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Abstract: In this paper, it is demonstrated that the AlGaN high electron mobility transistor (HEMT)
based on silicon wafer exhibits excellent high-temperature performance. First, the output character-
istics show that the ratio of on-resistance (RON) only reaches 1.55 when the working temperature
increases from 25 ◦C to 150 ◦C. This increase in RON is caused by a reduction in optical phonon
scattering-limited mobility (µOP) in the AlGaN material. Moreover, the device also displays great
high-performance stability in that the variation of the threshold voltage (∆VTH) is only 0.1 V, and the
off-state leakage current (ID,off-state) is simply increased from 2.87 × 10−5 to 1.85 × 10−4 mA/mm,
under the operating temperature variation from 25 ◦C to 200 ◦C. It is found that the two trap states
are induced at high temperatures, and the trap state densities (DT) of 4.09 × 1012~5.95 × 1012 and
7.58 × 1012~1.53 × 1013 cm−2 eV−1 are located at ET in a range of 0.46~0.48 eV and 0.57~0.61 eV,
respectively, which lead to the slight performance degeneration of AlGaN HEMT. Therefore, this work
provides experimental and theoretical evidence of AlGaN HEMT for high-temperature applications,
pushing the development of ultra-wide gap semiconductors greatly.

Keywords: AlGaN channel high electron mobility transistor; high temperature; trap states;
carrier mobility

1. Introduction

Owing to the high electric field strength and electron mobility of the GaN material,
GaN HEMTs have been widely researched and applied in power electronics [1–5]. Com-
pared with traditional GaN materials, ultra-wide bandgap (UWBD) materials possess
higher bandgaps and critical electric fields; thus, these devices based on UWBD materials
have more developmental potential in power electronic applications [6–11]. Among these
UWBD materials (β-Ga2O3, diamond, and AlN), the material growth and device fabrication
of AlGaN appear to be much easier due to the relevant GaN-based heterojunction. More-
over, AlGaN HEMTs have been recognized as an excellent candidate for high-temperature
applications because of their great thermal stability [12,13]. The outstanding performance
of AlGaN HEMTs under extreme temperature conditions makes them an ideal choice for a
wide range of applications, including aerospace, electric vehicles, radar and communication,
energy conversion, and industrial automation.

For these reasons, many scholars have carried out extensive studies on the device
characteristics of AlGaN HEMTs at high temperatures. Numerous valuable achievements
have been obtained, including lower drain current attenuation, off-state leakage current, on-
resistance degradation, channel mobility attenuation, smaller threshold voltage shift, higher
breakdown electric field, saturated drain current, and current gain cut-off frequency of
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AlGaN channel HEMTs compared with traditional GaN channel HEMTs [14–25]. However,
most of these reports are based on sapphire and AlN substrates, and there is a lack of
research on the performance and related analysis of the AlGaN HEMTs based on silicon (Si-
based AlGaN HEMTs) at high temperatures. As is known, the Si-based AlGaN HEMTs have
better thermal conductivity and greater commercialization potential due to the use of low-
cost substrates. Therefore, it is necessary to investigate the high-temperature characteristics
of Si-based AlGaN HEMTs and identify the relevant influence factors for performance
degeneration so as to put forward more useful strategies to solve it.

In this work, the technology of pulsed metal–organic chemical vapor deposition
(MOCVD) was used to fabricate the 6-inch AlGaN wafer on the Si substrate. Then, the
Si-based AlGaN HEMT with 400 nm Al0.1Ga0.9N as a channel layer was fabricated and
showed a low contact resistance of 0.95 Ω·mm and a high breakdown voltage of 1110 V
(with LGD = 15 µm). In addition, the output and transfer characteristics of this device at high-
temperature working conditions were systematically investigated. Using the alternating
current conductance method, the trapping effect in the AlGaN channel was characterized
by time constants (τT) and DT, which helped to explain the performance degradation.
Overall, given the cost advantages of Si-based AlGaN HEMTs, this study provides valuable
references for future design optimizations of such devices and also lays the theoretical
foundation for their practical applications in harsh environments, such as those involving
high temperatures and high powers.

2. Materials and Methods

The pulsed MOCVD system was used to grow AlGaN material on a 6-inch Si substrate.
Firstly, an AlN nucleation layer was deposited. Then, a 3 µm graded AlxGa1−xN layer,
1 µm C-doped Al0.1Ga0.9N layer, 400 nm Al0.1Ga0.9N channel layer, 1 nm AlN insertion
layer, 24 nm Al0.4Ga0.6N barrier layer, and 2 nm GaN cap layer were grown above the AlN
nucleation layer as a sequence. The HRXRD rocking curves from (0002) and (10–12) planes
of the AlGaN channel layer in this work are 708 and 1147 arcsec, respectively.

The fabrication process of AlGaN HEMTs began with mesa isolation etching. There-
after, a 30 nm recess was etched accurately using the inductively coupled plasma (ICP)
technique, and the Ti/Al alloy was deposited and annealed to form ohmic contact as a
source/drain electrode. The Ni/Al alloy was deposited as a gate electrode. Finally, 40 nm
Al2O3 was grown on the surface of AlGaN HEMTs by plasma-enhanced atomic layer
deposition (PEALD) to suppress the effect of surface states. The device tested in this work
had a gate width (WG) of 100 µm, a gate length (LG) of 4 µm, a gate–source distance (LGS)
of 4 µm, and a gate–drain distance (LGD) of 15 µm. The cross-sectional structure of AlGaN
HEMT is shown in Figure 1. The output and transfer characteristics were tested using
the Agilent B1505A high-voltage semiconductor analyzer system (Keysight Technologies,
Beijing, China).
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3. Results and Discussion

As shown in Figure 2a, the DC output characteristics of Si-based AlGaN HEMTs were
measured at 25~200 ◦C with a growing step of 25 ◦C under a given VG of 3 V. At 25 ◦C,
the maximum output current (ID,max) of the AlGaN HEMTs is 323.14 mA/mm, displaying
a gradually decreasing trend as the temperature rises. The ID,max still maintains values
of 212.04 and 189.50 mA/mm at high temperatures of 150 and 200 ◦C, respectively. So,
the ratio RON,150 ◦C/RON,25 ◦C for the Si-based AlGaN HEMT is only 1.55 in this work,
which is significantly lower than the corresponding values of commercial GaN HEMTs on
silicon (the values of RON,150 ◦C/RON,25 ◦C of the GaN systems GS 66516B and GS 66502B
are about 2.58). Therefore, the Si-based AlGaN HEMT demonstrates more stable output
characteristics compared with GaN HEMTs at high-temperature applications [9,10].
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Figure 2. (a) The output characteristics of Si-based AlGaN HEMT at 25/50/75/100/125/150/175/200 

°C. (b) The variation of RC and RSH at different temperatures. 
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Figure 2. (a) The output characteristics of Si-based AlGaN HEMT at 25/50/75/100/125/150/175/200 ◦C.
(b) The variation of RC and RSH at different temperatures.

The degeneration of ID,max at high temperatures may be caused by an increase in
ohmic contact resistance (RC) and 2DEG channel resistance (RCH). RON can be realized as
RON = RS + RD + 2RC + RCH. RS or RD is the parasitic source/drain resistance. Usually,
RS and RD are much lower than RC. As shown in Figure 2b, RC is calculated using a
transmission line model (TLM) at different temperatures. The variation of RC is very poor
with the growing temperature. Compared with the variation of RON, the variation of RC is
negligible. However, it is observed that the sheet resistance (RSH) increases from 947.0 Ω/�
to 1945.7 Ω/� as the temperature rises from 25 ◦C to 200 ◦C, indicating that the rise in RON
can be attributed to increased channel resistance, which can be interpreted as decreased
carrier mobility.

The temperature-dependent C-V characteristics of the Schottky barrier diode with an
AlGaN channel are shown in Figure 3a. The electron concentration of the AlGaN channel
varied with the temperature-dependent depth profiles and are derived by the following
Equations (1) and (2) [26,27], and the relevant results are shown in Figure 3b:

Z = εA/C (1)

nc = − 2
eεA2 × 1

d(1/c2)/dV
q (2)

n2DEG =
∫ +∞

−∞
nc(Z)dZ (3)
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µ = 1/(RSH × ns × q) (4)

where Z is the depth to the gate, ε is the dielectric constant of the barrier, C is the junction
capacitor, and A is the area of the junction capacitor. The dielectric constant used in this
work is εr,Al0.4Ga0.6 N = 8.66. The n2DEG is approximately calculated by Equation (3). As
shown in Figure 3c, with a temperature increase, the variation of n2DEG is very poor.
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Figure 3. (a) The temperature-dependent C-V characteristics of the Schottky barrier diode on the 

AlGaN channel. (b) The value of carrier concentration with the variation of channel depth. (c) The 

Figure 3. (a) The temperature-dependent C-V characteristics of the Schottky barrier diode on the
AlGaN channel. (b) The value of carrier concentration with the variation of channel depth. (c) The
temperature-dependent 2DEG sheet density (n2DEG). (d) The variation of carrier mobility in the
AlGaN channel with the increasing temperature.

As shown in Figure 3d, the carrier mobility of the AlGaN channel (µAlGaN) is ap-
proximately calculated according to Equation (4) [28], which decreases from 691.58 to
339.47 cm2/v·s as the temperature increases from 25 ◦C to 200 ◦C, and it is in good agree-
ment with the simulation result obtained by alloy scattering-limited and optical phonon-
limited mobility models [13]. As is known, the µAlGaN is affected jointly by alloy disorder
scattering and optical phonon scattering, where µOP is very sensitive to temperature and
alloy scattering-limited mobility (µalloy) is inverse [13]. When the temperature rises, the
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influence of µOP is gradually reduced while part of µalloy still remains stable, leading to
the idea that the AlGaN HEMTs have very excellent output characteristics under high-
temperature conditions, something which is lacking in the GaN HEMTs because µOP is
very dominating in terms of carrier mobility.

Furthermore, the transfer characteristics of AlGaN HEMTs were measured at 25~200 ◦C
with a step of 25 ◦C under a VD of 10 V and are shown in Figure 4a. VTH shifts slightly
towards a positive direction, from −4.6 V to −4.5 V, as the temperature increases. ID,off-state
also increases marginally from 2.87 × 10−5 to 1.85 × 10−4 mA/mm. Additionally, the
buffer leakage current (Ibuffer) measured with an isolated active-area mesa structure is only
9.5 × 10−8 mA/mm at 200 ◦C, which is significantly lower than ID,off-state. Therefore, an
increase in ID,off-state at high temperatures is attributed to the reverse gate leakage current,
as shown in Figure 4b. And it can be suppressed by optimizing the barrier layer or adopting
a metal–insulator–semiconductor (MIS) structure.
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The AC capacitance technique was used to characterize the trapping effect on AlGaN
HEMTs at a room temperature of 25 ◦C and a high temperature of 200 ◦C. The frequency
ranged from 1 kHz to 300 kHz. As shown in Figure 5a,b, the conductance gradually
increases and then decreases with the growing radial frequency. It is observed that only one
conductance peak exists for a given VG at 25 ◦C in Figure 5a, which can be assumed as only
one kind of trap state existing in the AlGaN channel. However, there are two conductance
peaks occurring at 200 ◦C in Figure 5b, indicating that two kinds of trap states exist in the
AlGaN channel under high-temperature conditions.

Here, the plots in Figure 5a,b are effectively fitted as these curves by the following
equations, respectively:

Gp

ω
=

qωτT DT

1 + (ωτT)
2 (5)

Gp

ω
=

qωτT,1DT,1

1 + (ωτT,1)
2 +

qωτT,2DT,2

1 + (ωτT,2)
2 (6)
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Therefore, the time constant (τT) and trap DT can be extracted from the above equa-
tions. The relationship between τT and the applied gate voltage is depicted in Figure 5c at
25 ◦C and 200 ◦C, respectively, where τT is distributed in the range of 1.08~3.13 µs for the
device working on 25 ◦C but two types of values of 0.53~0.77 µs and 6.29~17.2 µs for that
on 200 ◦C, indicating the existence of two kinds of trap states at the same time. So, these
states can be calculated by the equation as follows:

τT = (σT NcvT)
−1exp(ET/kT) (7)

Here, the cross-section of the trap states (σT) is captured as 3.4 × 10−15 cm−2, and
the density of states in the conduction band (Nc) is 2.2 × 1018 cm−3. The average thermal
velocity of carriers (vT) is 2.6 × 107 and 1.69 × 107 cm/s for 25 and 200 ◦C, respectively. As
shown in Figure 5d, DT from the range of 4.43 × 1012~6.67 × 1012 cm−2 eV−1 is located
at ET in a range of 0.32~0.35 eV at 25 ◦C. But when the temperature increases to 200 ◦C,
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DT with a distribution of 4.09 × 1012~5.95 × 1012 and 7.58 × 1012~1.53 × 1013 cm−2 eV−1

is obviously located at ET in the range of 0.46~0.48 eV and 0.57~0.61 eV, respectively.
Compared with the reported trapping effects in AlGaN materials on sapphire by Zhao’s
work [29], the τT and DT of trap states are much lower in the AlGaN material on silicon,
indicating that the AlGaN epilayer material quality has improved significantly.

4. Conclusions

In summary, the high-temperature characteristics of the Si-based AlGaN HEMTs
are studied sufficiently in this work. The carrier mobility of the AlGaN channel still
remains at 339.47 cm2/v·s when the working temperature reaches 200 ◦C, and ID,max still
reaches up to 189.50 mA/mm. Moreover, only a positive voltage drift of 0.1 V occurs, and
ID,off-state increases marginally from 2.87 × 10−5 to 1.85 × 10−4 mA/mm, strongly proving
the outstanding working performance of Si-based AlGaN HEMTs compared with GaN
at high temperatures. Finally, the inner trapping effect in Si-based AlGaN materials is
investigated using the AC capacitance technique. Two types of trap states are found at a
high temperature of 200 ◦C. The first type of trap state has a DT ranging from 4.09 × 1012

to 5.95 × 1012 cm−2 eV−1 and is located within an ET of 0.46 to 0.48 eV. The second type of
trap state has a DT ranging from 7.58 × 1012 to 1.53 × 1013 cm−2 eV−1 and is located within
an ET of 0.57 to 0.61 eV. Hence, this work is very valuable for Si-based AlGaN materials
as the channel for HEMTs, especially for high-temperature applications, and significantly
pushes the development of ultra-wide bandgap semiconductors in power electronics.
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