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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Legacy AMD discharges can cause long- 
term liabilities for receiving rivers.

• 22 years of aqueous data reveal 
increasing As and Fe export to the 
coastal zone.

• Discharge drives Cu and Zn release, 
while pH and Eh influence Fe, S and As 
mobility.

• Carnon River metal(loid) yield into the 
estuary is comparable to other AMD 
rivers.

• Diffuse sources are key contributors of 
metal(loid)s to the Carnon River.
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A B S T R A C T

Acid mine drainage (AMD) is a worldwide problem that degrades river systems and is difficult and expensive to 
remediate. To protect affected catchments, it is vital to understand the behaviour of AMD-related metal(loid) 
contaminants as a function of space and time. To address this, the sources, loads and transport mechanisms of 
arsenic (As), copper (Cu), zinc (Zn), iron (Fe) and sulfur (S) in a representative AMD-affected catchment (the 
Carnon River in Cornwall, UK) were determined over a 12-month sampling period and with 22 years of moni-
toring data collected by the Environment Agency (England) (EA). The main source of metal(loid)s to the Carnon 
River was the County Adit which drains AMD from approximately 60 km of underground historical mine 
workings. Maximum aqueous concentrations of Fe, Cu and Zn occurred immediately downstream of the County 
Adit confluence with the Carnon River, whereas maximum As and S concentrations occurred further down-
stream, suggesting the presence of diffuse sources. Discharge and concentration relationships suggested that 
discharge drove Cu and Zn release, whereas pH and Eh influenced Fe, S, and As mobility. Total loads (repre-
sented by unfiltered sample contaminant concentrations) to the coastal zone were high, ranging from 183 to 354 
kg/month As, 307–742 kg/month Cu, 189–1960 kg/month Fe, 53,400–125,000 kg/month S and 1280–3320 kg/ 

* Corresponding author at: Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK.
E-mail address: ej359@exeter.ac.uk (E. Jennings). 

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

https://doi.org/10.1016/j.scitotenv.2025.178496
Received 1 October 2024; Received in revised form 27 December 2024; Accepted 11 January 2025  

Science of the Total Environment 964 (2025) 178496 

Available online 23 January 2025 
0048-9697/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:ej359@exeter.ac.uk
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2025.178496
https://doi.org/10.1016/j.scitotenv.2025.178496
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2025.178496&domain=pdf
http://creativecommons.org/licenses/by/4.0/


month Zn. The longevity and increasing amounts of contaminant discharge were confirmed with 22 years of EA 
monitoring data. This study highlights the complex and multifaceted behaviour of contaminant metal(loid)s 
within AMD-affected riverine systems and the fact that point and diffuse sources can constitute significant long- 
term liabilities for such environments.

1. Introduction

Acid mine drainage (AMD) is the outflow of acidic water caused by 
the oxidation of pyrite and other redox-active sulfidic minerals typical of 
mining metal and coal ores (Akcil and Koldas, 2006; Crane and Sapsford, 
2018). AMD can generate ecotoxic conditions due to low pH (<6) and 
high concentrations of sulfate (SO4

2− ), iron (Fe) and metal(loid)s 
including arsenic (As), copper (Cu) and zinc (Zn) (Environment Agency, 
2008; Nordstrom et al., 2015). Approximately 20–50 thousand mines 
worldwide discharge AMD into surrounding river systems (Rezaie and 
Anderson, 2020). AMD treatment is challenging and expensive (Johnson 
and Hallberg, 2005; Akcil and Koldas, 2006) estimates for total global 
AMD remediation cost are often in the order of US$100 bn, and as a 
result, AMD-affected rivers are frequently left untreated (Hudson- 
Edwards et al., 2011; Lottermoser, 2015; Tremblay and Hogan, 2016).

AMD-derived metal(loid)s can be concentrated in aqueous and 
sediment phases, posing spatial and temporal environmental hazards 
(Johnson and Thornton, 1987). River sediment-borne As, Cu, Zn and Fe, 
for example, can be remobilised due to both physical (e.g. enhanced 
erosion during a storm event) and/or geochemical processes (e.g. 
reductive dissolution of metal(loid)-bearing Fe (oxy)hydroxides) 
(Balistrieri et al., 2007; Lynch et al., 2014; Cánovas et al., 2014).

The major controls on the spatial and temporal variabilities of 
aqueous metal(loid) behaviour in mining-affected rivers have been 
shown to be source type (Lottermoser, 2010), pH (Hierro et al., 2014; 
Jarvis et al., 2019), redox potential (Lynch et al., 2014), discharge 
(Byrne et al., 2013; Onnis et al., 2023), dilution from sources and 

streams with low metal(loid) concentrations (Olías et al., 2020), and 
rainfall (Sarmiento et al., 2009). For example, an inverse relationship 
between pH and metal(loid) concentrations has been recorded in the 
AMD-affected Huelva Estuary (Spain) (Hierro et al., 2014) and Coledale 
Beck (UK) (Jarvis et al., 2019). Jarvis et al. (2019) observed increased 
metal(loid) release at higher river discharge due to inputs of low pH 
runoff from acid peat soils in Coledale Beck (UK). AMD metal(loid)s can 
also be mobilised during stormflow events as a result of dissolution of 
efflorescent metal sulfates (Sarmiento et al., 2009) and flushing of soil 
and sediment porewaters (Byrne et al., 2013).

Monitoring metal(loid) loads is fundamental for source apportion-
ment (Kimball et al., 2002; Byrne et al., 2020). Spatial sampling and 
synchronous discharge (tracer injection and salt dilution gauging) 
measurement methods were used in Nant Cwmnewyddion (UK) over a 
hydrological cycle to identify diffuse and point sources of aqueous 
metals under different discharge conditions (Onnis et al., 2023). A 
synoptic discharge monitoring method (velocity-area) was used by 
Banks and Palumbo-Roe (2010) to identify previously unknown point, 
discrete and diffuse sources, along with Zn sinks in rivers in the northern 
Pennines (UK). Source apportionment is especially important in identi-
fying diffuse sources, which may become more prominent with 
increased flooding from predicted increased rainfall due to climate 
change (Foulds et al., 2014; Arnell et al., 2015).

Despite detailed studies like these, there remains a relatively limited 
understanding of the annual (seasonal) and decadal (10s of years) trends 
of riverine geochemistry, metal(loid) concentration and load in AMD- 
affected catchments, often due to a lack of monitoring data. Such 

Fig. 1. Location of the Carnon River and Restronguet Creek sample sites used in this study. Sample locations from the Environment Agency are indicated as circles. 
For this study, squares stars represent water samples and flow measurements. EA data points are monitoring sites. Numbered inputs refer to adit inputs and tributaries 
of the Carnon River. Input 1 – Wheal Maid sites. Input 2 – County Adit (Wellington and Nangiles Adit) (discharge estimate taken) Input 3 – Hicks Mill (historic As 
calciner) (discharge measured) Input 4 – Wheal Jane Adit (no discharge measured) Input – 5 Potential Adit (no discharge measured) Input 6 – Grenna Lane Bridge 
(discharge measured) Input 7 – Downstream Devoran Bridge wetland (no discharge measured). Downstream of the A39 road is the fresh- and seawater mixing zone 
(4.6 km). Sample details are provided in the supplementary information (S.I.) in S1.
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knowledge is essential in understanding and predicting metal(loid) fate 
and designing effective remediation strategies. To address this gap, this 
work investigated metal(loid) behaviour along the length of an AMD- 
affected river over different hydrological conditions over one year. To 
address the temporal controls on metal(loid) distribution, an analysis of 
instream concentration and discharge data collected between 2000 and 
2021 by the Environment Agency (England) (EA) was also conducted. 
The outcomes of this study are intended to provide a fundamental 
mechanistic understanding of the dynamic behaviour and fate of key 
AMD-generated metal(loid) contaminants (As, Cu, Fe and Zn) within 
riverine systems as a function of changing hydrological conditions and 
time. Such detailed knowledge is essential for accurately informing river 
management policy in the future.

2. Methods and materials

2.1. Area of study

The Carnon River in Cornwall, SW England, is 14 km long, has a 
catchment area of 31 km2, and discharges into the tidally affected 
Restronguet Creek (Environment Agency, 2020a, 2020b) (Fig. 1). The 
river is underlain by silt and sandstones from the Mylor Slate Formation 
and hosts mineral veins containing As-Cu-Fe-Pb-Zn sulfides, cassiterite 
(SnO2) and wolframite ((Fe, Mn)WO4) (Embrey and Symes, 1987; Pirrie 
et al., 2002). Mining in the Carnon River catchment began in the Bronze 
Age and continued intermittently until the closure of Wheal Jane in 
1991 (Embrey and Symes, 1987; Pirrie et al., 2003; Rainbow, 2020). The 
river receives AMD from legacy mining sources, including the County 
Adit, Nangiles Adit, and Wellington Adit (Pirrie et al., 2002). The County 
Adit is an underground gallery connecting over 60 km of historical mine 
workings and is one of the most contaminated water bodies in the UK, 
estimated to provide 26 % of Fe (together with the Dolcoath Adit) and 
67 % of As to England and Wales's overall load from abandoned mines to 
estuaries (Mayes et al., 2010). At its operational peak in the 1890s, the 
County Adit discharged over 65 million L daily of metal(loid) contam-
inated water into the Carnon River (Buckley, 1992; Rainbow, 2020). The 
river has also been affected by infrequent large-scale events, such as the 
flooding of the Wheal Jane Mine in January 1992 when 50 million L of 
pH 3.1, metal(loid)-bearing mine water was accidentally discharged 
(Banks et al., 1997; Pirrie et al., 2002). Since 1994, water from the 
former underground workings at Wheal Jane Mine has been treated 
before release to the Carnon River (near input 4, 2.17 km; Fig. 1) 
(Environment Agency, 2022).

The Carnon River is recognised as AMD-affected and has been 
investigated for many decades (e.g., Bryan and Gibbs, 1983; Pirrie et al., 
2003; Meyer et al., 2019). However, a full understanding of the temporal 
and spatial trends and sources of metal(loids) in the Carnon River has yet 
to be established. Additionally, discharge data have been recorded at 
very few sites along the river, and contaminant loads have been recor-
ded only for Restronguet Creek and the County Adit (Mayes et al., 2010; 
Mayes et al., 2013). The lack of discharge data compromises the reli-
ability of source apportionment exercises, since mass input and export of 
metal(loid)s cannot be quantified by concentration data alone (Kimball 
et al., 2002; Runkel et al., 2018). The mining history and short length 
(14 km) of the Carnon River allowed for an extensive investigation into 
the behaviour of the aqueous metal(loid)s from source to sink.

2.2. Water sampling and discharge measurements

To determine the months that best represented the hydrological 
cycle captured by low (Q75), medium (Q50) and high-discharge (Q25) 
Carnon River behaviour, an analysis of river flow archive data (NRFA) 
was conducted (NRFA, 2021) (S.I. section S2). Meteorological data were 
not included in determining the sampling months due to its limited 
ability in representing site specific hydrological conditions (Stewart, 
2015; Frassl et al., 2018). As a result of the analysis, the months chosen 

were April 2021 (lower mid Q50–75), August 2021 (low Q75), 
November 2021 (upper mid Q25–50) and February 2022 (high Q25). 
Discharge monitoring data from the NRFA were collected at Bissoe (1.6 
km, Fig. 1 input 3), and low, medium, and high discharge were defined 
as <330 L/s, 330–552 L/s and >948 L/s, respectively.

Water samples and discharge and aqueous geochemical measure-
ments were taken at 21 sites in the Carnon River catchment in each of 
the four sampling months. The sampling sites were selected to capture 
inputs from all main tributaries and adits while having regular spacing 
to account for diffuse metal(loid) inputs or attenuation, where inputs 
could not be seen (Fig. 1). The number of accessible sampling sites 
varied throughout the year, as some became either accessible or inac-
cessible due to seasonal or logistical constraints. During the sampling 
campaigns river discharge, water turbidity and embankment shape and 
colour data were collected.

At each site, two water aliquots were taken. One aliquot was filtered 
through a cellulose 0.45 μm filter, and the other was unfiltered. Both 
were collected in 30 mL clean polyethylene bottles and acidified with 2 
mL of 5 M HNO3. Unfiltered samples were defined as comprising sus-
pended particulate and dissolved aqueous phases and filtered samples 
were defined as comprising <0.45 μm suspended particles and dissolved 
aqueous phases (Buffle and Leppard, 1995a, 1995b). Locations influ-
enced by the tide (south of the A39; Fig. 1) were sampled at the same 
tidal height (mid-tide) during each sampling campaign to minimise tide- 
induced geochemical variability. Additional samples were taken at a 
wetland near Hicks Mill stream (input 3, 1.8 km) and from the Grenna 
Lane Bridge tributary (input 6, 3.12 km) in November 2021 and 
February 2022 (see S3 in S.I.). For quality assurance, two sites (repre-
senting 10 % of the sites) were selected randomly in each sampling 
campaign for field blanks and field duplicates. Field blanks were used to 
assess potential atmospheric contamination and were made by exposing 
deionised water to environmental conditions at the allocated site and 
preparing aliquots as per the filtered and unfiltered samples. Field du-
plicates were taken to assess the precision of sampling and analysis. In 
total, 172 samples were collected, comprising 86 unfiltered and 86 
filtered samples. Sample locations and names are detailed in Table S1 in 
S.I.

Field measurements of pH and temperature (HACH sensION 
+mm156 multiprobe), electric conductivity (EC) (Fisherbrand Trace-
able Conductivity/TDS Meter Pen), and GPS (GARMIN etrex 10) were 
taken at each sampling site. The pH and EC were calibrated using Hanna 
Instruments pH 4.01, 7.01, 10.01, and EC 1413 μS/cm calibration 
solutions.

The salt dilution gauging method (slug injections; Moore, 2004; 
Jarvis et al., 2019) was chosen to measure river discharge velocity. This 
method was appropriate for this study because the Carnon River has a 
narrow width, deep cross-sections, varying velocities and an irregular 
riverbed (Moore, 2004). Nine of the twenty-one sample sites had 
discharge measured (Fig. 1). The other sites did not have the required 
length for the salt dilution method or were flooded. The load was 
calculated from the discharge measurement and concentration recorded 
at that time. The County Adit's discharge was estimated by subtracting 
the flows of the upstream (50.234 N, − 5.139 W) and downstream 
(50.234 N, − 5.139 W) sites of the County Adit confluence with the 
Carnon River, and by assuming that there were no diffuse sources in this 
segment. The latter site did not have any discharge recordings during 
November and February due to limited access to the site and issues with 
performing the slug injection, such as high suspended solids interfering 
with the EC recordings. The August 2021 discharge measurement was 
not taken at the 1.9 km site due to inaccessibility. Details on salt dilution 
gauging methods, source apportionment, effective inflow concentration 
calculations, attenuation and load calculations are given in S4 of the S.I.

To compare the Carnon River metal(loid) loads with other AMD 
systems, metal(loid) yields (tonnes/year/km2) were calculated by 
dividing the load by the river's catchment area. The catchment area was 
calculated using the watershed feature on GIS (ArcGIS online ESRI).
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2.3. Geochemical analysis

Filtered acidified samples were analysed for As, Cu, and Zn by 
Inductively Coupled Plasma – Mass Spectroscopy (ICP-MS; Agilent 
7700×) and for Fe and S by Inductively Coupled Plasma – Optical 
Emission Spectroscopy (ICP-OES; Agilent 5110 Series). Unfiltered 
acidified samples were analysed for As, Cu, Zn, Fe and S metal(loid) 
concentrations using the ICP-OES. Sulfur was analysed to interpret 
mechanisms in the Carnon River and is not a focus in this study.

The accuracy of the analysis was assessed using certified reference 
materials (CRM) for trace (QC1488_LRAC1572 Trace metals WS20mL) 
and major metal(loid)s (QC3041_LRAA8648 Mineral whole volume 500 
mL) (1640a Trace metals in water). Accuracy was calculated as the co-
efficient of variation (CV%) between analysed and certified concentra-
tions using Excel (2016) (see S5 in S.I. for CV% values and lower limit of 
detections). Concentration and load error bars were calculated from 
field duplicate CV% results due to inaccuracies (large CV%) in the CRM 
analysis described in S5 in S.I.

2.4. Chemodynamic and chemostatic relationships

The relationship between discharge and concentration was examined 
by plotting the power law relation (Eq. (1)) against the coefficient of 
variation of concentration (CVC) and discharge (CVQ) (Godsey et al., 
2009; Koger et al., 2018): 

C = aQb (1) 

where C is concentration, a is a constant, Q is discharge, and b is the log- 
log slope.

The concentration and discharge analysis can uncover the degree to 
which hydrology controls chemistry, and the concentration-discharge 
relationship can help to discern possible sources. The relationship be-
tween the discharge and concentration of each metal(loid) can be either 
chemostatic or chemodynamic. Chemostatic (defined as slope b >±0.1 
and CVC/CVQ is >0.5) indicates that the metal(loid) concentration is 
constant over the range of discharge values, while chemodynamic (CVC/ 
CVQ < 0.5) behaviour indicates that concentration changes with 
changing water parameters (pH, alkalinity, redox, dissolved oxygen (%), 
temperature and EC) and discharge (Musolff et al., 2015). The power 
law relation can be documented as either a ‘flushing’ (concentration 
increases with increasing discharge) trend (slope b >0.1) or a ‘dilution’ 
(concentration decreases with increasing discharge) trend (slope b 
<− 0.1) (Godsey et al., 2009). Statistical analysis was performed using 
Origin Lab Pro. Simple linear regression fits between discharge and 
concentration were done to obtain the coefficient of variation (R2). The 
standard error of the slope (Sb) was calculated to quantify how accurate 
the slope estimates are based on the sample data. Results of the statis-
tical analysis (p-values) are presented in Table S6 (S.I.).

2.5. Environment agency (EA) data analysis

To examine decadal metal(loid) concentration trends in the Carnon 
River, time-series plots of unfiltered and filtered As, Fe, Cu, and Zn 
instream concentrations were produced using data collected between 
January 2000 and December 2021 (Environment Agency, 2021). 
Unfiltered Cl was also plotted to determine if the downstream part of the 
Carnon River was affected by sea water (Devoran Bridge, ~4.3 km). The 
data were collected at three sample points: upstream of the County Adit 
(50.234 N, − 5.139 W) (unaffected by the County Adit) (0.65 km), 
downstream of the confluence of the County Adit and the Carnon River 
(50.234 N, − 5.138 W) (directly affected by the County Adit) (0.94 km), 
and a downstream site which discharges into the estuary (50.214 N, 
− 5.10 W) (4.3 km) (Fig. 1). Discharge data were also collected for 
Twelveheads and the County Adit – Carnon River confluence (from 
2009) but none were available for the downstream estuary site. The 
selected sites and timeframe were extracted, summarised, and concat-
enated into a CSV file using Python (3.11). Discharge data were grouped 
and averaged for daily flow readings using Python (3.11). These data 
were then analysed with Origin Lab Pro (2023). The Mann-Kendall (MK) 
statistical test was used to determine temporal trends in EA time series 
data (2000− 2021) (Hirsch and Slack, 1984) and was executed using a 
multitest (version 6.1) VBA macro on Excel (2016) (see Table S7 in S.I.).

Fig. 2. Photographs of the Carnon River and County Adit taken between April 
2021 and February 2022. (A) The confluence of the County Adit (CA) and 
Carnon River (CR); (B) Iron (oxy)hydroxide (ochre) precipitation on the culvert 
wall downstream of the confluence of the CR and CA; (C) Iron (oxy)hydroxide 
(ochre) rich floodplain; (D) Physical release of floodplain Fe (oxy)hydroxides 
(ochres) downstream of Bissoe (1.6 km) by agitation.

Table 1 
Unfiltered and filtered (<0.45 μm) concentrations of As, Cu, Fe, and Zn in the Carnon River from this study and earlier works. All concentrations are in mg/L.

Bryan and Gibbs (1983)
(n = 3)

Environment Agency (2021)
(2000–2021) (n = 695)

This study 
(n = 172)

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered

As 0.03–0.2 0.031–0.082 0.01–0.67 0.01–0.15 <0.0004–0.21 0.004–0.2
Cu 0.053–0.68 0.054–0.68 0.03–1.17 0.03–1.17 0.02–0.53 0.02–0.6
Fe 0.137–25 0.05–18.5 0.08–13 0.03–4.9 0.05–2.6 <0.003–0.9
Zn 0.93–12 0.95–12 0.29–3.4 0.78–2.6 0.42–1.95 0.4–2.2
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Fig. 3. Filtered (<0.45 μm suspended particulate and dissolved phases) and unfiltered (suspended particulate (>0.45 μm) and dissolved phases) metal(loid) con-
centrations and water parameters (pH and EC) vs distance downstream in April, August, November (2021) and February (2022). Locations of numbered incoming 
tributary sites (numbered vertical lines in Fig. 1) are as follows: input 1 is Wheal Maid (0.4 km), input 2 is the County Adit (0.88 km), input 3 is Hicks Mill stream 
(1.8 km), input 4 is Wheal Jane (2.17 km), input 5 is potential adit (2.79 km), input 6 is Grenna Lane Bridge tributary (3.12 km) and input 7 is the Devoran Bridge 
wetland (4.64 km)). 0 km is an unaffected site upstream of the County Adit – Carnon River confluence. Input 1 has been marked as 0.4 km to avoid confusion with the 
County Adit distance and placed in the correct position in the Carnon River.
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3. Results and discussion

3.1. Annual instream metal(loid) concentrations and loads, downstream 
trends, and sources in the Carnon River

3.1.1. Aqueous and geomorphological observations of the Carnon River 
catchment

The Carnon River underwent changes in river discharge, water 
turbidity and embankment shape and colour throughout the sampling 
year. The water changed from clear to cloudy after the County Adit – 
Carnon River confluence (0.94 km) and remained cloudy downstream 
(Figs. 2.A, 2.B). Iron (oxy)hydroxides (possibly including oxy-
hydroxysulfates but referred to in this paper collectively as Fe (oxy) 
hydroxides) (ochre) were volumetrically most abundant after the 
County Adit - Carnon River confluence and at Bissoe (1.6 km). The Fe 
(oxy)hydroxides were deposited onto floodplains between the conflu-
ence and 4.6 km (ochre floodplain in Fig. 2.C). During the sampling 
campaigns, they were physically mobilised from riverbanks and riparian 
areas during rainfall events and after agitation (Fig. 2.C, 2.D).

3.1.2. Annual downstream trends of instream metal(loid) concentrations 
and water parameters in the Carnon River catchment

Instream metal(loid) concentrations, pH and EC exhibited large 
ranges along the Carnon River (Table 1, Fig. 3), similar to those found in 
earlier studies (Bryan and Gibbs, 1983; Environment Agency, 2021). 
This variability was likely due to differing sampling times and riverine 
discharge throughout the year (discussed further in Section 3.2.).

The Carnon River EC was 142–250 μS/cm upstream of the County 
Adit – Carnon River confluence (0.94 km) and increased consistently 
throughout the sampling year at the confluence to 167–335 μS/cm, 
likely due to the input of aqueous ions including metal(loid)s from the 
County Adit (input 2, 0.88 km) (Fig. 3). Similarly, the increase in the 
Carnon River EC (279–443 μS/cm) at 2.19 km downstream was likely 
due to inputs of higher EC (567–850 μS/cm) waters from the Wheal Jane 
Adit (input 4, 2.17 km) Fig. 3). The EC further increased downstream of 
this confluence (2.19 km) to the estuary (7.74 km) to a maximum of 
26,600 μS/cm (Fig. 3), likely due to the mixing with seawater at 4.6 km 
and inputs from tributaries with higher EC values (Fig. 3).

The pH in the Carnon River upstream of its confluence with the 
County Adit (0.94 km) was 6.04–7.02 and consistently decreased 
downstream of this point to 5.17–5.84 throughout the sampling year 
(Fig. 3). It then rose and remained constant (average pH 6.28) until the 
estuarine point (7.74 km), increasing further to 8–8.17. Water temper-
atures in the Carnon River ranged from 10 to 15.5 ◦C and 9.7 to 20.7 ◦C 
in the inputs (adits and tributaries) (Fig. S8 in S.I.). Throughout the 
sampling campaign, the river temperatures increased downstream of the 
County Adit confluence and of the Hicks Mill stream (input 2, 1.8 km) at 

2 km (Fig. S8 in S.I.).
AMD-affected river systems have been shown to have elevated con-

centrations of metal(loid)s after confluences of point sources such as 
adits. Dilution from less contaminated tributaries typically cause these 
concentrations to recover to values recorded upstream of the confluence 
(Kimball et al., 2002; Cánovas et al., 2014). In the Carnon River, how-
ever, filtered and unfiltered Cu and Zn concentrations did not recover to 
those upstream of the confluence of the County Adit (0.94 km), but 
mostly increased or remained level at 1.6 km and decreased gradually 
downstream of the confluence to 7.74 km (Fig. 3). This can be explained 
by the chemodynamic (CVC/CVQ = 0.61–0.76) behaviour displayed by 
unfiltered and filtered Cu and Zn with a flushing trend in the Carnon (b =
0.57–0.79, R2 = 0.03–0.1, Sb = 1.05E− 04-3.88E− 04) (Fig. 4, Table S6 in 
S.I.). This behaviour indicates that concentrations increased with river 
discharge and explains why the Cu and Zn did not decrease with dilution 
from tributaries with lower concentrations (Fig. 5). Flushing behaviour 
has been linked to metal(loid) mobilisation from exposed riverine sed-
iments that can contain legacy mine waste (Byrne et al., 2013) and from 
erosion of river embankments (Kimball et al., 1995). In the Carnon 
River, such behaviour is reflected in the erosion of ochre floodplains 
(Fig. 2.D) that could contain Cu- and Zn-bearing Fe (oxy)hydroxides 
generated at the confluence with the County Adit.

Decreases in filtered and unfiltered As, Fe and S concentrations 
downstream of the County Adit – Carnon River confluence (0.94 km) 
(Fig. 3) likely reflect the formation of As-bearing Fe (oxy)hydroxide and 
oxyhydroxysulfate ochres. Fluctuations in these concentrations down-
stream of this point may reflect dissolution, erosion and dispersion of 
these ochre (Fig. 1.B, 1.D).

The difference between the effective inflow concentration for the 
stream segment (1.6–1.9 km) receiving the Hicks Mill stream input 
(input 3, 1.8 km) and the observed concentration of the inflow was 
mostly large (>41 %) for As, S and Fe. The difference between the 
effective inflow concentrations of As, S and Fe for the stream segment 
(1.9–4.3 km) receiving the potential adit input (input 5, 2.79 km) and 
the observed concentration of the inflow was 76 % (Table S9 in S.I.). 
This suggests that a portion of unsampled As, Fe and S existed, implying 
an additional source in the stream segments 1.6–4.3 km which could be 
groundwater or hyporheic zone water.

Unfiltered and filtered Fe, S and As exhibited a chemodynamic (CVC/ 
CVQ = 0.59–2.8) behaviour with very weak flushing (b = − 0.04-0.30, 
R2 = − 0.002-0.41, Sb = 2.39E− 05-6.10E− 05) (Fig. 4, Table S6 in S.I.). 
This suggests that although Fe, S and As concentrations vary with 
discharge, other factors may have more influence on their behaviour 
(Musolff et al., 2015). These could include pH (Jarvis et al., 2019), ORP 
(Lynch et al., 2014), groundwater inflow and soil through flow (Byrne 
et al., 2013).

Fig. 4. Power law relation (slope [b]) vs coefficient of variation of concentration divided by the coefficient of variation of discharge (CVC/CVQ). The dashed line 
shows the definition between chemostatic and chemodynamic behaviour. The 0 to +1 line defines the ‘flushing’ trend. The 0 to − 1 line defines the ‘dilution’ trend.
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Fig. 5. Unfiltered (comprising suspended particulate and the dissolved phases) and filtered (comprising <0.45 μm suspended particulate and dissolved phases) metal 
(loid) loads vs distance downstream between April, August, November (2021) and February (2022). Discharge values are shown as circular symbols. Rectangular 
boxes highlight tributary and adit inputs (Fig. 1). Input 1 (Wheal Maid) has been marked as 0.4 km to avoid confusion with the County Adit distance and placed in the 
correct entry part of the Carnon River (0.8 km). Input 2 represents the County Adit site (0.8 km). 0 km is an unaffected site upstream of the County Adit. Input 3 is 
Hicks Mill (1.8 km). Input 6 is the Grenna Lane Bridge tributary (3.1 km).
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3.1.3. Annual downstream trends of instream loads in the Carnon River 
catchment

Contaminant loads for metal(loid)s (excluding filtered As) increased 
after the confluence of County Adit and Carnon River (0.94 km) (Fig. 5) 
(0–7.15 to 47–1515 kg/month). In April and August 2021, the County 
Adit contributed high unfiltered and filtered loads of Cu (59–81 %), Zn 
(46–83 %), and Fe (49–86 %) (Fig. 6, Table S10 in S.I.) to the cumulative 
load of the Carnon River. The highest contributions of unfiltered and 
filtered As (42–96 %) and S (47–85 %) to the cumulative load (Table S10 
in S.I.) of the Carnon River occurred at 4.3 km (Fig. 6) where a secondary 
source of these elements has been proposed (Section 3.1.2). Decreases in 
some of the loads in the 1.6 to 4.3 km segment (e.g., unfiltered Fe in 
November 2021; Fig. 5) indicate metal(loid) attenuation that is reflected 
in processed such as the deposition of the Fe (oxy)hydroxides in the 
ochre floodplain (Fig. 1.D).

The calculated maximum filtered and unfiltered loads into the es-
tuary were Cu 710 and 742 kg/month Cu, 3430 and 3320 kg/month Zn, 
281 and 354 kg/month As, 513 and 1960 kg/month Fe and S 128,000 
and 125,000 kg/month S, respectively. These metal(loid)s and S were 
likely transported and deposited in aqueous or sediment form to the 
estuary or open ocean (Pirrie et al., 2002), where they could, in turn, be 
remobilised by physical (high discharge and tides, rising sea levels) and 

chemical processes (pH, EC, ORP, temperature, ocean acidification) 
(Turley and Findlay, 2009; Erickson and Brase, 2019).

3.2. Seasonal and decadal trends in metal(loid) concentrations and load

3.2.1. Seasonal trends in instream metal(loid) concentrations and loads in 
the Carnon River

The downstream trends of metal(loid) concentrations for the sam-
pling year remained constant, with a few outliers (e.g., unfiltered Fe 
loads in April and November) (Fig. 3) which can be attributed to 
differing hydrological and climatic conditions. For example, the highest 
metal(loid) concentrations were recorded in April 2021 (Fig. 3). These 
could be due to reduced rainfall in the sampling week that reduced 
dilution (Table S11 in S.I.), as observed in other AMD-affected catch-
ments (e.g., Rio Odiel and Rio Tinto, Spain) (Braungardt et al., 2003; 
Sarmiento et al., 2009). In contrast, some of the highest metal(loid) 
concentrations from the County Adit (input 2, 0.88 km) were recorded in 
November 2021 (excluding Zn), coinciding with a period of high rainfall 
(see Table S11 in S.I. for rainfall data) recorded in the sampling week 
(18.6–25 mm). This likely led to high discharge which in turn could have 
flushed higher amounts of metal(loid)s out of the County Adit (input 2, 
0.88 km).

Fig. 6. Percentage contributions of As, Cu, Zn, Fe and S to the cumulative metal(loid) load of the Carnon River. Dashed lines indicate inputs of tributaries and adits. 
Solid coloured bars represent unfiltered and hashed colour bars represent filtered. Input 2 – County Adit (Wellington and Nangiles Adit nearby (0.88 km)) Input 3 – 
Hicks Mill stream (1.8 km) Input 4 – Wheal Jane Adit (2.17 km) Input – 5 Potential Adit (2.79 km) Input 6 – Grenna Lane Bridge tributary (3.12 km). Negative 
percentage contributions suggest site-specific attenuation, where no contributions of contaminants to the metal(loid)load were observed.
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Although the highest metal(loid) concentrations were recorded in 
April 2021, the loads were highest in February 2022 (during Q25 flow 
conditions) (Fig. 5). The latter could have resulted from high rainfall in 
the week preceding the sampling period (83.4 to 87.2 mm) (Table S11 in 
S.I.) and the high discharge (Q25, 852 L/s) recorded in the February 
campaign. The latter could have caused river embankment erosion and 
suspension of metal(loid)-bearing Fe (oxy)hydroxides (Fig. 2.D). The 
low attenuation (difference between the cumulative load and the 
instream measured load (eq. 4 in S.I.)) of unfiltered and filtered Fe, Cu, 
Zn, S and As in February 2022 (<21 %; Fig. S12 in S.I.) suggests that the 
elevated discharge conditions may have reduced the retention of metal 
(loid)s within the Carnon River sediments.

3.2.2. Decadal trends in instream metal(loid) concentrations in the Carnon 
River

Temporal aqueous changes in unfiltered and filtered As, Cu, Fe and 
Zn concentrations from 2000 to 2021 in the Carnon River upstream of 
the County Adit at Twelveheads, at the confluence of the County Adit 
and the Carnon River, and in the estuary (Devoran Bridge) are shown in 
Fig. 7. Concentrations at the Carnon River – County Adit confluence 
were higher than those at Twelveheads, highlighting the substantial 
metal(loid) inputs from the County Adit (Fig. 7). At Twelveheads, most 
concentrations did not change significantly over the 22-year sampling 
period, except for unfiltered and filtered As and pH (which increased) 
and filtered Fe and unfiltered and filtered Zn (which decreased; Fig. 7).

At the County Adit – Carnon River confluence, statistically signifi-
cant increases in Cu (Mann Kendall (MK) 1357 to 2110, n 149, p < 0.05) 
and Zn (MK 1220 to 1417, n 149, p < 0.05) and decreases in pH (MK 
-1766, n 149, p < 0.05) occurred over time (Fig. 7, Table S7 in S.I.). 
These trends differ from those in other AMD-affected systems, including 
the Afon Ystwyth (UK) (1919–2005) and Rookhope Burn (UK) 
(1977–2008) (Mayes et al., 2010). In these systems, metal(loid) 

concentrations reached asymptotic values, and pH increased between 10 
and 20 years after the cessation of mining. The Carnon River's increasing 
Cu, Zn and acid generation over time could have been due to the 
continuous and perhaps increasing discharge of AMD from the County 
Adit and to a lack of buffering capacity in the underlying silts and 
sandstone (Embrey and Symes, 1987; Scrivener and Shepherd, 1998; 
Pirrie et al., 2002). Discharge at the EA monitoring sites (Twelveheads 
and the County Adit – Carnon River confluence (Fig. S13 in S.I.)) 
increased between 2000 and 2021, as shown by Mann Kendall (MK) 
analysis (Table S7 in S.I.; MK 298217 to 686,489, n 4557–4567, p <
0.05). If the trend of increasing discharge continues, the resulting higher 
water levels in the underground County Adit could cause more frequent 
flushing of Cu and Zn, mobilising these metals from the heavily miner-
alised area into the river system due to their chemodynamic behaviour 
(Fig. 4).

In contrast, at the confluence, statistically significant decreases in 
filtered and unfiltered As and Fe concentrations occurred between 2000 
and 2021. Arsenic (MK -2255 to − 2672, n 149, p < 0.001), Fe (MK -2295 
to − 2932, n 149, p < 0.001), and pH (MK -1766, n 149, p < 0.05), 
exhibited a significant negative trend indicated by Mann Kendall sta-
tistics, implying an inverse temporal relationship. The decline in As and 
Fe could be due to the increased precipitation of As-bearing Fe (oxy) 
hydroxides from Fe (II) oxidation and hydrolysis (Dold, 2014) of the 
County Adit AMD over the 20 years of data collection. The distinct 
geochemical behaviour of Fe, compared to Cu and Zn, reflects its ten-
dency to precipitate as Fe oxides under low pH conditions (Dold, 2014), 
even in the absence of neutralizing rock materials. This precipitation 
process explains the observed differences in their temporal evolution.

At Devoran Bridge, Mann Kendall test results (Table S7 in S.I.) 
indicated a significant positive trend with time for As (MK 4083 to 5606, 
n 357, p < 0.001), unfiltered Fe (MK 2892, n 357, p < 0.001), and pH 
(MK 8783, n 357, p < 0.001). This trend implies a direct temporal 

Fig. 7. Unfiltered (black) (comprising suspended particulate and the dissolved phases) and filtered (red) (comprising <0.45 μm suspended particulate and dissolved 
phases) As, Cu, Fe and Zn concentrations between 01/01/2000 and 02/12/2021 at Twelveheads, Confluence of the County Adit (CA) and Carnon River (CR), and 
Devoran Bridge in the Carnon River (green circles on Fig. 1).
(Data from Environment Agency monitoring sites (Environment Agency, 2021). Lines are linear curve fits extracted using Origin Lab Pro.)
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relationship with concentration, indicating that As and unfiltered Fe 
concentrations and pH increased with time (Figs. 7, 8). These trends 
could be explained by the transport downstream of the As-bearing Fe 
(oxy)hydroxides and their storage in floodplains and subsequent phys-
ical and chemical remobilisation. Copper (MK -12,871 to − 15,929, n 
357, p < 0.001) and Zn (MK -18,078 to − 21,028, n 357, p < 0.001) 
exhibited a significant negative trend at Devoran Bridge, implying an 
inverse temporal relationship. This relationship could be due to sorption 
or ion exchange of Cu and Zn on estuarine minerals as a response to 
increased pH with time (Figs. 7, 8) (Dzombak and Francois, 1990; 
Wołowiec et al., 2019). This in turn could be related to rising sea levels, 
suggested by increasing aqueous Cl concentrations recorded at Devoran 
Bridge over the 20 years (Fig. S14 in S.I.) and recorded rising sea levels 
at Newlyn, SW England (~36 km from the estuarine mouth of the Car-
non river) that have been documented as 3.8 mm/year from 1993 to 
2014 (Bradshaw et al., 2016).

3.3. Global importance of the Carnon River

Metal(loid) concentrations in the Carnon River are compared with 
other AMD-affected river systems in Table 2. The Carnon River As, Cu, 

Zn, and Fe concentrations determined in this study are higher than the 
Tamar River (UK) (Mighanetara et al., 2009). By contrast, Cu, Fe and Zn 
concentrations in the Carnon River are mostly orders of magnitude 
lower than those of Chinaman Creek (Australia) (Lottermoser and Ash-
ley, 2006), Rio Tinto (Hudson-Edwards et al., 1999) and the Heng Shi 
River (China) (Zhao et al., 2012) (Table 2). Arsenic concentrations in the 
Carnon River exceed those of Chinaman Creek (Australia) and the Heng 
Shi River (China) (Table 2). The varying degrees of AMD-related metal 
(loid) contamination in these river systems underscore the importance 
of tailored environmental management strategies and the need for 
comprehensive monitoring and remediation efforts worldwide.

Yields of As from the Carnon River determined for this study are 
higher than those of the other AMD-affected rivers reported in Table 3. 
Although most of the rivers reported in Table 3 have higher yields of Cu, 
Fe and Zn, the Carnon also exports considerable amounts of these metals 
to the coastal zone. The yields for As, Cu, Fe and Zn recorded at the 
County Adit by Mayes et al. (2010) are higher than those reported in this 
study, likely due to the former study reporting unfiltered loads and the 
latter reporting filtered loads (Table 3). Using yield to estimate a river 
catchment's metal(loid) export could highlight key contaminating sites 
and better develop treatment and management strategies for AMD- 

Fig. 8. pH data collected between 01/01/2000 and 02/12/2021 at Twelveheads, immediately downstream of the County Adit – Carnon River confluence and 
Devoran Bridge in the Carnon River (green circles in Fig. 1).
(Data from Environment Agency monitoring stations (Environment Agency, 2021).)

Table 2 
Filtered ‘dissolved’ concentrations (mg/L) in AMD-affected rivers after mixing with unaffected river water. n.r. = not reported.

Concentration 
(mg/L)

Chinaman Creek, Australia 
(pH 3.2) 
(Lottermoser and Ashley, 
2006)

Rio Tinto, Spain 
(pH 1.6–7.6) (Hudson-Edwards 
et al., 1999)

Heng Shi, China (pH 
2.6–7) 
(Zhao et al., 2012)

Tamar, UK 
(pH >5) (Mighanetara et al., 
2009)

Carnon River, UK (pH 
4.3–7.1) 
(This study) 
(Filtered)

As 0.019 0.5–25 0.03 0.082–0.34 0.004–7.3
Cu 7.77 0.05–240 0–7.7 0.0036–0.65 <0.0009–0.72
Fe 13.7 n.r. 116 0.055–3 0.02–25
Zn 23.1 0.3–420 35 0.0038–0.32 0.096–2
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affected rivers.

4. Conclusions

This study has highlighted the importance of using contemporary 
and historical data to investigate metal(loid) behaviour within an AMD- 
affected river catchment as a function of spatial and temporal variability 
over one year and over two decades. Annual (2021− 2022) and decadal 
(+20 years) trends in metal(loid) concentration, pH, EC, and tempera-
ture from the Carnon River showed that legacy underground mining 
adits continue to discharge contaminant metal(loid)s even after cessa-
tion of mining for several decades. Historical (+20 years) metal(loid) 
concentrations changed significantly (p < 0.05) downstream to the es-
tuary, with Cu and Zn showing a slight downward trend and As and Fe 
exhibiting a slight increase. These trends may be due to the erosion and 
dissolution of As-bearing Fe (oxy)hydroxides and sorption or ion ex-
change of Cu and Zn onto estuarine minerals as a response to the in-
crease in pH over time, which may be due to rising sea levels. Loadings 
of metal(loid)s in April, August and November 2021 and February 2022 
increased downstream with recorded maximum unfiltered loads at Cu 
742 kg/month, Zn 3320 kg/month, As 354 kg/month, Fe 1960 kg/ 
month and S 125,000 kg/month discharging into the estuary (Fig. 5). 
Arsenic, Cu, Fe, S, and Zn concentrations exhibited a chemodynamic 
behaviour (CVC/CVQ = 0.59–2.8) and flushing behaviour suggesting 
that they were susceptible to changes in river discharge and were likely 
mobilised from historically contaminated riverine sediments. Iron, S and 
As exhibited very weak flushing (b = − 0.04-0.30, R2 = − 0.002-0.41, Sb 
≤0.05) behaviour, indicating that their concentration varied with 
discharge and that other factors (pH, ORP, groundwater inflow, soil 
through flow; Jarvis et al., 2019; Lynch et al., 2014; Byrne et al., 2013) 
may be more critical in controlling their behaviour (Musolff et al., 
2015).

The research presented in this paper confirms earlier studies that 
proposed that the County Adit was a main contributor to metal(loid) 
contamination in the Carnon River. Importantly, this work also high-
lighted the role of diffuse sources to the metal(loid) loads to the river 

and coastal zone. Such sources may have been overlooked in other AMD- 
affected catchments.

Overall, this study illustrates the importance of monitoring AMD- 
affected rivers due to their highly variable behaviour as a function of 
space and time and their potential to contaminate fluvial and coastal 
environments for 10s to 100 s of years after mining has ceased. Only 
using a multifaceted and dual approach of comprehensive water sam-
pling as a function of changes in riverine discharge regime and historical 
trend data can we gain a strong understanding of the environmental 
behaviour of AMD-affected rivers. Such knowledge is vitally important 
to design remediation strategies and understand how their vulnerability 
and likely change in the future due to climate change.
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Table 3 
Filtered ‘dissolved’ yields (tonnes/year/km2) of metal(loid)s by adits and coastal outputs in AMD-affected catchments and their estimated watershed area (km2). n.r. is 
not reported.

Catchment Tamar, UK (Mighanetara 
et al., 2009)

Tyne, UK (Mayes 
et al., 2013)

Coledale beck, UK (Jarvis 
et al., 2019)

River Ystwyth, UK

Yield tonnes/ 
year/km2

Nant Cwmnewyddion, UK (Onnis et al., 
2018; Onnis, 2020)

Frongoch stream, UK (
Mayes et al., 2008)

Coastal or Adit 
load

Coastal Coastal Adit Adit Adit

Watershed area 
(km2) 967 2280 3.12 4.54 3.75

As 0.00252 n.r. n.r. n.r. n.r.
Cu 0.01344 0.00132 n.r. 0.00336 0.0054
Fe 0.06024 n.r. 0.0054 0.04308 n.r.
Zn 0.0072 0.04104 1.0242 0.01356 3.97572

Catchment Ria Del Huelva, Spain La Réole, France Carnon River, UK

Yield tonnes/ 
year/km2

Ria Del 
Huelva, 
Spain 
(Sainz et al., 
2004)

Rio Tinto, Spain (
Cánovas et al., 
2014)

Rio Odiel, 
Spain 
(Cánovas 
et al., 2021)

La Réole, France (
Audry et al., 
2005)

Rio Morte, France 
(Audry et al., 
2005)

Restronguet 
Creek* 
(This study)

County Adit (Mayes 
et al., 2010) 
(unfiltered)

County Adit 
(This study)

Coastal or Adit 
load

Coastal Adit Adit Coastal Adit Coastal Adit Adit

Watershed 
area (km2) 3760 807 891 51,200 172 50.9 20.7 20.7

As 0.00816 0.00444 n.r. n.r. n.r. 0.05124 0.13056 0.0036
Cu 0.44628 0.68808 0.09696 0.00156 n.r. 0.10284 0.04356 0.261
Fe n.r. 6.15264 0.08484 n.r. n.r. 0.07428 6.78636 0.2436
Zn 1.0902 0.84564 0.11304 0.00492 0.26376 0.4818 1.64148 0.783
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