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Recep Tayyip Erdoğan University, Türkiye

*CORRESPONDENCE

Xinjian Wang

wangxinjian@dlmu.edu.cn

RECEIVED 14 August 2024

ACCEPTED 21 October 2024
PUBLISHED 12 November 2024

CITATION

Zhou Y, Liu Z, Wang X, Xie H, Tao J, Wang J
and Yang Z (2024) Human errors analysis for
remotely controlled ships during
collision avoidance.
Front. Mar. Sci. 11:1473367.
doi: 10.3389/fmars.2024.1473367

COPYRIGHT

© 2024 Zhou, Liu, Wang, Xie, Tao, Wang and
Yang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 12 November 2024

DOI 10.3389/fmars.2024.1473367
Human errors analysis for
remotely controlled ships during
collision avoidance
Ying Zhou1,2, Zhengjiang Liu1,2, Xinjian Wang1,2,3,4*, Hui Xie1,2,5,
Juncheng Tao1,2, Jin Wang3 and Zaili Yang3

1Navigation College, Dalian Maritime University, Dalian, China, 2Key Laboratory of Navigation Safety
Guarantee of Liaoning Province, Dalian Maritime University, Dalian, China, 3Liverpool Logistics,
Offshore and Marine (LOOM) Research Institute, Liverpool John Moores University, Liverpool, United
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To address human errors in collision avoidance tasks of remotely controlled

ships, this study aims to develop a comprehensive framework for human error

analysis within the context of autonomous ships. Firstly, the Hierarchical Task

Analysis method is utilized to identify crew collision avoidance tasks associated

with the traditional ship, and these tasks are then dissected into different

operational stages using the Information Decision Action in a Crew cognitive

model. Secondly, a combination of the fault hypothesis method and expert

opinions are used to identify potential human error that may occur during

collision avoidance operations of remotely controlled ships. Thirdly, an

integrated approach is proposed to build a quantitative risk assessment model,

which combines Failure Mode and Effects Analysis, Evidential Reasoning, and

Belief rules-based Bayesian Network. Then, axiomatic analysis is used to verify

the robustness and applicability of the risk assessment model. Finally, based on

the results of quantitative risk assessment, specific measures are proposed for

enhancing the safety of collision avoidance process of remotely controlled ships.

The findings show that uncoordinated interactions of human-computer systems

during the decision-making stage are a pivotal factor in the collision avoidance

process. Therefore, future design efforts for remote-control centre should

prioritize improving the clarity of human-computer interaction interfaces.
KEYWORDS

maritime safety, maritime autonomous surface ships, human error, risk analysis, FMEA,
evidential reasoning
1 Introduction

1.1 Background

With the advent of the Industry 4.0 era, many industries and sectors are aiming at the

goal of autonomous driving (Jovanović et al., 2024; Li et al., 2023). The development of

technologies such as Data Analysis, Pattern Recognition, Artificial Intelligence, Internet of

Things, Global Navigation Satellite System, etc., further promotes a more efficient and
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energy-saving smart shipping industry, which offers unlimited

possibilities to realise the goal of fully autonomous ships (Guo

et al., 2024c; Liu et al., 2024). In this context, the development of

Maritime Autonomous Surface Ships (MASS) becomes an

inevitable trend in the shipping industry, and is expected to usher

in a greener and safer era in shipping practices (Guo et al., 2024a).

The application of MASS is likely to be reduced human errors, a

pivotal factor in the pursuit of safer and more reliable navigation

practices (Kim et al., 2020). Yet, there are questions as to if the

addition of autonomy necessarily equates to enhanced safety in

navigation and if it signifies the complete elimination of the human

element. It has been extensively discussed and analysed in the

recently published MASS-related literatures (Tao et al., 2024).

Although it is widely acknowledged that the majority of maritime

accidents are, to some extent, attributable to human error, the

impact of such errors is arguably not tangible (Feng et al., 2024;

Zhang et al., 2025).

Furthermore, MASS operate in uncertain environments,

encountering challenges such as extreme weather conditions,

unexpected obstacles, and equipment failures (Fan et al., 2024b).

This demands strong technical skills, sound decision-making, and

resilience from operators. Consequently, there is a distinct need for

further research in the field of MASS and the assessment of human

error (Johansen and Utne, 2024). By conducting a comprehensive

evaluation of human error in MASS, root causes can be identified

and effective training and intervention strategies can be developed

to enhance the safety operation of MASS. Additionally, this study

offers theoretical guidance for future manoeuvring system designs,

ensuring that the risks associated with human error are effectively

mitigated as automation levels rise.
1.2 The ship’s autonomous level

The current classification of the MASS Degree of Autonomy

(DoA) is primarily based on the level of ship automation. This

means that decision support and autonomous control capabilities

are stronger with higher levels of automation. However, upon

reviewing the literatures on autonomy level classification

standards, it is clear that several national or international

organisations (e.g. Lloyd’s Register, Det Norske Veritas, Bureau

Veritas, International Maritime Organization) consider MASS to

require human-system collaboration for various navigation

functions, such as monitoring, authorisation, and approval. From

a regulatory standpoint, IMO has adopted the recommendation

proposed by the Danish Maritime Authority (DMA) to categorise

MASS into four classes. These classes are known as DoA1 to DoA4,

representing ships equipped with automated systems and auxiliary

decision support (DoA1), remotely controlled ships with crews on

board (DoA2), remotely controlled ships without crews on board

(DoA3), and fully autonomous ships (DoA4), respectively. Among

them, DoA2 and DoA3 MASS have realised remote control,

allowing personnel to control and operate the ship from

other places.
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Both conventional ships and MASS have a certain level of

automation and auxiliary decision support systems. The research

related to DoA1 MASS can be compared or analogised to a fully

functional conventional ship in many aspects. Fully automated ships,

such as DOA4 MASS, operate with minimal human involvement

during navigation. This decreased dependence on human operators

poses significant challenges to existing laws and regulations, which

need to be revised. As a result, experts in academia and industry have

reservations about the widespread use of such ships in the foreseeable

future (Zhou et al., 2020). Therefore, DoA2 and DoA3 MASS,

transitioning to a high level of automation, have become the focus of

attention and research in the shipping and academic communities.

Currently, DoA2 and DoA3 MASS are in the sea trial stage, with the

essential difference between the two being the presence or absence of

the crew on board. In the foreseeable future, theDoA2MASS, with the

crew still on board, will be the first to enter the public eye.

Compared with conventional ships, the evolving mission

scenarios of DoA2 MASS have necessitated a fresh evaluation

of the associated risks (Chang et al., 2021). Although the

reduction in the number of person at DoA2 MASS may reduce

the frequency of errors directly caused by personnel operations, the

types of human errors may increase (Utne et al., 2017). For instance,

operators distanced from the physical scene are coupled with the

absence of direct sensory perception of their surroundings. This

absence of sensory input hinders their ability to accurately

identify target ships and gather sufficient information about

navigational situations, ultimately impeding their capacity to

make precise judgments in complex or hazardous situations

(Huang and van Gelder, 2020); the division of responsibilities

between the operator and the crew is ambiguous, and procedures

for transferring control lack clarity, leading to problems such as

prolonged decision-making times (Fan et al., 2022).
1.3 MASS risk assessment

MASS has a new and distinctive system involving many theories

and technologies, such as sensors, intelligent decision-making,

telecommunication and shore-based remote control. Increased

automation and the development of emerging technology systems

present new risks that cannot be anticipated (Li et al., 2023).

In response to these challenges, researchers have diligently

explored various dimensions of MASS safety, such as mixed

navigation risks (Wróbel et al., 2017), network factors (Hassani

et al., 2017), system reliability and maintenance (Lager and Topp,

2019). Once MASS are in commercial operations, they will

coexist with conventional ships for a long time, and the

uncertainties and potential risks of its operation process will

become more complicated. In complex and changing navigational

environments, the interaction between unmanned and manned

ships will become increasingly complicated (Wróbel et al., 2017).

Network factors are also an important component of MASS

security. Data exchange is the primary risk factor affecting the

network security of the MASS system. This dynamic process
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473367
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2024.1473367
encompasses the potential for intruders to launch cyber-attacks or

transmit false signals, thereby disrupting data exchange channels,

such as control systems, inter-system functions, and interfaces on

board a ship (Hassani et al., 2017). In principle, anyone with access

to a ship’s database system can take control of an autonomous ship

and change its navigational tasks to suit their objectives. It is

essential to recognize that MASS’ safety is affected not only by the

external environment, such as navigational (Guo et al., 2024b) and

network environment (Longo et al., 2023), but also by its equipment

and systems (Fan et al., 2024b). MASS rely on autonomous systems

and associated equipment to ensure the stability of information

transmission, and to make judgements and warnings about possible

contingencies (Lager and Topp, 2019).

Risks are diverse and dynamically changing. Recent studies

conducted by the IMO on MASS Risk and Safety Evaluation (RSE)

have indicated that the field is still in its nascent stages of research.

Mature models still need to be implemented, and the testing and

validation of security aspects need to be improved. For the time

being, the identification of navigational hazards of MASS mainly

originates from expert knowledge and the experience of

navigational officers, or the analysis of traditional ship navigation

and simulation data, which lacks the support of real navigational

data and makes it difficult to put forward specific navigational

technical requirements and risk prevention measures for MASS.

Inspired by previous researchers’ explorations of risks on

conventional ships (Liu et al., 2023) and risk discussion during the

MASS sea trial (Fan et al., 2024a; Veitch and Andreas Alsos, 2022),

there has been a marked increase in the research on MASS safety in

recent years. Existing studies attribute themain cause of ship accidents

to human errors (Feng et al.; Johansen and Utne, 2024). Despite the

continuous development of science and technology, the enhancement

of ship automation capability cannot eliminate the influence of human

beings on the safety of MASS navigation, and the human factor is still

the focus of the research on the risk of MASS (Chae et al., 2020; Man

et al., 2018). In viewof the above research status and shortcomings, this

study takes remotely controlled ships as the research object, identifies

the hazards during collision avoidance operations, and evaluates the

risk influential factors affecting the safety of the ships to enhance

their safety.
2 Literature review

The Annual Report on Maritime Casualties 2021, revealed that

81.1% of maritime casualties were related to human behavioural

events (European Maritime Safety Agency, 2022) and human

behavioural factors (Aydin et al., 2023), and the main accident

resulting in loss of life and injury is a ship collision (Shi et al., 2024).

Ship collision avoidance is a widely discussed topic, and although

collision avoidance methods have been improving, ship collisions

are still a common accident in the maritime sector. Therefore, it is

necessary to improve the supporting technology of MASS
Frontiers in Marine Science 03
development, especially the collision avoidance decision-making

technology (Burmeister et al., 2014).
2.1 The collision risk research of MASS

Since 2017, the IMO has advocated for the maritime sector to

discuss the application of International Regulations for Preventing

Collisions at Sea (COLREGs) to MASS. Miyoshi et al. (2022)

explained the applicability of COLREGs in the operation of

MASS from the perspective of seafarers, and discussed whether

the application of MASS would require a change in the existing

rules. Bakdi and Vanem (2022) put forward the application barriers

and implementation challenges posed by COLREGs to MASS from

the perspective of navigational practices, and pointed out that the

COLREGs need to be elaborated and revised.

In pursuit of enhancing the research of ship collision risk

assessment, Zhou et al. (2020) developed a MASS safety domain

model by improving the collision scenarios of traditional ships

using full hybrid causal logic. The experimental results

demonstrated that the inclusion of MASS can reduce the risk of

ship collision, but it did not mean the risk factors would be linearly

less and disappeared. Based on an existing collision model, Guo

et al. (2021) used Belief rules based Bayesian Network (BBN) to

quantify the risk in an autonomous ferry collision scenario to

explore how the collision risk had changed. It was concluded that

changes occurred in the representation of accident types, and

accident rates shifted to varying degrees. Based on the field theory

and ship collision scenarios, Qiao et al. (2021) proposed a

quantitative risk assessment method, which overcame the

shortcomings of traditional risk analyses, and had a large

potential for application. Zhang et al. (2021) proposed a novel

collision avoidance trajectory search and optimisation algorithm,

which can effectively generate free collision avoidance trajectories,

realise multi-ship real-time collision avoidance in uncertain

environments. Additionally, based on the ship manoeuvring

process, combined with the recovery navigation model, Zhang

et al. (2022) proposed an adaptive autonomous collision

avoidance scheme for MASS, which can make MASS return to

its original course after completing the collision avoidance task.

Liu et al. (2022b) proposed a fuzzy logic-based multi-model spatial

data fusion and accident data mining approach to trajectory risk

perception and developed a risk perception system. It can be

applied to collision avoidance training for MASS operators.

Existing studies have shown that researchers have developed

a variety of control algorithms, and successfully applied simple

logic to the collision avoidance process of MASS (Lee et al.,

2023). However, given the complexity of the practical operation

of ship collision avoidance, the feasibility of collision avoidance

methods remains questionable, and the issue of ship collision

avoidance is still far from being solved (Wróbel et al., 2022). The

challenges are due to the high uncertainty involved due to
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various influential factors beyond the currently available

literature including climate change, emerging technologies and

the associated retrofitting of ships, and regulatory adaptation to

such changes. Therefore, adopting scientific and reasonable

methods to improve the collision avoidance capability of

MASS is a primary objective.
2.2 The human errors research of MASS

The existing studies pointed that a fully autonomous level of ship

is unlikely to be realised at this stage, with onboard crew (OCs) and

remote operators (ROs) still playing an important role in MASS

navigation (Man et al., 2018). While MASS is expected to reduce the

number of ship collisions attributed to human error, it is essential to

acknowledge that human error remains an inherent factor (Utne

et al., 2017; Wróbel et al., 2017). Given MASS’ unique nature, human

error’s impact on potential ship accidents remains uncertain.

Some studies have underscored the significance of human

errors concerning the safety of MASS; it is worth noting that they

have primarily focused on qualitative analyses rather than

quantitative assessments. Ahvenjärvi (2016) discussed human

errors related to MASS development, and mentioned that the lack

of ability to adapt to unexpected situations is a potential weakness of

MASS operators. Abilio Ramos et al. (2019) assessed the likelihood

of operator error during MASS navigation, analysed interactions

between ROs and personnel on board. The study showed that

although MASS can disengage a degree of personnel from ship

operations, it still relies on personnel for supervision and remote

manoeuvring. Wróbel et al. (2021) developed a Human Factors

Analysis and Classification System-Maritime Accidents (HFACS–

MA) Framework to analyse the human errors of MASS in remote

control mode. The study showed that the operator’s behaviour is a

key factor affecting the safety of MASS, which prevented the

eventual occurrence of accidents.

Regarding specific events, some researchers have focussed on

Human Computer Interaction (HCI) failures and have combined

several methods to assess the human error of MASS. Zhang et al.

(2020) proposed an error probability model for ROs, emphasising

human-machine coordination, and they quantified the human errors

in the emergency response process of DoA3 MASS using human

error rate prediction (THERP) and Bayesian network (BN) methods.

This work offered a flexible reference for theoretical remote-control

centre construction and operator training. Moreover, by monitoring

the process of MASS operators interacting with the system, Liu et al.

(2022a) quantitatively analysed operational errors in human–

machine interfaces (HMIs) using the Success Likelihood Index

Method (SLIM). The results showed that poor personnel

conditions could easily induce operational errors.

The above studies have shown that human capabilities such as

fitness for duty, experience and communication are still important

factors affecting the safety of MASS in remote control mode. However,

the existing literature does not sufficiently investigate how operators

interact with the system when encountering possible failure or
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emergency scenarios. In particular, in the DoA2 MASS collision

avoidance context, human error modelling and interaction analysis

must be based on crew, operator and system. Therefore, when

developing a MASS risk assessment tool, it is important to consider

the potential errors in the operation of the crew on board and ROs.
2.3 Research gaps and contributions

The review of MASS literatures has revealed some areas for

improvement in the current research. Many researchers are

committed to analysing MASS collision risk but have only given a

framework for collision risk analysis and have yet to pay in-depth

attention to human errors. A preponderance of the existing studies

has placed a primary focus on refining collision avoidance

techniques, developing collision risk detection methods, and

exploring collision avoidance rule applicability, focusing on

providing conflict detection and collision avoidance decisions.

However, they do not consider the time-dependent and avoidable

characteristics of collisions, nor the inevitable link between

accidents and human behaviour in the operation of MASS.

Unlike previous studies, this study selects DoA2 MASS as the

research object, and identifies human errors in the collision

avoidance process by using a comprehensive hazard identification

methods. Focusing on personnel operations during collision

avoidance process, human errors leading to ship collisions are

identified from the crew on board and ROs’ perspective,

respectively. Then, a new risk assessment framework is developed

to quantify human error during the emergency response of collision

avoidance process, and targeted risk prevention and control

measures are proposed to reduce the probability of human error

and the frequency of collision accidents. This study can be distilled

into several key contributions, which include:
1. An innovative combination of ship collision avoidance

operations and an HTA framework is used to identify the

sequence tasks of ship collision accidents, determine the

actions or measures taken by the crew on board and ROs to

avoid collision, and identify the human errors during the

emergency response process.

2. Based on the cognitive behavioural analysis of the dynamic

response process of the collision avoidance operation

actions of the crew on board and ROs, a fault hypothesis

method is used to analyse the operational differences

between MASS and conventional ships, and then

establish a human error analysis framework applicable to

the identification of the collision risk of DoA2 MASS.

3. A risk assessment model integrating Failure Mode Effect

Analysis (FMEA), Belief Bayesian Network (BBN),

Evidential Reasoning (ER) and utility function methods is

proposed to account for the uncertainty of expert

knowledge, and then sensitivity analyses are used to

verify the applicability and robustness of the risk

assessment model.
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3 Materials and method

3.1 The human errors identification of
DoA2 MASS collision avoidance process

While the roles of personnel may vary across different

autonomy levels of MASS, their overarching objective of ensuring

ship safety remains consistent. Valuable insights from research on

human errors in conventional ships, can serve as a foundation for

understanding and addressing RO errors in MASS.

This study draws on human error studies of traditional ships,

and affirms the importance of cognitive functions in ensuring ship

safety. Firstly, ship collision accident reports and HTA are used to

derive the possible failures of the crew, and generalise nine human

tasks during collision avoidance on traditional ships. Secondly, the

nine main tasks are classified based on the Information Decision

Action in a Crew (IDAC) cognitive model and then migrated into

DoA2 MASS through failure hypothesis analysis. Finally, the

human errors in the collision avoidance process of DoA2 MASS

are identified following expert panel discussions. Figure 1 illustrates

the technical flow.

As a top-down task analysis method, HTA can reproduce the

progression of tasks from top to bottom, helping researchers start

from the highest level of the task and understand the details of the

task and the execution process step by step. In the IDAC, a

hierarchical structure is used to solve complex system issues. This

can be seen as a causal model covering the various dynamic

response stages of personnel, i.e., information acquisition,

decision-making and action among members. The process is
Frontiers in Marine Science 05
repeated until the task is associated with only one stage of the

cognitive model IDAC.

3.1.1 Collision avoidance tasks for
conventional ships

In this study, accident reports involving ship collisions are

selected from China Maritime Safety Administration (China

MSA), and the pre-accident collision avoidance tasks are

extracted using HTA. Establishing the correspondence between

collision avoidance tasks and operator behaviours through

deductive reasoning helps researchers understand the cognitive

and decision-making processes involved, and obtain the

behavioural information that operators need to perform the

collision avoidance task (Mandal et al., 2015).

During a ship’s voyage, the crew consistently detects and

evaluates the ship’s navigational position. Objective evaluations

are necessary at all times. If a ship poses a collision risk, the

topside task opens, and the crew must act to prevent the collision.

The collision avoidance actions taken by the crew depend on several

variables, including but not limited to, the type of ship, the number

of ships, and the type of encounter. Ship collision accident reports

demonstrate that crew members have full knowledge of the ship’s

condition and complete all or some of the following tasks, which are

important for early detection and prevention of accidents: Monitor

ship traffic situation during the navigation; Identify potential routes

and conditions of target ships; Indicate distances and routes

through audible warnings; Predict the likelihood of collision risk;

Decide whether to take action; Communicate with the target ship to

understand its intentions; Develop an appropriate collision
FIGURE 1

The human errors identification process of DoA2 MASS.
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avoidance plan; Execute it properly; Monitor the subsequent status

of the ship.

To be sure, the crew should conduct condition evaluations

beforehand to ascertain operational procedures and adverse

conditions that may impact safety, this will give them ample time

to create evasive strategies based on the current situation.

3.1.2 IDAC cognitive modelling
The tasks that crews need to perform to avoid collisions are

divided into three distinct parts by type: information acquisition,

decision-making, and action. This classification helps in

understanding the sequential flow of tasks from gathering

information, to making decisions based on that information, and

finally executing actions based on those decisions. Information

acquisition is the process of processing incoming information by

the crew. This process encompasses information comprehension,

correlation, and prioritisation. Decision-making considers all the

acquired information as a whole and performs situation assessment

and diagnosis. The action stage focuses on accomplishing the actions

developed in the decision-making stage. These actions are based on

the crew’s skills and do not require much mental involvement.

This study utilises the IDAC model to categorize the tasks

identified in Section 3.1.1 into three distinct categories: perception

tasks, decision-making tasks, and execution tasks. To classify

human errors, personnel actions are linked to tasks and then

segmented according to corresponding stages:
Fron
1. During the information gathering process, there may be

inaccuracies or failures in data collection (Stage I).

2. Personnel have accurate and comprehensive information.

However, there may be an inaccurately evaluated situation

regarding the ship or an inadequate solution to the problem

(Stage D).

3. Personnel have accurate and comprehensive information

and make sound decisions, but errors occur during the

implementation process (Stage A).
Based on the IDAC model and considering the actual collision

avoidance operation process of the ship, the categorization of

human error in this study is limited to three stages of the

cognitive action model. There are no further distinguishment

between skill-based, rule-based, or knowledge-based error types.

3.1.3 Fault hypothesis
Although MASS are still in the developmental and trial

operation stage, conducting risk prevention and control research

is of great necessity. There is a lack of research in the existing

literature analysing the risks associated with MASS in emergencies,

particularly when personnel are manoeuvring the ship in different

positions. To address this gap, based on the 9 main tasks of the

traditional ship collision avoidance process extracted in Section

3.1.1, the task appropriate for DoA2 MASS is formulated by

applying a Failure Hypothesis Analysis method. It is evaluated

whether these task activities will still be present during the MASS

collision avoidance process, and if their failures will inevitably result

in an accident.
tiers in Marine Science 06
To review the matter, 10 experts in the field were invited for

brainstorming. They include senior researchers specialising in ship

safety, shipmasters, and ship navigators with practical experience,

details of the experts are shown in Table 1. Drawing upon their

extensive knowledge and experience, these experts thoroughly

discussed the human errors that can occur during collision

avoidance about the 9 tasks outlined in Section 3.1.1.

Compared to traditional ships, DoA2 MASS has a higher level

of autonomy. The use of situational awareness and autonomous

navigation systems enables personnel to avoid repetitive and

meaningless tasks (van de Merwe et al., 2024). However, collision

avoidance events inherently follow a consistent time series, and the

pattern of human influence on safety remains largely consistent. As

can be seen in the collision avoidance process of traditional ships,

human behaviour presents a complex factor that necessitates

consideration in the emergency response for MASS. Although

MASS typically only require fewer crew on board, and the system

performs collision avoidance tasks under the operator’s supervision,

there will still be occasions where personnel must take control and

intervene the operational system. When there is an emergency that

requires real-time monitoring and response tasks, the system alone

or in conjunction with personnel will be responsible for these tasks.

During this process, ROs will be an important part of ensuring

navigational safety.

Therefore, the tasks listed in Section 3.1.1 still exist in the MASS

collision avoidance process, with only a change in the location

where these tasks are carried out. The tasks initially executed by the

crew will now be undertaken by the ROs, transferring human errors

from the ship to ROC. Operator’s behaviour covers multiple tasks

such as remote monitoring and manual control, which still

significantly impact hazardous events (Rodseth and Tjora, 2015).
TABLE 1 The basic information of the invited experts.

No. Title Work Experience
at sea

Research
Interests

1 Professor 12 Collision avoidance

2 Professor 8 Ship autonomous systems

3 Professor 6 Human errors in
maritime sector

4 Assistant
Professor

4 Intelligent collision
avoidance system

5 Assistant
Professor

3 Human factors

6 Lecturer 2 Autonomous ship
collision avoidance

7 Lecturer 2 Autonomous ship
human factors

8 Captain 15 Autonomous
ship simulation

9 Chief officer 10 Autonomous
ship simulation

10 Navigational
officer

5 Autonomous
ship simulation
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3.1.4 Case study
Despite the inclusion of autonomous systems, MASS sailing

states are still set by people to a certain extent, essentially a

transition from human to computer control. Human-computer

interaction is crucial during the early operational stages of MASS

(Song et al., 2024). Therefore, in mixed navigational scenarios, some

new types of risks arise in addition to the traditional collision risks.

For example, the frequent change of operating modes requires

operators to have good professional skills and to improve their

ability to cope with the risks.

This section aims to identify the expected personnel behaviours

associated with MASS collisions and discuss the importance of these

behaviours for safety in highly autonomous situations. The

importance of risk modelling can be seen in the extensive risk

assessment literatures (Thieme et al., 2018). Therefore, based on

Sections 3.1.2 and 3.1.3, the tasks that personnel need to perform

during collision avoidance are derived and the behaviours are

modelled. The ship collision accidents are analysed using HTA to

refine the collision avoidance tasks of personnel, and then the task

stages and associated human errors are delineated (Chang and

Mosleh, 2007). The collision scenario starts with detecting the target

ship by the own ship, in conjunction with the accident report and

expert opinion, and the sequence of tasks performed by the system,

operator and crew is shown in Figure 2. When the system believes

that there is a target ship, it triggers the ROC’s alarm using audible

and/or visual alarms (Martins and Maturana, 2013). The operator

must respond to the alarm and, if the situation is too complex, hand

over control to the crew on board. Simultaneously, the ROs can also

detect the target ship before the system does and respond before an

alarm is received. However, in scenarios where operators supervise

multiple ships simultaneously, they often rely on the results

detected and plans formulated by the autonomous system. This
Frontiers in Marine Science 07
allows them to efficiently distribute their attention across various

monitoring tasks (Pedersen et al., 2020).

Beyond the sequence of tasks, it is crucial to examine how

personnel interact with the system and analyse the repercussions of

interaction failure. Figure 3 illustrates four potential forms of HCI:
• Interaction Form 1: The system detects the target and

successfully alerts the operator, but the operator does not

adopt the solution.

• Interaction Form 2: The target ship is successfully detected

and alarmed, but the system does not provide an

autonomous solution.

• Interaction Form 3: The system fails to detect or detects

successfully, but the alarm fails, the operator starts to take

over the monitor and intervention tasks.

• Interaction Form 4: The operator takes over and assesses

complex situations, requiring control transfer to the crew

on board.
By analysing the collision avoidance tasks and the forms of

interaction, personnel behaviours are classified into three

categories: perception behaviours, decision-making behaviours

and execution behaviours.
1. Perception behaviour: Operators employ equipment such

as Radar or AIS to monitor the ship’s real-time situation

during navigation, including detecting target ships,

assessing their distance, heading, and speed, and

identifying potential collision risks with ships on or near

own ship’s route.

2. Decision-making behaviours: Upon detecting a target ship,

operators assess the collision risk based on the current
FIGURE 2

Sequence of tasks performed by the personnel during collision avoidance.
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Fron
situation and then act in compliance with COLREGs and

local waterway regulations. Operators may communicate

with the target ship to ascertain their intentions and then

determine the ship’s next course of action.

3. Execution behaviours: Operators execute the manoeuvre

tasks determined during the decision-making stage by

regulations. They continuously monitoring and observing

the situation until the ship is no longer at risk of collision.
By analysing specific scenarios, the behaviours that crew need to

perform during information acquisition, situation assessment, and

action are identified. Subsequently, identify human errors that
tiers in Marine Science 08
precede accidents, including errors related to personal skills,

organizational communication, and situational awareness. The

human error model of DoA2 MASS, based on IDAC-HTA, is

illustrated in Figure 4.

The human error model of DoA2 MASS consists of three levels.

The top-level constitutes the primary focus of the study, referred to

as the target level. The second level is divided into three stages:

perception, decision-making, and execution. It outlines the critical

stages of the evaluation process, as the criteria level. The third level

corresponds to the criteria level, and combines different tasks and

accident causation chains to capture personnel error behaviours, as

the index level.
FIGURE 3

Four forms of interaction in a collision scenario.
FIGURE 4

The human error model of DoA2 MASS based on IDAC-HTA.
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3.2 Risk assessment method

For a systematic and comprehensive analysis of human errors in

the collision avoidance process of DoA2 MASS, this study develops

a risk index hierarchy system based on the IDAC-HTA model. To

assess the risk indexes in this system, considering that the current

risk analysis of MASS requires expert knowledge to compensate for

the lack of objective data, FMEA, BBN, and ER algorithms are

combined to develop a risk assessment model. The quantification

and ranking process are visually depicted in Figure 5.

3.2.1 FMEA
FMEA finds extensive application in various industries, from

automotive and aerospace to business management (Xia et al.,

2023). This general assessment method is widely used to

investigate how a single element affects the failure of an entire

system or process (Chang et al., 2021). FMEA offers a

comprehensive list of known and potential initialisation errors, to

delve into the root causes of failures. From there, mitigation

measures are proposed that eliminate or reduce the likelihood of

high-risk incidents. This study uses FMEA to analyse the tasks

taken by personnel in DoA2 MASS collision avoidance process and

investigate the risk probability of collision due to human error. The

traditional FMEA method has three basic attributes in calculating

the Risk Action Priority (RAP) for each failure mode: the frequency

of occurrence of the failure mode (Occurrence, O), the severity of

the impact (Severity, S), and the probability that the failure cannot

be detected (Detection, D), and the RAP is defined as in Equation 1.

RAP = Oi � Sj � Dk (1)
Frontiers in Marine Science 09
The FMEA method has gained widespread adoption in human

error analysis due to its straightforward use and effectiveness (Wan

et al., 2019). However, it has also been subjected to many criticisms,

particularly in the use of the RAP concept (Liu et al., 2011; Yang

et al., 2008). The distinction between the different levels is low; the

concepts are vaguely defined and lack a solid scientific foundation.

For example, in Equation 1, although the hidden meanings of the

risk parameters may be completely different, different combinations

of the three parameters may produce precisely the same RAP value.

Besides, when a single risk can lead to multiple potential failure

modes, developing relevant mitigation measures should be

prioritized. However, the mathematical formulation of RAP is

based on a risk perspective only (Wang et al., 2023). The

calculation process does not consider the relative importance of

O, S and D.

To overcome these inherent shortcomings, this study combines

ER with BBN to improve the performance of FMEA. This combined

methodology offers a robust solution to the complexity and

uncertainty of risk parameters, especially in MASS where limited

empirical data is available. Furthermore, the IDAC-HTA model is

qualitative in nature, and it relies on expert knowledge to assist in

the judgment and quantification of linguistic variables. In this

study, five linguistic levels Gn = G1,  G2,  G3,  G4,  G5f g are used to

assess these indexes. Table 2 provides the linguistic descriptions

associated with each parameter, namely O, S, D, and P, with P as an

output indicating the risk status of the sub-index.

3.2.2 FMEA-based Bayesian networks
The shipping industry widely uses the BN as a risk analysis tool

(Aydin et al., 2024). Yang et al. (2008) proposed a BN approach
Perform aggregation assessment

Determine the risk grade of sub-

level indexes

Determine the evaluation 

parameters

Determine evaluation indicators 

and index weight

Ranking of risk factors 

Presention of the result

Combined with reports of ship 

accidents and expert opinion
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FIGURE 5

Risk assessment process for human errors in DoA2 MASS collision avoidance.
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based on a fuzzy rule base that fully utilises Bayesian representation

and reasoning for uncertain knowledge. The risk assessment

information described by experts in natural language is

transformed into deterministic values, compensating for the

shortcomings of FMEA, such as the inability to reflect the failure

correlation of failure causes. The yth IF-THEN rule in the traditional

fuzzy rule base is shown in Equation 2.

Py :     IF    A
y
1     and    A

y
2     and    ⋯    Ay

N ,

               Then    Cy

(2)

where Py is the rule under the condition y; and Ay
i (i =

1, 2,⋯,N) denotes the reference value of the ith premise attribute,

and after the traditional fuzzy rule output, the result of the yth rule is

Cy . However, the characteristic of a single output of a traditional

fuzzy rule system leads to the fact that Cy cannot reflect the small

changes of semantic variables in Ay
i .

Hence, some researchers have introduced the notion of

confidence in response to this challenge. They have put forward a

novel knowledge representation approach based on rules, where all

possible outcomes are linked to a confidence level (Wang et al.,

2023). This innovation bolsters its capacity to grapple with

uncertainty within complex systems. Based on this, the rules in

Equation 2 are extended into confidence rules, as shown in

Equation 3.

Py :     IF    A
y
1     and    A

y
2     and    ⋯    Ay

N ,

               Then     (C1, b
y
1 ),     (C2, b

y
2 ),    ⋯,     (CN , b

y
M)

� � (3)

In the new rule knowledge representation, by
j (j = 1, 2⋯,M)  

indicates that Cj(i = 1, 2,⋯,N) is considered as the confidence

distribution of all possible outcomes.

When using Bayesian networks for risk inference, expressing

these rules in the form of conditional probabilities is imperative.

This transformation allows the incorporation of these confidence

rules into the broader framework of confidence levels. For example,

the yth rule in Equation 3 can be expressed as “the probability that

the different assessment levels of risk state Pm are included in all

possible outcomes of by
j , if the premise attributes of a factor satisfy

Equation 2”, as shown in Equation 4.

t(PmjAy
1,A

y
2,⋯,Ay

M) = (by
1 , b

y
2 ,⋯, by

M) (4)

Among all possible outcomes, M denotes the number of

individuals and "j" denotes the conditional probability of

different individuals.
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Bayesian modelling can simplify the complex risk inference

process by transforming the confidence rule base into a network

graph with N child nodes and one parent node. The risk status of a

risk factor can be derived by first taking the assessment information

of the risk parameter as the prior probability of each child node and

then deriving the marginal probability based on Equation 5.

t(Pm) =oI
i=1oJ

j=1,⋯,oK
k=1t(PmjAi,Bj,⋯,Zk)� t(Ai)t(Bj),⋯, t(Zk)

(5)

where A,B,⋯,Z denote the premise attributes in the confidence

rule base, I, J ,⋯,K indicate the number of reference values

associated with each premise attribute. t(Ai) denotes the

probability that the premise attribute A in the confidence rule

base takes the ith reference value and t(Pm) is the probability that the

risk state P takes the mth reference value.

3.2.3 Evidential reasoning algorithms
ER is a multi-criteria decision analysis method that is used to

aggregate uncertain subjective data (Yang and Wang, 2015). ER

algorithms are widely used to handle uncertainty and quantify

complex systems’ integrity, which makes the results more accurate

(Jian-Bo and Dong-Ling, 2002; Wan et al., 2019). In the ER-based

risk assessment process, firstly, the factors at each level of the IDAC-

HTA model are compared two by two with the help of expert

judgement, and the degree of mutual influence of the index levels is

analysed using AHP. Then, based on the analysis in Section 3.2.2 to

obtain the expert’s evaluation of the confidence level of the risk

status, the ER method is used to aggregate the factors of the index

levels to obtain the confidence level of the risk factors in the

three stages.

To obtain the confidence level of each index with respect to the

evaluation level, evaluation levels and confidence functions have to

be established. It is assumed that there are Q indexes rj (j =

1,  2,  …,  Q) associated with the criterion R. Equation 6 and

Equation 7 give the set of indexes and the normalised weights,

respectively.

R = r1,  r2,  …,  rj,  …,  rQ
� �

(6)

w = w1,  w2,  …,  wi,  …,  wQ

� �
(7)

Taking the perception stage as an example, its weight is denoted

by w1 and   0 ≤ w1 ≤ 1; w13 is the weight of the 3rd sub-factor

(Information provided by the confusion screen) under the

perception stage and 0 ≤ w13 ≤ 1. The rest of the stages and

factors are analogous.

Assuming that bn,j denotes the confidence level of the stage rj for
evaluation level Gn, where bn,j ≥ 0, S(rj) are the evaluations of the

available options under that stage, this assessment can be expressed

by Equation 8. When the sum of the confidence levels is 1, then the

evaluation of that stage S(rj) is complete, i.e.,oN
n=1bn,j = 1.

S(rj) = (Gn,  bn,j), n = 1,  2,  …,  5;  j = 1,  2,  …,Q
� �

(8)

where mn,j is the quality of the probability that stage rj is

assessed as Gn. It represents the extent to which a subfactor
TABLE 2 Linguistic scale for parameters O, S, D and P.

Parameter G1 G2 G3 G4 G5

O Very low Low Average High Very high

S Negligible Marginal Moderate Critical Catastrophic

D Highly
unlikely

Unlikely Average Likely Highly
likely

P Very low Low Average High Very high
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supports the assumption that the stage to which it belongs is a grade

Gn, and can be expressed as Equation 9. For sub-factors, Equation 9

can be rewritten as Equation 10. Then, RI(j) is defined as the set of

sub-factors under criterion Ith, as shown in Equation 11.

mn,i = wibn,i
(9)

mn,j = wijbn,j
      (10)

RI(j) = r1, r2,⋯, rj
� �

(11)

where mn,I(i) is defined as the probability that all subfactors in

RI(i) support the stage being assessed as a grade Gn. mG,I(i) is the

residual probability that is considered unevaluable after the

evaluation of RI(i). mn,I(i) and mG,I(i) can be generated by

combining the underlying probabilities mn and mG,j for all n =

1, 2,⋯,N ,     j = 1, 2,⋯,Q. Thus, the evidential reasoning algorithm

can be represented by Equations 12 to 15.

YI(i+1) = 1 −oN
t=1oN

j = 1

j ≠ t

mt,I(i)mj,i+1

2
66664

3
77775

−1

  i = 1, 2,⋯,Q − 1 (12)

mn,I(i+1) = YI(i+1)(mn,I(i)mn,i+1 +mn,I(i)mG,i+1 +mG,I(i)mn,i+1) (13)

mG,I(i+1)¼ YI(i+1) �mG,I(i) �mG,i+1 (14)

bn =
mn,I(L)

1 −mG,I(L)
        n = 1, 2,⋯,N ,     i = 1, 2,⋯,Q (15)

where YI(i+1) is a normalisation factor that  oN
n=1mG,I(i+1) +mn,I(i+1) = 1

,   bn aggregates the evaluation portfolio confidence of the stage. It is
important to note that for all   n = 1, 2,⋯,N , the probability of

evaluating at different levels is not correlated with the order in

which the subfactors are aggregated. In other words, the results will

not change if they are aggregated in a different order.
3.2.4 The ranking of risk value
In order to accurately rank all risk factors, it becomes essential

to aggregate the confidence levels of the factors and introduce the

RAP, as shown in Equation 16, where bn represents the result of

the confidence level being assigned to Gn. Obviously, the higher the

RAP value of a factor represents, the higher its combined risk level.

Meanwhile, it also means that the factor is more likely to lead to

collisions in DoA2 MASS.

RAP = oN
n=1bn � u(Gn) (16)

u(Gn) =
n − 1
N − 1

(17)

Regarding the utility function u(Gn)(n = 1, 2,⋯,N) involved in

Equation 17, u(G1) = 0, u(G2) = 0:25, u(G3) = 0:5, u(G4) = 0:75, u

(G5) = 1.
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3.2.5 Verification
When a new model is developed, it needs to be carefully tested

for reliability. The BBN model can use changes in RAP values as a

judgement criterion, aiming to assess the model’s sensitivity in

output (i.e., RAP values of risk factors) to minor adjustments in

input (i.e., the assessment of risk parameters). Provided that

the established confidence rule base is dependable and the

Bayesian inference process is rational, the analysis results should

meet a minimum of three axioms (Chang et al., 2021;

Yu et al., 2021).

Axiom 1: When adjusting the initial probability of any risk

factor, the final probability of the parent/target node will inevitably

respond correspondingly, either increasing or decreasing.

Axiom 2: If changes in the subjective probability distribution of

a given risk factor are considered, the impact on the parent/target

node value should accurately reflect the weight assigned to that

particular factor.

Axiom 3: The influence of modifying the assessment level of a

risk factor (indicated by u pieces of evidence) on the RAP value of

its associated stage, always outweighs the effect of altering any

arbitrary subset within that combination (v pieces of sub-

evidence, v∈u).

Building upon the validation principles discussed above, a

sensitivity analysis is conducted for the aggregation process using

the ER algorithm. If the data aggregation process is both sound and

practical, the results of the sensitivity analysis should conform to at

least two basic axioms (Cui et al., 2023):

Axiom 1: An upward or downward adjustment in the

confidence level associated with the state of risk factor in the

system will inevitably lead to an increase or decrease in the RAP

value of the risk for the corresponding risk stage.

Axiom 2: A combination of changes in the confidence of risk

factors in the system will always have a more significant effect on the

RAP value of the corresponding risk stage than changes in any

subset of that combination.
4 Calculation and ranking of
risk factors

4.1 Calculation of the value at risk for the
sub-indexes

The assessment is performed in this stage (e.g. S1: perception,

S2: decision-making and S3: execution) using five hierarchical

rating scales. Each risk factor consists of parameters O, S and D,

i.e., the risk factor’s antecedent attributes. For example, an expert

might assess the frequency of “S11: Confusing information

provided by the screen” as “Very high, 0.0%; High, 38.0%;

Average, 40.0%; Low, 20.0%; Very low, 2.0%”, the severity of

consequence as “Catastrophic, 0.0%; Critical, 0.0%; Moderate,

42.0%; Marginal, 46.0%; Negligible, 12.0%”, and the probability of

failure not being detected as “Highly likely, 2.0%; Likely, 34.0%;

Average, 46.0%; Unlikely, 18.0%; Highly unlikely, 0.0%”. Based on
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this, the evaluation values of all risk factors are obtained. The

evaluation results are shown in Figure 6, where O1, O2…… O5 are

the level of frequency, i.e. very high, high, average, low and very

low respectively.

According to the rules formulated in Equations 2 and 3, a belief

structure is established to convert the expert’s confidence in a

specific risk factor. Then, the risk state of the sub-factors in the

perception stage is calculated using Equation 5. Taking the factor “

S11: Confusing information provided by the screen” in Figure 6 as

an example, the inference process of the risk state can be

implemented through Bayesian modelling software, as shown in
Frontiers in Marine Science 12
Figure 7. Similarly, the risk states of the four sub-factors in Figure 6

can be computed, as demonstrated in Table 3.
4.2 Calculation of evaluation index weights

A questionnaire survey of domain experts was conducted to

obtain a pairwise comparison matrix for each factor. Then, the

weights of the factors in the assessment model were derived and

tested for consistency. Based on the equivalent working background

and judgment of expert, the relative weight values are uniformly
FIGURE 7

Risk inference process for “S11: Confusing information provided by the screen”.
FIGURE 6

Distribution of the brief degree of risk parameters of in S1 stage.
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distributed in the normalization process. After subjecting all stages

and factors to a similar process, the distribution of weights of each

factor at different stages is shown in Table 4.
4.3 Integrated assessment based on
ER algorithm

Once the risk status of the sub-factors and the factor weights

are secured, the aggregation of risk status across three stages is

performed through the ER algorithm, as outlined in Equations 6-15.
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To illustrate this, the data provided in Table 3 is used to calculate the

risk status value for the S1 stage. The reasoning process can be

achieved and the results are shown in Figure 8. Similarly, the risk

status value for stage S2 is (0.0029, 0.1510, 0.4395, 0.3083, 0.0983)

and the risk status result for stage S3 is (0.0272, 0.3149, 0.4008,

0.2571, 0).
4.4 Calculation and analysis of utility values

To compare the magnitude of risk for factors and stages, utility

functions are used to convert the confidence distribution of risk

states into clear numerical values. Taking the “S11: Confusing

information provided by the screen” in the perception stage as an

example, the utility value of risk can be calculated through the

confidence level data in Table 3, using Equations 16 and 17, as

shown below.

RAP(R1) = u(G1)b1 + u(G2)b2 + u(G3)b3 + u(G4)b4 + u(G5)b5 = 0� 0:01

+ 0:25� 0:24 + 0:5� 0:43 + 0:75� 0:28 + 1� 0:04 = 0:525

In this way, risk-utility values can be calculated for all factors

and stages, and the results of the risk ranking are summarised

in Table 5.

The results in Table 5 show that “Uncoordinated interaction

with the system and failed handover”, “Lack of experience in

emergency response and errors in judgement”, “Confusing

information provided by the screen”, “Lack of good seamanship,

incorrect operation”, and “Failure to identify ships on target routes”

ranked in the top five. These factors are essential for ensuring the

operation performance of the HCI system, operator proficiency,

and the accuracy and clarity of the system’s information. When a

DoA2MASS is exposed to collision hazards, these human errors are

more closely related to accidents. Factors such as “Overconfidence,

failure to transfer control”, “Miscommunication with other ship

and errors in judgement”, and “Failure to maintain continuous

supervision” are medium risks and need to be considered when

developing training programmes or assessment criteria. The other

factors have lower RAP values and have less impact onMASS safety,

but still have some negative impact.
4.5 Verification

To ensure the model’s application is valid in the risk evaluation

process, it is imperative to initially confirm the fulfilment of axioms
TABLE 4 Weights of each index of the assessment model in
different stages.

Criteria
level indexes

Indexes in the index level Local
weight

S1: Perception S11: Confusing information provided
by the screen

0.33

S12: Failure to identify ships on
target routes

0.43

S13: Failure to listen to alerts 0.17

S14: Identifying wrong source of alert 0.07

S2: Decision-making S21: Requesting data from the
wrong ship

0.04

S22: Misinterpretation of information
provided by the system

0.07

S23: Lack of experience in emergency
response and errors in judgement

0.27

S24: Miscommunication with other
ship and errors in judgement

0.13

S25: Overconfidence, failure to
transfer control

0.10

S26: Uncoordinated interaction with
system and failed handover

0.39

S3: Execution S31: Incorrect touch of
command button

0.14

S32: Failure to maintain
continuous supervision

0.23

S33: Operation performed on
wrong ship

0.07

S34: Lack of good seamanship,
incorrect operation

0.55
TABLE 3 Distribution of the brief degree of risk values in S1 stage.

Indexes in the index level Very low Low Average High Very high

S11: Confusing information provided by
the screen

0.01 0.23 0.42 0.29 0.05

S12: Failure to identify ships on target routes 0.00 0.34 0.35 0.25 0.06

S13: Failure to listen to alerts 0.12 0.39 0.36 0.13 0.00

S14: Identifying wrong source of alert 0.25 0.41 0.27 0.07 0.00
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detailed in Section 3.2.5. Simultaneously, relevant results from other

human factors studies are cited in Section 4.6 to minimise any

potential bias or uncertainty caused by expert subjectivity.

The validation of BBN model is based on three primary axioms.

The model’s sensitivity to discrete changes is tested based on Axiom
Frontiers in Marine Science 14
1. Through reassigning a confidence level of 0.1 to each sub-factor

and moving in the direction, that produces the most significant

change in the RAP value of the stage. If the model reflects the

reasoning logic, the RAP value increases accordingly. The model’s

adaptability to continuous change is tested based on Axiom 2. It
FIGURE 8

Perception stage S1 risk aggregation process.
TABLE 5 Comprehensive ranking of risks in operation stage and risk influencing factors.

Operational
stage

RAP value Ranking Risk influencing factors RAP value Overall Ranking

S1: Perception 48.38 2 S11: Confusing information provided by
the screen

52.50 3

S12: Failure to identify ships on target routes 50.61 5

S13: Failure to listen to alerts 37.41 10

S14: Identifying wrong source of alert 29.09 12

S2:
Decision-making

58.70 1 S21: Requesting data from the wrong ship 27.64 13

S22: Misinterpretation of information provided by
the system

38.79 9

S23: Lack of experience in emergency response
and errors in judgement

61.19 2

S24: Miscommunication with other ship and
errors in judgement

49.51 7

S25: Overconfidence, failure to transfer control 50.01 6

S26: Uncoordinated interaction with system and
failed handover

70.01 1

S3: Execution 47.20 3 S31: Incorrect touch of command button 29.70 11

S32: Failure to maintain continuous supervision 46.99 8

S33: Operation performed on wrong ship 21.81 14

S34: Lack of good seamanship, incorrect operation 51.83 4
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aims to gauge the impact of various changes in prerequisite

attributes on the outcomes. A subjective probability of 0.02 is

reassigned incrementally to each attribute, then shifting each

prerequisite attribute’s RAP value to its maximum increment, and

the subjective probability is observed to vary between the interval

[0, 0.1]. The results of the numerical changes in the RAP values are

shown in Figure 9, which reveals significant disparities in the

influence of subjective probability changes across the prerequisite

attributes. Numerical changes are directly proportional to the

weights assigned to these attributes, thereby confirming the

alignment with Axiom 2.

Based on Axiom 3, the effect of changes in subjective probability

on outcomes is determined for different combinations of

prerequisite attributes. The three risk parameters of subjective

probability are reassigned to examine the effect of changes in risk

parameters on RAP values, and the seven possible changes are

divided into three groups. For example, Group 1 considers only

changes in the value of a single risk parameter. Group 2 involves

two risk parameter values and observes the impact of changes in

combinations of the two parameters.

This research supposes the model with a good reflection of the

actual situation. In such a scenario, it becomes clear that the

combination impact of a specific set of alterations on the RAP

value surpasses the influence of any smaller subset within that

particular set. For ease of explanation, the change in the RAP value

for “Confusing information provided by the screen” is used as an

example. With regard to each risk parameter, a subjective

probability of 0.1 is reassigned to different reference values to

maximise the change in RAP values. The effects of parameter

variations in different combinations on the RAP values are shown

in Table 6. Combination #0 represents the initial RAP value, which

serves as the reference base for this round of sensitivity analysis. The

remaining seven combinations of subjective probability of change

are shown in combinations #1 to #7. Taking combination #4 as an

illustration, the impact of this specific combination on the RAP

value is quantified at 4.18, subsequently, observing the influence of a

subset of combination #4 on the RAP value. In the context of this

combination, its subsets are combinations #1 and #2. The changes
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in RAP values for these two subsets are calculated to be 2.52 and

1.64, respectively. Notably, these changes are less than the original

4.18, aligning with the expectations laid out in Axiom 3, affirming

the soundness and dependability of this model.

The ER algorithm is used in the risk state aggregation operation

to perform sensitivity analysis. Taking the aggregation process of

the “perception stage” at the criterion level as an example, a

confidence level of 0.1 is assigned to the different levels of P

(Confusing information provided by the screen) in a way that

would change the risk state more. When the confidence level of P1

is decreased by 0.1, and the confidence level of P5 is increased by

0.1, the RAP value for the “perception stage” increases from 48.38 to

60.63. Similarly, a confidence level of 0.1 is assigned to different

levels of P (Failure to identify ships on target routes), and the RAP

values for the “perception stage” increased from 48.38 to 51.69. All

the aggregation processes for analysing the risk status of the target

level are tested by Axiom 1, which indicates that the logic of ER

aggregation algorithms carried out in this study is well-found.

Furthermore, the output results exhibit high sensitivity, indicating

that the ER aggregation algorithm performs in this study is logical.

Again, using the “perception stage” as an example, there are 15

possible combinations of confidence level changes for the four risk

factors. These 15 combinations are grouped into four categories

according to the number of changes (C1
4 + C2

4 + C3
4 + C4

4) in risk

confidence levels. Category 1 considers only the change in the

confidence level of a single risk. Category 2 considers the change in

the confidence level of two risks. The remaining two categories are

varied in combination in the same way. Categories 1 and 2 assign

the 0.1 confidence level to the different levels to maximise shifts in

risk status. The results of the changes are shown in Table 7.

Combination #0 is the reference value for sensitivity validation,

i.e., the case where no change is made.

In Table 7, combinations #1 and #2 are subsets of combination

#5. The corresponding RAP value changes of the former two are

4.89 and 3.31, respectively. These values are smaller than the RAP

value change of combination #5 of 8.84, which is consistent with

Axiom 2. Similarly, the results obtained from the test and analysis of
FIGURE 9

Sensitivity analysis of how changes in the probability values of risk
parameters affect the results.
TABLE 6 Extent of the impact of changes in different combinations of
risk parameters on RAP values for S11.

Combinations

Risk
parameters RAP

value
RAP

change value
O S D

#0 52.97 0

#1 √ 55.49 2.52

#2 √ 54.61 1.64

#3 √ 55.61 2.64

#4 √ √ 57.15 4.18

#5 √ √ 58.14 5.17

#6 √ √ 57.27 4.3

#7 √ √ √ 59.80 6.83
√ Selection of items indicating different combinations of variations in risk parameters.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473367
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2024.1473367
the aggregation concerning other associated risk factors at the

criterion level are consistent with Axiom 2, which indicates that

the aggregation operation carried out in this study is reasonable and

effective, and the ER method has good operability and feasibility.
4.6 Discussion and implications

Despite the continuous technological advances in autonomous

systems, the indispensability of human involvement in the safety of

MASS navigation is still undeniable. This view has been validated in

studies in different fields, from the skills and experience of the

operators to the quality of their interaction with the autonomous

system, all of which fall under the purview of human error (Liu

et al., 2022a; Man et al., 2018). Operators require the HCI system as

an intermediary in the process of controlling the MASS remotely,

and the safety operation largely depends on the HCI system. A

detailed analysis of the human error associated with autonomous

systems is provided as follows, focusing specifically on their impact

on overall system performance and safety operation.

“Uncoordinated interaction with the system and failed

handover” indicates that, in practice, there are problems with the

coordination and transfer of information between the operator and

the autonomous system. This may be due to the operator’s failure to

fully understand the system’s functions and workings or to the

system’s inadequacy in interacting with the operator.

“Confusing information provided by the screen” emphasises the

potential for operators to be overloaded with information when

monitoring multiple ships, increasing the workload and leading to

operator errors in information processing (Abilio Ramos et al.,

2019). To solve this problem, the initial step is to enhance the HCI

interface and guarantee that information is exhibited to operators

understandably and intuitively, consequently minimising
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information interference. Secondly, a standardised control

transfer process is used to ensure a smooth transition of control

and improve the controllability of transfer process.

“Failure to identify ships on target routes” indicates that

autonomous systems may have deficiencies in target detection

and identification. This can also be attributed to operators being

distracted from their monitor tasks and failing to make effective use

of the information provided by the system. Addressing this issue

will require continuous improvement of the sensor technology and

recognition algorithms of autonomous systems. Additionally,

ensuring that personnel undergo regular and comprehensive

training is essential for enhancing their monitoring capabilities.

Operators’ decision-making and response skills are critical to

MASS safety. “Lack of experience in emergency response and errors

in judgement” underscores the possibility that operators may be

unable to rapidly make the correct decisions and take appropriate

actions in the face of unforeseen or complicated circumstances. This

may be attributed to a lack of practical experience leading to errors

in judgment. To enhance the situation, it is imperative to hasten the

improvement of emergency plans, augment the number of

emergency disposal drills, and refine operators’ emergency

response speed and decision-making abilities.

In addition, “Lack of good seamanship, incorrect operation”

highlights the potential decline in operator skills stemming from the

extended execution of a single task (Man et al., 2018). To avoid this,

operators need to be provided with diverse tasks and training to

ensure that they maintain a high level of skills and good working

conditions. Developing the general qualities of the operators and

increasing their safety awareness and vigilance should be a focus.

In summary, both the HCI system and the operator hold pivotal

roles in guaranteeing the safety of DoA2 MASS during collision

avoidance operational process. These two elements are intertwined

and inseparable and together form the core of DoA2 MASS
TABLE 7 Extent to which changes in different combinations of risk parameters affect the RAP value of S1.

Combinations

Risk parameters

RAP
value

RAP
change
value

Confusing information
provided by the screen

Failure to identify
ships on

target routes

Failure to
listen

to alerts

Identifying
wrong source

of alert

#0 48.38 0

#1 √ 53.27 4.89

#2 √ 51.69 3.31

#3 √ 49.35 0.97

#4 √ 52.95 4.57

#5 √ √ 56.97 8.59

#6 √ √ 51.88 3.5

#7 √ √ 51.09 2.71

#8 √ √ 55.32 6.94

#9 √ √ 52.16 3.78

#10 √ √ 49.8 1.42
√ Selection of items indicating different combinations of variations in risk parameters.
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navigation safety. The incorporation of personnel and their

synergism with autonomous systems aid in mitigating potential

risks of maritime accidents, improving risk control, and enhancing

the safety of autonomous ships.
5 Conclusion

The model proposed in this study refines the existing

assessment system of maritime autonomous surface ships,

enriches the homogeneous human error indexes, and effectively

represents the dynamic nature of human computer interaction. This

approach presents an effective method for remotely controlled ships

in mitigating potential risks in a proactive manner during collision

avoidance process. It can also improve the interaction design of the

remote-control centre to provide a certain reference value in ship

inspection standards. By analysing the likelihood of human error

during the emergency response process of remotely controlled

ships, it is possible to improve the psychological quality of

personnel, facilitate the development of remedial measures, and

provide informative decision-making recommendations for the safe

navigation of maritime autonomous surface ships.

Identifying risk factors of remotely controlled ships from

conventional ship accident reports is one commonly used method

to address the current lack of maritime autonomous surface ship

data. However, using accident reports solely to identify risk factors

is not sufficient. Navigational tasks and accident causation are

constantly changing and iterating as new technologies are

introduced in maritime autonomous surface ships. Even with a

certain number of collision accidents to be reported, these data still

cannot provide all the relevant factors. Furthermore, due to the

limited number of individuals who have extensively studied safety

and human failure of maritime autonomous surface ships, experts

are carefully selected to avoid extreme or erroneous judgements. As

a result, the collected sample data is limited, which can be further

addressed in future with more relevant data being available.

Compared to traditional models, there are differences in human

error in the future operation model of maritime autonomous

surface ships, especially regarding tasks such as human computer

interaction. For example, when operators rely on varying levels of

automation for navigation and decision-making, their interactions

with these systems evolve significantly. Consequently, the operators’

cognitive processes, situational awareness, and coping strategies are

also affected. This study’s predictions of human errors and

conclusions serve only as a reference for designing staffing and

risk prevention and control measures for the remote-control centre.

In the future, the human error model can be further investigated

when the remote-control centre is operational. Human error inmaritime

autonomous surface ships needs to be analysed from multiple sources,

with an identification process that satisfies the principles of mutual

exclusion and exhaustion and continuous optimisation.
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