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Simple Summary: CD44 is a crucial factor in colorectal cancer, with specific isoforms demonstrating
their significance in the development, progression, metastasis, and resistance to therapy. Given
the clinical and pathological impact of CD44, it represents a promising molecular target for cancer
therapy. In this review, we aim to highlight the predictive and prognostic significance of CD44 in
various cancer types, with a particular focus on colorectal cancer. Moreover, we evaluate current
therapeutic interventions that target CD44 or reduce its expression, thereby highlighting its potential
as an effective therapeutic strategy.

Abstract: Cluster of differentiation 44 (CD44) is a non-kinase cell surface glycoprotein. It is overex-
pressed in several cell types, including cancer stem cells (CSCs). Cells overexpressing CD44 exhibit
several CSC traits, such as self-renewal, epithelial–mesenchymal transition (EMT) capability, and
resistance to chemo- and radiotherapy. The role of CD44 in maintaining stemness and the CSC
function in tumor progression is accomplished by binding to its main ligand, hyaluronan (HA).
The HA-CD44 complex activates several signaling pathways that lead to cell proliferation, adhesion,
migration, and invasion. The CD44 gene regularly undergoes alternative splicing, resulting in the
standard (CD44s) and variant (CD44v) isoforms. The different functional roles of CD44s and specific
CD44v isoforms still need to be fully understood. The clinicopathological impact of CD44 and its
isoforms in promoting tumorigenesis suggests that CD44 could be a molecular target for cancer ther-
apy. Furthermore, the recent association observed between CD44 and KRAS-dependent carcinomas
and the potential correlations between CD44 and tumor mutational burden (TMB) and microsatellite
instability (MSI) open new research scenarios for developing new strategies in cancer treatment.
This review summarises current research regarding the different CD44 isoform structures, their roles,
and functions in supporting tumorigenesis and discusses its therapeutic implications.

Keywords: colorectal cancer; CD44; cancer stem cells; prognostic marker; predictive marker;
target therapies
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1. Introduction

Cancer development is a complex process that involves genetic abnormalities and
genome instability, which enables it to invade and metastasize [1,2]. However, genetic
alterations alone cannot guarantee tumor growth. The selection of a malignant phenotype
arises from the accumulation of many metastasis-promoting activities involved in a multi-
step process [3–5]. Invasion is the first step in the metastasis process, which involves cancer
cells penetrating the basement membrane and moving through the extracellular matrix
(ECM) into the surrounding tissue [6,7]. Tumor cell migration is driven by various factors
in the tumor microenvironment, such as hypoxia, chemoattractants, ECM stiffness, and
nutrient depletion. Adhesion molecules play a crucial role in this process, and cancer cells
use the same adhesive functions as normal cells to carry out their physiological activities [8].

Epithelial–mesenchymal transition (EMT) is a biological process used during embryo-
genesis and adult epithelial tissue healing. However, it can be hijacked by cancer cells to
acquire malignant features [9]. To transform from epithelial cells to mesenchymal cells,
specific transcription factors alter the gene-level expression of surface markers. This results
in reduced epithelial cell markers and increased mesenchymal cell markers, leading to a
change in cell phenotype [10]. The cells generated through this process can self-renew and
are called cancer stem cells (CSCs) [11]. Various studies demonstrated that CSCs express
the surface marker CD44 (Cluster of Differentiation 44). CD44 is a transmembrane, non-
kinase, single-chain glycoprotein that was initially identified in lymphocytes [12] and later
found in various human tissues. Further research by Stamenkovic and colleagues showed
that this antigen is also expressed in numerous solid tumor cell lines [13]. Subsequently,
Günthert and colleagues discovered that an isoform of CD44 could modify the aggressive-
ness of a tumor by giving it metastatic properties when inserted into its genetic sequence [14].

CD44 has been extensively studied in recent years, and clinical and preclinical studies
demonstrated its role as a marker of progression and resistance to therapy in several types
of cancer. Specifically, CD44 appears to play a crucial role in colorectal cancer (CRC),
where specific isoforms have been shown to play a central role in carcinogenesis, progres-
sion, metastasis, and resistance to therapy. Additionally, the clinicopathological impact of
CD44 suggests that it may be a molecular target for cancer therapy. This review aims to dis-
cuss the prognostic and predictive importance of CD44 in cancer diseases, especially in CRC.
It will also evaluate current therapeutic strategies that target CD44 or reduce its expression.

1.1. Structure of CD44

The CD44 protein is encoded by a single gene on chromosome 11p13, which is
expressed ubiquitously throughout the body [15]. This gene contains approximately
20 exons and produces a protein divided into three regions: the extracellular domain,
the transmembrane region, and the cytoplasmic domain [16].

The smallest and most common isoform of CD44, CD44 standard (CD44s), is present
in all isoforms and is encoded by the first five exons (exons 1–5) and the last five exons
(exons 16–20) [17]. The first five exons encode the amino-terminal sequence, which is
highly conserved. This sequence contains the recognition of hyaluronan (HA), an abundant
component of ECM expressed by stromal and tumor cells, and the primary ligand of
CD44 [18,19]. The region proximal to the membrane of the extracellular domain is less
conserved, and the ten central exons can give rise to variants (CD44v) through an alternative
splicing process, commonly known as “v1–v10”. These variants can be inserted in different
exon 5 and 16 combinations, increasing protein variability [19,20].

CD44’s extracellular domain can bind to various ligands, including HA, osteopontin
(OPN) [21], chondroitin [22], collagen [23], fibronectin [24], and serglycin/sulfated proteo-
glycan [25]. Among these, HA is the most specific ligand for CD44 activation. All forms of
CD44 have an HA-binding domain located in the N-terminal region of the extracellular
domain. When HA binds to CD44, it causes changes in the protein’s shape that promote
the binding of adaptor molecules to the intracellular cytoplasmic tail of CD44 (Figure 1).
This leads to cell signaling that enhances cell adhesion, migration, and proliferation [26].
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Figure 1. The binding of hyaluronan (HA) to its receptor cluster of differentiation 44 (CD44).

The transmembrane domain of CD44 is responsible for interacting with cofactors,
adaptor proteins, and protein tyrosine kinases to regulate CD44 activation [27].

The cytoplasmic domain (CD44ICD) is essential in regulating signal transduction,
mediating intracellular signaling, and influencing various cellular processes [28]. Although
the CD44ICD lacks enzymatic activity, it possesses specific structural motifs facilitating
interactions with cytoplasmic effectors and regulating cell-trafficking machinery, signal
transduction pathways, the transcriptome, and crucial metabolic pathways [29].

HA-CD44 binding triggers signaling events within cells by affecting the interaction
between the CD44ICD and downstream signaling molecules such as the actin cytoskele-
ton [30], ezrin, radixin, and moesin (ERM) proteins [31], as well as ankyrin [32], regulating
cell trafficking and cytoskeletal organization. In particular, the interaction between CD44
and ERM proteins promotes cell growth and migration. However, this interaction is coun-
tered by the binding of merlin, a protein distantly related to ERM family proteins, thus
leading to the dissociation of CD44 from the cytoskeleton [33,34]. This competition between
ERM proteins and merlin for binding to CD44 regulates the effects of CD44 on cell growth
and migration. This mechanism is crucial in contact inhibition of cells [35]. Furthermore,
the interaction of CD44 with IQGAP1, an actin-binding protein that regulates cell–cell
and cell–matrix adhesion, was also observed in standard and cancer cells. IQGAP1 en-
hances the activities of both RhoA and Rac1 GTPases by stabilizing their GTP-bound forms,
promoting Rho-dependent F-actin stress fibers formation, but does not influence ERK1/2
activation [36,37]. Ankyrin was the first intracellular protein to partner with CD44ICD.
It connects CD44ICD to the cytoskeleton, resulting in the formation of caveolae on the cell
membrane. These contain specific proteins and lipids and initiate signaling cascades that
regulate many cellular processes, including cell proliferation, adhesion, migration, and
communication. Examples of the signaling cascades include Ca2+ mobilization and release,
PI3K-AKT signaling, and RhoA-GTPase signaling [38].
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In addition, CD44ICD has the ability to interact with Rho-family GTPases and mem-
bers of the Src family of non-receptor tyrosine kinases [39], activating PI3 kinase/Akt
signaling [38]. These interactions regulate pathways related to cell growth, survival, differ-
entiation, stemness, and therapeutic resistance [29].

Post-translational modifications, such as N-linked and O-linked glycosylation and
glycosamino-glycanisation, can add heparan sulfate or chondroitin sulfate to CD44, which
increases the variability of this protein and its isoforms [16].

1.2. Functional Significance of CD44 Isoforms in Cancer Cells

CD44 is a protein expressed in most vertebrate cells, while CD44v isoforms are found
only in specific cells, particularly in aggressive tumors [40]. Different isoforms of CD44
have distinct functions. They have unique properties, such as interacting with the mi-
croenvironment, acting as co-receptors, and activating additional signaling pathways [41].
CD44 interacts with several ligands, including HA, chondroitin, collagen, laminin, and
fibronectin, which are responsible for their ability to promote tumor progression and in-
crease aggressiveness [42,43]. By interacting with HA and other ECM components, CSCs
can perceive and integrate information from the tumor microenvironment, mediate sig-
nal transduction, and maintain stemness characteristics [44,45]. CD44v isoforms such as
CD44v6, CD44v3, and CD44v2 are markers of progression and resistance to therapy in
various cancers [46–49]. CD44 and its isoforms have potential prognostic and predictive
roles in cancer treatment response, making them potential targets for anticancer therapies.

Certain CD44 variants’ functional roles in tumor growth differ from those of standard
CD44s. As a result, it is imperative to ascertain the importance of each CD44 variant and its
correlation to tumor progression. Different variants of CD44 may possess both overlapping
and distinct functions. Many studies have attempted to define the role of different CD44
isoforms in CRC carcinogenesis and progression.

CD44v8-10 proteins are located in the stem cell niche of a normal human colon. They
are frequently overexpressed in early colon adenomas. When colon tumors form, CD44v8-
10 becomes overexpressed, leading to the overpopulation of CD44v8-10+ cancer stem
cells during CRC progression [50–52]. Furthermore, CD44v8-10 protects gastrointestinal
cancer cells against reactive oxygen species by directly interacting with a glutamate-cystine
transporter [53]. Knock-in mice expressing CD44v4-10 promote adenoma initiation in Apc
(Min/+) mice but not in CD44 knock-in mice [54].

The variants CD44v6 and v7/8 are up-regulated by hypoxia-inducible factor (HIF) un-
der hypoxic conditions [55]. CD44v6 and CD44v10 mRNA is detected in CRC patients [56].
Cytokines such as hepatocyte growth factor (HGF), OPN, and stromal-derived factor 1α
(SDF-1) up-regulate CD44v6 expression in CSC, which activates the Wnt/β-catenin path-
way responsible for the promotion of cancer cell migration and metastasis in CRC [57].
Overexpressing CD44v6 increases cell viability, clonogenicity, autophagy flux, EMT, and
phosphorylation of AKT and ERKs in CRC cells in the presence of chemotherapy drugs [58].

1.3. CD44 Activation and CSC Stemness

CSCs are long-living cells that play a critical role in cancer progression. They con-
tribute to tumor growth and may be responsible for the ineffectiveness of some cancer
treatments [59–61]. CSCs exist in a unique environment that includes immune cells, micro-
vesicles, and cytokines, which promote self-regeneration and metastasis while suppressing
the immune system [62]. CSCs maintain stemness features by interacting with the ECM
through specific membrane receptors [63]. This interaction occurs in the CSC niche’s
unique microenvironment [28]. Research has revealed that information encoded in the
ECM can direct the differentiation of stem cells towards a specific cell type [64–66]. HA, a
glycosaminoglycan, is a crucial component of stem cell niches that binds to CD44 receptors
on CSCs to encourage cell growth, wound resolution, and cell motility [11,67–71]. Likewise,
to normal stem cell niches, HA is a major constituent of the CSC niche [72]. Its interactions
with its main receptor, CD44, play a significant role in various aspects of tumorigenesis
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and cancer progression. HA binds to CD44 and activates multiple cell surface receptors,
modulating oncogenic signaling pathways and regulating cell migration. This interac-
tion also leads to drug resistance. Given their involvement in multiple cellular functions,
CD44 and HA are linked with regulating CSC properties such as self-renewal and tumor
initiation [43,73].

During embryogenesis and tissue healing, its expression is high [74]. Increased HA
before cell division enables cancer cells to detach from the ECM and lose their bind-
ing to neighboring cells [75–77]. Irregular synthesis or degradation of HA may lead to
abnormal cellular processes, such as proliferation, cell transfer, and metastasis [78,79].
HA production begins with two molecules, which HA synthases use to create polymers of
different sizes [80,81]. Hyaluronidases can break down high-molecular-weight HA poly-
mers (HMWHA) into smaller but still biologically active molecules (LMWHA) [82]. CD44
binding to HMWHA is linked to cell proliferation and tissue growth, whereas LMWHA reg-
ulates neovascularization phenomena and is involved in the induction of pro-inflammatory
processes [83,84].

Upon the binding of HA to the extracellular domain of CD44, conformational changes
occur, leading to CD44 activation and the recruitment of various cytoplasmic and membrane-
bound proteins (adaptor molecules) (Figure 1). The resulting downstream cell survival,
growth, and tumor progression pathways are triggered [67]. The HA ligand induces a
signal cascade by stimulating the CD44ICD, which results in the recruitment of numerous
proteins and a series of cell signaling events. This includes the activation of proteins such
as ankyrin, merlin, and ERM protein, which mediate actin polymerization through ERM
proteins, facilitating cytoskeleton rearrangements for tumor invasion and migration [85].
Additionally, CD44ICD has the ability to coordinate signaling responses because many
intracellular signaling molecules interact with it, including Rho-family GTPases and mem-
bers of the Src family of non-receptor tyrosine kinases. These molecules, in turn, activate
PI3 kinase/Akt signaling [29,38,39].

The binding of HA to its receptor CD44 is mediated through the activation of the
Rho GTPase pathway, which subsequently activates PI3K and the serine/threonine kinase
(Akt) cascade and RAS-RAF-MAPK signaling pathways. This activation results in the phos-
phorylation of substrates responsible for various cellular processes, including replication,
growth, and mobility [86]. CD44 isoforms can interact with several cell surface receptors,
such as c-Met, vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived
growth factor receptor (PDGFR), and epidermal growth factor receptor (EGFR), which
are implicated in the progression of numerous tumors [82,87,88]. The binding of CD44
with other components of the ECM is made easier by post-translational modifications of
CD44, such as the addition of chondroitin sulfate and heparan sulfate to the amino acid
sequences of the variable region. This allows CD44 to interact with collagen, fibronectin,
and laminin. Additionally, sulfation of the sugar side chains of CD44 enables it to bind to
fibrin [22,89,90].

In summary, CD44 binding with different components of the ECM can regulate and
induce cancer cell growth and metastasis.

The binding of HA-CD44 triggers the activation of downstream signaling molecules,
such as the actin cytoskeleton, ezrin, radixin, and moesin (ERM) proteins, and ankyrin,
regulating cellular trafficking and cytoskeletal organization. In addition, HA-CD44 can
interact with Rho family GTPases and Src family members of non-receptor tyrosine kinases,
activating PI3-kinase/Akt signaling. These interactions regulate cell growth, survival,
differentiation, stemness, and therapeutic resistance pathways.

2. Prognostic Role

CD44 plays a crucial role in preserving the stemness and function of CSCs during
tumor progression. As a result, it can be a useful prognostic marker. However, its prognostic
value is still debated (see Table 1).
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Numerous studies confirmed the crucial role of high CD44 expression in the develop-
ment of cancer, tumor growth, differentiation, and metastasis in CRC [91–94]. In a study
conducted by Weber et al., it was observed that knocking out the CD44 gene prevented
tumor metastasis, though the tumor continued to exist in mice [94]. Research conducted
in vitro has shown that a single CRC cell can produce highly heterogeneous CRCs if it
expresses CD44 [95,96]. Some researchers reported that the expression level of CD44 was
higher in high-grade CRCs when compared to low-grade tumors, and this overexpression
was associated with reduced patient survival [97,98]. In various types of malignancies,
such as lymphomas, gastric, and cervical carcinomas, higher expression of CD44 has been
recorded in advanced tumors, which might be related to poor prognosis [99,100]. Fur-
thermore, in our recent study, high CD44 expression was significantly associated with
higher proliferative activity of CRC and poor prognosis. CD44 overexpression was also
associated with clinically poor prognostic features: older age, inoperable disease, stage IV
at diagnosis, mutated BRAF, and high-grade tumor [101,102]. Conversely, in a previous
study, a statistically significant correlation was found between positive CD44 expression
and left-sided tumors in an Egyptian population [103], which tend to be associated with a
better prognosis than right-sided CRC localization [104,105].

Recent research suggests that the absence of CD44 is associated with a worse progno-
sis [106–108]. In one study, Hong et al. examined 162 patients and found that low CD44
expression was linked to an increased risk of tumor recurrence and shorter disease-free sur-
vival (DFS) [106]. Similarly, Qu et al. reported that low CD44 expression was significantly
associated with lower overall survival (OS) and DFS in stage II and III CRC patients [107].
Another study by Lugli et al. analyzed 1420 cases and found that the loss of membranous
CD44 expression was related to higher tumor stage and lymph node involvement, an infil-
trative growth pattern, and vascular invasion. Specifically, the loss of CD44 was associated
with an increased likelihood of local cancer recurrence [108,109].

This inconsistency in the results could be due to the alternative splicing of CD44
pre-RNA. Alternative splicing is a common mechanism that generates multiple mRNA
isoforms from a single gene. CD44 pre-RNA undergoes alternative splicing to produce
various CD44 isoforms that have different extracellular domains and cytoplasmic tails.
These isoforms are involved in different cellular processes, including tumor progression
and metastasis [110–112]. Recent studies have revealed that DNA methylation plays a
crucial role in regulating CD44 alternative splicing. DNA methylation can modulate the
recruitment of RNA polymerase II and chromatin factors to the CD44 gene. A loss of
intragenic DNA methylation in CRC cells has been found to increase CD44 variant exon
skipping, leading to a partial epithelial to mesenchymal transition [110].

The exact role of different CD44 variants in cancer is still not well understood. While
they overlap, they also have distinct roles. CD44v isoforms contain additional binding sites
that enable CD44 to interact with molecules in the microenvironment. Some studies suggest
that certain CD44 variants may play a crucial role in the development of metastasis in
CRC. Yan et al. discovered that CD44, CD44v3, and CD44v6 are expressed heterogeneously
in CRC. Their clinical study revealed that the prognostic value of CD44 and its splice
variants is not always unanimous in CRC. Patients who lacked CD44, or those who had an
expression of CD44v3 and v6, had reduced progression-free survival (PFS) [113].

The expression of CD44v2 is associated with a poor prognosis [48], while the expres-
sion of CD44v5 and CD44v6 is believed to be linked to a shorter relapse-free survival [114],
although there is some controversy surrounding this [115]. CD44v8-10 is associated with
lymphatic and venous invasion as well as liver metastasis [116]. CD44v6, on the other
hand, has shown promising potential as a biomarker since several studies have revealed
that its overexpression is linked to lymph node and distant metastases, treatment response,
and tumor-associated mortality [100,117,118].

In CRC patients, CD44v6 and CD44v10 mRNA were found, and CD44v6 was ex-
pressed in colorectal CSC. CSC required CD44v6 to migrate and generate metastatic tumors.
Cytokines like HGF, OPN, and SDF-1 secreted in the tumor microenvironment increased
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CD44v6 expression in CSCs and activated the Wnt/β-catenin pathway, which promoted
migration and metastasis [119].

Table 1. Prognostic role of cluster of differentiation 44 (CD44).

Study Country N. of pts Year Cancer Types CD44 Expression Results

Bendardaf R et al. [92] Finland 95 2005 Colorectal High CD44v6 Greater T

Liu JL et al. [93] China 62 2005
Colorectal,

gastric, breast,
lung cancer

HighCD44s and CD44v6 Greater N and G

Weber et al. [94] USA Preclinical 2002 Sarcoma Absence of CD44 No metastasis formation

Du L et al. [95] China 60 2008 Colorectal CD44+ In vitro: generate
xenograft tumor

Vermeulen L et al. [96] Netherland
Italy Preclinical 2008 Colorectal Single-cell-cloned CSC

CD44+

In vitro: generate an
adenocarcinoma on
xenotransplantation

Ropponen KM et al. [98] Finland 194 1998 Colorectal HighCD44v3 and CD44v6 Lower RFS

Carr NJ et al. [99] England 299 2002 Appendiceal
Colorectal CD44s + Higher in colorectal

Zhao LH et al. [100] China 187 2015 Colorectal High CD44 and CD44v6 Greater TNM and poorly
differentiated histology

Ziranu P et al. [101] Italy 65 2023 Colorectal CD44 3+
Lower mOS and
clinically poor

prognostic features

Holan NS et al. [103] Egypt 71 2022 Colorectal CD44+ Higher in left-sided
colon cancer

Hong I et al. [106] Korea 162 2015 Colorectal Low CD44 Increased tumor
recurrence and lower DFS

Qu et al. [107] China 223 2017 Colorectal
(stage II–III) Low CD44 Lower mDFS and mOS

Lugli A et al. [108] Switzerland 1420 2010 Colorectal Low CD44 Higher TN

Yan B et al. [113] China 148 2020 Colorectal
CD44−
CD44v+

CD44v6+
Lower PFS

Ozawa M et al. [48] Japan 77 2014 Colorectal CD44v2+ Greater TNM
Worse prognosis

Vizioso F et al. [114] Spain 105 2001 Colorectal CD44v5 and CD44v6 Lower PFS and OS

Zalewski B [115] Poland 114 2004 Colorectal CD44v5 and CD44v6 No impact on prognosis

Yamaguchi A et al. [116] Japan 71 1998 Colorectal CD44v8-10 Greater N and
liver metastases

Nihei Z et al. [117] Japan 42 1996 Colorectal CD44v6 Lower mOS

Bendardaf R et al. [118] Finland 57 2004 Colorectal High CD44v6 Increased
treatment response

Legend: pts = patients; T = primary tumor stage; N = locoregional lymph node stage; G = tumor grading;
RFS = relapse-free survival; OS = overall survival; PFS = progression-free survival.

There is an ongoing debate among experts regarding the significant association of
CD44 with a poor prognosis in various cancers. However, more reliable analyses sug-
gest that increased CD44 expression is linked to aggressive clinical and histopathologi-
cal features, such as advanced clinical stage, higher histologic grade, and tumor stage.
This further suggests a shorter survival time for the patient, indicating a poorer prognosis.

The heterogeneity of methods and scores used in various studies contributes to the
conflicting data on the prognostic role of CD44. Our recent study [101,102] utilized an
established expression score scale for HER2 in breast cancer to assess CD44 expression. We
found that the intensity of staining, rather than the percentage of positive cells, was the
significant factor. Therefore, we chose a scoring system modeled on the HER2/neu scheme,
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which correlated positively with the patient’s prognosis and clinicopathological features.
High expression, defined as intense membrane staining in at least 10% of tumor cells
(score 3+), could aid in identifying patients with poor prognosis in mCRC.

3. Predictive Role

Understanding the molecular mechanisms of treatment resistance in CRC is essential
for choosing the most effective therapies [120–124]. The CD44 glycoprotein is a surface
marker of CSCs that activates signaling pathways, promoting cancer cell metastasis, ad-
hesion, migration, and drug resistance [119]. Although CD44 lacks kinase activity, it can
activate protein kinases through several mechanisms. CD44 sequesters growth factors at
the cell surface and stabilizes tyrosine kinase receptor complexes as a co-receptor (as HGF,
VEGFR-2), modulating downstream signaling pathways [30]. Furthermore, CD44 binding
to HA triggers signaling cascades [11,67]. The activation of Src family kinases, as well as
various GTPases (e.g., RhoA, Ras, and Rac1), drives intracellular signaling pathways, such
as the Ras-MAPK and PI3K/Akt pathways, that promote tumor cell-specific processes,
including chemoresistance [82,87,88]. A significant resistance mechanism mediated by
HA-CD44 involves the formation of a complex between Nanog (an embryonic stem cell
transcription factor) and the “signal transducer and activator of transcription protein 3”
(Stat-3). This complex up-regulates the multidrug resistance (MDR1) gene expression,
increasing the drug pump efflux induced by the cytoskeletal protein ankyrin [125].

Chemoresistance seems to be associated with the CSCs, expressing specific CD44v
isoforms [126] (see Table 2).

For example, in human head and neck squamous cell carcinoma, Nanog activation
by the HA-CD44v3 promotes the expression of pluripotent stem cell markers, including
Nanog-Sox2-Oct4 complexes. These complexes promote CSC stemness, a harmful factor
for chemosensitivity [127].

Recently, chemo-sensitive analysis was conducted on human CRC cell lines
(COLO 201) divided into two populations based on CD44 expression: CD44 positive
(CD44+) and CD44 negative (CD44-). COLO 201 CD44+ cell lines showed more stem-
ness properties and lower sensitivity to 5-fluorouracil in vitro compared to COLO 201
CD44-negative cell lines [128].

Toden et al. demonstrated, through in vitro data, that the CD44v6 CSC cell line showed
increased resistance to 5-Fluorouracil and Oxaliplatin, thus supporting the hypothesis that
CD44v6, frequently overexpressed in CSCs in advanced CRC, confers higher stemness and
increased resistance to chemotherapeutic drugs [96]. The assessment of CD44v6-positive cir-
culating tumor cells (CTCs) at baseline is also associated with treatment failure, reinforcing
that CD44v6 expression may reflect a biomarker of intrinsic resistance to treatment [129].

Furthermore, the protein CD44v6 has been identified as a co-receptor of vascular
endothelial growth factor (VEGF) [130]. CD44v6 and CD44v9 positive cells exhibit an
antiapoptotic effect and can block Fas-mediated apoptosis. The activity of immune check-
point inhibitors might be reduced by interfering with Fas signaling through CD44v iso-
forms [131]. Consequently, detecting CD44v6- or CD44v9-positive CTCs could be a valu-
able tool in monitoring the development of drug resistance during anti-angiogenic therapy
or immunotherapy.

The usefulness of CD44 in evaluating the therapeutic responses of targeted therapy
has been analyzed in glioblastoma multiform (GMB). In vivo and In vitro, CD44 reduces
the antitumor effect of bevacizumab, resulting in much more highly invasive tumors [132].

Moreover, Chen S. et al. found a significant correlation between CD44 levels and
immune-infiltrating cells such as T cells, B cells, NK cells, and macrophages in various
cancer types. CD44 also showed a connection with tumor mutational burden (TMB)
and MSI, indicating its potential as an emerging biomarker for predicting responses to
immunotherapy [133].

CD44 could act as a KRAS regulator in promoting the development, progression,
and stemness of CRC. KRAS mutations are found in 40–50% of CRCs and are a critical
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biomarker for metastatic CRC [134]. The mutational status of KRAS can predict the efficacy
of biological drugs, such as anti-EGFR antibodies [135,136]. KRAS activation plays an
essential role in the cell signal transduction pathways, including PI3K/Akt and RAS-RAF-
MAPK signaling pathways, which are involved in cell proliferation [137]. Recent data
showed that inhibiting KRAS activation is a potential strategy for treating CRC [138–141].

Table 2. Predictive role of cluster of differentiation 44 (CD44).

Study N. of Patients Year Cancer Cell CD44
Expression Results

Bourguignon L.Y.W. et al. [127] Preclinical 2012 Human HNSCC-derived
HSC-3 cells CD44v3

HA-induced CD44v3 interaction
with Oct4-Sox2-Nanog signaling

promotes self-renewal, clonal
formation, and

cisplatin resistance

Okuyama H et al. [128] Preclinical 2020 CRC cell lines NA
CD44+ cell lines showed more
stemness properties and lower

sensitivity to 5-fluorouracil

Toden et al. [126] Preclinical 2019 CRC cell lines CD44v6
CD44v6 CSC cell line showed

increased resistance to
5-Fluorouracil and Oxaliplatin

Nicolazzo C et al. [129] 40 pts 2020 mCRC CD44v6 CD44v6-positive CTC predict
treatment failure

Tremmel M et al. [130] Preclinical 2009 Variety cancer cell lines CD44v6 CD44v6 has been identified as a
co-receptor of VEGF

Mielgo A. et al. [131] Preclinical 2006 Jurkat cells and
plasmacytoma cell lines

CD44v6
CD44v9

CD44v6 and CD44v9 exhibit an
antiapoptotic effect and can

block Fas-mediated apoptosis

Nishikawa M et al. [132] Preclinical 2021 GBM CD44
Bev showed no antitumor effects

in mice transplanted with
CD44-overexpressing GSCs

Chen S et al. [133] Preclinical 2023 Pan-cancer CD44
CD44 expression was

significantly associated with
TMB and MSI

Zhao Y et al. [142] Preclinical 2021 GBM CD44

KRAS/ERK pathway regulates
CD44 overexpression in response
to radiation by downregulating

micro-RNA expression

Zhao P et al. [143] Preclinical 2013 Lung cancer CD44
CD44 mediates

KRAS-dependent MAPK
activation and cell proliferation

Ribeiro KB et al. [144] 58 pts 2016 mCRC CD44 CD44 expression and KRAS
mutation are correlated

Legend: HNSCC = head and neck squamous cell carcinoma; CRC = colorectal cancer, mCRC = metastatic
colorectal cancer; CTC = circulating tumor cells; VEGF = vascular endothelial growth factor; GBM = glioblastoma;
Bev = bevacizumab; GSCs = glioma stem-like cells; pts = patients.

In a study involving GMB tumor cells, it was demonstrated that the KRAS/ERK
signaling pathway regulates the overexpression of CD44 in response to radiation by down-
regulating micro-RNA expression in GBM cells [142]. In a lung cancer setting, a mouse
model of KRAS-induced lung adenocarcinoma and KRAS and CD44 expression were eval-
uated to determine the in vivo role of CD44 related to KRAS. The findings revealed that
CD44 expression is up-regulated in KRAS-induced lung adenocarcinomas and that CD44
mediates KRAS-dependent MAPK activation and cell proliferation [143]. Moreover, in a
clinical trial, Ribeiro et al. found that CD44 expression and KRAS mutation in metastatic
CRC are correlated. Patients with mutated KRAS and positive immunoreactivity for CD44
had a worse prognosis. The study recommended closer monitoring during and after ther-
apy for this subgroup of patients. With all these data taken together, CD44 could represent
a potential therapeutic target for treating KRAS-dependent carcinomas [144].
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Therefore, the role of CD44 in regulating the properties of CSCs and tumor cell signal-
ing pathways makes it a critical factor in developing drug resistance. The identification of
CD44 as a predictor of drug resistance suggests that targeting CD44 could be an effective
strategy to improve response to therapies.

4. CD44 as a Possible Therapeutic Target

CD44 expression plays a significant role in tumorigenesis, progression, and chemore-
sistance. Therefore, inhibiting CD44 could be a potential therapeutic target for cancer
treatment. There are several ways to target CD44, including neutralizing antibodies, anti-
bodies, peptides, pharmacological and natural inhibitors, HA-modified nanocarriers, small
interfering RNAs (siRNAs), and CAR T cell therapy [145]. These therapies are all currently
being evaluated in preclinical and clinical settings in different types of cancers.

In the contest of CD44-targeted antibodies, monoclonal antibody (mAb)-modified
Doxil against CD44 showed a significant improvement in cellular uptake and higher
doxorubicin concentration inside tumor cells than Doxil in CD44-expressing murine CRC
cells [146]. Another antibody, the humanized mAb RG7356, induced cytotoxic effects
in chronic lymphocytic leukemia cells and had a significant immune-stimulatory effect.
RG7356-binding CD44+ tumor cells stimulated the secretion of chemoattractants and
facilitated the recruitment of immune cells, such as macrophages, leading to antibody-
dependent cellular phagocytosis of cancer cells by macrophages [147,148]. A phase I clinical
trial for RG7356 showed limited results with modest therapeutic efficacy in heavily pre-
treated metastatic solid tumors, including CRC [149]. A study by Birzele et al. showed
that CD44 expression is associated with HA production and can predict the response to
treatment with RG7356 in tumor xenograft models [150].

Studies conducted on the PC3 prostate cancer cell line showed that F77, a prostate
cancer-specific mAb carried by CD44, induced apoptosis in a CD44-dependent man-
ner [151]. Encapsulated glycosylated paclitaxel liposomes (gPTX-L) conjugated with anti-
CD44 antibodies enhance cytotoxicity efficiently in vitro and in vivo in human ovarian
overexpressed CD44 cancer cell lines [152].

Interestingly, the potential of synthetic peptides to selectively bind to CD44 has been
recently reported. Peptides have robust physicochemical properties, making them superior
to antibodies for diagnostic and therapeutic purposes. P7 (FNLPLPSRPLLR) demonstrated
the highest affinity and specificity for CD44 in breast CSCs among seven different pep-
tides discovered [153]. PDPP, a polyvalent-directed peptide polymer, recognized breast
cancer stem cells using combinational peptides P6 and P7, displaying a higher affinity
and inhibition potential against the CD44 biomarker in breast CSCs [154]. Additionally,
HA/chitosan nanoparticles loaded with CM11, a short cationic antimicrobial peptide,
showed significantly higher cytotoxicity and ability to induce apoptosis in various cancer
cell types, including lung adenocarcinoma, neuroblastoma, and pancreatic carcinoma cell
lines, by targeting CD44 [155].

Natural compounds and chemotherapeutic agents can indirectly inhibit CD44 iso-
forms overexpressed in cancer cells and CSCs. Salinomycin (SLM) alone or combined
with paclitaxel, sulfasalazine (SSZ), Zerumbone (ZER), a combination of epigallocatechin
gallate (EGCG) and curcumin, silibinin, galangin, and apigenin are some examples. These
compounds have all shown promise in reducing the CD44+ CSC population in different
cancer cell lines. They also suppress proliferation, migration, and angiogenesis and induce
apoptotic and autophagic cell death pathways in tumor cells, inhibiting some molecular
pathways such as the STAT3 pathway, cystine-glutamate transporter, and EMT [156–162].

Researchers have successfully used HA to target CD44-overexpressing cancer cells.
A study by Eliaz and Szoka demonstrated the efficacy of HA-modified liposomes in
delivering chemotherapeutic agents to CD44-overexpressing cancer cells, indicating its
potential as a targeted delivery mechanism [163]. Encapsulating doxorubicin (DOX) in
HA-targeted liposomes was highly effective in killing cancer cells expressing high levels of
CD44 [163]. In another study, Spadea et al. examined the expression of CD44 isoforms and
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HA internalization efficacy in human dermal fibroblasts (HDFs) and different cancer cell
lines, including CRC. The study revealed a positive correlation between the expression of
CD44s and the uptake level of HA. Additionally, the study indicated that CD44s+ HDFs
were less effective in the uptake of HA than CD44s+ cancer cells [164].

Researchers successfully delivered SN38 (7-ethyl-10-hydroxy-camptothecin) to human
gastric tumors using hybrid nanoparticles that targeted CD44 and HER2. They encapsu-
lated SN38 in nanoparticles comprised of a Poly (lactic-co-glycolic) acid (PLGA) core and a
lipoid shell modified with HA and anti-HER2/neu peptide mimic (AHNP) [165]. Addi-
tionally, the modification of HA facilitated the efficient delivery of curcumin (CUR)/DOX
nanoparticles to hepatocellular carcinoma and human non-small cell lung cancer (NSCLC)
for treating MDR cells through CD44 receptor-mediated targeted delivery [166].

The siRNAs can cause gene silencing through translation repression. In NSCLC cells,
a designed siRNA inhibited CD44 expression, suppressing cell proliferation and colony
formation ability [167]. In EGFR wild-type NSCLC cells, CD44 inhibition attenuated cell
growth, promoted cell cycle arrest, stimulated cell apoptosis, and enhanced sensitivity to
cisplatin [168]. In CD44+ ovarian cancer cells, MDR1 downregulation increased apoptosis
and suppressed ovarian cancer growth [169]. The selective targeting of CD44+ CRC cells
has been successfully demonstrated by administering anti-KRAS siRNA that is loaded
in poly hexamethylene biguanide (PHMB) and a chitosan complex coated with HA [170].
Similarly, in the same cancer, CD44 was targeted through the direct administration of
ON-TARGET plus human CD44 siRNA or indirectly by silencing mucin (MUC5AC) gene
expression using a small hairpin RNA construct (pSUPER-Retro-shMUC5AC). As a result
of these methods, there was a significant decrease in the expression of CD44-related cell
migratory and invasion downstream signaling molecules, such as phosphorylated Src
kinases, AKT, and integrin-4 [171].

CD44v6 is an attractive target for CAR T cell therapy. Studies found that CD44v6-
CAR T cells controlled tumor growth and increased survival in lung and ovarian carci-
nomas [172]. CD44-CAR T cells were more effective in suppressing tumor growth and
increasing survival in CD44+ hepatocellular carcinoma mice [173]. A bispecific molecule,
BiTE, was also created to target CD44v6. It was incorporated into an oncolytic helper binary
adenovirus (CAdDuo) that encodes an immune checkpoint blocker (PD-L1Ab) and an
immunostimulatory cytokine (interleukin [IL]-12) to form CAdTrio. This CD44-CAdTrio
allowed HER2-CAR T cells to effectively kill CD44v6+ head and neck carcinoma cells,
improving tumor control and survival [174].

5. Conclusions

CD44s and CD44v isoforms are overexpressed in CRC and are crucial in enhancing car-
cinogenic processes. Although the data are conflicting, studies have shown that increased
CD44 expression strongly correlates with higher histological tumor grade, advanced clinical
tumor stage, shorter survival, and poor prognosis. CD44 represents a promising target
for cancer therapy. Targeting CD44 isoforms can potentially reverse malignant behavior
and increase cancer cell sensitivity to therapy. Many therapies targeting CD44 are un-
der investigation, including antibodies, peptides, pharmacological and natural inhibitors,
HA-modified nanocarriers, siRNA, and CAR T-cell therapy.

Furthermore, the association between CD44 and the molecular pathways involved
in tumor proliferation and progression (Ras-MAPK and PI3K/Akt pathways), the ability
to act as a co-receptor of various growth factors (i.e., HGF, VEGFR-2), and the potential
correlation with TMB and MSI status open new research scenarios for the development
of innovative strategies in cancer treatment. Targeting CD44 can promote more robust
responses to target therapies and mitigate intrinsic treatment resistance. Further studies
are essential to define and standardize the most appropriate method and score for CD44
expression. Prospective studies on larger samples are also needed to confirm the prognostic
and predictive role of CD44 and its possible role as a therapeutic target.
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