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Abstract—For nanometer MOSFETs, charging and discharging a single 

trap induces random telegraph noise (RTN). When there are more than a 

few traps, RTN signal becomes complex and appears as within a device 

fluctuation (WDF). RTN/WDF causes jitters in switch timing and is a 

major challenge to low power circuits. In addition to RTN/WDF, devices 

also age. The interaction between RTN/WDF and aging is of importance 

and not fully understood. Some researchers reported aging increasing 

RTN/WDF, while others showed RTN/WDF being hardly affected by 

aging. The objective of this work is to investigate the impact of hot carrier 

aging (HCA) on the RTN/WDF of nMOSFETs. For devices of average 

RTN/WDF, it is found that the effect of HCA is generally modest. For 

devices of abnormally high RTN/WDF, however, for the first time, we 

report HCA reducing RTN/WDF substantially (>50%). This reduction 

originates from either a change of current distribution or defect losses.       

   

Index Terms—Random Telegraph Noise, RTN, Hot Carriers, defects, 

fluctuation, instability, aging, reliability. 

 

I. INTRODUCTION 

s device area scales down, the impact of a single charge in 

gate dielectric scales up  [1-8]. For current and future 

CMOS nodes, charging and discharging a single trap induces a 

random telegraph noise (RTN) in Id under a given Vg. When 

there are more than a few (e.g. 4) of traps, it becomes difficult 

to separate them and the complex RTN signals appear in the 

form of within-a-device-fluctuation (WDF) [5, 9].  

RTN/WDF is observed at time-zero, i.e. in fresh devices [5, 

10], becoming a major challenge for low power circuits.  The 

low (Vg-Vth) used in low power circuits has less headroom to 

tolerate a given Vth shift, ΔVth, since ΔVth/(Vg-Vth) is higher 

and the impact of ΔVth on the driving current is relatively 

stronger. For instance, it has been reported that a single charge 

can cause a Vth shift of ~30 mV [4], while a shift of only 

several mV can cause errors in circuits like successive 

approximation analogue-to-digital converters [11]. 

In addition to RTN/WDF, aging also occurs through either 

bias temperature instabilities [4, 12-17] or hot carrier stresses 

[18-20]. Unlike RTN/WDF, aging causes a gradual shift of 

device parameters in one direction [12-20]. The interaction 

between RTN/WDF and aging is not fully understood and is of 

importance to optimize circuit performance. It has been 

reported that aging can either increase RTN/WDF [7] or has 

little contribution to it [10, 19]. The objective of this work is to 

investigate the relation between the amplitude of RTN/WDF 

and hot carrier aging (HCA) for nMOSFETs. The results show 
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that the impact of HCA on devices of average RTN/WDF is 

typically modest, but can be substantial on devices of 

abnormally high RTN/WDF. The mechanism will be explored.          

II. DEVICES AND EXPERIMENTS 

The nMOSFETs were fabricated by a 45 nm HK/MG 

process, having a channel length/width of 50/90 nm and an 

equivalent oxide thickness (EoT) of 1.45 nm. To ensure that the 

findings are not process specific, tests were also carried out on 

nMOSFETs fabricated by a 22 nm process, with a channel 

length/width of 90/70 nm and an EoT of 1 nm.   

Tests start by measuring RTN/WDF of Id under Vg=1.0 V 

and Vd=0.1 V, and typical results are given in Figs. 1(a)&1(b). 

Fig. 2 shows the device-to-device variation of RTN/WDF 

amplitude for 45 nm (50 devices) and 22 nm (24 devices) 

processes. Two types of devices were selected: one with 

average and one with abnormally high RTN/WDF. After HCA 

under Vg=Vd=2.2 V for 1 ks, RTN/WDF were measured at the 

same Id as that for fresh device, so that the Si surface potential 

is kept approximately the same. Some devices were annealed at 

400 oC in forming gas (10% H2) for 45 min after HCA. 
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Fig. 1. Typical fresh devices with (a) and without (b) clear RTN.  The 

ΔId= Id(measured) - Id(minimum) and  Amplitude = Id(maximum) - 

Id(minimum). 
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Fig. 2. The device-to-device variation of RTN/WDF amplitude.  The devices were fabricated by (a) 45 nm and (b) 22 nm processes. 

The dashed line is the average RTN/WDF. In (a), the ‘A1’ and ‘A2’ mark two devices of RTN/WDF close to the average and ‘O1’ 

and ‘O2’ mark two outliers. The results for these four devices are given as representatives and their fresh RTN/WDF are marked 

out by the red ‘●’.  Two outliers also were marked out as ‘O3’ and ‘O4’ in (b) for the 22 nm process.  
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Fig. 3. Typical impact of HCA on the devices of RTN/WDF close to average, marked as ‘A1’ and ‘A2’ in Fig. 2(a). RTN/WDF can 

either increase by 24% (a)&(b) or decrease (c)&(d) after HCA. 
 

III. RESULTS AND DISCUSSION 

For a device of average RTN/WDF, Figs. 3(a)-(d) show that 

HCA can either increase or decrease RTN/WDF modestly and 

the typical variation range is ±25%, which is smaller than the 

6× device-to-device variation in Fig. 2(a). This agrees with the 

early works [10, 19] and the verdict that RTN/WDF is 

dominated by as-grown defects [4, 21].  

 

The HCA-defects can affect RTN/WDF in two possible 

ways. On one hand, they may directly contribute to RTN/WDF 

by their charging/discharging. On the other hand, even if their 

charges do not alternate, they still can affect RTN/WDF by 

changing the current distribution within a device [8]. For the 

same as-grown defects, their effects on RTN/WDF will be 

different when the current density beneath it changes [4, 8]. If 

the HCA defects contribute directly to RTN/WDF by 

alternating their charging/discharging, an increase of defects by  
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Fig. 4. Typical impact of HCA on an outlier, marked as ‘O1’ in Fig. 2(a). (a) is fresh and RTN/WDF reduces by 66% after HCA (b). 

(c) shows that RTN/WDF amplitude returns to its fresh level after an anneal at 400 oC.  
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Fig. 5. The tests were similar to those in Fig. 4, but the device ‘O4’ was fabricated by a 22 nm processes and stressed under 

Vg=Vd=2 V for 1 ks. 

 
 

 
 

 

Fig. 6. A schematic illustration of HCA-induced de-sensitization of a critical trap. (a) shows that a critical trap is at the location 

where the current density peaks, causing abnormally high RTN/WDF before HCA. (b) shows how a change of current distribution 
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after HCA can reduce the current density under this trap, de-sensitizing it. This diagram is used to highlight the possible change of 

current distribution before and after HCA. It does not mean that current path is always strongly localized.   
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Fig. 7. The impact of HCA on a device of outlier RTN/WDF, marked as ‘O2’ in Fig. 2(a). (a) & (b) shows that RTN/WDF reduces 

by 65% after HCA. (c) shows that RTN/WDF remains low after an anneal at 400 oC, supporting defect loss.  
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Fig. 8. The tests were similar to that in Fig. 7, but the device ‘O3’ was fabricated by a 22 nm processes. 

 

HCA should lead to a higher RTN/WDF. This is, however, 

against the reduction in Figs. 3(c)&(d). As a result, it appears 

that HCA affects RTN/WDF through changing the current 

distribution, which will be further explored. This also agrees 

with early report [19] that HCA defects recover little, so that 

they will not contribute to RTN/WDF by not discharging. 

For a device of abnormally high RTN/WDF, Figs. 4(a) & 

4(b) show, for the first time, that RTN/WDF actually can be 

substantially (66%) reduced post HCA. After the reduction, the 

RTN/WDF is around the average level in Fig. 2(a).  

It has been reported that RTN/WDF in pMOSFETs can be 

unstable during measurements and some defects can disappear 

and then reappear [2]. The reduction in Fig. 4(b), however, is a 

different phenomenon, since the RTN/WDF in nMOSFETs 

observed here is stable and does not disappear both before and 

after HCA during measurements.  

To confirm that this reduction is not process-specific, Figs. 

5(a) & (b) show a substantial reduction again for a device 

fabricated by a 22 nm process. 

There are two possible explanations for the HCA-induced 

RTN/WDF reduction: a loss of defects [22, 23] or a change of 

current distribution [8].  

The impact of a charged defect on the current will depend 

on its relative position against the current flow. On one hand, if 

there is a strong current flow direct beneath a charged defect, 

the impact of this defect on the current will be large. On the 

other hand, if there is little current flowing below a charged 

defect, its impact on the current will be weak. 
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The abnormally high RTN/WDF can originate from the 

presence of a critical trap: the current density peaks just beneath 

it, so that its charging/discharging has an abnormally large 

impact on Id, as illustrated in Fig. 6(a) [8]. Fig. 6(b) shows that 

HCA can modify the current distribution, reducing the density 

beneath this trap and de-sensitizing Id to it.   

For a device of average RTN/WDF, the current distribution 

can be less localized and there is no critical trap where the 

current density peaks. Since the impact of each trap in these  

devices is close to average, current density beneath it changes 

typically modestly. On one hand, if the density increases, 

RTN/WDF will rise. On the other hand, if the density reduces, 

RTN/WDF will decrease. As a result, the HCA has a relatively 

modest impact on the RTN/WDF in both directions.  

To further investigate the origin of the HCA-induced 

reduction, the devices were annealed at 400 oC for 45 min, 

which removed the HCA-generated defects and restored Id to 

its fresh level [22, 23]. When measured again post-anneal, Figs. 

4(c) and 5(c) show that the amplitude of RTN/WDF nearly 

returns to its pre-stress abnormally high level for most devices 

(~75%). The anneal restores the original current distribution 

and, in turn, the abnormal RTN/WDF. This supports a 

HCA-induced change of current distribution as the origin of 

abnormal RTN/WDF reduction.  

It is noted that the RTN/WDF after the stress-then-anneal 

behaves differently from that in fresh devices, although their 

magnitudes before and after the anneal are similar in Figs. 4 and 

5. It is not known what causes these differences at present. One 

may speculate that the as-grown traps in the fresh devices also 

were affected by the stress and the subsequent anneal, leading 

to the changes in their RTN/WDF behavior.  Since most of the 

devices tested in this work have a complex WDF, rather than a 

clear RTN, it is difficult to extract the capture and emission 

time reliably. As a result, we focus on the magnitude of 

RTN/WDF here. The main objective of this work is to report 

the test results and a detailed understanding of the mechanism 

awaits further investigation. 

There are some cases, however, where RTN/WDF did not 

return to its pre-stress high level after anneal and an example is 

given in Fig. 7. This agrees with the defect loss reported in early 

works [22, 23]. If the critical trap is lost after anneal, the 

RTN/WDF cannot return to its fresh abnormally high level, 

even though the original current distribution is restored. 

Fig. 8 confirms that similar loss also occurs for a device 

fabricated by the 22 nm process.  

IV. CONCLUSION 

In this work, the impact of HCA on the magnitude of 

RTN/WDF of nMOSFETs is investigated. For the devices of 

average RTN/WDF, HCA typically can either increase or 

reduce it modestly (±25%). For the devices of abnormally high 

RTN/WDF, however, the HCA generally can reduce it 

substantially. After an anneal at 400 oC, RTN/WDF returns to 

the abnormal level for most devices, supporting a 

HCA-induced change of current distribution as the origin of the 

reduction. There are cases, however, where RTN/WDF does 

not return to its pre-stress level after anneal, suggesting defect 

losses.  
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