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Abstract: In this study, the first-principles method is adapted to establish key data for
β-Mo2C with various point defects. A particular focus is comparatively studying the effects
of point vacancies and different substitutional doping elements on the structures and
electronic, magnetic and mechanical properties of β-Mo2C. The calculation results show
that vacancy defects and substitutional doping have different impacts on the magnetism
and bulk modulus of Mo2C. Data for the effect of different substitutional doping elements
(V, Cr, Co, Fe, Ni and W) on the physical and mechanical properties/behaviours are
established and analysed. The changes in key magnetic properties (local and total magnetic
moments) associated with different point substitutional doping elements are comparatively
analysed with reference to the data of Mulliken atomic charge, bond population, density of
states (DOS) and band structures. The correlation between doping elements and changes
in magnetic moment and bulk modulus is discussed. The influence of doping elements on
the magnetic moment of 3D Mo2C is also compared to their effects on a two-dimensional
Mo2C monolayer. The potential applications of DFT modeling and data for future research
and development related to materials and processing are discussed.

Keywords: carbides; defects; vacancies; substitutional doping; magnetism

1. Introduction
First-principles calculations are an important tool for establishing data on compounds

in different forms including both 3D and 2D structures with defects [1–8]. Many research
works have reported the use of them for investigating the effects of defects on the structure
and properties of different compounds. For example, Razumovskiy et al. [2] explored
the formation and interaction of point defects in group IVb transition metal carbides and
nitrides while Zhang et al. [5] studied carbon-vacancy ordering in Nb4AlC3−x. Recently, Bai
et al. [7] reported a predictive study on the role of carbon vacancies in determining the struc-
tural, mechanical and thermodynamic properties of (HfTaZrNb)C1-x high entropy carbides.
In another recent work, Bie et al. [8] studied sub-stoichiometry and vacancy structures in
V/Nb carbide precipitates using cluster expansion and first-principles calculations.
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First-principles calculations have also been widely used as an effective tool for pre-
dicting and studying the effects of doping elements [9–12]. In the work by Cao et al. [9],
first-principles calculations were used to study enhanced N2 fixation on V2C by transi-
tion metal doping. Cheng et al. [10] investigated the electronic and magnetic properties
of Au-doped diamond surfaces. Some work has also used data from first-principles cal-
culation to develop insights into the evolution of key phases in complex alloys such as
precipitated carbides and the design of high-performance multicomponent carbides [10–13].
Feng et al. [12] reported the effect of Cr atom doping on carbide stability and mechanical
properties of high-carbon chromium-bearing steels. The results showed that the doping
of Cr contributed to the movement of metal atoms to change from translation to rota-
tion during the transformation of the carbide. A recent work [10] reported the formation
mechanism of multicomponent carbides (Nb, M)C (M = Ti, Cr and Mn) and correlated the
finding with advanced experiments, including transmission electron microscopy (TEM)
and three-dimensional atom probe tomography (3D-APT).

The process and analysis results from first-principles calculations can be complex as
different data sets of properties and structures can be interlinked, particularly for complex
material groups [14–19]. TMCs have found wide applications due to their mechanical,
thermal and magnetic properties. Typical beneficial characteristics of TMCs include high
melting points, hardness and extremely high thermal and mechanical stability, making
them suitable for applications such as cutting tools, nuclear reactors and catalysts [3,20–23].
Molybdenum carbide is a typical example of TMC with different forms and applications
across different areas. Mo2C is also an important precipitate in different steels and alloys
containing Fe, Cr, Ni, etc. [21,24–29]. Molybdenum carbide has different phases and
structures including γ-MoC, β-Mo2C, and γ’ [29]. γ-MoC is isostructural with tungsten
carbide (WC) and exhibits a simple hexagonal structure with an AAAA packing. γ’-MoC
phase with an AABB stacking of the metal planes. Yang et al. [22] also calculated the surface
energy of the α-Mo2C (023) plane and found that the Y doping can facilitate electron escape
from the α-Mo2C (023) surface, resulting in enhanced surface activities. The electronic
structure and catalytic functions of Mo2C are reported to be similar to those of the precious
metal Pt, which made Mo2C with different doping suitable for a range of important
applications in 2D materials, energy storage, superconductivity and catalysis [26–28]. In
recent work, Guo et al. [3] reported first-principles calculations of energy and structure
of the point defects, vanadium-related defects and defect combinations. In this study,
previous work is extended to comparatively investigate the effects of point vacancies and
substitutional doping of a range of elements on magnetic properties and relationships
between different data sets from DFT calculations. Data on structural, electronic and
magnetic properties, including band population, charge redistribution, DOS and band
structures, are established and analysed with respect to magnetic and other properties.
The correlation between magnetic moments of doping elements and bulk modulus is also
analysed. Finally, the relationship between magnetic moment in bulk 3D and 2D Mo2C
structures with similar point defects and doping elements is also examined. The effect
of point vacancy and doping elements on different properties, along with the interplay
between different types of data and future development, is discussed.

2. Calculation Details and Data Development
2.1. Models of Point Defects and Substitutional Doping

This work is focused on presenting and analysing some key data related to molyb-
denum semi-carbide (β-Mo2C) with point vacancies and substitutional doping, including
the formation energy of point defects, lattice parameters of relaxed structures, magnetic
moments, electronic data and key mechanical properties. The unit cell and a typical super-
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cell are shown in Figure 1. Mo2C belongs to the hexagonal crystal system P-3m1 (Z = 1)
with initial lattice constants of the base cell being a = b = 3.073 Å and c = 4.653 Å. The unit
cell contains two effective Mo atoms and one C atom at different positions. As shown in
Figure 1c, Mo2C supercell exhibits a layered structure. The distance between Mo and C
atomic layers within each layer is about half of the nearest distance between the adjacent
two Mo atomic layers. Figure 2 shows the models with the sites for C vacancy (VC) and Mo
vacancy (VMo). In each case, one atom of C or Mo is removed from the supercell, followed
by structural relaxation as in [3].
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Figure 3 shows substitutional doping with different elements. The selected doping
elements for analysis include Vanadium (V), Nickel (Ni), Chromium (Cr), Iron (Fe), Cobalt
(Co) and Tungsten (W). These elements have been reported in the doping of different carbide
systems or co-exist in alloys with Mo2C [23,30–32]. Normally, doping-related defects in
carbides contain two different types, one is substitutions and the other is interstitials.
This study focuses on substitutional doping, where the doping element occupies the Mo
atom site directly. Substitutional doping is a common form in TMCs, and gaining an
improved understanding of their roles through a comparative study is important for
optimising their properties, understanding underlying mechanisms, and advancing their
applications [3,33–35].

Figure 3. A typical model showing substitutional doping on Mo site with Metal elements (M = V, Co,
Ni, Cr, Fe, W).

2.2. Main Calculation and Data Development

In this study, all calculations were performed using a first-principles approach based on
density functional theory (DFT), implemented in the Vienna Ab initio Simulation Package
(VASP) [36]. Some analyses were also performed using CASTEP for comparison and to
effectively develop systematic data such as Mulliken atomic charge and bond population in
the supercell with different defects. The comparative use of VASP and CASTEP is effective
for data system development and offers reliable cross-examination of the data with a
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predictive nature. The exchange–correlation functional was described by the Perdew–
Burke–Ernzerhof (PBE) generalized gradient approximation (GGA), which is a widely
used and reliable density functionals for simulating solid materials, including TMCs and
other types of intermetallic compounds. Structure optimisation was performed using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. The energy, maximum force and
maximum displacement were set as 5 × 10−6 eV/atom, 0.01 eV/Å and 5 × 10−4 Å for
the convergence tolerances, respectively. Detailed convergence tests have been performed
following a similar procedure as in previous work [3]. The Monkhorst–Pack k-point
samplings of 6 × 6 × 6 and a plane–wave cutoff energy of 380 eV were used for the Mo2C
unit cell. As an important part of the data development process, a range of supercells of
different sizes were built and optimised (from 1 × 1 × 1 (3 atoms) to 3 × 3 × 3 (81 atoms)).
Given that the data development and analysis are focused on point defects, a 24-atom
supercell with a 2 × 2 × 2 unit cell was chosen in the main calculations, which is effective
in balancing the accuracy and efficiency of the calculation for comparative studies. All
structures were fully relaxed until the total energy converged to within 10−7 eV. The
accuracy and approach employed for the supercell calculations are consistent with those
reported in similar studies [26,37,38].

In the general framework of VASP, Schrödinger’s equation is solved to simultaneously
capture thermodynamic properties, electronic behaviour and atomic structure (Equation (1))[

− ℏ2

2mc
∇2

i + νeff

]
ψi = εiψi (1)

DFT utilise the electron density functional to enhance the calculation efficiency when
solving Schrödinger’s equation:

E[n] = T[n] + EH [n] + EXC[n] +
∫

V
(→

r
)

n
(→

r
)

d3r (2)

where T[n] is Kinetic energy, EH [n] is Hartree energy and
∫

V
(→

r
)

n
(→

r
)

d3r is potential

energy. EXC[n] is exchange–correlation energy, which is the main component linked to the
local spin density (LSD) or the generalized gradient approximation (GGA).

In the commonly used PBE model [39], Perdew–Burke–Ernzerhof defined the enhance-
ment factor, FXC, over local exchange to depict the nonlocality of the GGA (Equation (3)):

EGGA
XC [n↑, n↓] =

∫
d3rnϵunif

X (n)FXC(rs, ζ, s) (3)

This equation represents any GGA exactly when the spin polarization ζ is constant
with respect to r. In cases where ζ varies, the equation remains approximately valid. Further
details of theoretical frames could be referred to [36,40].

2.3. Main Structure and Property Data

Vacancy and substitutional defects could affect many properties and behaviours. This
analysis focuses on formation energy of the defects, optimised lattice parameters, local
lattice distortion, Mulliken atomic charge and bond population and total/local magnetic
moments. The relationship between magnetic properties and bulk modulus is also analysed.
The magnetic moment data for the bulk model are compared with selected first-principles
calculation data of the 2D Mo2C structure. The electronic structure calculations, including
the density of states and band structure, were central to this analysis. The DOS was
decomposed into contributions from different atomic orbitals to understand the role of
each element and orbital in the electronic properties. Band structures were computed
along high-symmetry directions in the Brillouin zone to identify the electronic bandgap
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and potential bonding behaviour. The density of states and band structures data are
correlated with changes in magnetic moment and bulk modulus of Mo2C with different
doping elements. Magnetic data were comprehensively described using spin-polarized DFT
explicit treatment of electron spin, enabling the calculation of spin density and magnetic
moments. Spin density is defined as the difference in electron density between spin-up and
spin-down states, providing a direct measure of magnetic moment distribution. All spin-
polarized calculations were performed using the projector-augmented wave (PAW) method
to describe the interaction between ions and electrons [40]. The exchange-correlation energy
was treated using the generalized gradient approximation (GGA) parameterised by Perdew,
Burke and Ernzerhof (PBE) [39]. Partial magnetic moments were also decomposed into
contributions from the s, p and d orbitals of Mo atoms and the corresponding doped
transition metal (TM) atom. This decomposition provides detailed insights into the orbital-
specific contributions to the local and overall magnetic moment. As part of the data
development process, elastic properties of Mo2C both with/without defects were also
calculated. The elastic properties also provide useful data for validation and correlation
with the magnetic properties [41–43].

Given the predictive nature of this comparative study of point defects and doping,
the lattice structure and properties of pristine Mo2C carbide were computed to assess
the reliability of the DFT methodology and following similar comparative studies [13].
The lattice parameters and volume of the optimised Mo2C unit cell were compared to
different published sources [23,44,45]. The value for bulk modulus is 291 GPa (Voigt
model), 290 GPa (Reuss model) and 190 GPa (Hill model), which show good agreement
with average data from other published sources [23,45]. Similar cross-examination of the
approach was performed by comparing the DFT data of other related compounds of similar
nature with published data (Nickel carbides (NixC (x = 1–4), TiC, V2C, Cr2C, Fe2C) [43].
Further discussion will be presented with the results and discussions.

3. Main Calculation, Results and Data Analysis
3.1. Defect Formation Energy and Structure

The formation energy (Edef) of point defects is defined as:

Edef = E(N)− Eperf(N) + E(A)− E(B) (4)

where E(N) is the total energy of the supercell containing the defect; Eperf(N) is the total
energy of the ideal supercell; E(A) is the energy of the replaced or deleted atom; and E(B) is
the energy of the added substituting atom relative to the ideal supercell. Table 1 summarises
the formation energies of point defects within the Mo2C lattice, including vacancies of a
single Mo atom (VMo) and a single carbon atom (VC); and substitutional atoms for replacing
molybdenum sites (SM-Mo, M = V, Co, Ni, Cr, Fe, or W). The lattice parameter after relaxation
is also presented in Table 1, the value for the pristine Mo2C cell (3.049; 3.049; 4.662) is in
agreement with published experimental data and other theoretical analyses [6,44]. The
data show that vacancy defects lead to a decrease in lattice parameters and volume, which
agrees with the general effect of vacancies reported in the literature [7,46]. As shown by the
data, the formation energy of the vacancy defect (VMo and VC) is higher than the formation
energy of substitutional doping. The formation energy varies among the substitution
doping elements and the doping elements exhibit different degrees of lattice deformation.
Tungsten (SW-Mo) has the lowest formation energy, followed by nickel (SNi-Mo), vanadium
(SV-Mo), chromium (SCr-Mo), iron (SFe-Mo) and cobalt (SCo-Mo). The negative values for
SW-Mo, SNi-Mo, SV-Mo and SCr-Mo suggest that these doping elements are favourable under
certain synthesis conditions. The data indicate that tungsten doping (SW-Mo) contributes to
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structural stability with limited expansion in all three directions, while iron doping may be
associated with significant contraction.

Table 1. Formation energy (eV) of point defects for Mo2C and key dimensions of the relaxed structure.

Supercell
Formation Energy and Dimensional Parameters

Formation Energy of Point
Defect

Dimensions (a, b, c) (After Structure
Relaxation)

Perfect/Pristine Mo2C 3.0491, 3.049, 4.662

VMo 0.5961 3.041, 3.041, 4.629

VC 3.5 3.029, 3.029, 4.647

SV-Mo −0.53 3.043, 3.043, 4.654

SFe-Mo 0.499 2.627, 2.627, 4.051

SW-Mo −3.54 3.053, 3.053, 4.675

SCr-Mo −0.1618 3.042, 3.042, 4.654

SNi-Mo −0.8324 3.049, 3.049, 4.644

SCo-Mo 0.8828 3.049, 3.049, 4.636

Data on the Mulliken population and bond population are relevant to both magnetic
and mechanical properties, which can be used to analyse the charge transfer and chemical
bonding characteristics, including electron charge around the atom and the overlap between
the two bonding atoms [15,47,48]. The Mulliken charge measures effective valence from
the absolute difference between formal ionic charge and Mulliken charge on atomic species.
In CASTEP, population analysis is performed with a projection of the plane–wave (PW)
states onto a linear combination of atomic orbitals (LCAO) localized basis, with population
analysis of the resultant projected states following the Mulliken formalism [47] The main
output from the analysis includes a Mulliken charge and bond population, both influence
bond strength.

The Mulliken atomic charge is based on the net charge of each atom, which comes from
the sum of the nuclear charge minus the electron density, including self-energy electrons
and shared electrons:

QA = ZA − ∑ µ PA
µµ − 1

2 ∑ µ ̸=v PA
µv (5)

where QA is the Mulliken atomic charge of atom A; ZA is the nuclear charge number (i.e.,
atomic number) of atom A; Pµµ represents the electron density in the orbit of atom A itself;
and Pµν represents the electron density shared by atom A with other atoms.

The bond population is determined by their orbital overlap and electron density dis-
tribution. The bond overlap population between atoms A and B (PAB) can be expressed as:

PAB = ∑ µ∈A ∑ v∈B PµvSµv (6)

Pµν is the electron density matrix value between the orbitals of atoms A and B.
Sµν is the overlap matrix value between orbitals.
The bond population also reflect the bond strength between the two atoms. The higher

the bond overlap population value, the stronger the covalency of the bond; if the value is
negative, there may be an anti-bonding effect.

The calculation needs to be summed over all the key points following the process below.
The Mulliken charge associated with a given atom, A, can be determined as:

Q(A) = ∑ kωk ∑ ∑onA
µ ∑ v Pµv(k)Sµv(k)∑ (7)
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In the equation, k refers to all K points, ωk is the weighting and Pµν (k) is the density
matrix. Sµν(k) represents the overlap matrix between orbitals. The bond population
between two atoms A and B over different K points can be then calculated as:

P(AB) = ∑ k ωk ∑ ∑onA
µ ∑onB

v 2Pµv(k)Sµv(k) (8)

Table 2 lists the Mulliken atomic charge and bond population in the supercell with
different defects. The bond population is an indication of bond covalency in a crystal,
where a high value of bond population in essence indicates a high degree of covalency
in the chemical bond, which could affect electronic, magnetic and mechanical properties.
Bond populations indicate bond strength, with higher values suggesting stronger covalent
character. The effect of point defects could be analysed by comparing the data with that
of the Mo-C bond population in a perfect Mo2C lattice, which is 0.33. For molybdenum
vacancy (VMo), the Mo-C bond populations around the Mo vacancy increase significantly,
with values up to 0.51. This rise suggests an increased bonding interaction between C
atoms compensating for the missing Mo atom, enhancing stability near the vacancy. For
C-Vacancy (VC), it shows that the Mulliken atomic charge of Mo atoms near the vacancy is
decreased, which suggests weakened Mo-Mo interactions in the absence of C, as C atoms
contribute to Mo’s stable coordination environment.

Table 2. Mulliken atomic charge and bond population in the supercell with different defects. (All
Mo-C bond populations in the pristine Mo2C are 0.33, and the Mulliken atomic charge for Mo and C
atoms in the pristine Mo2C is 0.3 and −0.6, respectively.)

Defect
Atomic Charge (e) Bond Population

Mo C M-C Mo-C Bond Doping M-C Bond

VMo 0.36, 0.27, 0.01 −0.61, −0.54 — 0.51, 0.43, 0.34, 0.29, 0.27, 0.13 —

VC 0.25, 0.27 −0.59 — 0.41, 0.33, 0.29 —

SV-Mo 0.20, 0.26 −0.61 0.67 0.38, 0.32 0.23

SW-Mo 0.35, 0.33, 0.24 −0.64 0.3 0.35, 0.33, 0.32 0.39

SFe-Mo 0.33, 0.24, 0.19 −0.6, −0.57 0.6 0.41, 0.36, 0.33, 0.24 0.28

SCr-Mo 0.32, 0.31, 0.29 −0.59, −0.57 0.17 0.34, 0.33, 0.31 0.37

SNi-Mo 0.35, 0.33, 0.224 −0.6, −0.57 −0.47 0.35, 0.33, 0.23 0.23

SCo-Mo 0.32, 0.29, 0.27 −0.59, −0.58 0.58 0.41, 0.35, 0.33, 0.26 0.21

Substitutional doping elements exhibit a diverse effect on the Mulliken atomic charge
of Mo, C and M-C. There is limited change in the charge value for Mo and C in most
cases; however, for vanadium (V), the charge is relatively high, and similar elevated
values are observed for iron (Fe) and cobalt (Co). In contrast, nickel (Ni) has a negative
value, while chromium (Cr) and tungsten (W) exhibit moderate values. Compared to
the pristine Mo2C structure, carbon atoms in doped structures, such as those with W
and Ni, lose more electrons. When comparing the Mo-C and the M-C bond populations,
V, Fe and Co substitution shows a higher Mo-C bond population, while Cr, W and Ni
substitution yields moderate bond populations around 0.34, close to the value of 0.33
in the pristine structure. The bond population for doping the M-C pair also shows the
differences between the M-elements, with W displaying a much higher value. These
variations provide insights into the material’s properties. For example, the close similarity
of all the key data between W and Mo suggests that W integrates well into the Mo site,
maintaining a similar electronic environment without causing significant charge imbalance.
The bond populations for W-C bonds are relatively high, around 0.39, indicating strong
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W-C bonding. This strong bonding, combined with W’s high covalency and atomic weight,
is associated with enhanced magnetic and bulk modulus, which will be further discussed
in the discussion section.

3.2. Magnetic Data and Analysis

Figure 4 shows the data for magnetic moments (per unit cell) for various structures.
The magnetic moment magnitude of an atom is described as the difference between the
spin-up and spin-down state density integral below the Fermi level. The total magnetic
moment (MM) is the sum of Mo atoms and carbon atoms normalised over a single cell. The
Mo2C shows weak ferromagnetism, which is in agreement with experimental data [20]. As
shown in the data, the total magnetic moment of the pristine Mo2C structure mainly arises
from the d-orbitals. The data for structure with C-Vacancy and Mo-Vacancy show slight
changes compared to pristine Mo2C. The MM data for C-Vacancy increased slightly while
the MM for Mo-vacancy reduced slightly. The MM for structures with point doping shows
a much more significant effect on MM than the cases for vacancies. A comparative analysis
of magnetic moments in Mo2C with various doped elements reveals different influences on
magnetism. Ni, Co, Mn, V and Fe doping shows a significant increase in the MM, Cr shows
a limited effect, while tungsten (W) shows a notable reduction in the magnetic moments.
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As this work focuses on the effect of point defects, an important piece of data is the
local magnetic moment of the doping atom in comparison with the Mo atom in the pristine
structure, which is shown in Figure 5. When doping atoms are substituted into the Mo2C
lattice, these dopants display substantial influence on the local magnetic moment and char-
acteristics. Vanadium (V) substitution produces a moderate magnetic moment of 0.342 µB
at the dopant site, which is higher than that of the original Mo atom and W, but slightly
lower than Ni and much lower than that of Fe and Co. This intermediate value is consistent
with V’s electron configuration, which allows for some unpaired electrons but lacks the
strong magnetism with Fe or Co. Fe and Co substitutions introduce a significant increase
in local magnetic moments compared to the MM in pristine Mo2C. The elevated magnetic
moments associated with Fe and Co dopants are in agreement with their known magnetic
characteristics and suggest that these elements enhance the local magnetic interactions
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within the Mo2C lattice. The increased d-orbital contributions in these dopants to the total
magnetic moments (as shown in Figure 4) indicate a strengthening of localised magnetic
moments around the dopant sites, thereby enhancing the overall magnetic behaviour of the
system. Chromium (Cr) substitution shows a slightly lower moment than Fe and Co. The
data also clearly show that Ni has a reduced influence on local magnetism within the lattice.
A notable trend is that tungsten (W) substitution results in relatively low magnetic moments
at the dopant site. The lower magnetic moment for W is potentially attributed to its stable,
less reactive electronic configurations, which result in weaker magnetic interactions with
the surrounding Mo and C atoms.
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Figure 6 shows the band structure over the full spectrum and the density of state for
Pristine Mo2C, C-vacancy and Mo-vacancy, respectively. As shown in Figure 6a(i,ii), the
defect-free Mo2C structure shows spin splitting in the total density of states, indicating
that the structure possesses spin polarization properties and some degree of magnetism as
evident from the asymmetric electronic density of states in the total DOS up (TDOS) up
and down orbits near the Fermi level. This distribution mainly originates from the electron
contribution of the d orbital of Mo atoms. As shown in Figure 6b, the overall pattern of
electronic structure changes significantly with the introduction of carbon vacancy. The spin
polarization near the Fermi level is weakened, and the electronic density of states in the
TDOS-down orbit is reduced. This finding indicates a redistribution of electrons around
the vacancies to accommodate changes in local charge density, thus influencing the data
for the magnetic moment. As shown in Figure 6c, upon removing a Mo atom, the band
structure becomes slightly less dense near the Fermi level. The reduction in Mo d-states
highlights the loss of critical conduction states due to the missing Mo atom. The change in
symmetric feature between spin-up and spin-down states is not significant, consistent with
limited change in the magnetic moments.
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The key feature related to magnetic character with doping is reflected in the band 
structures. Figure 7 shows the band structure over the full range of spectrum for Mo2C 
with different point doping elements. The band structure is an important piece of data 
providing critical insights into the electronic characteristics and their links to the effect of 
doping on magnetic and mechanical properties. Detailed analysis of data including spin 
band splitting at the Fermi level, band gap change, and enhancement of electron–electron 
interaction has been performed and comparatively analysed against the band structure of 
the Pristine Mo2C (which is represented to make comparison easier). In general, the band 

Figure 6. Band structure (i) and DOS (ii) for Mo, C and total DOS of (a) Pristine Mo2C, (b) C-Vacancy
and (c) Mo-Vacancy. Γ (Gamma) is a special Brillouin zone high-symmetry point. The red dashed
box highlights the main data of interest. These high-symmetry points (such as X, M, K, L, W, etc.)
are chosen based on the crystal’s symmetry and the geometry of the Brillouin zone. The Solid lines
represent spin-up, dotted lines represent spin-down.

The key feature related to magnetic character with doping is reflected in the band
structures. Figure 7 shows the band structure over the full range of spectrum for Mo2C
with different point doping elements. The band structure is an important piece of data
providing critical insights into the electronic characteristics and their links to the effect of
doping on magnetic and mechanical properties. Detailed analysis of data including spin
band splitting at the Fermi level, band gap change, and enhancement of electron–electron
interaction has been performed and comparatively analysed against the band structure of
the Pristine Mo2C (which is represented to make comparison easier). In general, the band
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structure of crystals with doping is different from the pristine structure and those with
vacancy defects. The energy band line density near the Fermi level varies depending on the
dopant. The change in the spin-up and spin-down energy band represented by different
colours indicates increased magnetic strength in the case of V, Fe, Co, Cr and Ni.

The different effects of the doping element on the DOS are shown in Figure 8. Com-
pared to undoped Mo2C, V-doping introduces more localised states near the Fermi level,
manifested by an increase in the density of states above and below the Fermi level. This
increased localised state reflects the influence of the d electrons of V atoms on the electronic
structure of the system. There is an asymmetric distribution of spin-up (TDOS-UP) and
spin-down (TDOS-DOWN) states observed near the Fermi level, correlating with an in-
crease in the overall magnetism of the structure as shown by the change in the MM values
(Figures 4 and 5). Analysis of the data for other elements (Co, Ni, Fe, Cr) shows notable
deviations from the DOS of pristine Mo2C near the Fermi level with more asymmetric dis-
tribution of spin-up (TDOS-UP) and spin-down (TDOS-DOWN) states. This correlates well
with the magnetic moment data trend. W doping shows the overall impact on the electronic
structure around the energy level and the distribution of states, but there is no significant
change in the spin density around the Fermi level compared to the pristine structure. This
means that tungsten doping has minimal influence on the material’s magnetic properties,
which agrees with the results shown in Figures 4 and 5.
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4. Discussions
This is paper focus on the comparative data development and analysis of Mo2C with

point defects, including vacancy and substitutional doping of a range of metal elements.
The development of the models and assessment follow similar approaches [2,3,13,20,23,33].
These results indicate that for all cases (Figures 4 and 5), d-electron states play a dominant
role in the material’s intrinsic magnetic moment. A combined analysis of the total and local
magnetic moments for different doping elements revealed the trend showing that dopants
with higher unpaired d-electrons, such as Fe and Co, are more effective at enhancing the
magnetic properties of Mo2C. Elements like V, Ni and Cr also shows clear influence on
the magnetic moment with a smaller scale. These reflect the known stronger magnetic
characteristics of Fe and Co elements. The magnetic moment for W is lower than the
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original Mo atom, contributing less to the magnetic behaviour, which is probably due to
their stable, lower-magnetisation electronic configurations. Some of the data also showed
a reasonable agreement on the trend with experimental findings [20,44]. For example,
Dantas et al. [20] investigated the magnetic feature of Mo2C and Ni-doping demonstrated
an enhancement in the ferromagnetic properties of Mo2C. The systematic data set presented
here facilitates comparison and highlights the main trends among substitutional doping
effects on magnetic moment data. These trends correlate with other parameters such as the
Mulliken atomic charge, bond population and DOS data for different doping elements.

Apart from the magnetic data presented (Figures 5 and 6), point defects and doping are
known linked to properties such as bulk modulus. As a reliable measurement of volumetric
elasticity, bulk modulus closely correlates to other non-elastic properties, such as hardness,
toughness and potentially with local magnetic behaviours [17,19,49]. The bulk modulus
can be calculated from DFT results by using the equation: K = −V(dP/dV), where B is
the bulk modulus, V is the volume and dP/dV is the derivative of pressure with respect
to volume. The elastic calculation is performed after the structure relaxation, the stiffness
tensor matrix is determined

Ccubic
ij =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(9)

The Voigt bounds are given by the following equations:

9KV = (C11 + C22 + C33) + 2(C12 + C23 + C31) (10)

while the Reuss bounds are given by:

1/KR = (S11 + S22 + S33) + 2(S12 + S23 + S31) (11)

Figure 9 shows the bulk modulus of Mo2C with various point defects. It shows a
significant change in the bulk modulus with different doping elements. The bulk modulus
of the Mo2C agrees well with some published data (294–302 GPa) [23,45]. As shown in the
data, the vacancies of C and Mo reduce the bulk modulus, which is consistent with reported
trend that vacancies bulk modulus and increase ductility [7]. It is noted that the effect of
doping reveals an opposite effect on the bulk modulus (Figure 9) and magnetic moments
(Figures 4 and 5). The effect of point doping shows a different trend among the elements
studied. Co, Fe, Cr and Ni all reduce the bulk modulus, while V and W slightly increase it.

Compared to the effect of doping elements on magnetic moments in Figures 4 and 5,
W shows less effect on the MM but a more significant increase in the bulk modulus.
In contrast, other elements exhibit an increased magnetic moment but a reduced bulk
modulus. The link between magnetism and bulk modulus is an important but complex
issue, which could be affected by structural, electronic and bonding situations, magnetic
conditions and size of the dopant [50,51]. Liu et al. [50] proposed a bulk modulus model
for crystal materials based on the bond valence model. Gueddouh et al. [49] studied the
correlation between the magnetic moment and bulk modulus of Fe(1−x)MnxB with different
Mn contents. Recently, Jin et al.’s work [52] reported on atomic strength for bulk modulus
prediction and high-throughput screening of ultra-incompressible crystals. Data such as
band population and band structures could provide some useful data directly or indirectly
linked to both magnetic characteristics and bulk modulus. As shown in Figure 10, there
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is a clear difference in some parts with band structure of the pristine Mo2C, C-Vacancy,
Mo-Vacancy and V-doping and W doping. The results show changes in the overall pattern
of the energy band and distributions, asymmetrical nature of up and down energy band,
and the density of energy bands near the Fermi level, indicating the change in bonding
conditions. The detailed role of some key factors such as effective valence and positive
bond population on the covalency of crystalline solids remains an active area of research
and exploration [47,51]. The comparative data for different doping elements presented
in this study will be used for future quantitative analysis to identify the most influential
factors on bonding, covalency and related properties.
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Figure 10. Comparison of the band structure between Mo2C with Carbon vacancy (a), Mo vacancy (b),
V doping (c) and W doping (d). Γ (Gamma) is a special Brillouin zone high-symmetry point. These
high-symmetry points (such as M, K,) are chosen based on the crystal’s symmetry and the geometry
of the Brillouin zone, solid lines represent spin-up, and dotted lines represent spin-down.
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Another important aspect of the fundamental understanding of the effects of point
defects and the interlink between magnetic and mechanical properties is the comparative
studies of data for 3D and 2D structures. Two-dimensional Mo2C as a monolayer is increas-
ingly being used and/or explored in areas such as energy and catalyst applications [53–55].
Doping of a small amount of other metal elements could be an effective way of tuning
properties, as both the magnetic and mechanical properties are crucial for enhanced mag-
netic performance [21]. Figure 11 shows some typical magnetic moment data of a Mo2C
monolayer with different doping [43]. The overall trend of the effect of doping elements on
magnetic moment is similar to that of the 3D Mo2C (as shown in Figures 4 and 5). Given the
monolayer’s potential application in energy and catalysts, enhancement of the magnetic
properties is important. Other factors, such as strain, are also relevant to 2D structures,
which will be addressed in future studies [43].
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As shown in selected data and other published works [3,19,24,33], first-principles
calculations are an effective tool for developing grand state data of crystals with different
point defects, which are crucial for understanding the properties of materials used as bulk
or 2D structures. DFT calculation is also an effective means for providing complex data for
enhancing the understanding of different mechanisms and developing approaches to tune
or enhance the magnetic properties. An effective approach to establishing the ground state
magnetic and other related properties helps in understanding how materials respond to dif-
ferent external factors, such as temperature, pressure, etc. [56]. Apart from the applications
directly linked to magnetic properties, such as energy and catalyst, the knowledge is also
essential for studying the material’s behaviour and predicting its behaviour under various
conditions in material processing such as the magnetism and high magnetic-field-induced
stability of alloy carbides in complex in alloys (Fe, Ni, Cr, V etc.) [17]. Understanding the
role of controlled substitutional point doping will also provide data for understanding the
complex defects and developing multicomponent carbides including phase transformation.
In previous work, DFT data were used to analyse the potential transition from Mo2C to
(Mo, V)2C [3]. Some recent works also highlighted the potential impact of DFT in this
area. For example, DFT data have been used to analyse the formation/transformation of
different key phases such as multicomponent compounds (e.g., carbides in steels and other
alloys) [6,8,12,17,19,32]. In a very recent work by Khatri et al. [13], first-principles predic-
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tions were used to predict point defect energies and concentrations in the tantalum and
hafnium carbides. Future work will be focused on the use of first-principles calculations to
provide systematic predictive data for enhancing the understanding of key mechanisms
controlling properties and tuning the mechanical, physical or functional properties of 3D or
2D structures [16,34]. For example, the data in Table 1 for the effect of the point vacancies
and doping elements on the lattice parameters are new data to analyse the probability of
the carbides acting as a potential nucleation site of another metallic phase (e.g., ferrite or
austenite) or other compounds in materials process, such as welding, which is an important
R&D area in materials [57]. Detailed data-driven comparative studies on the synergy
of different properties are important for both R&D related to crystals and collaborative
interdisciplinary training in the use of DFT in materials development [24,25,32,58–60].

5. Conclusions
In this study, the first-principles method is applied to comparatively study the effects

of point vacancies and different substitutional doping on the structures, and electronic, mag-
netic and mechanical properties of Mo2C, and the correlation between magnetic properties
in 3D and 2D structures. The data for lattice structure changes and Mulliken atomic charge
and bond population associated with different defects were developed. The dopant-specific
local magnetic moments and total magnetic contributions indicate that dopants with higher
unpaired d-electrons, such as Fe and Co, are more effective at enhancing the magnetic
properties of Mo2C. V and Ni shows a moderate enhancement of the magnetic moment.
The magnetic moment for W-doped Mo2C is lower than pristine phase due to their stable,
lower magnetization electronic configurations. The comparison between the data for 3D
and 2D Mo2C structures showed that doping elements have a similar effect on the magnetic
moment. The comparison between magnetic and mechanical data showed that the doping
element has the opposite effect on magnetic moments and the bulk modulus in Mo2C. The
potential use of the DFT data related to point defects and doping in the R&D of materials
processing and future directions is discussed.
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