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Abstract
Background The incidence and mortality of first-ever strokes have risen sharply, especially in the intensive care unit 
(ICU). Emerging surrogate for insulin resistance, triglyceride-glucose index (TyG), has been linked to stroke prognosis. 
We aims to explore the relationships between TyG with ICU all-cause mortality and other prognosis, and to develop 
machine learning (ML) models in predicting ICU all-cause mortality in the first-ever strokes.

Methods We included first-ever stroke patients from the eICU Collaborative Research Database in 2014–2015 as the 
primary analysis cohort (then divided into training and internal validation cohorts) and from local hospital’s ICUs as 
the external validation cohort. Multivariate Cox proportional hazards models and restricted cubic spline analyses were 
used to evaluate the association between TyG and ICU/hospital all-cause mortality. Linear regression and correlation 
analyses were performed to examine the relationships between TyG with length of ICU/hospital stay and Glasgow 
Coma Score.

Results The primary analysis cohort included 3173 first-ever strokes (median age 68.0 [55.0–68.0] years; 63.0% male), 
while the external validation cohort included 201 first-ever strokes (median age 71.0 [63.0–77.0] years; 62.3% male). 
Multivariate Cox proportional hazards models revealed that the high TyG group (TyG ≥ 9.265) was associated with 
higher ICU (HR 1.92, 95% CI 1.38–2.66) and hospital (HR 1.69, 95% CI 1.32–2.16) all-cause mortality, compared with low 
TyG group (TyG < 9.265). TyG was also correlated with ICU length of stay (r = 0.077), hospital length of stay (r = 0.042), 
and Glasgow Coma Score (r = -0.132). TyG and other six features were used to construct ML models. The random 
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Introduction
Stroke, the second leading cause of disability and mortal-
ity worldwide, has an average incidence of around 2,194 
per 100,000 person-years and an age-standardized aver-
age mortality rate of approximately 818 per 100,000 per-
son-years [1]. Further, about 13 million people, globally, 
have their first stroke annually, and the number of cases 
rises with increasing age [2]. The latest Global Burden of 
Disease study estimates that first-ever stroke increased 
by 70% globally from 1990 to 2019, and first-ever stroke-
related deaths increased by 43% [3].

Patients experiencing their first stroke are a high-risk 
group whose management in the acute and recovery 
phases is further complicated by their relatively inexpe-
rienced awareness of the stroke and its prevention. Mul-
tiple studies have indicated that approximately 10–30% 
of patients require intensive care unit (ICU) treatment 
following their first-ever stroke [4]. The overall all-cause 
mortality of stroke patients admitted to ICU is about 
15–20%, which is significantly higher than that in general 
wards [5]. Therefore, it is crucial to explore novel predic-
tors that can help reduce mortality for patients with first-
ever stroke in ICU, as well as to construct personalised 
prediction models to identify high-risk patients.

Insulin resistance (IR) refers to the reduced sensitivity 
of insulin-dependent organs and tissues to endogenous 
and exogenous insulin [6]. IR usually increases the risk of 
stroke by causing diabetes, dyslipidaemia, and hyperten-
sion, and is a significant risk factor for the development of 
cerebrovascular illness [7]. The current method to assess 
IR, including Homeostatic Model Assessment of IR and 
Hyperinsulinemic-Euglycemic Clamp, have limitations in 
the clinic, whereas the triglyceride-glucose index (TyG) 
has emerged as a reliable surrogate for IR because of its 
straightforward calculation and precision [8]. For cardio-
vascular diseases, TyG is a robust prognostic indicator 
for individuals with acute heart failure [9], and TyG was 
predictive of all-cause mortality in middle-aged and older 
hypertension patients during extended follow-up [10]. In 
a meta-analysis obtained from 18 studies, elevated TyG 
levels were related to increased risk of ischemic stroke 
(IS) in the general population, along with an increased 
likelihood of stroke recurrence and mortality [11]. One 

study suggested that elevated TyG levels were associated 
with ICU and hospital all-cause mortality in severely ill 
patients with IS (short-term survival did not vary sig-
nificantly) [12], however, no study evaluates the effect of 
TyG on the prognosis (e.g. mortality and consciousness) 
of patients admitted to ICU with diagnosed first-ever 
stroke.

In recent years, machine learning (ML) is an emerg-
ing approach to constructing prediction model, and its 
application in healthcare has great potential and prom-
ise. TyG has been applied to the predictive models for the 
development of sepsis [13], coronary heart disease [14], 
nonalcoholic fatty liver disease [15], and diabetes melli-
tus (DM) [16]. However, studies assessing the prognos-
tic role of the TyG in ICU patients with first-ever stroke 
are scarce, and no previous study has applied TyG mea-
surement to clinical parameters using ML techniques to 
predict ICU all-cause mortality in the first-ever stroke 
patients.

Therefore, Our aims were two fold. (i) To investigate 
the association between TyG with ICU all-cause mortal-
ity and other prognosis outcomes of patients admitted to 
ICU with diagnosed first-ever stroke. (ii) To construct a 
ML model in predicting ICU all-cause mortality for such 
patients using TyG in combination with other clinical 
features.

Methods
Data sources
The primary analysis cohort in this study were consecu-
tively and retrospectively obtained from the eICU Collab-
orative Research Database (EICU, version 2.0, recruited 
between 2014 and 2015) [17]. This database was a mul-
ticentre ICU database that collected clinical information 
on over 200,000 admissions to ICUs at 208 hospitals in 
the United States with a total of 335 ICU wards. EICU 
was constructed by the Laboratory for Computational 
Physiology, and included demographics, diagnostics, vital 
signs, laboratory measurements and treatments. Patient 
consent and ethical approval were not required as all data 
were anonymised. YC had access to the database and 
extracted all the data for this study after completing the 
Protecting Human Research Participants examination 

forest model performed best in internal validation with AUC (0.900) and G-mean (0.443), and in external validation 
with AUC (0.776) and G-mean (0.399).

Conclusion TyG (optimal cut-off: 9.265) was identified as an independent risk factor for ICU and hospital all-cause 
mortality in first-ever strokes. The ML model incorporating TyG demonstrated strong predictive performance. This 
emphasises the importance of insulin resistance (with TyG as a surrogate measure) in the prognostic assessment and 
early risk stratification of first-time stroke patients.

Keywords Stroke, First-ever stroke, Insulin resistance, Triglyceride-glucose index, Intensive care unit, All-cause 
mortality
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and the National Institutes of Health Web-based training 
course (Permission No.53753450). For the ML analysis, 
the primary analysis cohort was further split into training 
and internal validation cohorts.

External validation cohort
To further externally validate the performance of the ML 
model, we consecutively and retrospectively recruited 
patients diagnosed with first-ever stroke admitted to the 
Neurology ICU and Comprehensive ICU of Tianjin Med-
ical University General Hospital from October 2021 to 
June 2024. Baseline and clinical data of patients required 
to validate ML were extracted from the hospital’s elec-
tronic health record system.

Ethics statement
Data collection in the EICU did not required the ethic 
approval, since this study was retrospective and without 
interventions for patients. And the safe harbour stan-
dards were assessed by an independent privacy expert 
(Privacert, Cambridge, MA) [Health Insurance Portabil-
ity and Accountability Act Certification No. 1031219–
2]. In this analysis, all data were anonymised and could 
therefore be exempted from local ethics review com-
mittee. For the external cohort, ethical approval was 
obtained from the Ethics Institutional Review Board 
of Tianjin Medical University General Hospital and 
informed consent was waived (No. IRB2024-YX-320-01).

Inclusion and exclusion criteria
Inclusion criterion was all patients admitted to ICU and 
diagnosed with stroke. Exclusion criteria includes: (1) 
with history of stroke; (2) records of multiple ICU admis-
sions or multiple hospitalizations; (3) without discharge 
records; (4) missing records of blood glucose and triglyc-
erides on the first day; (5) age < 17years; (6) ICU length of 
stay < 6 h.

Definitions of TyG, covariates and study outcomes
In our analysis, TyG was calculated as ln[glucose (mg/dL) 
× triglycerides (mg/dL)/2]. We extracted the following 
covariates: demographics variables (age, sex, race, and 
body mass index [BMI]), severity score at ICU admis-
sion (Acute Physiology and Chronic Health Evaluation 
IV [APACHE IV]), comorbidities (DM, hypertension, 
coronary artery disease, chronic kidney disease, heart 
failure, myocardial infarction, atrial fibrillation, respira-
tory failure [RFA], acute kidney injury [AKI], cirrhosis, 
sepsis), laboratory results at first day (total cholesterol, 
low-density lipoprotein cholesterol [LDL-C], and high-
density lipoprotein cholesterol [HDL-C]), medications 
(antiplatelet agents, anticoagulants, and vasopressors), 
and interventions (thrombolysis, mechanical ventila-
tion [MV]). Of these, BMI was calculated by weight(kg)/

height(m)2, antiplatelet agents included clopidogrel, 
ticlopidine, aspirin, dipyridamole, and others; anticoagu-
lants included heparin, coumadin, bivalirudin, argatro-
ban, fondaparinux, and others; vasopressors included 
dopamine, epinephrine, norepinephrine, phenylephrine, 
and vasopressin. Repeated measurements of labora-
tory tests on the first day were collected only for the first 
value. Our primary study outcomes were ICU all-cause 
mortality, and secondary study outcomes were hospital 
all-cause mortality, length of ICU and hospital stay, and 
Glasgow Coma Score (GCS) and individual elements of 
GCS (eye opening, verbal response, motor response).

Statistical analysis
Regarding missing values, according to Supplementary 
Table S1, we included the covariates with proportion of 
missing values less than 30%, and we used “miceforest” in 
Python to multiply interpolate the missing data.

For continuous variables, mean and standard devia-
tion or median and interquartile range (IQR) were used 
as appropriate, and Student’s t-test or Mann–Whitney U 
test were applied to examine differences between groups. 
Categorical variables were evaluated the differences 
among groups using Fisher’s exact test or Chi [2] and 
expressed as counts and percentages.

Initially, we used the “survminer” package in R to find 
the optimal cut-off point of TyG. And we assessed the 
overall and nonlinear relationship between continuous 
TyG with ICU all-cause mortality using the restricted 
cubic spline analysis (RCS), and the reference point 
was set to the optimal cut-off point. Then, according to 
the categorised TyG based on the optimal cut-off point, 
Kaplan-Meier curves were plotted to assess survival 
differences. Then, we performed the multivariate Cox 
proprotion hazards models to evaluate the association 
between continuous or categorised TyG and ICU all-
cause mortality (using the first group after the optimal 
cut-off division as the reference group), and the results 
were reported as hazard ratios (HR) and 95% confidence 
intervals (CI). In addition to considering the clinical sig-
nificance of the covariates, we also examined correla-
tions and multicollinearity between covariates to ensure 
the stability of the multivariate Cox proprotion hazards 
models. The results showed that total cholesterol was 
highly correlated with LDL-C (Pearson correlation coef-
ficient [r] = 0.93). We further adjusted for different mod-
els. Model 1: unadjusted; Model 2: demographics (age, 
sex, race, and BMI), and severity score (APACHE IV); 
Model 3: further adjustments for comobidities (diabetes 
mellitus, hypertension, coronary artery disease, chronic 
kidney disease, heart failure, myocardial infarction, 
atrial fibrillation, RFA, AKI, cirrhosis, and sepsis), labo-
tary tests (HDL-C and LDL-C), treatments (antiplatelet 
agents, anticoagulants, vasopressors, thrombolysis, and 
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mechanical ventilation). Furthermore, subgroup analy-
ses were performed to evaluate the persistence of the 
association between TyG and ICU all-cause mortality in 
different subgroups including age (≥ 60 and < 60years), 
sex, BMI (≥ 30 and < 30  kg/m2). Although DM status 
was important to TyG, the subgroup analysis of DM for 
ICU all-cause mortality was not performed due to lim-
ited numbers of ICU all-cause mortality events in DM 
patients. For the relationship between TyG and hospital 
all-cause mortlity, the same analytical process was per-
formed as for ICU all-cause mortality, and the categori-
cal value of TyG was consistent with the previous one. 
However, extra DM subgroup analysis was performed. 
Besides, Pearson correlation analysis and linear regres-
sion were performed to assess the relationship between 
TyG and other prognosis outcomes.

Additionally, we conducted three sensitivity analyses. 
First, considering the influence of systemic inflamma-
tion on the prognosis of cardiovascular disease, previous 
studies have shown that inflammatory biomarkers, such 
as C-reactive protein (CRP) and RDW, are associated 
with adverse outcomes of cardiovascular disease [18, 19]. 
However, in the EICU database, CRP values were miss-
ing in 97.1%, while the missing value proportion of RDW 
was less than 20.0% (Supplementary Table S1). There-
fore, we extracted RDW data and added RDW to Model 
3 to explore the relationship between TyG and mortal-
ity outcomes. Second, given that lipid-lowering treat-
ments such as statins and fibrates significantly impact 
triglyceride levels, we extracted information on statins 
(atorvastatin, fluvastatin, lovastatin, pravastatin, simv-
astatin, imipenem-cilastatin, somatostatin) and fibrates 
(including clofibrate, fenofibrate). Then we conducted 
a sensitivity analysis by incorporating statin and fibrate 
use as confounders into Model 3 to assess whether lipid-
lowering therapy modifies the relationships between TyG 
and mortality outcomes in patients with first-ever stroke 
populations. Third, as hypoglycaemic therapy (insulin 
and oral hypoglycaemic agents) directly affects glucose 
metabolism, it could potentially influence the TyG lev-
els and subsequently affect outcomes. To account for 
this, we included hypoglycaemic therapy as an additional 
covariate in Model 3, allowing us to evaluate if hypogly-
caemic therapy modified the associations between TyG 
and mortality outcomes.

Moreover, we performed univariate logistic regression 
and univariate linear regression analyses to assess the 
associations between each adjustment factor and the out-
comes of first-ever stroke patients.

For the section on ML model in predicting ICU all-
cause mortality for first-ever stroke patients, first, we 
divided the whole cohort into a training cohort (N = 2221) 
and an internal validation cohort (N = 952) by 7:3. Sec-
ond, given the limited number of ICU deaths, feature 

pre-screening in the training set was performed using 
Boruta, which identifies features important to the pre-
diction target by comparing the original features with 
randomly generated shadow features [20]. Third, we 
performed Pearson correlation tests and variance infla-
tion factor tests on the selected features to avoid seri-
ous covariance or multicollinearity among the variables 
within the model. Fourth, the selected important fea-
tures were entered into seven binary classification ML 
algorithms (including light gradient boosting machine, 
random forest [RF], logistic regression, support vector 
machine, multilayer perceptron, Gaussian Naive Bayes, 
and k-nearest neighbors) commonly used in the medi-
cal field for modelling in the training cohort, and using 
random search and manual fine-tuning with 5-fold 
cross-validation to obtain optimal hyperparameters for 
the each ML model (considering the imbalance of posi-
tive and negative events in the cohort, we applied class 
weights or synthetic minority oversampling technique 
in the ML models). Fifth, we verified the performance of 
all ML models in the internal validation cohort, plotting 
receiver operating characteristic (ROC) curves and deci-
sion curve analysis (DCA) curves, and comparing their 
performance against each other and APACHE IV based 
on several metrics including area under curve (AUC) 
with 95% CI, precision, recall, F1-score, G-mean, sensi-
tivity, and specificity, to select the best ML model. Sixth, 
to make the ML model with complex internal structure 
more intuitive and understandable, we calculated the 
SHapley Additive exPlanation (SHAP) value for each 
feature in the best model, which was used to illustrate 
the different importance of the features on the outcome 
[21]. Moreover, dependent plot was plotted to observe 
the marginal effect of specific feature on the outcome of 
the ML model. Finally, to increase the utility of the ML 
model, we developed a web platform embedding it.

We performed all analysis by STATA (version 17, USA), 
SPSS (version 29, USA), R (version 4.2.3, Austria), Python 
(version 3.11.1, USA). A two-tailed P-value < 0.05 was 
used to evaluate statistical significance.

Results
Baseline characteristics and outcomes in cohort extracted 
from EICU
We included 3173 ICU patients with first-ever stroke 
from EICU (Supplementary Fig. S1). The median (IQR) 
age was 68.0 (55.0–68.0) years, 1664 (63.0%) were male, 
and 74.9% were White. The ICU and hospital all-cause 
mortality were 5.7% and 11.2%, respectively. Table  1 
shows that ICU non-survivors had more males (62.4% 
vs. 51.8%, P-value = 0.006), RFA (49.2% vs. 13.5%, 
P-value < 0.001), AKI (9.4% vs. 4.1%, P-value = 0.002), and 
received significantly lower proportions of thrombolysis 
(8.8% vs. 24.4%, P-value < 0.001).
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Besides, the optimal cut-off point for ICU all-cause 
mortality was determined as 9.265 (Supplementary Fig. 
S2), so TyG was categorised as high TyG (TyG < 9.265) 
and low TyG (TyG ≥ 9.265). The high TyG group had 
higher BMI, higher LDL-C, and lower HDL-C (shown 
in Supplementary Table S2). And in Supplementary 
Table S3, high TyG group had higher ICU all-cause 
mortality compared to low TyG group (11.1% vs. 4.1%, 
P-value < 0.001), hospital all-cause mortality followed the 
same pattern (17.8% vs. 9.2%, P-value < 0.001). Addition-
ally, high TyG group had significant longer ICU length of 
stay (P-value < 0.001), but the hospital length of stay did 
not differ statistically. For the GCS and its compositions, 
there were also statistical differences (P-value < 0.001).

Association of TyG and ICU all-cause mortality in first-ever 
stroke patients
The results of the RCS analysis demonstrated a cor-
relation between TyG and ICU all-cause mortality 
(P-overall = 0.020), but not a non-linear relationship 
(P-non-linear = 0.356) [Fig.  1a]. The Kaplan-Meier curve 
showed significant difference in survival probability 
between the high TyG and low TyG groups (log-rank 
P < 0.001) [Fig.  1c]. Based on Table  2, after adjusting all 
potential confounders, the results of multivariate Cox 
proprotional hazards models revealed that the con-
tinuous TyG was associated with ICU all-cause mortal-
ity in the first-ever stroke patients (HR: 1.34, 95% CI: 
1.07–1.67). And high TyG group had higher risk of ICU 
all-cause mortality (HR: 1.92, 95% CI: 1.38–2.66), com-
pared to low TyG group. Furthermore, subgroup analysis 

Table 1 Baseline characteristics of patients from the EICU
ALL (N = 3173) ICU survivors (N = 2992) ICU non-survivors (N = 181) P-value

Age, years 68.00 (55.00, 68.00) 68 (57.00, 78.00) 67.00 (54.00, 77.00) 0.206
Male, n (%) 1664 (63%) 1551 (51.8%) 113 (62.4%) 0.006
BMI (kg/m2) 27.72 (24.21, 32.67) 27.73 (24.21, 32.54) 27.46 (24.18, 31.50) 0.399
Race, n (%) 0.154
African American 368 (11.6%) 339 (11.3%) 29 (16.0%)
Caucasian 2377 (74.9%) 2247 (75.1%) 130 (71.8%)
Other/Unknow 428 (13.5%) 406 (13.6%) 22 (12.2%)
APACHE IV 47.00 (34.00, 62.00) 46.00 (34.00, 59.00) 80.00 (62.00, 98.00) < 0.001
Comorbidities, n (%)
Diabetes mellitus 312 (9.8%) 291 (9.7%) 21 (11.6%) 0.439
Hypertension 1002 (41.8%) 941 (31.5%) 61 (33.7%) 0.564
Coronary artery disease 90 (2.8%) 82 (2.7%) 8 (4.4%) 0.170
Chronic kidney disease 102 (3.2%) 96 (3.2%) 6 (3.3%) 0.829
Heart failure 88 (2.8%) 81 (2.7%) 7 (3.9%) 0.347
Myocardial infarction 64 (2.0%) 57 (1.9%) 7 (3.9%) 0.092
Atrial fibrillation 314 (9.9) 299 (10.0) 15 (8.3) 0.523
Respiratory failure 494 (15.6) 405 (13.5%) 89 (49.2%) < 0.001
Acute kidney injury 139 (4.4%) 122 (4.1%) 17 (9.4%) 0.002
Cirrhosis 10 (0.3) 6 (0.2) 4 (2.2) 0.002
Sepsis 82 (2.6%) 71 (2.4%) 11 (6.1%) 0.006
Laboratory results at first day
LDL-C, mg/dL 88.00 (67.00, 115.00) 89.00 (68.00, 115.00) 78.00 (52.00, 107.50) < 0.001
HDL-C, mg/dL 93.00 (34.00, 54.50) 43.00 (35.00, 55.00) 39.00 (30.00, 53.50) 0.001
TC, mg/dL 158.00 (131.00, 189.00) 159.00 (132.00, 190.00) 152.00 (116.00, 183.00) 0.004
Triglycerides, mg/dL 103.00 (73.00, 150.00) 73.00 (56.00, 103.00) 80.50.00 (56.20, 121.00) 0.004
Glucose, mg/dL 121.00 (101.00, 153.00) 101.00 (89.00, 119.00) 120.00 (103.20, 151.00) < 0.001
Medications, n (%)
Antiplatelet agents 337 (10.6) 323 (10.8) 14 (7.7) 0.215
Anticoagulants 197 (6.2) 188 (6.3) 9 (5.0) 0.633
Vasopressors 147 (4.6%) 119 (4.0%) 28 (15.5%) < 0.001
Interventions, n (%)
Thrombolysis 747 (23.5%) 731 (24.4%) 16 (8.8%) < 0.001
Mechanical ventilation 582 (18.3) 454 (15.2%) 128 (70.7%) < 0.001
TyG 8.77 (8.37, 9.22) 8.74 (8.36, 9.19) 9.12 (8.64, 9.66) < 0.001
Abbreviations: APACHE IV, Acute Physiology and Chronic Health Evaluation IV; BMI, body mass index; EICU, eICU Collaborative Research Database; HDL-C, high-
density lipoprotein cholesterol; ICU, intensive care unit; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol
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Table 2 Association between TyG and mortality in the first-ever stroke patients from the EICU
Model I Model II Model III

N Events, n (%) HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value
ICU mortality
Continuous TyG 1.48 (1.23, 1.77) < 0.001 1.41 (1.16, 1.73) < 0.001 1.36 (1.08, 1.71) 0.010
Categorised TyG
TyG < 9.265 2436 99 (4.1) Reference Reference Reference
TyG ≥ 9.265 737 82 (11.1) 2.20 (1.64, 2.96) < 0.001 1.96 (1.45, 2.66) < 0.001 1.92 (1.38, 2.67) < 0.001
Hospital mortality
Continuous TyG 1.37 (1.19, 1.56) < 0.001 1.39 (1.20, 1.61) < 0.001 1.31 (1.10, 1.55) 0.002
Categorised TyG
TyG < 9.265 2436 223 (9.2) Reference Reference Reference
TyG ≥ 9.265 737 131 (17.8) 1.82 (1.46, 2.26) < 0.001 1.82 (1.46, 2.28) < 0.001 1.69 (1.32, 2.15) < 0.001
Model I: Unadjusted

Model II: Adjusted by demographics (age, sex, race, and BMI), and severity score (APACHE IV)

Model III: Model II further adjusted by comobidities (diabetes mellitus, hypertension, coronary artery disease, chronic kidney disease, heart failure, myocardial 
infarction, atrial fibrillation, respiratory failure, acute kidney injury, cirrhosis, and sepsis), labotary tests (HDL-C and LDL-C), treatments (antiplatelet agents, 
anticoagulants, vasopressors, thrombolysis, and mechanical ventilation)

Abbreviations: APACHE IV, Acute Physiology and Chronic Health Evaluation IV; BMI, body mass index; EICU, eICU Collaborative Research Database; HDL-C, high-
density lipoprotein cholesterol; ICU, intensive care unit; LDL-C, low-density lipoprotein cholesterol

Fig. 1 Restricted cubic spline analysis and Kaplan-Meier curves for ICU all-cause mortality (a & c) and hospital all-cause mortality (b & d). Low TyG: 
TyG < 9.265; high TyG: TyG ≥ 9.265. ICU, intensive care unit; HR, hazards ratio; TyG, triglyceride-glucose index
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revealed no significant interaction between TyG and the 
subgroups on ICU all-cause mortality (Supplementary 
Figure S3a).

Association of TyG and hospital all-cause mortality in first-
ever stroke patients
The results of the RCS analysis demonstrated a cor-
relation between TyG and ICU all-cause mortality 
(P-overall = 0.008), but not a non-linear relationship 
(P-non-linear = 0.928) [Fig. 1b]. The Kaplan-Meier curve 
showed significant difference in survival probability 
between the high TyG and low TyG groups (log-rank 
P < 0.001) [Fig. 1d]. According to the findings in Table 2, 
the multivariate Cox proprotional hazards models, after 
adjusting all potential confounders, demonstrated that 
the continuous TyG was associated with hospital all-
cause mortality in the first-ever stroke patients admitted 
to ICU (HR: 1.30, 95% CI: 1.10–1.54). And compared to 
low TyG group, high TyG group had higher risk of hos-
pital all-cause mortality (HR: 1.69, 95% CI: 1.32–2.16). 
Furthermore, subgroup analysis revealed no significant 
interaction between TyG and the subgroups on hospital 
all-cause mortality (Supplementary Fig. S3b).

Association of TyG with other outcomes in first-ever stroke 
patients
For the duration of ICU or hospitalization stay (Supple-
mentary Fig. S4 & Supplementary Table S4), TyG showed 
a slight but statistically significant positive correlation 
with duration of ICU stay (r = 0.077, P < 0.001) and hos-
pitalization stay (r = 0.042, P = 0.021), suggesting a posi-
tive association between higher TyG levels and prolonged 
durations of both ICU and hospitalization stay.

The linear regression analysis indicated that for 
each unit increase in TyG, there was a corresponding 
increase of 0.092 days (P < 0.001) in ICU stay and 0.054 
days (P = 0.002) in hospital stay. For the conscious func-
tion outcomes (Supplementary Fig. S4 & Supplemen-
tary Table S4), TyG was negatively associated with the 
GCS score (r = − 0.132, P < 0.001), number of eye open-
ings (r = − 0.128, P < 0.001), verbal responses (r = − 0.107, 
P < 0.001) and motor responses (r = − 0.116, P < 0.001). 
These negative correlations indicate that the higher the 
TyG value, the worse the neurological condition indi-
cated by the GCS subscores. The linear regression anal-
yses also revealed that with each unit increase in TyG, 
there was a corresponding decrease of 0.131 points in the 
GCS score (P < 0.001), 0.128 points in the number of eye-
openings (P < 0.001), 0.113 points in the verbal response 
(P < 0.001), and 0.106 points in the motor response 
(P < 0.001). Overall, TyG was significantly associated with 
both hospital stay length and neurological assessment 
outcomes in patients, with higher TyG predicting longer 
hospital stays and poorer neurological function.

Sensitivity analyses for relationships of TyG and mortality 
outcomes
After further adjustment for RDW in Model 3 (Supple-
mentary Table S5), each unit increase in continuous TyG 
was associated with an elevated risk of ICU (HR: 1.34, 
95% CI: 1.07–1.68) and hospital all-cause mortality (HR: 
1.33, 95% CI: 1.12–1.57). Compared with TyG < 9.265, 
TyG ≥ 9.265 was associated with a higher risk of ICU (HR: 
1.94, 95% CI: 1.39–2.69) and hospital all-cause mortality 
(HR: 1.75, 95% CI: 1.36–2.23).

When adjusting for lipid lowering therapy (statins and 
fibrates) in Model 3 (Supplementary Table S6), each unit 
increase in continuous TyG was related to an elevated 
risk of ICU (HR: 1.34, 95% CI: 1.07–1.67) and hospital 
all-cause mortality (HR: 1.30, 95% CI: 1.10–1.54). Simi-
larly, TyG ≥ 9.265 was linked to higher risks of ICU mor-
tality (HR: 1.93, 95% CI: 1.39–2.69) and hospital all-cause 
mortality (HR: 1.70, 95% CI: 1.33–2.17) compared to 
TyG < 9.265.

After accounting for hypoglycaemic therapy (insulin 
and oral hypoglycaemic agents) in Model 3 (Supplemen-
tary Table S7), each unit increase in continuous TyG was 
correlated with elevated risks of ICU (HR: 1.33, 95% CI: 
1.06–1.66) and hospital all-cause mortality (HR: 1.29, 
95% CI: 1.09–1.53). TyG ≥ 9.265 remained significantly 
associated with increased risks of ICU (HR: 1.90, 95% 
CI: 1.37–2.64) and hospital all-cause mortality (HR: 1.68, 
95% CI: 1.31–2.14) compared to lower TyG levels.

Exploratory analysis of the associations between 
adjustment factors and outcomes
Supplementary Table S8 shows the results of the associa-
tions between each adjustment factor and the outcomes 
of patients with first-ever stroke. MV (HR: 4.48, 95% CI: 
3.22–6.23), APACHE IV (HR: 1.03, 95% CI: 1.03–1.04), 
RFA (HR: 1.91, 95% CI: 1.40–2.59) and cirrhosis (HR: 
3.06, 95% CI: 1.13–8.26) were significantly associated 
with ICU all-cause mortality. In the analysis of hospi-
tal all-cause mortality, major associated factors were 
similar, including MV (HR: 4.23, 95% CI: 3.41–5.24), 
APACHE IV (HR: 1.03, 95% CI: 1.03–1.04), RFA (HR: 
2.54, 95% CI: 2.04–3.16), cirrhosis (HR: 5.57, 95% CI: 
2.76–11.20), thrombolysis (HR: 0.65, 95% CI: 0.47–0.89) 
and vasopressors (HR: 1.88, 95% CI: 1.37–2.57). More-
over, MV (β = -5.22, P-value < 0.001), vasopressors (β = 
-2.26, P-value < 0.001), insulin (β = -0.48, P-value = 0.004), 
RFA (β = -4.38, P-value < 0.001), sepsis (β = -2.63, 
P-value < 0.001) and AKI (β = -1.78, P-value < 0.001) were 
associated with poorer GCS, while thrombolysis (β = 1.18, 
P-value < 0.001) was associated with better GCS.

Feature selection and collinearity tests
Supplementary Fig. S5 demonstrates that seven features 
have been selected by Boruta to be important for ICU 
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all-cause mortality, with TyG considered as the third 
important feature, and other selected features are MV, 
RFA, HDL-C, vasopressor, sex, and LDL-C. Pearson cor-
relation and variance inflation factor tests demonstrated 
no strong correlation or multicollinearity between them 
(Supplementary Fig. S6).

Model construction and evaluation
Using these seven selected features, we built predictive 
models for ICU all-cause mortality in critical ill patients 
with first-ever stroke in the training cohort. The best 
hyperparameters of the MLs following five-fold cross-
validation are shown in Supplementary Table S9.

According to the plots of ROC and DCA for the ML 
models in the internal validation cohort (Fig. 2a and c), 
only light gradient boosting machine, RF and logistic 

regression had higher AUCs than APACHE IV, with RF 
obtaining the highest AUC (0.900, 95% CI 0.881–0.919) 
and RF having the greatest net clinical benefit. Further 
calculating the other metrics (Fig.  3a), RF also had the 
highest G-mean (0.443) and F1 score (0.367).

In the external validation cohort, we recruited 201 
first-ever stroke patients admitted to ICU, the baseline 
characteristics were shown in Supplementary Table S10. 
The RCS analysis of TyG and ICU all-cause mortality was 
presented in Supplementary Fig. S7, which was similar to 
the findings in the cohort extracted from EICU (P-over-
all = 0.010, P-non-linear = 0.376). However, there was no 
correlation analysis between TyG and GCS because of 
the limited recording of GCS (< 25%) in the external vali-
dation cohort. For the plots of ROC and DCA for the ML 
models in the external validation cohort (Fig.  2b and d, 

Fig. 2 Evaluation the performance of all machine learning models with ROC and DCA in the internal validation cohort (a & c) and external validation cohort 
(b & d). Red “all” indicates that all patients received treatment, green “none” indicates that all patients did not receive treatment, and the area under each 
model is the net clinical benefit from applying the predictive model. APACHE IV, Acute Physiology and Chronic Health Evaluation IV; AUC, area under 
curve; CI, confidence interval; DCA, decision curve analysis; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LightGBM, light gradient boosting 
machine; LR, logistic regression; MLP, multilayer perceptron; RF, random forest; ROC, ceceiver operating characteristic curve; SVM, Support Vector Machine
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Fig. 3 Evaluation the performance of all machine learning models with other metrics, and dependence plot of the effect of TyG for RF in the internal 
validation cohort (a & c) and external validation cohort (b & d). APACHE IV, Acute Physiology and Chronic Health Evaluation IV; AUC, area under curve; 
GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; RF, 
random forest; SVM, Support Vector Machine
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and Fig. 3b), RF still had the highest AUC (0.776, 95% CI 
0.718–0.833), G-mean (0.399), F1 score (0.336), and had 
the greatest net clinical benefit.

Feature importance and web platform
Figure 4a and b show that the order from top to bottom 
on the Y-axis indicates the importance of all features in 
the RF for the ICU all-cause mortality, where the top 
three are: MV, TyG and RFA (TyG is second and third 
in the internal validation cohort and external validation 
cohort, respectively). Figure  4c and d shows that as the 
TyG becomes higher, the greater the positive contribu-
tion of TyG to the predicted value. Then, we embedded 
RF in a web platform with an easy-to-use interface con-
taining inputs corresponding to the seven features within 
the model (http://162.62.58.247:3030/). By entering  i n f o r 
m a t i o n specific to a particular patient, the probability of 
its outcome occurring would be output. For example, in 
Supplementary Fig. S8, a 65-year male patient received 

MV and vasopressor, his TyG, LDL-C and HDL-C on 
the first day of ICU were 9.5, 90 mg/dL, and 55 mg/dL, 
respectively, then he has a predicted probability of 77% 
and is therefore at high risk of ICU all-cause mortality.

Discussion
Our multicenter study explored the association between 
TyG and prognostic outcomes in critically ill patients 
with first-ever stroke, revealing significant findings: (i) 
TyG was significantly related to increased ICU all-cause 
mortality and hospital all-cause mortality, implying that 
TyG could be used for mortality risk stratification in the 
first-ever stroke patients admitted to ICU; (ii) Increased 
TyG was positively correlated with ICU and hospital 
length of stay, suggesting ICU/hospital costs and compli-
cations might increase; (iii) Elevated TyG was negatively 
associated with GCS score, eye opening, verbal response, 
and motor response, indicating that increased TyG was 
significantly linked to poorer cognitive functioning; and 

Fig. 4 SHAP value and importance for each feature of our random forest model in the internal validation cohort (A) and external validation cohort (B). 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MV, mechanical ventilation; SHAP, SHapley Additive exPlanations; 
TyG, triglyceride-glucose index

 

http://162.62.58.247:3030/
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(iv) TyG had promising potential to be applied to ML for 
predicting ICU all-cause mortality in patients with first-
ever stroke, and TyG was important in the ML model.

To our knowledge, no prior study has explored predic-
tion ML models for ICU all-cause mortality in first-ever 
stroke patients. Our model compares we with other tools 
for predicting mortality in stroke patients. For example, 
Chen et al. constructed ML models for predicting 30-day 
ICU all-cause mortality in stroke patients using 10 clini-
cal features on the first day of ICU admission, with the 
best performance of LightGBM, which had an AUC of 
0.88 in the internal validation cohort [22]. Ouyang et al. 
constructed ML models for predicting hospital mortal-
ity in ICU patients with IS using 18 clinical features [23]. 
Their best model was RF, with an AUC and F1-score of 
0.799 and 0.417 in their internal validation, and with 
an AUC and F1-score of 0.733 and 0.498 in their exter-
nal validation, respectively. All of their best models had 
AUCs lower than 0.9 in the internal validation, and they 
all also included MV, whereas our model obtained better 
performance using MV and the other six features. This 
may be attributed to the fact that TyG is significant for 
predicting the risk of mortality in stroke patients, nd our 
model also externally performed well.

Since the calculation of the TyG involves fasting tri-
glycerides and fasting blood glucose, which are closely 
related to IR. Triglycerides serve as the predominant 
storage form of fat in the body, with their regulation 
being influenced by insulin. Increased triglyceride levels 
are positively correlated with IR [24]. Fasting blood glu-
cose is an important clinical indicator for assessing glu-
cose metabolism status, and it is associated with IR [25]. 
Guerrero-Romero and colleagues indicated a substantial 
correlation between the TyG and the total glucose meta-
bolic rate measured by the euglycemic-hyperinsulinemic 
clamp test (r = − 0.681, P-value < 0.005), and that the 
sensitivity and specificity of TyG for the diagnosis of IR 
were 96.5% and 85.0%, respectively [26]. Moreover, Wu 
et al. found a moderate correlation (Spearman ρ = 0.51) 
between the TyG and the homeostatic model assessment 
of IR, which can also be used to assess IR [27]. Overall, 
based on prior evidence, TyG could serve as a feasible 
and easy-to-assess surrogate for IR.

Insulin activates the triglyceride breakdown rate-
limiting enzyme in adipose tissue, which promotes the 
metabolism of triglycerides in chylomicrons and very 
low-density lipoproteins, thereby helping to lower blood 
lipids. Evidence suggests that free fatty acids and vari-
ous adipokines produced by adipose tissue are connected 
to abnormal insulin signaling, thus adipose tissue has a 
significant impact on the development of IR [28]. The 
expansion of adipose tissue triggers the infiltration of 
macrophages and disrupts the equilibrium between both 
pro- and anti-inflammatory factors secreted by adipose. 

This leads to heightened inflammation, compromised 
insulin sensitivity, and dysregulated lipid metabolism 
result [29]. The regulation of insulin on blood sugar 
mainly includes two aspects: promoting glucose uptake 
in bone iliac muscle, myocardium and adipose tissue, 
and inhibiting liver glycogenolysis and gluconeogenesis. 
When these effects are weakened, that is, insulin cannot 
effectively promote the uptake of glucose by surrounding 
tissues and cannot inhibit glucose output from the liver, 
the blood glucose will rise. IR is one of the important 
factors that promote the occurrence and development 
of metabolic syndrome, including other risk factors like 
hyperlipidemia, hypertension, and hyperglycemia. The 
risk of cardiovascular and cerebrovascular diseases in 
individuals with metabolic syndrome was 3 times greater 
than those without metabolic syndrome, and the risk of 
death was 5–6 times greater than those without meta-
bolic syndrome. Increases the incidence, prevalence and 
all-cause mortality of type-2 DM placing an overwhelm-
ing burden for patients, families and the society, and 
increasing the total healthcare cost of related diseases 
by 60% [30]. It has been confirmed that most patients 
with acute cerebrovascular disease are complicated with 
hypertension, hyperglycemia, dyslipidemia and many 
other high-risk factors. These risk factors interact to 
promote the progression of metabolic disorders in the 
body. IR not only causes hyperglycemia, hyperlipidemia, 
hypertension, hyperinsulinemia and other metabolic dis-
orders indirectly leading to large and small vascular dis-
eases, but also directly affects vascular endothelial cells 
and macrophages and other inflammatory cells, causing 
endothelial cell dysfunction, blood-brain barrier perme-
ability change, microvasomotor dysfunction, etc. These 
would further accelerate the progression of atheroscle-
rosis and promote the rupture of atherosclerotic plaque, 
leading to the incidence of stroke [31]. 

TyG is a potential biomarker indicator for high-risk of 
all-cause mortality in metabolic disorders, cardiovascular 
diseases, critically ill patients, infectious diseases [32–34]. 
However, the precise understanding of the relationship 
between IR and the occurrence and prognosis of stroke 
remains limited. From the perspective of pathophysiolog-
ical mechanisms, the mechanisms behind IR and stroke 
may be as follows: (i) In a state of impaired IR, there is a 
decrease in the release of nitric oxide from the vascular 
endothelium and vasodilatory function, which is linked 
increased blood pressure and consequential endothe-
lial damage, damage to the vessel wall, and blood vessel 
fragility, potentially increasing the risk of haemorrhagic 
stroke; [35] and (ii) IR per se induces myocardial oxida-
tive stress, which inhibits the cardiac antioxidant defence 
system, leading to platelet aggregation and atheroscle-
rotic thrombosis, and to more cerebrovascular lesions 
and IS [36]. While monitoring other cardivascular events 
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post-stroke could offer additional insights, the acute 
nature of ICU admissions limits its utility as a primary 
outcome. Future studies incorporating post-discharge 
follow-up could better assess the long-term cardiovascu-
lar effects of IR in post-stroke population.

Several previous studies have investigated TyG and 
stroke occurrence or prognosis, and some have been in 
the ICU setting. Huo et al. reported TyG and indepen-
dent risk factors for incident stroke in a middle-aged 
and older Chinese population (Q1 as reference; Q2: HR 
1.40, 95% CI 1.07–1.83; Q3: HR 1.75, 95% CI 1.35–2.27; 
Q4: HR 1.65, 95% CI 1.27–2.15; adjusted for confound-
ers) [37]. Hu and colleagues showed that in older hyper-
tensive patients, elevated levels of TyG were significantly 
associated to the first-ever stroke (Q1 as the reference 
group, Q4: HR 1.90, 95% CI 1.04–3.45) or first-ever IS 
(Q1 as the reference group, Q4: HR 2.45, 95% CI 1.16–
5.20) [38]. However, their 95% CIs were wide, given the 
limited sample size and stroke/IS events, thus the asso-
ciation of TyG with first-ever stroke occurrence needs to 
be further explored. For all-cause mortality post-stroke, 
one recent study using the MIMIC-IV database showed 
that higher TyG was strongly correlated with ICU all-
cause mortality (HR 1.65, 95% CI 1.24–2.20) and hos-
pital all-cause mortality (HR 1.37, 95% CI 1.05–1.78) in 
severely ill IS patients [39], and TyG was linked to ele-
vated risks of 30-day all-cause mortality (HR 1.32, 95% CI 
1.05–1.67), 90-day all-cause mortality (HR 1.27, 95% CI 
1.04–1.55) and 1-year all-cause mortality (HR 1.22, 95% 
CI 1.03–1.44) [40]. 

For other prognostic outcomes post-stroke, Lee et al. 
demonstrated that high levels of TyG were significantly 
related to poor three-month functional result (modified 
Rankin Scale ≥ 3) in acute IS patients receiving reperfu-
sion therapy (OR 5.22, 95% CI 1.39–19.57), early neuro-
logical deterioration occurred in approximately 20% of 
the high TyG group, whereas this did not occur in the low 
TyG group [41]. We could not collect post-stroke func-
tional scores in our study, but we indicated that TyG was 
significantly correlated with GCS scores, similarly sug-
gesting that TyG was associated with early neurologi-
cal deterioration. Moreover, Cheng et al. suggested that 
TyG was negatively correlated with cognitive impairment 
scores, Montreal Cognitive Assessment scores, in post-
acute IS patients (r = − 0.272, P < 0.001), elevated levels of 
TyG correlated with occurrence of cognitive impairment 
3-month post-stroke [42]. However, no prior study exists 
on TyG and prognosis of patients with first-ever critical 
ill stroke.

Therefore, our study adds to this research gap by dem-
onstrating the important role of IR based on TyG assess-
ment in the prognostic management (especially all-cause 
mortality and neurological abnormalities) of first-ever 

stroke in the ICU, to optimise treatment options and 
improve treatment efficiency.

Strengths and limitations
This study provided several important strengths. First, 
the study population was critically ill patients with first-
ever stroke, which is different from the scope of previous 
studies that focused on all critically ill stroke patients, 
making our results more relevant and clinically appli-
cable. Second, this study not only assessed hospital and 
ICU all-cause mortality, but also firstly included con-
scious status as a prognostic outcome, comprehensively 
analysing the impact of TyG on the clinical prognosis of 
ICU patients with first-ever stroke. Third, this study also 
constructed the first ML prediction model for ICU all-
cause mortality in first-ever stroke patients based on TyG 
and other features, and it also performed well in an inde-
pendent external cohort. Therefore, these findings fur-
ther extend the use of TyG in the prognostic assessments 
of critically ill patients with first-ever stroke and provide 
a new basis for early clinical identification of high-risk 
patients.

Notably, there were several unavoidable limitations to 
our investigation. First, since the study was retrospec-
tive in nature, selection bias may exist and we may have 
missed some potential confounders (e.g. CRP) for our 
outcomes of interest. Second, there were substantial 
numbers of unspecified stroke diagnosis records in this 
study, which resulted in our inability to accurately assess 
the association of TyG for different stroke types with our 
outcome of interest. Third, we identified ‘first-ever stroke’ 
cases by excluding patients with recorded prior strokes. 
Due to limitations of EICU, we could not exclude patients 
with silent strokes, which are asymptomatic and often 
detected only through imaging. Silent strokes may affect 
baseline risk and outcomes, introducing potential bias. 
Future prospective studies should differentiate between 
symptomatic and silent strokes for more accurate risk 
assessment in first-ever stroke patients. Fourth, the TyG 
calculated in our study was derived from the initial tri-
glyceride and blood glucose levels on ICU admission, 
without adherence to strict fasting conditions. How-
ever, in the external cohort, we collected blood glucose 
and triglycerides under strict fasting conditions and still 
showed a similar association of TyG with ICU all-cause 
mortality and conscious status, but it is still necessary to 
further assess whether the association between TyG cal-
culated under fasting conditions and outcome would be 
significantly different in a larger cohort. Fifth, the EICU 
database lacked detailed pre-hospital medication records, 
preventing us from excluding patients on prior treat-
ments for dyslipidemia or diabetes. While we included 
medication data during hospitalisation (statins, fibrates, 
insulin, and oral hypoglycemic agents), the absence of 
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historical data may affect the associations observed, 
and future prospective studies should include complete 
medication histories. Sixth, stroke severity significantly 
impacts patient prognosis, however, the EICU database 
lacks such specific data. Future studies are needed to 
access the comprehensive data of stroke severity. Sev-
enth, we did not consider whether changes in TyG would 
have other effects on outcomes, and thus further evalu-
ation of the association of dynamically changing TyG 
with the prognosis of critically ill patients with first-ever 
stroke is necessary.

Conclusions
TyG was identified as an independent risk factor for ICU 
and hospital all-cause mortality in patients with first-ever 
stroke, with an optimal cut-off of 9.265. This threshold 
may help clinicians identify patients at higher risk ear-
lier, allowing for more aggressive management strategies. 
Moreover, the ML model incorporating TyG demon-
strated excellent predictive performance in external vali-
dation, highlighting the significance of IR (measured by 
TyG) in the prognostic assessment and early risk stratifi-
cation of critically ill patients with first-ever stroke.
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