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S1. The need for personalised care across the disease pathway - Illustrating 
the sex differences 

There are sex differences in AF across the scope of the disease pathway and its related adverse outcomes 
(i.e., stroke), from epidemiology and causative mechanisms to management and outcomes. It has been reported 
the incidence of AF is greater in men than in women, but this gap closes with advancing age as women usually 
develop AF ten years later than men. The Atherosclerosis Risk in Communities (ARIC) cohort [1], a group of 
>15K participants followed for nearly 30 years, showed a lifetime risk of AF of 36% in white men compared 
to 30% in white women. African American men and women both were found to have a lower lifetime risk of 
AF, at 21% and 22% respectively.  

While women have a lower incidence of AF, its prevalence in men and women age >75 years is greater 
in women due to their increased longevity, and the absolute number of men and women with AF is similar on 
a population basis. There are sex differences also in the management of AF. In a recent European AF registry 
[2], from >7K patients enrolled (2012-2013), women were older and more symptomatic. They were less likely 
to undergo electrical cardioversion, catheter ablation, or surgical ablation, but were more likely to be prescribed 
antiarrhythmic medications.  

In patients with AF, female sex was previously identified as an independent significant risk factor of 
stroke, with several older studies supporting the existence of excess risk of stroke in females with AF [3]. 
However, it is less clear whether this differential association in women is causal. The reason for the increased 
risk of stroke in women with AF is not fully known and while it may be related to hormonal mechanisms, the 
evidence is conflicting [4,5].  

Preventing stroke is a primary clinical focus for patients with AF, requiring careful risk stratification to 
balance the benefits of anticoagulation with the potential risk of bleeding [6]. Oral anticoagulation treatments 
have been shown to effectively reduce the risk of stroke across different patient populations, but data on sex 
differences in anticoagulation of patients with AF and outcomes are not consistent [7]. Risk scores such as 
CHA2DS2-VASc, included female sex as a risk component. However, more contemporary evidence suggests 
the non-sex CHA2DS2-VASc score (CHA2DS2-VA) could be used for initial decision-making [8,9] such that 
the female sex was a risk modifier rather than a risk factor per se, being additive to stroke risk in the presence 
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of 1 or more non-sex stroke risk factors [10–12]. This has led to recent European guidelines recommending 
the CHA2DS2-VA score [13]. 

Sex differences are also prevalent in stroke rehabilitation, potentially because they tend to experience 
stroke at an older age than men [14]. Women tend to experience worse functional recovery than men, with a 
study in a Danish population showing that females were more dependent on activities of daily living (ADL) 
than males in the acute phase (first 2 weeks) of stroke rehabilitation [15]. Strokes in older women are 
commonly more severe than in men and they also experience greater disability following stroke [16,17]. 

S2. Barriers to the implementation of digital twins in healthcare 
The implementation of digital twins in healthcare faces several challenges that limit their adoption and 

integration into clinical practice, as outlined in a position paper [18] by the EDITH consortium, in seven key 
barriers (B1-B7). A critical barrier is the lack of advanced, robust predictive models that accurately reflect the 
complexity and variability of human physiology on an individual level (B1). This deficiency is worsened by 
challenges in integrating diverse in-silico technologies, from data-driven to knowledge-driven approaches, as 
well as the scarcity of curated, representative datasets for model development and validation (B2). Strict 
privacy laws and a limited understanding of required data types further complicate data availability and 
sharing. Furthermore, regulatory uncertainties, including the absence of harmonised credibility assessments 
and clear pathways for the evaluation of in-silico methods, create obstacles in adopting these technologies in 
regulatory frameworks (B3). 

Additional challenges include a lack of awareness and understanding among key stakeholders 
(policymakers, clinicians, patients, and industry executives) about the benefits and risks of digital twin 
technologies (B4). Poor scalability and computational inefficiency limit the deployment of population-scale 
models in accessible, secure environments (B5). The healthcare sector also faces a shortage of trained 
professionals equipped with the necessary technical expertise to develop, implement, and regulate these 
technologies (B6). Finally, immature business models and uncertainties in commercialising digital twin 
solutions present barriers to market adoption (B7). Addressing these interrelated challenges is crucial for 
advancing digital twin adoption and transforming clinical care and research. 

Earlier studies such as Mohamed et al [19], also identified challenges related to the quality of the data, 
involving data collection and validation, knowledge extraction, and noise; as well as the modelling, including 
model validation, level of abstraction and representation, and process automation, which are (to some extent) 
reflected in the key barriers outlined in [18]. Data-related challenges focusing on collection, security, privacy, 
and ownership, as well as other technical challenges related to modelling the virtual representations of the 
physical entities, were also highlighted in a systematic review by Xames and Topcu [20]. In addition, 
requirements for strong data infrastructures and the need for trustable methodologies and technologies are also 
some of the challenges highlighted by Zayed et al [21]. 

Practical challenges also emerge in aligning the infrastructure and methodologies necessary for 
implementing these tools, as recognised in the aforementioned barriers. For instance, the inconsistent structure 
and quality of data from disparate sources complicate its usability, often requiring significant preprocessing 
and curation efforts. Ensuring robust anonymisation and compliance with privacy frameworks while 
maintaining data usability for high-fidelity modelling is a delicate balance. Moreover, the limited 
interoperability of current tools and devices with electronic health record (EHR) systems hinders seamless 
integration, reducing the potential for real-time updates and feedback in clinical workflows. Addressing these 
gaps requires not only technical advancements but also the establishment of common standards, collaborative 
frameworks, and a supportive regulatory landscape to foster innovation and ensure these technologies are 
deployed effectively and securely in practice. 
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S3. Personalised stroke care today: how far have we come? Survey of the 
literature 

To survey the literature on advances in personalised approaches to stroke care, searches were conducted 
in PubMed/MEDLINE and SCOPUS (see Figure S1). The searches focused on English-language sources, and 
they involved searching in the title, the abstract and the keywords for the following terms: “stroke” + “AI OR 
artificial intelligence OR machine learning OR deep learning” + “personali?ation OR personali?ed OR digital 
twi*”. A total of 330 articles were extracted (date: 2nd March 2024), of which 92 were excluded as they were 
either review articles (78) or editorials, letters or notes (14). After further screening of the titles and abstracts, 
219 articles were also excluded because a) they were duplicated, b) the proposed approach related to stroke 
care was not personalised (even if it could lead to tailored and personalised approaches in the future) or c) they 
were not relevant (e.g. referred to stroke in the context of handwriting). The remaining 19 articles were read 
and reviewed in full, and a further 5 articles were removed due to lack of detail or quality, e.g. no details about 
the data source or data cohort used. The final list of 14 articles is summarised in Table S1, and a selection is 
discussed next. It is also worth mentioning that the majority (95%) of these selected articles were published in 
the last five years (since 2019). 

 
Figure S1. Flowchart with the selection of articles relevant to this review. 
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Table S1. Summary of the 19 articles fully reviewed. 

Year Reference Methodology Data origin Data size (N) Results 

Risk prediction 

2022 Zheng et al. 
[22] 
 
(Original 
article) 

• Six models developed: logistic 
regression (LR), k-nearest 
neighbours (KNN), Naïve Bayes, 
XGBoost, random forest (RF), and 
neural networks (NN).  

• LIME and SHAP used for 
explaining the ML models and to 
draw case-level details for 
individual patients. 

Private data. 
• Modelling dataset: 

Second Affiliated 
Hospital of Shandong 
First Medical 
University.  

• External dataset: 
Dongping People’s 
Hospital. 

• Models trained on: 
N=10,476 (4,999 stroke 
patients) using 80/20% 
split for train/test.  

• External validation: 
N=3,935 (1,076 stroke) 

• Best model: 
XGBoost. 

• Modelling data 
AUCs (95% CI): 
0.91 (0.90–0.92)  

• External validation 
AUCs (95% CI): 
0.92 (0.91–0.93) 

2022 Doborjeh et 
al. [23] 
 
(Original 
article) 

• Proposed a method to identify 
associations between clinical and 
environmental data.  

• The methodology uses KNN and 
spiking neural networks (SNN) to 
develop what the authors call a 
‘personalised’ model.  

• There is possible data leakage. 

Private data. 
• Patient data: from 

Auckland, NZ (data 
origin not detailed). 

• Environmental data: 
Auckland city, (same 
period as patient 
data). 

• N=804 stroke patients. 
• Environmental data: 10 

meteorological monitors 
in Auckland city, NZ. 

• No external validation 
data used. 

• Significant 
differences found in 
the interactions for 
all the 
environmental 
variables for all 
models in high vs 
low risk. 

2021 Allen et al. 
[24] 
 
(Original 
article) 

• Developed a model of disease 
progression using variational 
autoencoder (VAE) and used it to 
generate synthetic samples 
resembling the input data, which 
authors called digital twins. 

Publicly available data. 
• MIMIC-IV database. 

• N=1,216 stroke patients. 
Training: 1,094 and test: 
122. 

• No external validation 
data used. 

• Real and simulated 
data exhibited 
indistinguishable 
covariate 
distributions. 

2021 Jia et al. [25] 
 
(Conference 
paper) 

• Trained a convolutional neural 
network (CNN) enhanced with 
expert knowledge and patient-
derived data to detect AF on a 
cardiac monitoring device. 

• Manually verified ECGs of AF 
episodes are required to ensure 
reliability.  

Publicly available data. 
• Four ECG databases: 

Chapman dataset; 
China Physiological 
Signal Challenge 
2018 (CPSC) dataset; 
The Long Term AF 
Database (LTAFDB); 
and the MIT-BIH-AF. 

• Chapman and CPSC (for 
modelling). Train: 
N=16,781 subjects. Test: 
N=4,195 subjects.  

• LTAFDB and MIT-BIH-
AF used for 
personalisation of the 
model. 

• Best model: CNN-
ResNet-Prior 

• F1=0.898, 
accuracy=0.976. 

• No AUC reported. 

Management 

2021 Buoso et al. 
[26] 
 
(Original 
article) 

• Proposed a method to simulate 
left-ventricular biomechanics 
coupling NNs with a simplified 
circulation model, more efficient 
than the reference Finite Element 
model used. 

Private data. 
• Multi-Modal Whole 

Heart (MMWH) 
dataset. 

 

• Left-ventricular 
anatomies from N=75 
cases of the dataset. 

• New model was 30x 
faster than the 
reference. 

• Used performance 
metrics of clinical 
interest, e.g. 
ejection fraction. 

2020 Litman E. 
[27] 
 
(Conference 
paper) 

• Developed an SNN model on 
temporal electroencephalographic 
(EEG) data to detect cerebral 
ischaemia. 

Publicly available data. 
• Temple University 

Hospital EEG Corpus 
(TUEG). 

• N=92 subjects (46 stroke 
patients, 46 healthy), 
using 70/30% split for 
train/test.  

• No external validation 
data used. 

• Cross-validation. 
• F1=0.94 
• Accuracy=0.945 
• Precision=0.923 
• Recall=0.962. 
• No AUC reported. 

2019 King et al. 
[28] 
 
(Original 
article) 

• Proposed a mechanistic method for 
simulating left ventricular 
pressure-volume control. 

• The approach uses a logic-based 
conditional finite state machine 
based on the four pressure-volume 
phases of the left ventricle. 

Publicly available data. 
• MathWorks’ 

Simulink, Simscape, 
and Simscape Fluids. 

• Parameters derived from 
the literature. 

• The difference 
between desired 
and simulated 
pressure and 
volume set points 
produced an error of 
<1 mmHg and <1 
mL. 

Rehabilitation 

2023 Winner et al. 
[29] 
 

• Developed a data-driven approach 
based on recurrent NNs to predict 
gait dynamics of individuals, 
representing them in a low-

Publicly available data. 
• Emory Rehab 

Hospital Motion 
Analyses Lab. 

• N=7 able-bodied healthy 
participants and N=7 
stroke survivors (>6 
months post-stroke).  

• Used a leave-one-
out subject 
approach for model 
evaluation, 
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(Original 
article) 

dimensional space after applying 
principal component analysis 
(PCA). 

• No external validation 
data used. 

comparing 
differences in loss.  

2023 Korivand et 
al. [30] 
 
(Original 
article) 

• Proposed a pipeline for 
rehabilitation, focusing on upper 
limb movement. 

• It involved classification (Naïve 
Bayes, KNN, NNs, etc.), source 
localisation, and visualisation of 
EEG. 

Private data. 
• University of 

Maryland, Baltimore. 

• N=1 healthy 35-year-old 
male participant, who 
performed several arm-
reaching movements. 

• No test on multiple 
subjects.  

• No external data used. 

• Best model: the 
Decision Trees. 

• Accuracy=0.956 
• AUC=0.890 

2023 Faria et al. 
[31] 
 
(Original 
article) 

• Proposed a cognitive profiling and 
training methodology. 

• It used AI (embedded into an 
existing platform) to optimise 
neurorehabilitation prescription. 

Private data. 
• University of 

Madeira. 

• Methodology tested on 
N=10 stroke survivors.  

• No external validation 
data used. 

• No AI-related 
results reported. 

• Results suggest 
improved short-
term cognitive and 
functional abilities. 

2020 Lee et al. 
[32] 
 
(Conference 
paper) 

• Assessed the quality of upper limb 
rehabilitation exercises.  

• It used Markov Decision Process 
to find an optimal feature set, and 
then applied several ML 
algorithms (incl. LR, RF, and NN).  

• Integrated Expert knowledge using 
ensemble techniques. 

Private data. 
• Own collected 

dataset. 

• N=11 healthy (165 
unaffected motions) and 
N=15 post-stroke 
subjects (150 affected 
motions).  

• No external validation 
data used. 

• Leave one out used 
for evaluation.  

• Best model was 
hybrid. 

• Average 
performance: F1-
score=0.912±0.023. 

2020 Rose et al. 
[33] 
 
(Conference 
paper) 

• Developed a model-free control 
technique that learns gait patterns 
for control of a lower limb 
exoskeleton. 

• The technique is based on deep 
reinforcement learning. 

Publicly available data. 
• OpenSim’s Gait2392 

model (anatomically 
representing a human 
with height=1.8m and 
mass=76.16kg). 

• Musculoskeletal model 
derived from OpenSim’s 
Gait2392 model.  

• No external data used. 

• The learned torque 
control allowed the 
exoskeleton to 
follow the trained 
gait pattern. 

2019 Jung et al. 
[34] 
 
(Conference 
paper) 
  

• Used RF for regression to predict 
the post-treatment cognitive 
impairment level using baseline 
information (mental status and 
game performance).  

Private data. 
• University of 

Massachusetts, USA. 
Heeyeon Rehab. 
Hospital, South 
Korea. 

• N=14 post-stroke 
patients.  

• No external validation 
data used. 

• R2=0.87.  
• Root mean square 

error 
(RMSE)=0.58. 

• Normalized RMSE 
(NRMSE)=9.8% 

2016 Munoz-
Organero et 
al. [35] 
 
(Original 
article) 

• Proposed a system to 
automatically detect different 
walking strategies used by stroke 
survivors. 

• For this, it analysed insole pressure 
sensors data using decision trees. 

Private data. 
• Collected by the 

CATCH HomeLab, at 
the University of 
Sheffield. 

• N=14 stroke survivors 
and N=10 healthy 
controls.  

• No external data used. 

• Results showed that 
insoles can help 
characterise 
walking strategies 
found in stroke 
survivors. 

References 
[1] The ARIC Investigators. The Atherosclerosis Risk In Communities (ARIC) Study: Design and Objectives. Am J 

Epidemiol 1989;129. 

[2] Kirchhof P, Ammentorp B, Darius H, De Caterina R, Le Heuzey JY, Schilling RJ, et al. Management of atrial 
fibrillation in seven European countries after the publication of the 2010 ESC Guidelines on atrial fibrillation: 
Primary results of the PREvention oF thromboemolic events-European Registry in Atrial Fibrillation (PREFER 
in AF). Europace 2014;16. https://doi.org/10.1093/europace/eut263. 

[3] Corica B, Lobban T, True Hills M, Proietti M, Romiti GF. Sex as a Risk Factor for Atrial Fibrillation-Related 
Stroke. Thromb Haemost 2024;124:281–5. https://doi.org/10.1055/s-0043-1776394. 

[4] Apostolakis S, Sullivan RM, Olshansky B, Lip GYH. Hormone replacement therapy and adverse outcomes in 
women with atrial fibrillation: An analysis from the atrial fibrillation follow-up investigation of rhythm 
management trial. Stroke 2014;45. https://doi.org/10.1161/STROKEAHA.114.006668. 

[5] Hart RG, Pearce LA, McBride R, Rothbart RM, Asinger RW. Factors associated with ischemic stroke during 
aspirin therapy in atrial fibrillation: Analysis of 2012 participants in the SPAF I-III clinical trials. Stroke 1999;30. 
https://doi.org/10.1161/01.STR.30.6.1223. 



6 
 

[6] Chao TF, Potpara TS, Lip GYH. Atrial fibrillation: stroke prevention. The Lancet Regional Health - Europe 
2024;37:100797. https://doi.org/10.1016/j.lanepe.2023.100797. 

[7] Nielsen PB, Overvad TF. Female Sex as a Risk Modifier for Stroke Risk in Atrial Fibrillation: Using CHA 2 DS 
2 -VASc versus CHA 2 DS 2 -VA for Stroke Risk Stratification in Atrial Fibrillation: A Note of Caution. Thromb 
Haemost 2020;120. https://doi.org/10.1055/s-0040-1710014. 

[8] Lip GYH, Teppo K, Nielsen PB. CHA2DS2-VASc or a non-sex score (CHA2DS2-VA) for stroke risk prediction 
in atrial fibrillation: contemporary insights and clinical implications. Eur Heart J 2024. 
https://doi.org/10.1093/eurheartj/ehae540. 

[9] Teppo K, Lip GYH, Airaksinen KEJ, Halminen O, Haukka J, Putaala J, et al. Comparing CHA2DS2-VA and 
CHA2DS2-VASc scores for stroke risk stratification in patients with atrial fibrillation: a temporal trends analysis 
from the retrospective Finnish AntiCoagulation in Atrial Fibrillation (FinACAF) cohort. The Lancet Regional 
Health - Europe 2024;43:100967. https://doi.org/10.1016/j.lanepe.2024.100967. 

[10] Nielsen PB, Skjøth F, Overvad TF, Larsen TB, Lip GYH. Female Sex Is a Risk Modifier Rather Than a Risk 
Factor for Stroke in Atrial Fibrillation. Circulation 2018;137. https://doi.org/10.1161/circulationaha.117.029081. 

[11] Teppo K, Airaksinen KEJ, Jaakkola J, Halminen O, Salmela B, Kouki E, et al. Ischaemic stroke in women with 
atrial fibrillation: temporal trends and clinical implications. Eur Heart J 2024;45:1819–27. 
https://doi.org/10.1093/eurheartj/ehae198. 

[12] Nielsen PB, Brøndum RF, Nøhr AK, Overvad TF, Lip GYH. Risk of stroke in male and female patients with atrial 
fibrillation in a nationwide cohort. Nat Commun 2024;15:6728. https://doi.org/10.1038/s41467-024-51193-0. 

[13] Van Gelder IC, Rienstra M, Bunting K V, Casado-Arroyo R, Caso V, Crijns HJGM, et al. 2024 ESC Guidelines 
for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-
Thoracic Surgery (EACTS). Eur Heart J 2024. https://doi.org/10.1093/eurheartj/ehae176. 

[14] Persky RW, Turtzo LC, McCullough LD. Stroke in women: Disparities and outcomes. Curr Cardiol Rep 2010;12. 
https://doi.org/10.1007/s11886-009-0080-2. 

[15] Liljehult MM, von Euler-Chelpin MC, Christensen T, Buus L, Stokholm J, Rosthøj S. Sex differences in 
independence in activities of daily living early in stroke rehabilitation. Brain Behav 2021;11. 
https://doi.org/10.1002/brb3.2223. 

[16] Wiley E, Noguchi KS, Moncion K, Stratford PW, Tang A. Sex Differences in Functional Capacity in Older Adults 
With Stroke: An Analysis of Data From the National Health and Aging Trends Study. Phys Ther 2022;102. 
https://doi.org/10.1093/ptj/pzac077. 

[17] Lang C, Seyfang L, Ferrari J, Gattringer T, Greisenegger S, Willeit K, et al. Do Women with Atrial Fibrillation 
Experience More Severe Strokes?: Results from the Austrian Stroke Unit Registry. Stroke 2017;48. 
https://doi.org/10.1161/STROKEAHA.116.015900. 

[18] Viceconti M, De Vos M, Mellone S, Geris L. Position Paper from the Digital Twins in Healthcare to the Virtual 
Human Twin: A Moon-Shot Project for Digital Health Research. IEEE J Biomed Health Inform 2024;28. 
https://doi.org/10.1109/JBHI.2023.3323688. 

[19] Mohamed N, Al-Jaroodi J, Jawhar I, Kesserwan N. Leveraging Digital Twins for Healthcare Systems 
Engineering. IEEE Access 2023;11. https://doi.org/10.1109/ACCESS.2023.3292119. 

[20] Xames MD, Topcu TG. A Systematic Literature Review of Digital Twin Research for Healthcare Systems: 
Research Trends, Gaps, and Realization Challenges. IEEE Access 2024;12. 
https://doi.org/10.1109/ACCESS.2023.3349379. 

[21] Zayed SM, Attiya GM, El-Sayed A, Hemdan EED. A review study on digital twins with artificial intelligence and 
internet of things: concepts, opportunities, challenges, tools and future scope. Multimed Tools Appl 2023;82. 
https://doi.org/10.1007/s11042-023-15611-7. 

[22] Zheng Y, Guo Z, Zhang Y, Shang J, Yu L, Fu P, et al. Rapid triage for ischemic stroke: a machine learning-driven 
approach in the context of predictive, preventive and personalised medicine. EPMA Journal 2022;13. 
https://doi.org/10.1007/s13167-022-00283-4. 



7 
 

[23] Doborjeh M, Doborjeh Z, Merkin A, Krishnamurthi R, Enayatollahi R, Feigin V, et al. Personalized Spiking 
Neural Network Models of Clinical and Environmental Factors to Predict Stroke. Cognit Comput 2022;14. 
https://doi.org/10.1007/s12559-021-09975-x. 

[24] Allen A, Siefkas A, Pellegrini E, Burdick H, Barnes G, Calvert J, et al. A digital twins machine learning model 
for forecasting disease progression in stroke patients. Applied Sciences (Switzerland) 2021;11. 
https://doi.org/10.3390/app11125576. 

[25] Jia Z, Shi Y, Saba S, Hu J. On-device Prior Knowledge Incorporated Learning for Personalized Atrial Fibrillation 
Detection. ACM Transactions on Embedded Computing Systems, vol. 20, 2021. https://doi.org/10.1145/3476987. 

[26] Buoso S, Joyce T, Kozerke S. Personalising left-ventricular biophysical models of the heart using parametric 
physics-informed neural networks. Med Image Anal 2021;71. https://doi.org/10.1016/j.media.2021.102066. 

[27] Litman E. Computer-aided Ischemic Stroke Classification from EEG Data Using a Single-tiered Spiking Neural 
Network Framework. 2020 11th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication 
Conference, UEMCON 2020, 2020. https://doi.org/10.1109/UEMCON51285.2020.9298099. 

[28] King JM, Bergeron CA, Taylor CE. Finite state machine implementation for left ventricle modeling and control. 
Biomed Eng Online 2019;18. https://doi.org/10.1186/s12938-019-0628-3. 

[29] Winner TS, Rosenberg MC, Jain K, Kesar TM, Ting LH, Berman GJ. Discovering individual-specific gait 
signatures from data-driven models of neuromechanical dynamics. PLoS Comput Biol 2023;19:e1011556. 
https://doi.org/10.1371/JOURNAL.PCBI.1011556. 

[30] Korivand S, Zhu X, Jalili N, Koh K, Zhang LQ, Gong J. Toward personalized rehabilitation employing 
classification, localization, and visualization of brain–arm movement relationships. Smart Health 2023;28. 
https://doi.org/10.1016/j.smhl.2023.100397. 

[31] Faria AL, Almeida Y, Branco D, Câmara J, Cameirão M, Ferreira L, et al. NeuroAIreh@b: an artificial 
intelligence-based methodology for personalized and adaptive neurorehabilitation. Front Neurol 
2023;14:1258323. https://doi.org/10.3389/FNEUR.2023.1258323/BIBTEX. 

[32] Lee MH, Siewiorek DP, Smailagic A, Bernardino A, Bermúdez I Badia S. Interactive hybrid approach to combine 
machine and human intelligence for personalized rehabilitation assessment. ACM CHIL 2020 - Proceedings of 
the 2020 ACM Conference on Health, Inference, and Learning, 2020. https://doi.org/10.1145/3368555.3384452. 

[33] Rose L, Bazzocchi MCF, Nejat G. End-to-End Deep Reinforcement Learning for Exoskeleton Control. Conf Proc 
IEEE Int Conf Syst Man Cybern, vol. 2020- October, 2020. https://doi.org/10.1109/SMC42975.2020.9283306. 

[34] Jung HT, Lee H, Kim K, Kim B, Park S, Ryu T, et al. Predicting cognitive impairment level after a serious game-
based therapy in chronic stroke survivors. 2019 IEEE EMBS International Conference on Biomedical and Health 
Informatics, BHI 2019 - Proceedings, 2019. https://doi.org/10.1109/BHI.2019.8834484. 

[35] Munoz-Organero M, Parker J, Powell L, Mawson S. Assessing walking strategies using insole pressure sensors 
for stroke survivors. Sensors (Switzerland) 2016;16. https://doi.org/10.3390/s16101631. 

  


	S1. The need for personalised care across the disease pathway - Illustrating the sex differences
	S2. Barriers to the implementation of digital twins in healthcare
	S3. Personalised stroke care today: how far have we come? Survey of the literature
	References

