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Abstract
1.	 Conservation translocations are an established method for reducing the extinc-

tion risk of plant species through intentional movement within or outside the in-
digenous range. Unsuitable environmental conditions at translocation recipient 
sites and a lack of understanding of species–environment relationships are often 
identified as critical barriers to translocation success. However, previous synthe-
ses have drawn these inferences from analyses of qualitative feedback rather 
than quantitative environmental data.

2.	 In this study, we use a data set of 235 translocations conducted in the US to 
understand the influences of geographic and environmental factors on three 
metrics of translocation success: population persistence, next-generation recruit-
ment and next-generation maturity. We use random forest models to quantify 
the relative importance of geographic and environmental factors that character-
ize dissimilarity between source and recipient locations, the position of recipi-
ent sites relative to species' ranges and niche metrics derived from these ranges. 
We also compare the importance of these variables with more conventional pre-
dictors (e.g. founder population size).
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1  |  INTRODUC TION

There is an urgent need to halt the loss of biodiversity, as global in-
dicators report widespread and ongoing decline (Díaz et al., 2019). 
A recent study of vascular plant diversity estimates that approxi-
mately 40% of species are at risk of global extinction (Nic Lughadha 
et  al.,  2020). Conservation translocation, defined by the IUCN as 
the intentional movement of a target organism for its conserva-
tion benefit (IUCN, 2013), is an established approach for reducing 
the extinction risk of plants when in  situ measures have failed to 
meet conservation objectives (Maunder, 1992). Thousands of plant 
translocations have been documented worldwide, allowing insights 
into management trends and the factors that drive project out-
comes (Bellis, Osazuwa-Peters, et  al.,  2024; Fenu et  al.,  2023; Liu 
et al., 2015; Silcock et al., 2019).

Translocation syntheses have consistently confirmed that using 
a large number of founding plants is one of the best predictors of 
a positive outcome (Bellis, Osazuwa-Peters, et al., 2024; Godefroid 
et  al.,  2011; Silcock et  al.,  2019). In contrast, environmental at-
tributes of the recipient site (e.g. climate, Godefroid et  al., 2011; 
Silcock et al., 2019), and a lack of understanding of species' rela-
tionships with the environment, are often identified as critical bar-
riers to success (Godefroid et al., 2016). However, to date, the role 
of environmental factors in influencing translocation outcomes 
has generally been inferred from qualitative feedback from prac-
titioners rather than quantitative environmental data (though see 
Monks et al., 2023).

Evidence and theories from the restoration and biogeograph-
ical literatures point towards several ways in which species-
environment relationships may influence translocation outcomes. 
First, because adaptation to local environments is both taxonom-
ically and geographically widespread in plants (local adaptation 
detected in 71% of studies, Leimu & Fischer,  2008), shorter en-
vironmental distances between source and recipient sites should 
help to avoid maladaptation of the translocated individuals (Houde 
et al., 2015). Second, as geographic and environmental gradients 
operating across species' ranges are associated with variability in 
the survival and growth of populations (Bontrager et  al.,  2021; 
Brown,  1984), placement of plants within environmentally opti-
mal areas of the range may promote long-term viability (Guisan 
et al., 2013; Maschinski et al., 2012). Third, because the response 
of introduced plants to site conditions is influenced by properties 
of the species' environmental niche (Pywell et al., 2003), species 
with broader niches may respond better to translocation through a 
wider tolerance of environmental conditions (Vincent et al., 2020).

Some of these concepts have been explored through analyses of 
transplant experiments and botanical garden collections, where re-
lationships between plant performance and geographic or macrocli-
matic factors have been quantified (Bontrager et al., 2021; Thomas 
et al., 2022). For example, analyses of transplant experiments have 
shown that populations moved to climatically marginal sites (e.g. 
colder or drier parts of the range) exhibit lower relative performance 
(Bontrager et al., 2021), whereas analyses of a botanical garden's ex 
situ collection have demonstrated that individual survival increases 

3.	 Our results indicate that geographic and environmental variables can be as in-
sightful as conventional variables for predicting plant translocation outcomes. 
The climate suitability of recipient sites, estimated using species distribution 
models, was the strongest relative predictor of whether a population persisted, 
with populations situated in more suitable climates displaying greater persis-
tence. Next-generation recruitment and maturity were best predicted by niche 
metrics; species in more biotically limiting environments, including tropical re-
gions and soils with high relative nutrient retention, as well as species with the 
broadest precipitation niches, were the least likely to attain these next-generation 
benchmarks.

4.	 Synthesis and applications. Our study is one of the first to quantify the impor-
tant role of spatial and climatic factors in rare plant translocation outcomes. We 
provide a novel geographic and environmental perspective on outcomes in plant 
translocations and demonstrate opportunities to improve translocation success 
not only by adhering to established best practice guidelines but also by integrat-
ing spatial modelling approaches into planning and management processes.

K E Y W O R D S
climate suitability, conservation translocation, endangered species, population restoration, 
reintroduction, species distribution model, threatened species
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    |  3BELLIS et al.

with greater climate similarity between in  situ and ex situ sites 
(Thomas et al., 2022). However, the goals and ecological settings in 
which plant material was moved in these studies differs from those 
of a conservation translocation, where the primary goal is to estab-
lish a self-sustaining population in the wild.

Here, we utilize the Center for Plant Conservation Reintroduction 
Database (Bellis, Albrecht, et al., 2024) to assess the importance of 
geographic and environmental variables for achieving population 
persistence, next-generation recruitment and next-generation matu-
rity in conservation translocations. We calculate a suite of predictors 
that characterize the dissimilarity between source and recipient lo-
cations, the position of recipient sites relative to species' ranges and 
niche metrics derived from these ranges. A prior study used the da-
tabase to assess the importance of management techniques, qualita-
tive site attributes and biological traits for attaining different metrics 
of translocation success (Bellis, Osazuwa-Peters, et al., 2024). Here, 
we use the top-performing variables in that study to understand the 
relative importance of our novel set of geographic and environmen-
tal predictors for influencing translocation outcomes and their po-
tential application in translocation planning and management.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We accessed data on 235 translocations of 121 plant taxa from the 
questionnaire-based Center for Plant Conservation Reintroduction 
Database (CPCRD) (Center for Plant Conservation,  2022) (see 
Appendix  S1). This subset of the CPCRD included projects with 
data on at least one metric of success (persistence, recruitment or 
maturity) as well as data for creating at least one of the categories 
of geographic and environmental predictors (site dissimilarity, site 
position or niche metric). We excluded population ‘augmentations’ 
or ‘reinforcements’, as it was unclear whether persistence or the 
attainment of life-cycle benchmarks in these projects was due to 
outplanted individuals or naturally occurring plants. Our subset of 
translocations had been monitored for an average of 8.4 (SD 7.4) 
years and encompassed diverse biogeographical representation, 
featuring species with distributions centred in tropical (<25° lati-
tude, n projects = 61), subtropical (25–35°, n = 71) and temperate 
regions (>35°, n = 87) (species distribution information was una-
vailable for 16 projects).

Each data point in the CPCRD represents a unique transloca-
tion project defined as the outplanting of plant propagules of a 
single species over a single or multiple years at the same site, or 
in multiple locations (<1 km apart) within a single site. If a spe-
cies was translocated to multiple locations, the CPCRD requires 
contributors to determine whether they qualified as single or 
separate projects based on their familiarity and knowledge of 
the species and translocation sites. To support this decision, the 
CPCRD also provides two rules of thumb: (1) spatial proximity 
rule: (i) distinct units that are <1 km apart should be collapsed into 

a single translocation project, (ii) distinct units that are 1–10 km 
apart should be considered single or separate projects depending 
on the species biology, project goals and habitat, (iii) distinct units 
that are >10 km apart should be considered separate transloca-
tion projects and (2) Experimental treatments rule: collapse all ex-
perimental treatments (such as competition reduction, herbivore 
exclusion or water supplementation) at a site into a single trans-
location project unless they can be considered separate projects 
based on the spatial proximity rule.

2.2  |  Metrics of translocation success

We evaluated translocation success across three metrics: popula-
tion persistence (extant or extinct), next-generation recruitment 
(attained or not attained) and next-generation maturity (attained 
or not attained). Although these binary metrics simplify complex 
outcomes, they are necessary for standardizing diverse data sets 
and allow comparability with Bellis, Osazuwa-Peters, et al. (2024) 
and other relevant syntheses (e.g. Silcock et al., 2019). For popula-
tion persistence, we grouped all extinct populations with popu-
lations containing <50 individuals and a decreasing population 
trend, based on the minimum viable effective population size rule 
in which 50 individuals are assumed to represent the absolute 
minimum number of plants required to prevent inbreeding depres-
sion (following the same methodology and justification as in Bellis, 
Osazuwa-Peters, et al., 2024).

2.3  |  Predictor variables

We identified 39 geographic and environmental predictor variables 
that may influence rare plant translocation outcomes (Table 1). We 
assigned each of these predictors to one of three categories: site 
dissimilarity, site position or niche metric. We formulated hypoth-
eses according to long-standing biogeographical theories, work on 
translocations and transplant experiments and research from the 
restoration and invasive species literature (Table 1). We considered 
studies on restoration and invasive species based on the assump-
tion that characteristics that are associated with invasion success 
for widespread species, or restoration success in common species, 
would also be associated with translocation success in rare species 
(Dalrymple et al., 2012; Kaye, 2009).

We also analysed the relative importance of eight ‘conventional’ 
predictors of translocation outcomes (Table  1), including man-
agement techniques (founder size, monitoring length, number of 
source populations and number of outplanting subsites), qualitative 
site attributes (habitat quality pre-outplanting and habitat quality 
change) and biological traits (clonal reproduction and life span). We 
selected the top three conventional variables for each success met-
ric in the all-life span models presented in Bellis, Osazuwa-Peters, 
et al. (2024). As model evaluation was low for the all-life span pop-
ulation persistence model in that study, we selected the top-ranked 
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4  |    BELLIS et al.

TA B L E  1  Predictor variables included in random forest models that may influence population persistence, the attainment of next-
generation recruitment and next-generation maturity in US-based rare plant translocations.

Variable(s) Variable description (units)
Hypothesized 
relationship

Biogeographical theory/example evidence 
from previous studies

Site dissimilarity

Geographical distance Euclidean distance between source and 
recipient site (km)

Negative McKay et al. (2005), but see Maschinski 
et al. (2013)

Environmental 
dissimilarity (n = 8)a

Euclidean distance between source and 
recipient site in environmental space (unit 
determined by variable)

Negative Maschinski et al. (2012), Houde 
et al. (2015), Thomas et al. (2022)

Site position

Geographic 
peripherality

Position of recipient site relative to the 
centre and the edge of the species' range 
(peripherality ranges from 0 to 1 with larger 
values indicating greater proximity to range 
edge)

Negative ‘Center–periphery hypothesis’ 
(Brown, 1984)

Latitudinal position Location of recipient site relative to 
species' latitudinal extent (normalized for 
comparability; values range between 0 and 1, 
low to high)

Bell shape ‘Center–periphery hypothesis’ 
(Brown, 1984), but see Angert et al. (2020)

Environmental position 
(n = 8)a

Location of recipient site within gradient of 
environment variable encompassed by range 
polygon (values range between 0 and 1, lowest 
and highest)

Bell shape ‘Center–periphery hypothesis’ 
(Brown, 1984), but see Angert 
et al. (2020), Bontrager et al. (2021)

Climate suitability Climatic suitability predicted using species 
distribution models (normalized for 
comparability, values range between 0 and 1, 
low to high)

Positive Maschinski et al. (2012), Guisan 
et al. (2013)

Niche metric

Geographic range size Area (km2) Positive Goodwin et al. (1999), Pywell et al. (2003)

Latitudinal centre Central point of species range (decimal 
degrees)

Variable Stronger abiotic selection towards poles 
versus biotic selection towards tropics 
(Hargreaves et al., 2020; Runquist 
et al., 2020); Ecological tolerance 
scales with latitude, ‘Rapoport's rule’ 
(Stevens, 1989)

Latitudinal extent Extent of species range (decimal degrees) Positive Goodwin et al. (1999), Pywell et al. (2003)

Environmental niche 
breadth (n = 8)a

Breadth of environmental conditions observed 
across the species range (unit determined by 
variable)

Positive Goodwin et al. (1999), Pywell et al. (2003), 
Vincent et al. (2020)

Environmental niche 
center (n = 8)a

Median of the environmental conditions 
observed across the species range (unit 
determined by a variable)

Variable Louthan et al. (2015), Rajakaruna (2018)

Conventional

Founder size Number of individuals across all life 
stages introduced to recipient site (natural 
logarithm, ln)

n/a Bellis, Osazuwa-Peters, et al. (2024)

Life span Approximate life span of focal species (levels: 
Annuals|2–10 years|11–50 years|>50 years)

n/a Bellis, Osazuwa-Peters, et al. (2024)

Clonal reproduction Clonality of focal species (levels: none, weakly/
intermediately clonal, strongly clonal)

n/a Bellis, Osazuwa-Peters, et al. (2024)

Monitoring length Number of years between first outplanting and 
most recent monitoring (square root, sqrt)

n/a Bellis, Osazuwa-Peters, et al. (2024)

Number of source 
populations

Number of selected source populations (levels: 
Single|Multiple)

n/a Bellis, Osazuwa-Peters, et al. (2024)
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    |  5BELLIS et al.

predictors from the model fit on species with medium relative life 
spans (2–10 and 11–50 years).

2.4  |  Environmental data

We created mean annual temperature (°C) (bio1), annual precipita-
tion (mm) (bio12) and climatic moisture index (mm) (CMI) variables 
with climate data downloaded for the period 1984–2018 from 
the CHELSA climate data set (v2.1) at a 30 arc-second resolution 
(Karger et al., 2017). Soil physicochemical properties were derived 
from the SoilGrids global resource (v2.0), which was produced at a 
250 m resolution (Poggio et al., 2021). These included two measures 
of soil texture (sand fraction and clay fraction, %), soil pH and cation 
exchange capacity at pH 7 (cmol(c)/kg). All values represent means 
from soil sampled from a depth of 5–15 cm. Elevation data were de-
rived from the Space Shuttle Radar Topography Mission 30 m digi-
tal elevation model. We resampled the soil and elevation layers to 
match the climate data resolution using bilinear interpolation, as this 
method ensures smooth transitions between pixels, yielding more 
realistic estimates at the resampled resolution.

2.5  |  Species distribution data

We used species' range polygons to calculate two geographic pre-
dictors: geographic peripherality and range size. We also used envi-
ronmental data from areas encompassed by these range polygons to 
calculate the environmental position, environmental niche breadth 
and environmental niche centre variables (Table 1; Figure 1). Where 
available, we used expert-drawn range maps from the US Fish and 
Wildlife Service (USFWS) Environmental Conservation Online 
System (US Fish and Wildlife Service,  2023) (see Table  A2.1). We 
downloaded expert-drawn range maps at the species level (Sillero 
et al., 2021). In practice, this meant including the entire distribution 
of the species within our North American study region (defined by 
the coverage of the Ecoregions of North America created by Wiken 
et al., 2011, in addition to Hawaii) rather than restricting our analy-
ses to infraspecific taxon levels.

For the remaining species, we constructed our own range poly-
gons using occurrence data from the Global Biodiversity Information 
Facility (GBIF) and natural heritage programs (Appendix  S2) in the 
following five states: California (http://​www.​dfg.​ca.​gov/​bioge​odata/​​
cnddb/​​), Florida (https://​www.​fnai.​org/​publi​catio​ns/​gis-​data), North 
Carolina (www.​ncnhp.​org), Oregon (https://​inr.​orego​nstate.​edu/​orbic​) 
and Tennessee (https://​www.​tn.​gov/​envir​onment/​progr​am-​areas/​​na-​
natur​al-​areas/​​na-​natur​al-​herit​age-​inven​tory-​progr​am.​html) (see Data 
Availability Statement for full data set reference and access details). 
Although our focal species were also distributed in other states, these 
five covered a disproportionately large number of translocations (49% 
of the sample) and species' distributions within their boundaries.

We carefully cleaned occurrence data sets and checked whether 
records were within known ranges according to scientific publica-
tions, state-level atlases, NatureServe and other available sources 
(full data cleaning protocol presented in Appendix S2). For species 
with adequate spatial coverage, we constructed alpha hulls to ap-
proximate their ranges, as this method reduces overestimation of 
range extents compared to the minimum convex polygon method 
when there are disjunctions or discontinuities in the distribution (see 
Appendix S2 for further details).

2.6  |  Creating geographic and environmental 
predictors

Site dissimilarity predictors included geographic distance and eight 
environmental dissimilarity variables (Figure 1; Table 1). Before con-
ducting geographic measurements, we reprojected spatial data to 
the North America Equidistant Conic projection.

Site position predictors included geographic peripherality, lati-
tudinal position, eight environmental position variables andclimate 
suitability (Figure  1; Table  1). We characterized the environmental 
position of recipient sites relative to species' ranges by calculating 
their rank within the empirical cumulative frequency distribution of 
the climatic, soil or elevational space encompassed by the range poly-
gon (Figure 1). To characterize the climate suitability of recipient sites, 
we constructed presence-only species distribution models (SDMs) 
for sites in the continental US (no Hawaiian species had sufficient 

Variable(s) Variable description (units)
Hypothesized 
relationship

Biogeographical theory/example evidence 
from previous studies

Number of subsites The number of subsites at which outplanting 
took place (levels: Single|Multiple)

n/a Bellis, Osazuwa-Peters, et al. (2024)

Habitat quality 
(pre-planting)

The quality of the recipient site at the time 
of outplanting as perceived by practitioners 
(levels: Poor or fair|Good|Excellent)

n/a Bellis, Osazuwa-Peters, et al. (2024)

Habitat quality change The change in site quality between the time of 
outplanting and most recent monitoring (levels: 
Negative|No change|Positive)

n/a Bellis, Osazuwa-Peters, et al. (2024)

aEight environmental variables were used to characterize environmental dissimilarity, environmental position, environmental niche breadth and 
environmental niche centre: elevation (m), mean annual temperature (°C) (bio1), annual precipitation (mm) (bio12), climatic moisture index (mm), sand 
fraction (%), clay fraction (%), soil pH and soil cation exchange capacity (cmol(c)/kg).

TA B L E  1  (Continued)
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occurrences to build a model, i.e. ≥10) using up to eight climatic vari-
ables and multiple ensemble modelling frameworks in R (v4.3.1) (R 
Core Team, 2023). As true absences are difficult to obtain and ver-
ify, we drew up to 10,000 pseudo-absence points (or background 
points) at random from each species' modelling extent for use in the 
SDMs (see Appendix S3 for the full SDM methodology). To ensure 
that our SDM work was transparent and reproducible, we complied 
with the Overview, Data, Model, Assessment and Prediction proto-
col (ODMAP; Zurell et al., 2020). This meta-data summary provides a 
detailed key to the steps of our SDM-based analyses (Appendix S3).

Niche metric predictors included geographic range size, latitu-
dinal extent, latitudinal centre, eight environmental niche breadth 
variables and eight environmental niche centre variables (Figure  1; 
Table 1). Because of the tendency for overestimation of species oc-
cupancy when using expert-drawn range polygons and polygons de-
rived from alpha-hull methods (Hurlbert & Jetz, 2007), we calculated 
niche breadth as the difference between the 5th and 95th quantiles 
of the environmental data encompassed by the species' range poly-
gons (Figure 1). The polygon approach enabled us to calculate niche 
metric variables for significantly more species (n = 107) than if we had 

relied on occurrence points because much fewer occurrence data sets 
had sufficient spatial coverage to be ecologically meaningful (n = 52). 
We validated this decision by comparing variable estimates from poly-
gons and points for the 52 species with sufficient occurrence data and 
found strong correlations in variable estimates (e.g. temperature niche 
breadth, Spearman's rank correlation = 0.84).

We also computed a principal component analysis of the 19 
BIOCLIM variables (Nix, 1986), CMI and CMI seasonality, masked to 
our North American study region, in order to generate multivariate 
climate predictors (the first three principal components) of site dissim-
ilarity, position, niche breadth and niche centre. However, these mul-
tivariate predictors did not outperform the three raw climate variables 
(Table 1) in preliminary analyses and were more difficult to interpret, 
so we excluded them from further analyses.

2.7  |  Statistical analyses

We quantified the relative importance of predictor variables (Table  1) 
for each metric of translocation success using the random forest (RF) 

F I G U R E  1  Schematic of methodology for calculating geographic and environmental predictor variables considered for analysis in the 
present study. The methodologies presented for environmental dissimilarity, environmental position, environmental niche breadth and 
environmental niche were applied to eight climate, soil and elevation variables (see Table 1 for a full list of variables). *If multiple source 
populations were selected, the average distance or dissimilarity between sources and the recipient site was calculated.
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algorithm. RFs are a robust method for evaluating data sets with large 
numbers of missing values and a low ratio between the number of obser-
vations and predictor variables (Strobl et al., 2009). These characteristics 
of RF models made them suitable for our data set and study objectives, 
as the CPCRD contains numerous missing values in some data fields (e.g. 
source site coordinates), and our exploratory goals necessitated an ap-
proach adaptable to the low observation:predictor ratio. For compara-
bility, we adopted the same modelling approach and model parameters 
as described in Bellis, Osazuwa-Peters, et  al.  (2024) by implementing 
unbiased conditional inference trees drawn without replacement. We 
quantified the importance of each predictor using the party package 
(v1.3-10) (Hothorn et al., 2022) in R by comparing model prediction ac-
curacy before and after permutation (Strobl et al., 2008); larger decreases 
in model accuracy indicate greater variable importance. We adopted a 
variable screening approach to identify and address any pairwise statisti-
cal relationships between predictors in each RF model prior to modelling 
(see Appendix S4). Models were evaluated using the area under the curve 
(AUC) of the receiver operating characteristic (Hanley & McNeil, 1982).

We estimated the partial effects of the most important predic-
tors in each model. This approach examines the effects of a variable 
on the predicted response when all other predictors are held con-
stant at their average values. We determined the most important 
predictors that warranted interpretation by visually assessing the 
size of the descending steps in the variable importance plots (Bellis, 
Osazuwa-Peters, et al., 2024).

2.8  |  Sensitivity tests

We tested the sensitivity of the estimated partial effects of the 
most important predictors in each RF model to the inclusion of 
projects involving species with annual or >50 year life spans. 
These two classes represent the extreme ends of the life span 
continuum in our sample, and success metrics may be more sensi-
tive to the evaluation timeframe in projects involving these spe-
cies (Albrecht et al., 2019). In each sensitivity test, we used the 
same RF methodology described in the ‘Statistical analyses’ sec-
tion but excluded cases involving one extreme life span class (an-
nuals or >50 years). We then computed partial effects to assess 
potential confounding effects of life span on fitted relationships 
(Appendix S5).

3  |  RESULTS

3.1  |  Population persistence

Among the 199 projects with available information on popula-
tion persistence, 64% remained extant with a stable or increas-
ing population of >50 individuals at the time of most recent 
monitoring. Variables associated with attributes of the recipient 
site generally had the largest relative influence on persistence 

F I G U R E  2  Relative importance of the 10 most influential predictors for population persistence (a) according to a random forest (RF) 
model (area under the curve = 0.77). Three categories are represented in the top 10 predictors: conventional, site position and niche metric 
(see Table 1). The symbols next to each relative importance bar indicate the direction of effect: +, positive; −, negative; B, bell-shaped. 
(b–e) Partial effects of the most influential variables in the RF model. The rug plots or pie charts below the x-axis of (b–e) display the 
distribution (b, d), or proportion if categorical (c, e), of the predictor across the two response classes of extant and extinct. bio1, mean annual 
temperature; bio12, total annual precipitation; cec, cation exchange capacity; elev, elevation.
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8  |    BELLIS et al.

(Figure  2a). Climate suitability, estimated using SDMs, was the 
best predictor of persistence (Figure 2b), followed by practitioner-
reported habitat quality (pre-planting) (Figure  2c), temperature 
niche breadth (Figure 2d), and practitioner-reported habitat qual-
ity change (Figure  2e). The probability of persistence began to 
increase sharply at sites with a predicted climate suitability of 
>0.54 (Figure 2b), levelling off at sites with a suitability of ≥0.63. 
Temperature niche breadth (mean annual temperature, bio1) neg-
atively influenced persistence, with the non-linear relationship 
stabilizing at breadths of ≥6°C, where data became more scarce 
(Figure 2d).

3.2  |  Next-generation recruitment

Of the 185 translocations with available information on next-
generation recruitment, 62% had attained this benchmark. The 
latitudinal centre of a species' range had a similar relative influence 
as two conventional predictors, founder size and life span, for at-
taining next-generation recruitment (Figure  3a–d). The probability 
of recruitment increased non-linearly with latitudinal centre, level-
ling off at temperate latitudes, above 36.4° (roughly the latitude of 
Nashville, Tennessee, USA).

3.3  |  Next-generation maturity

Among the 91 translocations with available information on next-
generation maturity, 70% attained this benchmark. Niche metrics 
were the most important factors for determining next-generation 
maturity (Figure 4a), with the best predictors being the niche cen-
tre of cation exchange capacity and precipitation niche breadth. The 
probability of next-generation maturity was highest in species with 
distributions centred on soils with the lowest capacity for nutrient 
retention (Figure 4b) and among species with the narrowest precipi-
tation niches (Figure 4c).

4  |  DISCUSSION

Our results show that geographic and environmental factors, quan-
tified at the macroscale, can be as insightful as management tech-
niques, biological traits and on-ground habitat quality assessments 
for understanding plant translocation outcomes. Our analysis of 235 
translocation projects revealed that climate suitability, estimated 
using SDMs, is the strongest relative predictor of whether a popu-
lation persists following translocation, while niche metrics derived 
from species' distributions offer novel geographic and environmental 

F I G U R E  3  Relative importance of the 10 most influential predictors for next-generation recruitment (a) according to a random forest 
(RF) model (area under the curve = 0.78). Three categories are represented in the top 10 predictors: conventional, site position and niche 
metric (see Table 1). The symbols next to each relative importance bar indicate the direction of effect: +, positive; −, negative. (b–d) partial 
effects of the most influential variables in the RF model. The rug plots or pie charts below the x-axis of b-d display the distribution (b, c), or 
proportion if categorical (d), of the predictor across the two response classes of attained and not attained. bio1, mean annual temperature; 
bio12, total annual precipitation; % sand, soil sand fraction.
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    |  9BELLIS et al.

insights on where next-generation recruitment and maturity could be 
improved. These findings present a fresh perspective on plant translo-
cation outcomes and identify opportunities to improve translocation 
success not only by adhering to best practice recommendations such 
as maximizing founder population sizes but also by integrating spatial 
modelling approaches into translocation planning and management.

4.1  |  Climate suitability as a predictor of population 
persistence

The survival of translocated plants appears to be strongly influenced 
by attributes of the recipient site (Dalrymple et al., 2012; Godefroid 
et  al.,  2011). While previous syntheses have drawn this inference 
from practitioners' qualitative assessments of habitat quality (Bellis, 
Osazuwa-Peters, et al., 2024) or from perceptions of why a project 
succeeded or failed (Godefroid et al., 2011; Silcock et al., 2019), our 
results mark one of the first instances of support derived from a 
quantitative metric of the recipient environment—macroscale cli-
mate suitability (but see Monks et al., 2023 for importance of rainfall 
in Mediterranean-type ecosystems). Our sample included transloca-
tions to sites with low SDM-derived suitability, possibly due to crite-
ria that is often prioritized during recipient site selection: proximity 
to the source material's origin and historical presence of the species 
(Osborne & Seddon, 2012). These criteria overlook climatic factors 
that influence spatiotemporal variability in plant population persis-
tence, such as climate heterogeneity within species' ranges or climate 

change-induced deterioration in site suitability. Consequently, trans-
locations may have proceeded at sites that met a species fine-scale 
habitat requirements but had suboptimal temperature and precipita-
tion regimes.

While our results demonstrate the potential of SDMs to inform 
recipient site selection, it may not be possible to accurately pre-
dict suitability for some species (e.g. rare or data-deficient spe-
cies, Sillero et al., 2021). For example, we were unable to create 
reliable models for species in Hawaii as all had fewer occurrences 
than our minimum threshold of 10 (see Appendix S3). Additionally, 
several factors may cause disequilibrium between range and niche, 
such as dispersal limitation, source–sink dynamics and/or time-
lagged local extinction (Maschinski et al., 2012; Pagel et al., 2020; 
Pulliam, 2000). Local conditions, biotic interactions or other pro-
cesses independent of the macroclimate (e.g. edaphic conditions) 
may also dominate population survival across the species' range 
(Louthan et al., 2015). These potential sources of bias and uncer-
tainty in SDMs must be carefully considered before any manage-
ment actions are taken.

Given the potential pitfalls when building SDMs and their sensi-
tivity to different modelling decisions (Sillero et al., 2021), rigorously 
defined calibration and validation methodologies are necessary to 
maximize their reliability for use in translocation decision-making 
(e.g. Finn et al., 2024). Our results suggest that macroclimatic suit-
ability can be useful as a first filter for distinguishing between high- 
and low-priority candidate sites and should be considered alongside 
other factors associated with promoting persistence, such as habitat 

F I G U R E  4  Relative importance of the 10 most influential predictors for next-generation maturity (a) according to a random forest (RF) 
model (area under the curve = 0.74), (b, c) partial effects of the most influential variables in the RF model. Two categories are represented in 
the top 10 predictors: Site position and niche metric (see Table 1). The symbols next to each relative importance bar indicate the direction of 
effect: +, positive; −, negative; B, bell-shaped. The rug plots below the x-axis of (b) and (c) display the distribution of the predictor across the 
two response classes of attained and not attained. bio1, mean annual temperature; bio12, total annual precipitation; cec, cation exchange 
capacity; cmi, climatic moisture index; elev, elevation; pH, soil pH; % sand, soil sand fraction.
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10  |    BELLIS et al.

quality and founder size. High-priority sites should be surveyed in 
the field to determine the availability of suitable microsites, the 
suitability of edaphic conditions, the presence of appropriate pol-
linators and the identification of, and if necessary management of, 
potential threats (Maschinski et al., 2012). Potential future climate 
change impacts should also be incorporated into SDM-based site 
assessments to prioritize sites conducive to long-term persistence 
(e.g. Bellis et al., 2021).

4.2  |  Niche metrics provide insight into 
translocation outcomes

Our findings indicate that plant species from more biotically limiting 
environments, such as in subtropical and tropical regions of the US, 
or in soils with high relative nutrient retention capacity, are the least 
likely to reach next-generation recruitment and maturity following 
translocation. Recent meta-analyses have shown that biotic interac-
tions are stronger at lower latitudes and abiotic selection is greater 
at higher latitudes (Hargreaves et al., 2020; Runquist et al., 2020); 
as subtropical and tropical regions are more climatically benign and 
productive, they host a higher diversity and abundance of enemies 
(e.g. herbivores, competitors, pathogens). Similarly, more edaphically 
stressful habitats, such as those with limited capacity for nutrient 
and water retention (e.g. soils with high sand content), may offer an 
escape from competitive exclusion and herbivory found in more fa-
vourable soils (Sianta & Kay, 2019). These habitats often support rare 
endemic plants with highly specialized physiological and morpholog-
ical adaptations that allow them to thrive under nutrient-deprived 
conditions (Rajakaruna, 2018).

The limiting effects of biotic interactions on plant transloca-
tion outcomes have been observed in several studies (Maschinski 
& Albrecht,  2023). Herbivores can suppress seedling recruitment, 
while competition for nutrients, light, water and other key resources 
can inhibit transplant growth (Menges,  2008). In Hawaii, where 
plants are also exposed to the highest diversity and density of in-
vasive weeds and herbivores in the US (Simpson & Eyler, 2018), the 
rate of next-generation recruitment was much lower (40%) than on 
the continent (73%). Life history differences may partly explain the 
relationship between latitudinal centre and recruitment. Hawaiian 
translocations included fewer fast-recruiting annuals (2% vs. 17% 
in the continental US) and more long-lived species with delayed 
recruitment (18% vs. 9%) (Albrecht et  al.,  2019). However, next-
generation recruitment models run without annuals and long-lived 
species both produced partial effects consistent with the full data 
set model (Appendix S5), suggesting that potential confounding ef-
fects of life span are limited.

The increasing frequency of recruitment with latitudinal centre 
may also be explained by Rapoport's rule, an ecological principle 
stating that range size and environmental tolerance scale with lat-
itude (Stevens,  1989). Species with broader tolerances, which are 
typically found at higher latitudes where climate variability is greater, 
may be more likely to attain next-generation recruitment because 

they can germinate and grow under a wider range of environmen-
tal conditions (Canham & Murphy, 2016). However, this advantage 
appears to be limited to the recruitment niche and may not be as-
sociated with climatic attributes of the adult niche, as species with 
the broadest temperature and precipitation niches experienced the 
lowest rates of persistence and next-generation maturity in our sam-
ple. Interestingly, this result, which did not conform to expectations 
(Table 1), is concordant with the results of a global plant transloca-
tion synthesis where mortality rates were lowest for species with 
the narrowest geographical distributions (Dalrymple et  al.,  2012). 
Species with broad macroclimatic niche estimates may occupy mi-
croclimates that represent only a subset of the estimated niche, po-
tentially making it more challenging to distinguish conditions that 
align with sink populations compared to narrow-ranged species.

5  |  CONCLUSIONS

Our synthesis provides quantitative support to widely held per-
ceptions around the influences of species–environment rela-
tionships on rare plant translocation outcomes. While no single 
variable represents the ‘silver-bullet’ for securing project suc-
cess, we show that the macroclimatic suitability of recipient sites 
is as important to population persistence as other more exten-
sively studied variables (e.g. habitat quality and founder size). 
Encouragingly, this result was obtained using a generalized spe-
cies distribution modelling approach. When applied in a translo-
cation project, model reliability could be enhanced by leveraging 
the practitioner's knowledge of the focal species and region to fit 
models with more proximal variables and refined occurrence data. 
Our synthesis also identifies particular niche attributes, such as a 
broad temperature or precipitation niche, that are associated with 
less successful translocations. For translocation projects involving 
species with these attributes, outcomes may be improved by in-
corporating multi-scaled habitat assessments, including fine-scale 
surveys to ensure critical niche requirements are not overlooked 
(Maschinski et al., 2012). More broadly, considering estimates of 
current and future macroclimatic suitability when selecting recipi-
ent sites represents a valuable approach for securing the long-
term persistence of translocated plant populations.
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