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ABSTRACT

Binaural sound source localization is the task of finding the location of a sound source using binaural audio as
affected by the head-related transfer functions (HRTFs) of a binaural array. The most common approach to this is
to train a convolutional neural network directly on the magnitude and phase of the binaural audio. Recurrent layers
can then also be introduced to allow for consideration of the temporal context of the binaural data, as to create a
convolutional recurrent neural network (CRNN).

This work compares the relative performance of this approach for speech localization on the horizontal plane using
four different CRNN models based on different types of recurrent layers; Conv-GRU, Conv-BiGRU, Conv-LSTM,
and Conv-BiLSTM, as well as a baseline system of a more conventional CNN with no recurrent layers. These
systems were trained and tested on datasets of binaural audio created by convolution of speech samples with BRIRs
of 120 rooms, for 50 azimuthal directions. Additive noise created from additional sound sources on the horizontal
plane were also added to the signal.

Results show a clear preference for use of CRNN over CNN, with overall localization error and front-back
confusion being reduced, with it additionally being seen that such systems are less effected by increasing reverb
time and reduced signal to noise ratio. Comparing the recurrent layers also reveals that LSTM based layers see the
best overall localisation performance, while layers with bidirectionality are more robust, and so overall finding a
preference for Conv-BiLSTM for the task.

1 Introduction

Classical methods of sound source localisation such as
generalised cross-correlation [1], beamforming meth-
ods [2], and subspace methods such as MUSIC [3] and
ESPRIT [4] tend to be improved by increasing num-
bers of transducers, leading to the dominance of many
element microphone array for this task.
In nature, however, most hearing species of animal have
evolved to have only two ears, despite the importance
of sound localisation ability for survival [5]. It follow
then that 2 sensors, if used correctly, must be adequate
for a useful sound source localisation system.
Binaural Sound Source Localisation (BSSL) is the task
of locating a sound source based upon measurement
of the sound field by binaural array; typically a physi-
cal full head simulator as used in binaural auralisation,
such that the same cues used in human sound localisa-
tion are present in the binaural signal.
A successful BSSL system, being one that is accurate

and robust in real-world scenarios, has clear applica-
tions in robotics [6, 7], hearing aids [8, 9] and beyond.
Humans identify the Direction of Arrival (DoA) of a
sound source based upon the binaural cues Interaural
Time Difference (ITD) and Interaural Level Difference
(ILD), being the differences in level and time of arrival
of a sound between the ears. This can be used for find-
ing DoA in the frontal horizontal plane, however on the
full sphere of directions a given ITD and ILD pair will
have a range of possible directions; leading to the cone
of confusion.
The filtering inflicted upon a sound source by the pinna
and other parts of the head and torso, the Head Related
Transfer Function (HRTF), differs somewhat uniquely
for different DoAs. These differences provide strong
context for resolving the cone of confusion. In addition
to this, humans also assess how these cues change in
relation to head pose and location changes, as well as
other contextual cues, to better further resolve a sound
source’s location in 3d space.



A primitive BSSL approach is to estimate DoA based
only upon ITD, by applying the generalised cross-
correlation to estimate ITD, and to map this to an
azimuth either trigonemtrically, or ideally through a
look-up table of measured or tuned values. Early BSSL
systems expanded this to combine this approach also
with analysis of ILD [10]. Estimating the HRTF of a
binaural signal and correlating this to HRTFs in mem-
ory provided an approach to full sphere binaural sound
source localisation [11].
Most interest in this task has come since the populari-
sation of machine learning. Earlier approaches consist
of creating hand-crafted features representing ITD and
ILD and perhaps monaural cues, and using this to train
at first probablistic models [12, 13] and then deep neu-
ral networks [14, 15, 16, 17].
Following this, a considerable shift towards application
of Convolutional Neural Networks (CNNs) occurred
[18, 19, 20, 21, 22], wherein the network is trained on a
more raw form of the binaural audio, typically vectors
or matrices representing the magnitude and phase of
the signals.
Concurrently in the field Sound Source Localisation by
microphone array, introduction of recurrence into CNN
architectures were becoming the popular approach [23],
in models known as Convolution Recurrent Neural Net-
works (CRNNs). Their use is shown to improve perfor-
mance over CNN for BSSL [24], and this approach has
also begun to be used in the field of BSSL [25, 26].
Based upon the continued popularity of CRNN in the
wider field of sound source localisation, it is supposed
this trend will continue. In aid of this, this work exam-
ines the use of recurrence, comparing possible choices
of recurrent layer which can be used in systems, assess-
ing the performance based both on overall accuracy,
but also robustness to adverse acoustic conditions. To
the test the relative performance of different recurrent
layers a comparative analysis of the performance of
four different CRNN architectures is made, with the
models containg four different types of recurrent layer:

• Gated Recurrent Unit (GRU)

• Bidirectional Gated Recurrent Unit (BiGRU)

• Long Short Term Memory (LSTM)

• Bidirectional Long Short Term Memory (BiL-
STM)

To create models referred to as Conv-GRU, Conv-
BiGRU, Conv-LSTM and Conv-BiLSTM. These are
chosen due to their general popularity in recurrent neu-
ral networks. With the field of BSSL, BiGRU has previ-
ously seen application [25, 26] in CRNN. Beyond this,
LSTM has been used for DoA estimation [27] but not
alongside convolutional layers, and BiLSTM and GRU
have both been used in a CRNN type configuration, but
not directly for DoA estimation, but for binaural signal
enhancement within a larger BSSL system [28, 29].
These four models are compared also to a baseline, be-
ing an equivalent system with no recurrent layer, so as
to represent a CNN. Alongside the other modes, this is
simply referred to as Conv.
All of these systems are trained upon the the same
training datasets using an identical optimiser, and eval-
uated with the same testing datasets. These models and
datasets are described fully in the following chapters.

2 Models

To minimise possible differences occurring to random-
ness between the models, A CRNN architecture is used
where the convolutional layers and the recurrent layers
are trained separately, so that the convolutional layers
can be trained identically across all systems.
This is done by training two CNNs upon the training
dataset of magnitude and phase representations, and
then the CNNs used to classify the training dataset but
it is the activations at the final convolutional layers that
are saved instead of the output of the system. This cre-
ates a new dataset of activations, upon which the five
systems representing four recurrent layers alongside
the baseline are trained.
The CNN consists of only three convolution layers,

filters of consistent size throughout the system, as seen
in Table 1. It is at the final Relu activation function that
the activations are extracted.
These activations are then used to train four shallow
RNNs consisting only of an Input layer, a recurrent
layer, and a dense layer, and a softmax layer. The recur-
rent layers, in all cases, have 200 units. This architec-
ture is described in Table 2. The baseline, meanwhile,
classifies the activations by use of a Multilayer Percep-
tron (MLP), as seen in Table 3. It is possible to see that
the MLP described in Table 3 is exactly equivalent to
the final layers of the CNN in Table 1, hence why this
is deemed representative of a CNN despite an unusual
abstraction in the training process.



Layer Type Parameters
Input Layer
2D Convolution ([6,6], 18)
Batch Normalisation
Relu
Max Pooling (2,2)
2D Convolution ([6,6], 18)
Batch Normalisation
Relu
Max Pooling (2,2)
2D Convolution ([6,6], 18)
Batch Normalisation
Relu
Dense [50]
Softmax

Table 1: CNN to be adapted into Convolutional Layers

Layer Type Parameters
Input Layer
Recurrent Layer 200 Units
Dense 50
Softmax

Table 2: Generic RNN architecture

Layer Type Parameters
Input Layer
Dense 50
Softmax

Table 3: MLP architecture

3 Binaural Dataset

Binaural datasets are synthesised through binaural au-
ralisation. For these, we create a signal model which
considers the effects of reverberation and additive noise,
such that for a single sound source x(t) the received
pressure is described as:

pL,R = x(t)∗brirL,R(t,ϕ)+η(t) (1)

where p is the sound pressure at the ears, L,R refer
to left and right channels, brir is the binaural room
impulse response, ϕ is azimuth and η is additive noise.
Almost all previous literature on BSSL focuses on the
localisation of human speech. Due to this, for x(t) we
use speech utterances taken from the TSP corpus [30].
This corpus is chosen due to it’s 48kHz sample rate,
higher than that of other commonly used speech corpi.
BRIRs can be further modelled as made up of of a head
related impulse response (HRIR) and the reflections
making up the room impulse response

brir(t,ϕ) = hrir(t,ϕ)+
N

∑
n=1

Anhrir(t − τn,ϕn,θn) (2)

where N is the number of reflections, An represents the
gain of the reflection, τ represents the time delay of
the reflection, and ϕn and θn represent the azimuth and
elevation of the angle of arrival of the reflection.
To create the BRIRs, HRIRs are taken from the CIPIC
dataset [31] for the KEMAR mannequin subject. The
CIPIC dataset contains HRIRs for fifty doa on the hori-
zontal plane. Sources at these fifty positions are con-
sidered for this test, encompassing the full plane.
The reflection parameters are created for shoebox
rooms by image source method (ISM) [32]. This is
done for 90 rooms in the training dataset, another 10
rooms in the validation dataset, and 30 rooms in the
testing dataset.
All of these rooms have randomised dimensions be-
tween 1-10 metres. They then have their absorption
coefficients controlled such as to achieve target RT60
values. For the training and validation datasets, these
target values are randomised between 0.5-1.5 seconds.
For the testing dataset, 10 room dimensions are ran-
domised, and then for each of these randomised rooms
the absorption coefficients are generated to make target
reverb times of [0.5, 1, 1.5] seconds. This is done to
create statistical significance at these sampled reverb
times for plotting.
The additive noise is modelled as being the sum of



some interefering sound sources, that is sound sources
different to the speaker, but which are also binauralised.

η(t) = A0

K

∑
k=1

Ak(n(t)∗brirL,R(t,ϕk)) (3)

where A0 is an overall gain of the noise mixture, Ak
is relative gain of each sound source, K is the number
interfering noise sources.
The number interfering sources is determined ran-
domly in the range 1 ≤ 10. The relative level Ak, and
azimuth ϕk each interfering sound source are randomly
generated. The overall gain A0 is randomly generated
in the training dataset but such that a signal-to-noise
ratio (SNR) in range -12dB to -36dB is achieved. For
the testing dataset, for every sound source at every
room three signal to noise ratios [−12,−24,−36]dB
are targeted.
For the testing dataset, 1000 1 second utterances are
convolved with BRIRs of all 50 source directions, with
noise added, to create 50,000 training files. For the
validation dataset, another 100 files were used to create
5,000 binauralised files.
For the testing dataset, another 100 one second
utterances were combined with all 9 combinations of
RT60 and SNR, for all fifty source directions.

4 Audio to Network

The one second audio files are treated as sequences to
classify, each of which will have one DoA estimate
created, but are broken into multiple steps in a sequnce.
This is done by splitting the 1 second file into 10 100mS
files.
The models use 2D convolutional layers, and so a two
dimensional form is required; this is achieved differ-
ently for the two feature representations. Firstly, a
matrix representing interaural phase difference (IPD) is
found by applying STFT to the signal, and finding the
difference between the two resulting phase matrices.
The STFT was done with a hanning window of 425
samples with an overlap of 256 samples, with the end
result being a matrix [147,19]
A matrix representing magnitude of the spectrum is
found through gammatone descomposition by gamma-
tone filterbank with 147 bands. The resulting frequency
banded signals are equivalently windowed, and the av-
erage energy in each window is calculated resulting in
a matrix of the size [147,19,2]. The logarithm of this
matrix is then taking.

5 Training

The two CNNs, four RNNs and the MLP making up
the CRNN and CNN systems are all trained using an
Adam optimizer with equivalent training parameters,
of an initial training rate of 1e-4, a decay rate of 0.9.
The CNNs were trained over 100 epochs, while the
RNNs and MLP were trained over 200 epochs.
The validation loss is monitored for signs of overfit,
however this was not encountered in any case so early
stopping was not required.

6 Evaluation

Performance is evaluted by four metrics:

Classification Rate The rate of succesful classifica-
tions, such that Ypred = Ytest

Front-Back Confusion Rate The rate at which the
system falsely classifies within ±10◦ of the
front-back reversal of Ytest

Root Mean Square Localisation Error (RMSLE)
The root mean square, but algorithmically
accounting angle wrap-around

RMSLE (Mirrored) The RMSLE, but with both
Ypred and Ytest such that they are on the frontal
horizontal plane.

These metrics are shown averaged over the entire test-
ing dataset in Table 4, while the the systems are shown
plotted against RT60 and SNR in figures 1 and 2 re-
spectively.

Fig. 1: RMSLE with respect to RT60



Classification Rate Front-Back Confusion Rate RMSLE RMSLE (Mirrored)
Conv 76.49% 1.7% 22.33◦ 9.55◦

Conv-GRU 79.96% 0.8% 13.96◦ 6.3◦

Conv-BiGRU 80.03% 0.68% 13.02◦ 6.44◦

Conv-LSTM 80.6% 0.62% 13.39◦ 6.03◦

Conv-BiLSTM 81.11% 0% 12.8◦ 6.65◦

Table 4: Accuracy, Front-back Confusion, RMSLE and RMSLE (Mirrored) of all four CRNN architectures

Fig. 2: RMSLE with respect to SNR

7 Discussion

The results shown in Table 4 corroborate the previous
finding [24] that use of CRNN leads to an increase in
accuracy over CNN. Here, however, it is found that
this is advantage is true of a range of recurrent layers.
The difference between different layers does not lead
to substantial performance changes, with the best and
worst performing only being seperated by 1◦. Based
upon the results seen, however, it is concluded that
BiLSTM is the most preferable choice of recurrent
layer for performing BSSL with CRNN.
In terms of robustness, the difference is also small,
however it is also Conv-BiLSTM which seems most
resilient to increases in reveberation, further supporting
the case for the of BiLSTM layers.
While performance certainly suffered when looking
at the full horizontal plane, rather than just the
frontal, none of the systems had large difficulty with
front-back reversals. However, it is notable that the
rate of front-back reversal is exceptionally low for
Conv-BiLSTM, with the rate rounding to 0%.

8 Conclusion

This work has performed a comparative analysis of four
CRNN architectures containing different types of recur-
rent layer, by training the four systems with identical

optimisers upon identical datasets, with identical pa-
rameters in the convolution layers for the four systems
The four systems, and a baseline, were evaluated upon
a testing dataset of binaural audio with controlled levels
of additive noise and reverberation.
Based upon this testing, it is recommended not just
that CRNN should be favoured over CNN for BSSL,
but specifically that BiLSTM is the optimal choice of
recurrent layer for the application.
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