Cond Res*,
 36(2), 405-410. <u>https://doi.org/10.1519/JSC.0000000003488</u>
- Pallarés, J. G., Martínez-Abellán, A., López-Gullón, J. M., Morán-Navarro, R., De la Cruz-Sánchez,
 E., & Mora-Rodríguez, R. (2016). Muscle contraction velocity, strength and power output
 changes following different degrees of hypohydration in competitive olympic combat sports.
 J Int Soc Sports Nutr, 13, 10. <u>https://doi.org/10.1186/s12970-016-0121-3</u>
- Park, S., Alencar, M., Sassone, J., Madrigal, L., & Ede, A. (2019). Self-reported methods of weight
 cutting in professional mixed-martial artists: how much are they losing and who is advising
 them? J Int Soc Sports Nutr, 16(1), 52. https://doi.org/10.1186/s12970-019-0320-9
- Purcell, R., Pilkington, V., Carberry, S., Reid, D., Gwyther, K., Hall, K., Deacon, A., Manon, R.,
 Walton, C. C., & Rice, S. (2022). An Evidence-Informed Framework to Promote Mental
 Wellbeing in Elite Sport. *Front Psychol*, *13*, 780359.
 https://doi.org/10.3389/fpsyg.2022.780359
- 403 Reale, R., Slater, G., & Burke, L. M. (2017). Acute-Weight-Loss Strategies for Combat Sports and
 404 Applications to Olympic Success. *Int J Sports Physiol Perform*, *12*(2), 142-151.
 405 https://doi.org/10.1123/ijspp.2016-0211
- 406 Reale, R., Slater, G., & Burke, L. M. (2018). Weight Management Practices of Australian Olympic
 407 Combat Sport Athletes. *Int J Sports Physiol Perform*, *13*(4), 459-466.
 408 <u>https://doi.org/10.1123/ijspp.2016-0553</u>
- 409 Sawka, M. N., Cheuvront, S. N., & Carter, R., 3rd. (2005). Human water needs. *Nutr Rev*, 63(6 Pt 2),
 410 S30-39. <u>https://doi.org/10.1111/j.1753-4887.2005.tb00152.x</u>

- Schytz, C. T., Ørtenblad, N., Birkholm, T. A., Plomgaard, P., Nybo, L., Kolnes, K. J., Andersen, O.
 E., Lundby, C., Nielsen, J., & Gejl, K. D. (2023). Lowered muscle glycogen reduces body
 mass with no effect on short-term exercise performance in men. *Scand J Med Sci Sports*,
 33(7), 1054-1071. <u>https://doi.org/10.1111/sms.14354</u>
- Serrano, N., Colenso-Semple, L. M., Lazauskus, K. K., Siu, J. W., Bagley, J. R., Lockie, R. G., Costa,
 P. B., & Galpin, A. J. (2019). Extraordinary fast-twitch fiber abundance in elite weightlifters. *PLoS One*, 14(3), e0207975. <u>https://doi.org/10.1371/journal.pone.0207975</u>
- 418