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Abstract: Background: Data on the genetic factors contributing to inter-individual variability in muscle
fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-
terminal-like PKA signaling regulator 2N (Ark2n; also known as C18orf25) gene exhibit reduced muscle
fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-
twitch muscle fibers. However, the role of the ARK2N gene in human muscle physiology, and particularly
in athletic populations, remains poorly understood. The aim of this study was threefold: (a) to compare
ARK2N gene expression between power and endurance athletes; (b) to analyze the relationship between
ARK2N gene expression and muscle fiber composition; and (c) to investigate the association between
the functional variant of the ARK2N gene, muscle fiber size, and sport-related phenotypes. Results: We
found that ARK2N gene expression was significantly higher in power athletes compared to endurance
athletes (p = 0.042) and was positively associated with the proportion of oxidative fast-twitch (type IIA)
muscle fibers in untrained subjects (p = 0.017, adjusted for age and sex). Additionally, we observed
that the ARK2N rs6507691 T allele, which predicts high ARK2N gene expression (p = 3.8 × 10−12), was
associated with a greater cross-sectional area of fast-twitch muscle fibers in strength athletes (p = 0.015)
and was over-represented in world-class strength athletes (38.6%; OR = 2.2, p = 0.023) and wrestlers
(33.8%; OR = 1.8, p = 0.044) compared to controls (22.0%). Conclusions: In conclusion, ARK2N appears
to be a gene specific to oxidative fast-twitch myofibers, with its functional variant being associated with
muscle fiber size and strength-athlete status.

Keywords: polymorphism; genotype; gene expression; SNP; athlete status; weightlifting; sport;
molecular physiology; muscle hypertrophy; skeletal muscle
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1. Introduction

Strength is a fundamental component of athletic performance, with muscle strength
and power being essential in competitive sports requiring high-force outputs, such as
weightlifting, sprinting, and jumping. Muscle strength is known to be a highly heritable
trait, with heritability estimates for strength-related phenotypes ranging from 30% to
80% [1–3]. Genetic contributions to strength are polygenic, involving numerous genetic
variants that collectively influence the phenotype [4–10].

This complex genetic architecture underscores the diversity of biological factors con-
tributing to strength performance, including greater muscle fiber size [11], the prevalence
of oxidative fast-twitch (type IIA) muscle fibers [12], shifts in muscle metabolism toward
glycolysis [13], increased testosterone levels [14], and neural adaptations that enhance force
production capabilities [15].

Research on the genetics of strength and related phenotypes has advanced significantly
in recent years, especially with the use of genome-wide approaches [4–6,16–18]. This
research has identified over 40 genetic variants associated with strength-athlete status
and weightlifting performance, including those located near or within the ABHD17C,
ACE, ACTG1, ACTN3, ADCY3, ADPGK, AGT, ALDH2, ANGPT2, AR, ARPP21, BCDIN3D,
CKM, CNTFR, CRTAC1, DHODH, GALNTL6, GBE1, GBF1, GLIS3, HIF1A, IGF1, IL6, ITPR1,
KIF1B, LRPPRC, MLN, MMS22L, MTHFR, NPIPB6, PHACTR1, PLEKHB1, PPARA, PPARG,
PPARGC1A, R3HDM1, RASGRF1, RMC1, SLC39A8, TFAP2D, ZKSCAN5, and ZNF608
genes [7–9,19–39]. Among these, polymorphisms in the ACTN3, AR, LRPPRC, MMS22L,
PHACTR1, and PPARG genes are particularly promising, with each variant being shown
to play a role in specific physiological pathways that contribute to muscle strength and
performance [40,41].

Overall, the study of genetic contributions to strength provides a foundation for
understanding individual variability in athletic performance and offers pathways for
personalized approaches in sports training and rehabilitation. As research continues to
map the genetic landscape of strength, identifying specific markers and their physiological
roles will enhance our understanding of how genetics shape strength-related traits and
inform precision-based interventions to maximize human potential in sports and health
contexts [9,10].

Recently, a new and promising candidate gene related to strength performance and
skeletal muscle hypertrophy has been identified [42]. Specifically, research has demon-
strated that mice lacking the Ark2n gene (also known as C18orf25; chromosome 18 open
reading frame 25) exhibit a reduced muscle fiber size, contraction force, and exercise ca-
pacity, along with defects in calcium handling within fast-twitch muscle fibers [42,43].
The ARK2N gene encodes a protein known as Arkadia (RNF111) N-terminal-like PKA
signaling regulator 2N (ARK2N), which is homologous to ring finger protein 111 (RNF111),
an E3 ubiquitin ligase. Unlike RNF111, ARK2N lacks the domain necessary for ubiquitin
binding and is therefore considered an adaptor or signaling protein without ubiquitination
activity [44]. Furthermore, ARK2N has been shown to undergo phosphorylation by AMP-
activated protein kinase (AMPK) in humans following acute exercise, which enhances
skeletal muscle contractile function ex vivo [43].

Given that elite weightlifters typically exhibit a high proportion of oxidative fast-
twitch (type IIA) muscle fibers [12], we hypothesized that strength-related ARK2N gene
expression is positively correlated with the proportion of type IIA muscle fibers and
that functional variants within the ARK2N gene are associated with elite weightlifting
performance and power-athlete status. This study aimed to (a) compare ARK2N gene
expression between power and endurance athletes; (b) analyze the relationship between
ARK2N gene expression and muscle fiber composition; and (c) investigate the association
between the functional variant of the ARK2N gene, muscle fiber size, and sport-related
phenotypes.
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2. Materials and Methods
2.1. Ethical Approval

This study was approved by the Ethics Committee of Bingol University (reference
23/20; approval date: 9 November 2023) and the Ethics Committees of the Federal Research
and Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological
Agency of Russia (reference 2017/04; approval date: 4 July 2017). Written informed consent
was obtained from each participant before the start of this study, which complied with the
Declaration of Helsinki and ethical standards for sport and exercise science research.

2.2. Study Participants
2.2.1. The Turkish Cohorts

The study included 60 Turkish track and field athletes, consisting of 31 power athletes
(11 females and 20 males: 100–400 m runners [n = 9], jumpers [n = 3], and throwers [n = 19]; age
26.6 (3.0) years; sport experience 7.4 (3.6) years) and 29 endurance athletes (10 females and 19 males:
3000 m [n = 12], 5000 m [n = 5], 10,000 m [n = 4], and marathon runners [n = 8]; age 27.5 (4.2) years;
sport experience 11.5 (5.1) years). All athletes were affiliated with the Turkish Athletics Federation
and were ranked within the top ten nationally in their respective disciplines. The control group
included 20 healthy, unrelated Turkish individuals without competitive sports experience. Allele
frequencies of the ARK2N rs6507691 polymorphism were verified by comparison with data from
557 healthy participants in the Turkish Genome Project (https://tgd.tuseb.gov.tr/en/; accessed on
5 August 2024). All athletes and controls were of Caucasian ancestry, and none had tested positive
for doping.

2.2.2. The Russian Cohorts

The gene-expression study included 10 sub-elite power athletes (four powerlifters, four
weightlifters, one decathlete, and one taekwondo athlete; mean age 30.1 ± 7.4 years; height
178.2 ± 6.7 cm; body mass 85.6 ± 12.4 kg) and 13 sub-elite endurance athletes (nine long-
distance runners, three triathletes, and one cross-country skier; mean age 34.2 (10.0) years;
height 182.8 (6.8) cm; body mass 76.0 (9.9) kg), all of European descent (Russians), as pre-
viously described [45]. The muscle-fiber-size study included 24 sub-elite strength athletes
(17 powerlifters, 7 weightlifters; mean age 30.0 (5.3) years; height 178.9 (6.3) cm; body mass
90.9 (11.3) kg) of European descent. Additionally, a case-control study involved 90 weightlifters
(55 males, mean age 27.7 (5.4) years; 35 females, mean age 26.8 (3.3) years), 125 wrestlers
(87 males, mean age 25.7 (4.2) years; 38 females, mean age 29.2 (3.5) years; 38 Greco-Roman
wrestlers, 33 freestyle wrestlers, 26 sambo wrestlers, 17 judo wrestlers, and 11 belt wrestlers),
and 182 controls (138 males, 44 females; mean age 44.9 (4.2) years). Among the 215 athletes
(strength athletes and wrestlers), 56 were world class (Olympic/world/European Champi-
onship medalists: 22 weightlifters and 34 wrestlers), while 159 were elite (international level,
non-medalists). None of the athletes had tested positive for doping.

2.2.3. The FUSION Cohort

The gene-expression study (vastus lateralis) included 291 sedentary individuals of
European descent from the FUSION study [46], comprising 166 men (mean age 59.5 (8.1)
years; height 176.7 (6.7) cm; body mass 87.3 (15.1) kg) and 125 women (mean age 60.3 (8.1)
years; height 162.8 (5.6) cm; body mass 71.8 (9.8) kg).

2.3. Performance Analysis

To analyze the performance levels of the Turkish athletes, their personal bests were
evaluated using the World Athletics (formerly IAAF) scoring system, as previously de-
scribed [17].

2.4. Genotyping

Genotyping of the rs6507691 polymorphism in the Turkish participants was per-
formed using either in-house (laboratory-developed) real-time PCR for the athletes or

https://tgd.tuseb.gov.tr/en/
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SNP array analysis for the other participants, using genomic DNA isolated from pe-
ripheral blood. DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocol. Quantification of the iso-
lated DNA was carried out with a NanoDrop1000 spectrophotometer (Thermo Scien-
tific, Waltham, MA, USA). Real-time PCR was conducted using a TaqMan probe-based
strategy. The primer–probe sets (forward primer: 5′ GCCCAAAAGTCGTGTCCCTT 3′;
reverse primer: 5′ ATTAGCTGGCGTAGTGGTGG 3′; Probe-1: 5′ [FAM] CCTCTGCCTC-
CCAGGTTCAAGCG 3′; Probe-2: 5′ [HEX] CCTCTGCCTCCCAGGCTCAAGCG 3′; Probe-3:
5′ [HEX] CCTCTGCCTCCCAGGGTCAAGCG 3′) were designed using the Primer-BLAST
tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/; accessed on 5 August 2024).
The PCR was then performed with the Takyon ROX Probe 2X MasterMix dTTP (Eurogentec,
Seraing, Belgium). Each PCR mix consisted of 10 µL of the probe mastermix, 1 µL of 10 µM
forward and reverse primers, 0.5 µL of 10 µM Probe-1 and Probe-2 or Probe-3, and 30 ng
of genomic DNA. The reactions were conducted on a BioRad CFX 96 instrument (BioRad
Inc., Hercules, CA, USA) with the following thermal profile: 95 ◦C for 5 min for initial
denaturation, followed by 40 cycles of 95 ◦C for 30 s (denaturation), and 60 ◦C for 30 s
(annealing, extension, and signal acquisition on FAM and HEX channels). Negative controls
and samples with known rs6507691 genotypes were included. Genotypes of participants
were manually determined based on amplification curves. For the Russian athletes and
control subjects, molecular genetic analysis was performed with DNA obtained from leuko-
cytes (4 mL of venous blood). DNA extraction and purification were conducted using a
commercial kit according to the manufacturer’s instructions (Technoclon, Moscow, Russia).
Genotyping of rs6507691 was performed using microarray technology (Illumina, San Diego,
CA, USA) with HumanOmni1-Quad and HumanOmniExpress BeadChips (Illumina), as
previously described [11].

2.5. Gene-Expression Analysis

Transcriptomic analysis was performed as previously described [18,45]. Briefly, to
minimize confounding factors related to muscle recovery and prior activity, participants
(n = 23) were instructed to refrain from training for at least 24 h before the biopsy. This
rest period was implemented to ensure the gene-expression profiles reflected a baseline,
resting state, without the acute effects of exercise. RNA was isolated from muscle tissue
using the RNeasy Mini Fibrous Tissue Kit (Qiagen, Hilden, Germany). RNA concentration
was measured using the Qubit spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). RNA quality was assessed using the BioAnalyzer electrophoresis system and
BioAnalyzer RNA Nano assay (Agilent Technologies, Santa Clara, CA, USA). The RNA
integrity number (RIN) was calculated for each RNA sample. Only RNA samples with RIN
> 7 were included in the study. Samples were stored at −80 ◦C until sequencing libraries
were prepared. Total RNA samples were treated with DNAse I using the Turbo DNA-free
Kit (Thermo Fisher Scientific) according to the kit guidelines. Libraries for RNA sequencing
were prepared using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina
with the NEBNext rRNA Depletion Module (New England Biolabs, Ipswich, MA, USA).
RNA libraries were sequenced on the HiSeq system (Illumina) for 250 cycles. Gene-level
expression abundances were calculated using the tximport Bioconductor package [47], with
ARK2N gene expression presented in transcripts per kilobase million (TPM). Transcriptome
analyses of muscle samples from the FUSION cohorts were described by Taylor et al. [46].

2.6. Evaluation of Muscle Fiber Composition

The muscle fiber composition of the vastus lateralis in strength athletes was assessed
using immunohistochemistry, as previously described [11]. Briefly, samples from the left
vastus lateralis were collected using the modified Bergström needle technique. Prior to
analysis, samples were frozen in liquid nitrogen and stored at −80 ◦C. Serial cross-sections
(7 µm) were obtained from frozen samples using an ultratom (Leica Microsystems, Wetzlar,
Germany). Sections were thaw-mounted on Polysine glass slides, maintained at room
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temperature (RT) for 15 min, and incubated in PBS (3 × 5 min). The sections were then
incubated at RT in primary antibodies against slow or fast isoforms of the myosin heavy
chains (M8421, 1:5000; M4276; 1:600, respectively; Sigma–Aldrich, St. Louis, MO, USA) for
1 h and incubated in PBS (3 × 5 min). Next, the sections were incubated at RT in secondary
antibodies conjugated with FITC (F0257; 1:100; Sigma–Aldrich) for 1 h. The antibodies
were removed, and the sections washed in PBS (3 × 5 min), placed in mounting media and
covered with a cover slip. Images were captured by fluorescent microscope (Eclipse Ti-U,
Nikon, Tokyo, Japan). Fibers stained in serial sections with antibodies against slow and
fast isoforms were considered to be hybrid fibers. Muscle fiber composition in the vastus
lateralis of the FUSION cohort was estimated based on the expression of MYH1, MYH2,
and MYH7 genes, as previously described [46].

2.7. Statistical Analyses

Statistical analyses were performed using SPSS software version 29.0. Allelic and
genotypic frequencies were assessed for the Hardy–Weinberg equilibrium (HWE) and
evaluated using the chi-square (χ2) or Fisher’s exact test. Sample size and power calcula-
tions were performed using G*Power (v3.1) with the chi-squared test for proportions to
ensure sufficient power to detect a difference in allelic frequencies between athletes and
controls. Associations with alleles or genotypes were determined using SNPStats software
v1 [48] with co-dominant, dominant, recessive, and over-dominant models. The SNPStats
results were further validated using one-way ANCOVA with sex and sports experience as
categorical covariates. A normality test was used to assess the linearity of the data. Mean
differences between groups were analyzed using Student’s unpaired t-test. Relationships
between gene expression and muscle-related traits were assessed using regression analysis
adjusted for covariates (age and sex). Scatter plots were generated based on Pearson corre-
lation coefficients. A Pearson correlation was used to calculate the correlation coefficient
(r) and the coefficient of determination (R2). All data are presented as mean (SD), with
p-values < 0.05 considered statistically significant.

3. Results
3.1. Gene-Expression Studies

ARK2N gene expression was significantly higher (5.7 (1.0) vs. 5.0 (0.5) TPM, p = 0.042) in
the vasus lateralis muscle of power athletes (n = 10) compared to endurance athletes (n = 13)
(Figure 1).
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for sex and age. Accordingly, ARK2N gene expression was positively associated with the
proportion of oxidative fast-twitch (type IIA) muscle fibers in untrained subjects (p = 0.017,
adjusted for age and sex; females: p = 0.029, r = 0.2, R2 = 4%; males: p = 0.124, r = 0.12,
R2 = 1.4%) (Figure 2). This association remained significant (p = 0.019) after adjusting for
body mass index and smoking status as additional covariates. No significant relationship was
observed between ARK2N gene expression and the proportion of glycolytic fast-twitch (type
IIX) muscle fibers (p = 0.654) or slow-twitch (type I) muscle fibers (p = 0.242).
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3.2. Case-Control and Genotype–Phenotype Studies

According to the GTEx portal (https://gtexportal.org/; accessed on 9 November 2024),
the ARK2N gene includes several functional variants. Among these, the ARK2N rs6507691
C/T polymorphism is one of the most significant, with the T allele associated with higher
ARK2N gene expression (p = 3.8 × 10−12). We therefore analyzed this polymorphism in the
athlete cohorts and control groups.

Genotype distributions and allele frequencies for the ARK2N rs6507691 polymorphism
in the Turkish and Russian cohorts are presented in Table 1.

Table 1. Genotype and allele frequencies of the Arkadia (RNF111) N-terminal-like PKA signaling
regulator 2N (ARK2N) rs6507691 polymorphism in athletes and controls.

Group ARK2N Genotypes T Allele
Frequency, % p-Value

TT CT CC

Turkish cohorts
Power athletes (n = 31) 4 13 14 33.9 NS
Endurance athletes (n = 29) 4 12 13 34.5 NS
Controls #1 (n = 20) 2 11 7 37.5 –
Controls #2 (n = 557) N/A N/A N/A 29.8 –
Russian cohorts
World-class strength athletes (n = 22) 2 13 7 38.6 0.023 *
Elite strength athletes (n = 68) 5 23 40 24.3 0.631
World-class wrestlers (n = 34) 4 15 15 33.8 0.044 *
Elite wrestlers (n = 91) 11 36 44 31.9 0.016 *
All Russian athletes (n = 215) 22 87 106 30.5 0.0078 *
Russian controls (n = 182) 9 62 111 22.0 –

* p < 0.05, statistically significant differences in allelic frequencies between athletic cohorts and ethnically matched
control groups. N/A, not available; NS, non-significant (compared to both Turkish control groups).

All genotype distributions were in the Hardy–Weinberg equilibrium (p > 0.05). No
differences in genotype frequency were observed between Turkish power or endurance
athletes and Turkish control groups (p > 0.05). However, the ARK2N rs6507691 T al-

https://gtexportal.org/
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lele was significantly overrepresented in world-class strength athletes (38.6%; OR = 2.2,
p = 0.023) and world-class wrestlers (33.8%; OR = 1.8, p = 0.044) compared to controls
(22.0%) (Figure 3). Additionally, the frequency of the ARK2N rs6507691 T allele was sig-
nificantly higher in elite wrestlers (31.9%, p = 0.016) and in the combined Russian athlete
group (strength athletes + wrestlers; 30.5%, p = 0.0078) (Table 1).
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No significant association was found between the ARK2N rs6507691 polymorphism
and competitive performance in Turkish power and endurance athletes (see Supplementary
Tables S1–S3).

3.3. Muscle-Fiber-Size Study

Among the strength athletes (n = 24), carriers of the ARK2N rs6507691 T allele exhibited a
significantly greater cross-sectional area (CSA) of fast-twitch (9366 (2806) µm2 vs. 6831 (1884)
µm2; p = 0.015) and slow-twitch (6942 (1490) µm2 vs. 5638 (972) µm2; p = 0.017) muscle fibers,
as well as the combined CSA of both muscle fiber types (16,308 (4141) µm2 vs. 12,469 (2699)
µm2; p = 0.012) compared to CC homozygotes (Figure 4).
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4. Discussion

This study is the first to demonstrate that the ARK2N (C18ORF25) genetic variant is
associated with a predisposition toward strength-oriented sports, including weightlifting,
powerlifting, and wrestling. Our findings also provide new insights into the role of the
ARK2N gene in muscle fiber composition and size. The higher expression of ARK2N
observed in the vastus lateralis of power athletes supports the hypothesis that ARK2N
plays a specific role in muscle adaptation for power- and strength-related activities. This is
further supported by its positive association with the proportion of oxidative fast-twitch
(type IIA) muscle fibers, which are abundant in elite weightlifters [12]. These findings
align with previous research demonstrating that ARK2N, particularly through its AMPK-
mediated phosphorylation at S67, is crucial in muscle contractile function and calcium
handling [42,43].

The analysis of ARK2N rs6507691 further underscores the gene’s relevance to muscle
phenotypes associated with strength and power. The rs6507691 C/T polymorphism, located
in an intron of the ARK2N gene, is considered as an expression quantitative trait locus
(eQTL), or genetic locus that explain variations in mRNA expression levels. The T allele,
associated with increased ARK2N expression, was significantly overrepresented among
highly elite strength athletes and wrestlers, suggesting a potential genetic advantage for
muscle performance in strength-related sports. Our observation of a greater cross-sectional
area (CSA) in both fast-twitch and slow-twitch muscle fibers among T allele carriers aligns
with this, indicating that the T allele may contribute to muscle hypertrophy, a beneficial
trait for strength sports [49,50]. This effect may be linked to ARK2N’s role in efficient
calcium handling, which promotes muscle hypertrophy through the activation of the
mTOR pathway, a key regulator of muscle protein synthesis [51]. However, the exact
mechanisms underlying the association between the ARK2N T allele and the increased CSA
of muscle fibers remain to be explored in future studies.

ARK2N, also known as C18ORF25, has emerged as a novel and critical regulator of
skeletal muscle function, particularly regarding exercise physiology and muscle strength.
Initially identified through phosphoproteomic studies across different exercise modalities,
ARK2N was found to be phosphorylated at serine 67 (S67) by AMP-activated protein kinase
(AMPK) during various physical activities, including endurance, sprint, and resistance
exercises [42]. Phosphorylation of ARK2N at S67 appears to enhance muscle contractile
force, an effect supported by in vivo studies where phospho-mimetic mutations (S66/67D)
in mice restored skeletal muscle function impaired by Ark2n knockout [43].

ARK2N localizes within both the nucleus and contractile apparatus of skeletal mus-
cle fibers, with a preference for fast-twitch fibers that are essential for high-power, rapid
contractions [43]. Through affinity purification and mass spectrometry, a diverse ARK2N
interactome was identified, including proteins involved in nucleocytoplasmic transport,
GTPase signaling, and the cytoskeletal contractile machinery. This interactome was par-
ticularly enriched for interactions dependent on AMPK activity and S67 phosphorylation,
suggesting that ARK2N functions as a scaffold or adapter in muscle-specific signaling
complexes. A key phenotype observed in Ark2n-knockout (KO) mice is impaired calcium
handling within fast-twitch muscle fibers. Calcium handling in the sarcoplasmic reticulum
(SR) is essential for muscle contraction, and Ark2n-KO mice exhibit reduced SR calcium
loading and increased passive calcium leak, resulting in decreased muscle force production.
This defect was not observed in slow-twitch fibers, highlighting ARK2N’s specific role in
muscle fiber types associated with rapid, forceful contractions. KO mice lacking Ark2n
show reduced endurance and performance in forced treadmill running tests, underscoring
the gene’s contribution to physical performance under high muscular demand [43]. This
phenotype suggests that ARK2N not only regulates muscle force at the cellular level but
also impacts whole-body exercise tolerance and energy metabolism.

Calcium ions (Ca2+) play an essential role in muscle contraction and relaxation, which
are fundamental to generating strength. When a muscle cell receives a signal to contract,
calcium is released from the SR into the cytoplasm. This increase in cytoplasmic calcium
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binds to troponin, initiating a cascade that allows actin and myosin—the muscle’s contrac-
tile proteins—to interact and produce force. This process relies heavily on effective calcium
transport systems, including release and reuptake via the SR, regulated by the sarcoplas-
mic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump [52]. Proper functioning of these
systems ensures efficient contraction and relaxation cycles, which are necessary for optimal
strength production. Research highlights that variations in calcium handling directly influ-
ence muscle strength. For example, dysfunctions in calcium release or uptake, often seen
with age or fatigue, can reduce force generation capacity [53]. In fast-twitch muscle fibers,
which are geared toward power and strength, calcium dynamics are particularly critical as
they allow for rapid, forceful contractions. Disruptions in calcium signaling, whether from
aging or metabolic disturbances, can impair muscle strength by affecting calcium sensitivity
in the contractile machinery, thereby reducing force production [54]. This understanding
supports our findings on the preferential expression of ARK2N in power athletes and its
association with type IIA muscle fiber composition. The observed larger CSA among T
allele carriers may relate to enhanced calcium dynamics and contractile efficiency mediated
by ARK2N, which are likely advantageous for the maximal strength and rapid contractions
required in competitive sports.

The present study has several limitations that should be acknowledged. First, the sam-
ple size of Turkish elite athletes was limited due to the rarity of such athletes, which may
have affected the study’s statistical power and the generalizability of the findings. Future
studies should aim to include larger cohorts to improve statistical reliability and enhance
the robustness of the results. Second, this study focused solely on a single polymorphism
of the ARK2N gene, potentially overlooking the contributions of other genetic variants
or polygenic interactions that may influence muscle fiber CSA and strength performance.
Future research could incorporate genome-wide association studies (GWAS) or analyses
of additional candidate genes to provide a more comprehensive understanding. Third,
the cross-sectional design of this study limits the ability to infer causality between the
ARK2N variant and muscle fiber CSA. Longitudinal studies tracking genetic and pheno-
typic changes over time would help establish causal relationships. Fourth, personal best
(PB) performances were used as a proxy for athletic performance, which may not fully
capture the dynamic and multifaceted nature of strength-related capabilities. Incorporating
standardized performance tests and training data in future studies could provide a more
holistic assessment. Finally, this study focused on a specific population of Turkish athletes,
which limits the generalizability of the findings to other populations with diverse geo-
graphic and genetic ancestries. Expanding the research to include athletes from different
backgrounds and conducting meta-analyses, as seen in robust studies [55–59], would help
to validate the findings and identify population-specific effects. Additionally, the absence
of epigenetic analyses in this study represents a significant limitation, as environmental
and regulatory factors likely play a role in modulating the genetic effects observed [60,61].
Future studies should incorporate epigenetic profiling to explore gene–environment inter-
actions comprehensively.

On the other hand, the strengths of this study include the use of multiple cohorts
and traits to support the hypothesis, along with a focus on world-class athletes to validate
the findings. Previous studies investigating genetic markers associated with athletic per-
formance, such as ACTN3 and ACE, have primarily relied on case-control study designs
to explore the relationship between genetic variants and strength-athlete status. While
these studies have provided valuable insights, they often lack functional data to support
the observed associations. In contrast, our study adopts a more integrative approach by
combining gene-expression data and the demonstrated link between the ARK2N genetic
variant and muscle fiber cross-sectional area. This dual approach not only establishes a
robust association between the ARK2N gene and strength-athlete status but also provides
mechanistic insights into how this gene may influence muscle function. Our findings not
only highlight the potential role of ARK2N in oxidative fast-twitch muscle fibers but also
underscore its significance as a novel genetic marker for strength-oriented athletes. By
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integrating functional and association data, this study builds upon the foundations laid by
previous research and sets a precedent for future investigations into the genetic basis of
athletic performance.

5. Conclusions

In conclusion, our study identifies ARK2N as a gene specific to oxidative fast-twitch
muscle fibers, with its functional variant associated with increased muscle fiber size and
strength-athlete status. These findings have important clinical implications, particularly for
conditions like sarcopenia, where muscle mass and strength decline with age. Targeting
ARK2N could pave the way for novel therapeutic strategies to preserve or enhance muscle
function in aging populations and individuals at risk of muscle degeneration. Future
research should focus on elucidating the molecular mechanisms of ARK2N in muscle
adaptation, validating its effects across diverse populations, and investigating its potential
as a therapeutic target for sarcopenia and other muscle-related conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14120684/s1, Table S1: Relationship between the ARK2N
rs6507691 polymorphism and competitive performance among power athletes; Table S2: Relationship
between the ARK2N rs6507691 polymorphism and competitive performance among endurance
athletes; Table S3: Relationship between the ARK2N rs6507691 polymorphism and competitive
performance among all athletes.
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