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Abstract: Immunotherapies have revolutionized cancer treatment approaches. Because not all
patients respond positively to immune therapeutic agents, it represents a challenge for scientists who
strive to understand the mechanisms behind such resistance. In-depth exploration of tumor biology,
using novel technologies such as omics science, can help decode the role of the tumor immune
microenvironment (TIME) in producing a response to the immune blockade strategies. It can also
help to identify biomarkers for patient stratification and personalized treatment. This review aims to
explore these new models and highlight their possible pivotal role in changing clinical practice.

Keywords: immunotherapy; AI; multi-omics science; biomarkers; state of the art

1. Introduction

Immunotherapy (IT) represents a significant achievement in cancer treatment [1].
Tumor immunotherapy works by restarting the tumor immune cycle and restoring the
body’s natural anti-tumor immune response [2]. Currently, there are at least four main
kinds of immunotherapy strategies, which include immune checkpoint inhibitors (ICIs)
such as Programmed cell Death protein-1 (PD-1) and Cytotoxic T-Lymphocyte Antigen
4 (CTLA-4), chimeric antigen receptor T-cell therapy, tumor vaccines, and peripatetic
immunotherapy. Although these therapies have been widely successful, enhancing clinical
oncology outcomes [2], not all patients have benefited from it [1]. Therefore, it is crucial
to screen who will gain from immunotherapy the most [2]. Tumor heterogeneity might
be the reason underlying a lower treatment efficacy due to several factors such as genetic,
epigenetic, and transcriptional modifications; protein expression variations; and changes in
metabolic profiles [3].

Lately, there has been a lot of attention given to post-translation modifications (PTMs)
which are small changes made to single amino acids such as glycosylation, acetylation,
phosphorylation, palmitoylation, and ubiquitination or deubiquitination. These PTMs have
been found to have the ability to alter the function, shape, balance, and interaction of proteins
with other molecules. Furthermore, recent studies have shown that the expression levels of PD-
1 and Programmed cell Death Ligand 1 (PD-L1) can be regulated by epigenetic, transcriptional,
and post-transcriptional systems, which, in turn, impact tumor immunity [4,5].

In this scenario, multi-omics approaches, which incorporate genomics, transcriptomics,
proteomics, metabolomics, radiomics, and immunomics, help to shed light on the various bi-
ological layers present within tumors and explore protein copiousness, metabolic signature
athwart disparate cellular types, mRNA expression levels, and genomic modifications with
the aim to decode the molecular landscape of cancer along with the tumor–immune inter-
action mechanisms, identifying new potential biomarkers and targets for immunotherapy,
and facilitate the identification of distinctive molecular signatures linked to immunotherapy
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responders and non-responders in order to personalize treatments and improve patient
outcomes [3].

Moreover, temporal multi-omics can be used to tail the dynamic modification in-
side cancers or induced by the drugs over the course of time, helping to dissect tumor
heterogeneity and its influence on therapies [3].

A thorough review of pan-cancer research that evaluates the multi-omics approach
and Artificial Intelligence (AI) methodology, along with the latest data translated into
clinical practice, can help clinicians become familiar with these algorithms and consider
their use in providing personalized therapy.

2. Dissecting the TME with Multi-Omics Approach

It is well known that the tumor microenvironment (TME) is favorable for cancer onset
and tumor evasion, leading to drug resistance, especially for immunotherapeutic agents. In
particular, the tumor immune microenvironment (TIME), a part of the TME, plays a crucial
role in influencing the treatment response and can be categorized as immune-inflamed,
immune-excluded, and immune-desert on the basis of the TILs number and proximity
to tumor cells, determining the immunotherapy response [1,6,7]. As a result, extensive
research is constantly being conducted to identify new targets for tailored therapies and
biomarkers to predict treatment responses. In this regard, multiple algorithms have been
developed over the years, exploiting the multi-omics perspective to achieve these goals
(Table 1).

Table 1. Algorithms and where to find them.

Algorithm Name Website Object of Investigation

ESTIMATE
https://bioinformatics.mdanderson.

org/public-software/estimate/,
accessed on 11 March 2024

Stromal Score (detecting the
stroma), Immune Score (the

infiltration of immune cells) and
Estimate Score (that infers tumor

purity) in tumor tissue

xCell https://github.com/dviraran/xCell,
accessed on 11 March 2024

Cell type enrichment analysis from
gene expression data for 64 immune

and stroma cell types

MCP-counter
https:

//github.com/ebecht/MCPcounter,
accessed on 11 March 2024

Estimating the population
abundance of tissue-infiltrating

immune and stromal cell
populations using gene expression

CIBERSORT https://cibersortx.stanford.edu/,
accessed on 11 March 2024

Estimation of the abundances of
member cell types in a mixed cell

population, using gene
expression data

IOBR
https://iobr.github.io/IOBR/IOBR-

VIGNETTE.html,
accessed on 11 March 2024

Decode tumor microenvironment
and signatures

TIDE
https://github.com/jingxinfu/

TIDEpy?tab=readme-ov-file,
accessed on 11 March 2024

Potential of immune escape

TMEscore *
https://github.com/

DongqiangZeng0808/TMEscore,
accessed on 11 March 2024

TME infiltration patterns were
determined and systematically

correlated with TME cell
phenotypes, genomic traits, and

patient clinicopathological features
* The only score used in clinical trials.

ESTIMATE, xCell, MCP-counter, and CIBERSORT are algorithms performing gene
set enrichment analysis (GSEA) in RNA-seq data. Immunomics technologies can identify
potential biomarkers of immune checkpoint blockers (ICBs), and transcriptomic data can
be used to estimate the immune cell composition in the TIME [1].

https://bioinformatics.mdanderson.org/public-software/estimate/
https://bioinformatics.mdanderson.org/public-software/estimate/
https://github.com/dviraran/xCell
https://github.com/ebecht/MCPcounter
https://github.com/ebecht/MCPcounter
https://cibersortx.stanford.edu/
https://iobr.github.io/IOBR/IOBR-VIGNETTE.html
https://iobr.github.io/IOBR/IOBR-VIGNETTE.html
https://github.com/jingxinfu/TIDEpy?tab=readme-ov-file
https://github.com/jingxinfu/TIDEpy?tab=readme-ov-file
https://github.com/DongqiangZeng0808/TMEscore
https://github.com/DongqiangZeng0808/TMEscore
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Zeng and his colleagues developed a computational tool to support Immuno-Oncology
Biological Research (IOBR). This tool comprises CIBERSORT, ESTIMATE, quanTIseq,
TIMER, IPS, MCPCounter, xCell, and EPIC. IOBR optimizes precision immunotherapy
by analyzing the TME, genomic alteration landscapes, and the latent correlation between
patient stratification and therapeutic sensitivity and intervention [8–16].

Similarly, Jiang et al. developed the Tumor Immune Dysfunction and Rejection or
Exclusion Score (TIDE), an analytical tool based on an association of gene signatures
estimating cancer immune evasion that can predict the efficacy of immune checkpoint
blockades [17].

In a recent study, Qin and his group used the TIDE, showing that enhanced TIDE
scores correlate to a higher expression of migrasomes—a novel, identified, large vesicle
containing chemokines, cytokines, and growth factors able to promote tumor metastasis and
immune escape, reducing the response to ICI. Additionally, the researchers also evaluated
ESTIMATE scores of migrasomes in different tumors, finding out that patients treated with
immunotherapy had higher scores, which correlates with a better prognosis [18].

On the other hand, Zhu et al. have identified three subtypes with different TIDE scores
and unique tumor microenvironments (TMEs), based on the expression of 66 prognostic
genes. This subtype classification can predict the response to immunotherapy, with the
subtype that has a lower TIDE score showing a better response to PD1/CTLA4. In addition,
researchers have discovered an association between the mRNA-based expression subtypes
and ICI response, while the Tumor Mutational Burden (TMB) status and transcriptome
expressions can be used to guide treatment choices using platform L1000. Also, they created
a classifier that can help identify the best drug for a colon cancer patient based on their
gene expression [19].

Focusing on treatment sensitivity, Yuan et al. led a study using the R package
pRRophetic (R version 4.3.3). The study predicted immunotherapy responses by ana-
lyzing gene expression profiles using the ImmuneCellAI algorithm (https://github.com/
lydiaMyr/ImmuCellAI, accessed on 18 March 2024). By using TIDE and The Cancer Im-
munome Atlas (TCIA) platforms (https://tcia.at/home, accessed on 18 March 2024), the
Immunophenoscore (IPS) (https://tcia.at/tools/toolsMain, accessed on 18 March 2024)
and exclusion scores were provided. Better responsiveness to immunotherapeutic agents is
achieved when the IPS is higher, and the exclusion score is lower [20].

Shi et al. proposed a Gluco-Immune Score by analyzing the TME where gastric cancer
(GC) patients with high scores are beneficiaries of IT [21] as well as the use of a gene-based
antigen processing and presentation signature (APscore) suggested by Wang et al. [22]. The
importance of TME in affecting responses to ICI were also underlined by Zeng at al. who
validated the TMEscore in a prospective phase II study that enrolled metastatic GC patients
receiving pembrolizumab [23].

On the basis that immunotherapy efficacy depends on immune cell amount, the spatial
relationships, and the TME conformation, Tong et al. retrospectively studied intertumoral
CD8+ TILs in PD-L1-negative GC patients as a predictive factor for chemoimmunotherapy
responses [24–26].

Also, tertiary lymphoid structures (TLS), part of the TME, correlate to better im-
munotherapy outcomes in GC patients [27].

Pooling together TMEscores and NanoString technologies, Zeng et al. [23] investigated
the multi-omics data of 1524 patients with gastric cancer, then conducted a prospective,
open-label, phase II trial (NCT02589496) employing mGC patients treated with pem-
brolizumab, suggesting that patients classified as Epstein Barr Virus (EBV) positive and
Microsatellite Instability High (MSI-H) are the most responsive with higher TMEscores.
Based on such results, the authors validated the robust predictive role of the TMEscore
in the response of ICIs alone or combined with chemotherapeutic or antiangiogenetic
agents. To make the TMEscore a useful clinical immunotherapeutic biomarker, Zeng et al.
conducted two more clinical trials on gastric cancer patients IT-treated (NCT04850716 and
NCT04850729). Features employing the ARID1A and PIK3CA alterations, kynurenine,

https://github.com/lydiaMyr/ImmuCellAI
https://github.com/lydiaMyr/ImmuCellAI
https://tcia.at/home
https://tcia.at/tools/toolsMain
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glycogen metabolism, ATG7, and VAMP8 methylation shed light on putative mechanisms
of TMEscore-guided precision immunotherapies [23].

Following the example of Zheng’s group, further study design involving multi-omics
should be encouraged.

Omics Sciences (OSc), Microbiome, and TME

It is well documented that the microbiome influences the immune system cells in the
TME, leading to a pro- or anti-tumoral phenotype.

Anagnostou and colleagues observed a correlation between genomic alteration and
loss of mutation-associated neoantigens in resistant tumors, leading to less treatment bene-
fits. Similarly, focusing on non-small cell lung cancer, Duruisseaux and colleagues created
the EPIMMUNE signature, which identified specific patterns of DNA methylation from
nivolumab- or pembrolizumab-treated patients and was associated with clinical benefit.

As for potential microbiome-linked biomarkers for the response prediction of ICIs,
indole, aldehydes, and short-chain fatty acids have emerged thanks to novel techniques and
more accurate information about the interaction between the microbiome and ICIs [28–30].

A recent field of research leads to the role of the microbiome in affecting the lympho-
cytes activity. A study led by Zhang et al. [31] has examined the correlation between the
microbiome found within pancreatic tumors and various clinical features such as prognosis,
tumor microenvironment heterogeneity, and response to treatment. The study divided
patients into two clusters, A and B. The former is associated with a poor outcome and
worse staging and grading in comparison to cluster A. Immune analysis found a notable
increase in immune infiltration in cluster B. In contrast, cluster A patients were more likely
to benefit from CTLA-4 blockers [3].

Data available regarding multi-omics and the microbiome are few, suggesting that
there is still work to be done.

3. Immunotherapy and Biomarkers: Classical Perspective

Since anti-PD1 and anti-PD-L1 have been approved and used in clinical settings,
researchers focused on identifying biological molecules indicators of response.

The PD-L1 expression level was the first predictive biomarker. Although detectable
via IHC with four FDA authorized diagnostic tests—22C3, 28-8, SP142, and SP263—the
evaluation of PD-L1 expression employs IHC indicators such as the combined positive
score (CPS) and tumor proportion score (TPS). TPS represents the percentage of tumor cells
stained with any intensity of PD-L1, while CPS accounts for PD-L1-positive tumor cells
and tumor-associated immune cells divided by the total number of tumor cells. Moreover,
the analysis of the PD-L1 expression in circulating tumor RNA (ctRNA) conducted by
Ishida et al. suggested the utility of ctRNA for predicting and monitoring immunotherapy
responsiveness [32,33].

Other well-known biomarkers are the Tumor Mutation Burden (TMB) and Tumor
Infiltrating Lymphocytes (TILs). The TMB generates a considerable number of neoantigens,
which can trigger immune responses with consequent better prognosis, while the intensity
of TILs strongly correlates with the response to immunotherapy and clinical outcomes.
To note, the TMB’s accuracy has few limitations because not all mutations lead to new
antigens formation and are subdue due to factors like tumor type, exposure to external
carcinogens, detection methods, and genetic mutations in the TME [1,6,7].

Several studies have demonstrated that MMR status can be used as a predictor of re-
sponse for patients undergoing immune checkpoint inhibitor therapy. Specifically, deficient
MMR status, also known as microsatellite instability (MSI-High), is involved in the onset of
various cancers and in a favorable response to immunotherapeutic agents [2]. Moreover,
multiple studies have found a positive correlation between a high count of T-cell infiltration
and an improved response to immune checkpoint blockade treatment [2].

Regarding MSI and TMB, recent studies have shown that high MSI and TMB relate to
tumor antigenicity and ICI response. Evrard et al. found that screening for dMMR/MSI
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along with TMB may be helpful to determine the benefits of IT in CRC. Vanderwalde
et al. established a link between TMB, PD-L1, and MSI through NGS. Previously, a tool
was developed (available online) to predict IT responses by employing large-scale data
from omics, CRISPR screening, studies concerning immunotherapeutic agents, and tumor
profiles not related to IT [28–30].

Recently, Li and colleagues helmed a comprehensive analysis of multiple cancer
types. The study found an abnormal expression of SERPINE1 (serine protease inhibitor)
in cancer cells that correlates with immunoregulator expression, TMB, MSI, immune cell
infiltration, and IT response. These findings highlight the importance of SERPINE1 and
its potential implications in tumor immune escape, providing valuable insights that could
guide individual, tailored, personalized treatment [3].

The actual usefulness of these predictors is limited by the scarcity of standardized and
uniformed methods to detect PD-L1, the estimation of NGS with dissimilar sequencing
panels, and TMB heterogeneity depending on the laboratory and platform used [34].

Immunotherapy and Biomarkers: The New Perspective

As technology advances, new perspectives have opened up. With the increasing use of
biological and computational technologies, multi-omics cancer data are now available, such
as TCGA (The Cancer Genome Atlas), which provides data on somatic mutations; copy
number variations (CNVs); DNA methylation profiles; and gene, microRNA (miRNA),
long non-coding RNA (lncRNA), and protein expressions for 33 cancer types [35].

Lin et al. [34] have developed a tool called CAMOIP, standing for Comprehensive
Analysis on Multi-Omics of Immunotherapy in Pan-cancer, that helps to screen various
prognostic markers essential to distinguish immune responders from non-responders,
identify potential beneficiaries, and monitor adverse immune-related events. It evaluates
the implication of a gene mutation or alteration and verifies the correlation mechanism
between immunotherapy biomarkers and the affiliated treatment response, assessing if a
specific gene expression level correlates with patient outcomes after receiving ICIs [3].

Multi-omics algorithms refer to pan-cancer data. However, due to the intra- and
intertumoral heterogeneity, an in-depth cancer specific analysis is required.

In this regard, He et al. tried to identify biomarkers predicting the response to im-
munotherapy, analyzing the transcriptome and somatic alterations data files available on
TCGA about melanoma (UCSC-Xena) (https://xenabrowser.net/datapages/, accessed on
11 March 2024). The study indicates that tumor immunity, intratumor heterogeneity (ITH),
TMB, copy number alterations (CNAs), PD-L1 expression, immune signatures and path-
ways stimulating the immune system response, higher enrichment scores of differentiations,
EMT, invasion, and metastasis signatures are linked to ICI response. The researchers also
identified other biomarkers, such as the negative correlation between activated mast and
dendritic cells signatures with IT response, as well as the positive associations between the
enrichment of many oncogenic pathways (JAK-STAT, RAS, MAPK, HIF-1, PI3K-Akt, and
VEGF pathways), the number of microRNAs and proteins expression, and responsiveness
to immunotherapy, while the mTOR pathway negatively correlates with IT response [35].

Moreover, Hu et al. led a study in which they classified Triple Negative Breast Cancer
(TNBC) patients based on their immune subgroups (IS 1, 2, 3A, and 3B). They found
substantial diversity in prognosis, response to immunotherapy and chemotherapeutic
agents, gene mutations, and the infiltration of immunity cells. This study provides the
groundwork for the use of this categorization to foresee the IT potential in this type of
cancer [36,37].

Furthermore, the TCIA database (https://tcia.at/home, accessed on 18 March 2024)
provides immunotherapy prediction information based on comprehensive immunogenomic
analyses of next-generation sequencing data (NGS) of 20 types of cancer, including breast
cancer. This information can be used to predict the immune checkpoint inhibitor (ICI)
response of patients with distinct subtypes of breast cancer [19].

https://xenabrowser.net/datapages/
https://tcia.at/home
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In some cases, OSc was used to define the molecular subtypes of GC like in the Hu
et al. study that identified CS1 and CS2 GCs with CS2 resulting as the one that benefited the
most from ICI therapy [38]. Meanwhile, Yuan et al. found out that HER2-related metabolic
heterogeneity in GC is linked to ICI response in neoadjuvant chemotherapy, showing that
the quiescent, aspartate, and glutamate subtypes are better responders [20].

Moreover, a meta-analysis evaluating ten different tumor types highlighted the role
of multiple immunofluorescence (mIHC/mIF) as a predictive factor of ICI response over
TMB, gene expression profiling, and PD-L1 expression [39].

Also, Chen et al. confirmed the role of the TIL signature found through mIHC and
multi-dimensional analyses in foreseeing anti-PD-1/PD-L1 responsiveness [33,40].

On the other side, based on low- and high-TMB, Fu et al. proposed an immune
prognostic model based on a side-by-side of gene expression and immune markers [41].

Summing up, several researchers employed multi-omics approaches to evaluate IT
activity and responsiveness and explore new targets for combinatorial treatment.

However, in the field of cancer immunotherapy, transcriptomics is generally used with
proteomics to showcase phenotype differences, but only a few studies focus on ICI’s added
metabolomics, limiting the capability to actively translate the use of these methods into
clinical practice [42]. Therefore, an extensive multi-omics approach is desirable.

4. In-Depth Cancer-Type Analysis: Focus on Clinical Trials

Basically, OSc has the goal of helping physicians to understand the complex mech-
anism behind response or resistance to ICI therapies [43–56]. There are a few studies
analyzing specific tumor-leveraging, multi-omics methods (Table 2).

Table 2. Overview of the Clinical trials investigating IT biomarkers.

Clinical Trial Phase Tumor Type Biomarkers Omics
Methods

Song et al. [47]
(NCT03838848) II NSCLC Stroma Multi-omics

spatial level
Song et al. [47]
(NCT03878472) II GC MSI CPS

TMB
Sequential

multi-omics
KEYNOTE-012
KEYNOTE-059
KEYNOTE-062
CheckMate032

ATTRACTION-2

Ib
II
III

I/II
III

GC TPS CPS -

KEYNOTE-061 III GC TPS NLR Na
level -

UMIN000025947
AIO trial

MAHOGANY
KEYNOTE-061

I/II
II

II/III
III

GC CPS -

CheckMate-649
KEYNOTE-061
KEYNOTE-062

JAVELIN Gastric 100

III
III
III
III

GC CPS MSI -

Neoplanet
NCT02915432
KEYNOTE-061

EPOC1706

II
I/II
III
II

GC TMB -

Chida et al. [55]
Wang et al. [56]

Exploratory study
-

GI
GC MSI TMB -

NGS-based

Song et al. [47] explored ITH, known for interfering with the response to ICI, in a
phase II multicenter clinical trial that enrolled NSCLC patients treated with NK046 at
the multi-omics spatial level [46], showing the role of a “non-responder” stromal area in
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affecting the responses to ICI, suggesting that spatial segmentation is the key to being more
precise and predicting the effectiveness of biomarkers while considering the ITH [47].

But, apparently, among the cancers, GC is the most studied. Currently, the main
recognized predictors of ICI response are the tumor proportion score (TPS) and combined
positive score (CPS). Their role has been investigated in several clinical trials such as
KEYNOTE-012, KEYNOTE-059, CheckMate032, and ATTRACTION-2. The TPS together
with the blood-neutrophil-to-lymphocyte ratio (NLR) and serum Na levels can be used as
biomarkers to forecast responsiveness to anti-PD-1 in pre-treated GC patients. The same
results were obtained in the KEYNOTE-061 trial for Pembrolizumab [48].

Furthermore, an exploratory analysis using RNA seq observed a correlation between
the T-cell-inflamed gene expression profile (TcellinfGEP) with the Objective Response
Rate (ORR) and Progression-Free Survival (PFS), specifically for pembrolizumab. The
UMIN000025947 study (phase I/II) investigated a combined treatment (nivolumab, pa-
clitaxel, and ramucirumab) used after the first line along with a phase II trial held by the
Arbeitsgemeinschaft Internistische Onkologie (AIO), highlighting the CPS’s prognostic
value in predicting the ICI response [18]. Similarly, the MAHOGANY study explored the
combination of margetuximab (anti-HER2) and pembrolizumab (anti-PD-1), confirming
the role of CPS as a predictive score [48].

However, the CPS cut-off for IO response predictivity is still debated [49,50]. Neverthe-
less, various studies suggest a CPS score of 1 as the threshold for ICI monotherapy’s survival
advantage; few analyses, including CPS scores of 10 in KEYNOTE-059, KEYNOTE-061,
and KEYNOTE-062 trials concerning GC patients, have steadily demonstrated favorable
outcomes obtained with pembrolizumab, despite the treatment lines in which it is used [50].

Historically, MSI-High status is considered the best predictor of ICI response. A trial
analyzing GC patients treated with anti-PD-1 (nivolumab) suggested the use of CPS and
MSI as predictors of treatment response [51]; however, according to an extensive meta-
analysis that included studies like CheckMate-649, KEYNOTE-061 and -062, and JAVELIN
Gastric 100, around 50% of MSI-H tumor patients with gastric cancer are intrinsically
resistant to PD-1 inhibitors.

An explanation came from Kwon and colleagues who suggested a link between
prolonged PFS and the T-cell receptor repertoire under treatment with pembrolizumab.
The increase in the amount of double-positive T cells (CD8+/PD-1+) in MSI-H GC patients
is associated with lasting clinical profit [52].

Regarding the combination of old and new techniques and biomarkers, in a phase
II exploratory study held by Song et al., the neoadjuvant combination of camrelizumab
(anti-PD-1), apatinib (antiangiogenic), and chemotherapy was evaluated. The trial used
sequential multi-omics techniques to highlight potential biomarkers for neoadjuvant im-
munotherapy; they observed correlations between pathological responses and MSI status,
CPS, and TMB. Another phase II trial called Neo-PLANET investigated neoadjuvant cam-
relizumab with concurrent chemoradiotherapy for locally advanced GC/GEJC. The trial
found a positive correlation with the TMB median level (4.04 mutations/Mb) estimated
before the treatment onset [53,54].

The NCT02915432 trial (phase I/II) evaluated an anti-PD-1, toripalimab, and showed
that patients with TMB-high had better outcomes. Also, a preliminary investigation of
KEYNOTE-061 unveiled a solid relation between TMB and pembrolizumab effectiveness
when used in the second line, as in the EPOC1706 trial investigating pembrolizumab, in
association with lenvatinib in the first- or second-line setting.

On the other hand, MSI-H/dMMR gastric cancer patients with low TMB are less
responsive to anti-PD-1 agents, as shown in the study of Chida et al.; so, Wang et al.
proposed to screen responders to ICI based on the combination of blood MSI and blood
TMB [55,56].

Further studies employing a multi-omics strategy focusing on distinct cancer types
are also desirable.
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5. ICI-Induced Immune-Related Adverse Events (irAEs): The Other Side of the Coin

Despite the well-known benefits of ICI treatment, there are also autoimmune side
effects to consider such as irAEs. Their frequency varies depending on the ICI used,
but it may account for up to 70% of cases. These side effects can involve any organ
and can appear at any point during treatment, even several months after stopping ICI.
Severe irAEs (grades 3–4) may require hospitalization, pausing or stopping treatment, and
immunosuppressant medication. In some cases, irAEs can be fatal [57,58].

Grigoriou et al. conducted a study on the changes in the T-regulator cells in blood and
found that the reprogramming of the inflammatory T-regs could be a potential indicator
for the development of irAEs. Das et al. helmed a study, using scRNA seq, showing that
early modifications in B-cells could mark the irAEs risk in melanoma [42,59–61].

Jing and colleagues used a model to identify two potential predictive biomarkers—
lymphocyte cytosolic protein 1 (LCP1) and adenosine diphosphate dependent glucokinase
(ADPGK)—involved in T cell activation. The study also found that six factors correlate to
irAEs as well as a better IT response (TMB, T-cell receptor (TCR) diversity, interferon (IFN)
α level, tumor necrosis factor (TNF) α, eosinophils, and neutrophils). Among these factors,
CD8+ T cells and TCR diversity showed the highest predictive effectiveness [58,62].

Nuñez et al. led a study on patients with melanoma or NSCLC who were receiving
ICIs treatment, using a multi-omics approach to look for immune signatures. By combining
the obtained data, the researchers were able to identify potential predictive biomarkers of
ICI-related irAEs, observing an early increase in CXCL9/CXCL10/CXCL11, IFN-g, and
Ki-67+ T cells that may indicate an increased risk of the occurrence of irAEs. Also, an
increase ahead of time of proliferating T-cell subgroups occurred mainly in patients who
experienced ICI-related toxicity. Patients who had higher frequencies of CD8+ CD38+
Ki-67+ T cells at certain time points were more likely to develop autoimmune toxicity
sooner. Therefore, combining cellular and proteomic biomarkers can support clinicians
to identify which patients will benefit the most from ICI therapy and those who are most
likely to develop irAEs, requiring increased surveillance [57].

6. AI: The New Frontier

Apart from multi-omics, AI is currently a hot topic in each research field. To leverage
the power of AI to predict patient responsiveness to immunotherapeutic agents, it is
necessary to set up a training and validation cohort, collecting medical data, which include
pathological tissue, CT/MR imaging-omics, genomics, proteomics, and more, from the
training cohort by filtering, segmenting, extracting, and selecting features and then handing
them over to the AI for learning and modeling. Finally, the validation cohort is used to
verify the learning results. AI can also analyze pathological data and determine the state of
tumor development. Its algorithm and analysis can be easily standardized and shared.

Several researchers have made this effort over the years.
In fact, Bojar et al. used a serum proteomics model implemented by AI to foresee the IT

response [63]. Meanwhile, Xie and colleagues developed a predictive model to distinguish
between “cold” and “hot” immune patients. This model was applied to analyze clinical
data, showing a better IC response in patients with high immunogenicity [64]. Similarly,
Gupta and colleagues used a probabilistic model called the Bayesian network, combining
anamnestic data and tumor features to predict survival outcomes in patients with RCC
undergoing nivolumab [65].

On the other hand, Hu et al. demonstrated that a tumor proportion score (TPS)
analyzer based on AI can increase reliability, leading to an accurate prediction of the IT
response in NSCLC [66].

Yi Yang and colleagues developed a deep learning model including anamnestic, clin-
ical, laboratory, and imaging data of NSCLC patients [67]. Likewise, researchers using
a deep learning system discovered predictive signatures and radiomics markers for pro-
gressive disease, survival, and IT responsiveness forecasting in patients with NSCLC or
melanoma [68–81].
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Prelaj et al. analyzing real-world data to predict outcomes in patients that respond or
do not to treatment using deep learning techniques. They even reviewed several studies
using AI tools to confirm classical and new biomarkers like human leukocyte antigen loss
of heterozygosity (HLA LOH) and genomic ITH for IO response [82].

Also, Harder and his group detected the expression level of PD-L1 in a non-invasive
way, combining radiomics, based on CT, with clinical characteristics [83].

Furthermore, Peng Song and his group theorized that combining clinical and labo-
ratory data with the ones obtained from DNA and RNA seq, as well as immunostaining,
would help to assess therapy effectiveness [84].

Sun and colleagues led a study establishing a predictive imaging model of patients’
outcomes after immunotherapy, combining CT scans with RNA-seq data obtained from
cancer biopsies [85].

Also, new RNA-based biosignatures, generated using AI transcriptomics and DNA
methylation profiles, have been found to have potential in predicting the ICI response
across cancers [86–91].

Ultimately, the NSCLC study found that using a model including different sources
of data resulted in better performance than models that used single data. Also, Yang et al.
showed that the use of a model including radiomics and clinical and laboratory data of
metastatic NSCLC patients was more accurate compared to traditional evaluations [92–94].

The AI Tools: Pros and Cons

Discovery tools powered by AI have assisted in identifying new immune phenotypes
related to immunotherapeutic agents’ responsiveness.

Medical datasets used for AI-based research can be challenging to work with due
to their complexity, high dimensionality, noisiness, and incompleteness. To achieve high
quality, a vast volume of excellent data is required. Currently, there are numerous ML-based
models available, making it difficult to choose the appropriate methodology. Standardiza-
tion, protocols, and guidelines like CONSORT-AI, SPIRIT-AI, and the ML-CLAIM checklist
provide AI-specific recommendations, but many studies lack clear documentation [95–97].

Additionally, the complexity of the algorithm can be solved using XAI methods. For
generalizability and robustness, ML models require exposure to diverse data sources. The
studies reviewed lacked endpoints and pipelines. Therefore, future studies should be well
designed as prospective studies, choosing the most appropriate AI approach—an example
is represented by the I3LUNG study (NCT05537922)—or as observational studies guided
by data, especially for biomarker-driven detection, like in the NCT0555096 study and the
so-called APOLLO 11 trial [82].

7. Conclusions

The emergence of cutting-edge technologies such as scRNAseq, high-parameter flow
cytometry, and spatial transcriptomics has revolutionized our understanding of anti-tumor
immune responses. As these technologies become more advanced and widely adopted in
the future, they have the potential to provide us with profound insights into the behavior
of immune cells within the tumor microenvironment (TME). This knowledge could serve
as the basis for designing more effective immunotherapies. However, to achieve this goal,
it is essential to pair the vast amount of data produced by these technologies with focused
experimental questions, precise analysis, clear interpretation, and supportive mechanistic
studies. To accurately identify new targets for immune checkpoint inhibitors (ICIs), it is
crucial to determine the antigen specificity within the TME [57].

Multi-omics data integration approaches dissecting every functional layer of different
cell types unravel the underlying pathophysiological mechanisms of cancers, facilitating
tumor classification, diagnosis, and prognosis [20].

That said, if scientists focus not only on the classical pathological features of the
tumor but also on the underlying tumor biology along with the inter- and intratumoral
heterogeneity, while also being open to welcoming and imbricating new technologies with
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the old ones (i.e., sharing data and codes), it will make a difference in designing studies
leading to practice-changing and to better outcomes.
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