
Kanagarathinam, MR, Singh, S, Jayaseelan, SR, Maheshwari, MK, Choudhary, 
GK and Sinha, G

 QSOCKS: 0-RTT Proxification Design of SOCKS Protocol for QUIC

http://researchonline.ljmu.ac.uk/id/eprint/25716/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Kanagarathinam, MR, Singh, S, Jayaseelan, SR, Maheshwari, MK, 
Choudhary, GK and Sinha, G (2020) QSOCKS: 0-RTT Proxification Design of
SOCKS Protocol for QUIC. IEEE Access, 8. pp. 145862-145870. ISSN 2169-
3536 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Received July 9, 2020, accepted July 20, 2020, date of publication July 31, 2020, date of current version August 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013524

QSOCKS: 0-RTT Proxification Design
of SOCKS Protocol for QUIC
MADHAN RAJ KANAGARATHINAM 1, (Senior Member, IEEE),
SUKHDEEP SINGH 1, (Member, IEEE), SUJITH RENGAN JAYASEELAN1,
MUKESH KUMAR MAHESHWARI2, GUNJAN KUMAR CHOUDHARY1,
AND GAURAV SINHA1, (Member, IEEE)
1Samsung Research and Development India-Bengaluru (SRI-B), Bengaluru 560037, India
2Department of Electrical Engineering, Bahria University, Karachi 75260, Pakistan

Corresponding author: Sukhdeep Singh (sukh.sandhu@samsung.com)

ABSTRACT Multipath TCP (MPTCP) is an evolution of TCP, capable of using multiple network paths
to enhance resilience to network handovers. However, Server-side modification is the key challenge for
deployment of MPTCP on a large scale. Therefore, a proxy-based design that uses SOCKSv5 over MPTCP
was proposed. Though MPTCP enhances the download experience, it also impacts the browsing experience
and Page Loading Time (PLT) due to additional SOCKSv5 protocol signaling overhead. On the other hand,
to improve the performance of TCP, Google proposed QUIC (Quick UDP Internet Connection), which
addresses the network handover resilience. QUIC also faces server modification as a major challenge. In this
article, we propose a novel design of SOCKS over QUIC (QSOCKS), which improves browsing experience
while enhancing reliability. QSOCKS ensures 0RTT/1RTT connection time, thereby improving the Page
Loading Time (PLT) and Video Loading Time (VLT). We evaluated the performance of QSOCKS through
live experiments on the top websites of various web properties located in different regions, using Samsung
S9 smartphones. Moreover, we evaluated our proposal for file download scenario in both homogeneous and
heterogeneous Wi-Fi & cellular environment. The users not only benefit from the inherent advantages of
QUIC but are also privileged with a better browsing experience.

INDEX TERMS Multipath QUIC, SOCKS, QSOCKS, QUIC.

I. INTRODUCTION
Over the last decade, wireless technology has witnessed
explosive growth in smartphones, tablets and laptops. These
devices have improved the quality of life and opened up new
industrial opportunities. According to the Ericsson mobility
report, by 2025 5G is going to have 2.6 billion subscrip-
tions, generating 45 percent of the world’s total mobile data
traffic [1]. A significant amount of today’s Internet traffic
generated by various protocol includes HTTP: HyperText
Transfer Protocol, steaming media, peer-to-peer file sharing,
remote access (telnet), file transfer, email (simple mail trans-
fer protocol) traffic. The aforementioned traffic generated is
either carried by the Transport Control Protocol (TCP) or the
User Datagram Protocol (UDP). TCP provides reliable end-
to-end to connection-oriented delivery of packets, whereas

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

UDP provides unordered delivery of IP datagrams. TCP is
suitable for the session-oriented protocols and UDP finds an
excellent application in carrying multimedia traffic [2]. Due
to real-time nature of data (i.e. video and audio), TCP features
like re-transmissions, flow control, and reordering are not
appropriate [2].

A new general-purpose protocol ‘‘Quick UDP Internet
Connections (QUIC)’’ was proposed by Google in 2012.
QUIC [3] is amultiplexed, low latency, reliable and encrypted
data transfer protocol. It improves the performance of
HTTPS-based applications. QUIC is implemented on top of
UDP and can multiplex the application streams on a sin-
gle connection. In contrast to Multipath TCP (MPTCP) [4]
and Stream Control Transmission Protocol (SCTP) [5], [6],
QUIC does not require any changes to the operating sys-
tem. The first existing Internet-scale deployment of QUIC,
shows high performance and confirms the design decisions
with middlebox interference [3]. The IETF has also recently

145862 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1167-7389
https://orcid.org/0000-0003-1553-3275
https://orcid.org/0000-0003-4744-9211


M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

initiated QUIC standardization [7]. The QUIC started as a
TCP replacement to transport HTTP/2 and is becoming a
universal transport protocol. To prevent themiddleboxes from
interfering, QUIC encrypts both data and all header fields.
Furthermore, the encryption ensures that the protocol will
not be ossified by deployed middleboxes [6]. QUIC adopts
a flexible packet format and leverages the congestion control
of modern TCP stack.Moreover, when downloading different
objects from the same server, QUIC supports stream mul-
tiplexing which prevents any overhead due to head-of-line
blocking [6].

One missing feature of QUIC is the ability to exploit the
different paths that exist between a client and server [8].
Nowadays, smart devices have the capability to communi-
cate through two interfaces, such as cellular and Wi-Fi. The
user expects that the device should be capable to combine
them. Furthermore, a growing fraction of hosts are dual-
stack, the IPv4 & IPv6 paths often differ and have different
performance [9], [10]. The widely used protocol that exploits
multi-pathing is Multipath TCP (MPTCP) [4]. MPTCP is an
extension of TCP and enables a TCP connection to send data
over multiple paths [4]. Moreover, MPTCP has the capability
to aggregate the bandwidth of the different paths [11], [12].
The deployment of MPTCP on Smartphones [13] shows that
multipath enables seamless handovers. This gives rise to the
need for multipathing in QUIC to utilize both Wi-Fi & LTE
and for better resilience to path failures.

There are two motivations behind adding multipath capa-
bilities to QUIC. The first one is to pool the resources of
different paths in order to transport the data of a single
connection [14]. This allows the dual-stack host to automat-
ically select the best path when the quality of the IPv4 and
IPv6 paths differ. The second motivation is the capacity to
recover quickly from connectivity failures. In smartphones
with twowireless interfaces (Wi-Fi and cellular), onewireless
interface may go down or perform poor at any time and users
expect that their applications switch to the other interface
seamlessly [15].
Motivation: Proxifying QUIC: To enable MPTCP, both

client and server need to be MPTCP enabled. However, most
of the servers do not support MPTCP by default. To over-
come this disadvantage, Samsung partnered with Mobile
Network Operator (KT Corporation) to deploy MPTCP,
a proxy based approach in all android applications. MPTCP
uses SOCKSv5 [16] to proxify and make it server-agnostic.
SOCKSv5 introduces connection overhead, consuming mul-
tiple round-trip-times to establish a connection. It amplifies
the impact when an application uses HTTPS. Measurements
carried out in work [17], showedmany popular android appli-
cations use short-lived connections. We conducted a similar
experiment and we observed that most of the applications
exchange a small amount of data (as shown in Fig. 1). Increas-
ing the setup time by SOCKS and MPTCP handshake will
evidently affect the user experience. SOCKS increases the
time required to establish each TCP connection by several
round-trip-times between the client and the SOCKS server.

FIGURE 1. Duration and Data Transferred by popular Android APPs.

FIGURE 2. Timeline of Connection Establishment in MPTCP.
SOCKSv5 requires at-least 4 RTT for each connection to transfer the data
to actual destination server.

This additional delay can be significant for applications that
rely on short TCP connections. Fig. 2 depicts the additional
round-trip-time in MPTCP. To tackle the TCP initial connect
overhead, QUIC uses 0-RTT connections that accelerates the
latency during the establishment of a connection.

To efficiently combine Wi-Fi and cellular, Multipath
QUIC [8] (MPQUIC) was proposed. With the similar limi-
tation as MPTCP, MPQUIC needs server side deployment.
The deployment might take a decade and hence proxifying
MPQUIC is inevitable. The current SOCKS protocol was
designed primarily to proxy TCP by signaling control mes-
sages in each TCP connect. Moreover, SOCKS and QUIC
does not work hand-in-hand. In QUIC, we establish the con-
nection only oncewith the SOCKS server andmultiplex every
request as an individual stream. Hence, a new design for
SOCKS over QUIC is required. The design also overcome
the disadvantage of several round-trip-times during session
establishment in SOCKSv5.

VOLUME 8, 2020 145863



M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

Contributions:Considering the above motivations, we pro-
pose QSOCKS which enhances the capabilities of QUIC.
We pave the way for Multipath QUIC over QSOCKS which
would evidently replace MPTCP by overcoming its short-
comes. The major contributions of our paper are:

1) A first-of-its-kind method of QSOCKS, a SOCKS based
QUIC proxy design which enhances the connection
establishment using 0-RTT/1-RTT proxy session.

2) In addition to the handshake improvement, QSOCKS
also enhances the security by making QSOCKS AUTH
and QSOCKS REQUEST incognito using 0-RTT keys.
In contrast, the SOCKSv5 AUTH and REQUEST are
unencrypted and are prone to security risks.

3) QSOCK’s resilience to network handover by leveraging
the properties of QUIC.

4) To show the efficiency of our proposal, we ana-
lyze the performance of QSOCKS through Live air
experiments using Samsung S9 devices. We compare
QUIC Booster (QSOCKS + MPQUIC) with GigaLTE
(SOCKSv5 + MPTCP) [19]. The simulation results
show that QSOCKS outperforms the SOCKSv5 in vari-
ous environments.

A. IMPACT OF QSOCKS OVER NEXT
GENERATION NETWORKS
• QSOCKS is a novel solution that explores the avenue of
the world’s first deployment of MPQUIC and QSOCKS
in smartphones. This is a first-of-its-kind proxy-based
architecture which is best-fit for short-lived android
applications.

• This paper suggests an interesting idea on Google pro-
posed QUIC with the motto of making services faster on
smartphones than ever before.

• We aim to standardize it in IETF and make QSOCKS
available to mobile vendors for future low-latency com-
munication, IoT networks and Next Generation Mobile
Networks.

The remainder of this paper is organized as follows:
Section II presents an overview of existing Multipath pro-
tocols, QUIC, Mutipath QUIC and SOCKS protocols. The
proposed QSOCKS and the system model is outlined in
Section III. Section IV demonstrates detailed evaluation of
experimental results. Finally, concluding remarks are pro-
vided in Section V.

II. BACKGROUND
In this section, we present an overview of Multipath protocol,
QUIC and SOCK Protocols.

A. MULTIPATH PROTOCOL
TCP with multipath enables data scheduling and transmis-
sion over different paths. Several studies as in [20]–[24]
were carried out to implement TCP over multipath to max-
imize resource usage and increase redundancy. Multiple-
connection TCP (MCTCP) [23] encodes the control

information by adding a shim layer. The protocols
MMPTCP [21] and MPUDP [22] are specifically designed
for data centers and virtual private networks. Multipath TCP
(MPTCP) [4] is a widely known transport protocol. MPTCP
enables the simultaneous use ofmultiple paths between peers.
MPTCP is designed to successfully establish the initial path
and after which subsequent paths are added for multiple
transmissions. TheMPTCP design suffers from complex TCP
header with additional sequence numbers and checksum [6].

B. QUIC PROTOCOL
The single-path QUIC (Quick UDP Internet Connections) is
a general-purpose transport protocol developed by Google
to accelerate HTTP/S traffic and make it more secure. The
advantages of QUIC protocol over TCP+TLS/HTTP2 are:
(i) reduce connection establishment latency; (ii) improved
congestion control; (iii) stable connection when networks are
switched and (iv) forward error correction [3].

QUIC uses UDP as its basis [3]. Each QUIC stream is
separately flow controlled. In case of packet loss or a broken
steam, it does not affect other streams. The protocol continues
to serve other streams independently. The implementation of
QUIC on top of UDP makes development and testing simple,
can be easily upgraded and shipped with the applications [6].

QUIC provides encryption and authentication for all
the packets except for handshake and resets packets.
The authentication headers prevent middleboxes form any
manipulations. QUIC achieves low latency by sharing the
cryptographic information with transport information in a
single handshake. The client is aware of initial keys and
can establish new QUIC connections with 0-RTT. Moreover,
QUIC uses a 64-bit connection ID for every connection. If a
device switches from Wi-Fi to cellular or undergoes NAT
re-bindings (changes it IP), it can seamlessly migrate the
existing connection over the new IP address [25].

Previous research work of authors in [26], [27] enhances
the capability of QUIC by adding cross layer approach which
in turn adapts to the dynamic network conditions. There is
further scope of improvement in terms of proxification which
we aim to achieve with the help of our proposed work in this
paper.

C. OVERVIEW OF MULTIPATH QUIC
Authors in [6], [8] enhanced the performance of QUIC by
enablingMultipath (MPQUIC). TheMPQUIC considers path
management, packet scheduling, and congestion control. The
architecture of MPQUIC [6] is explained below: Path Man-
ager: Like MPTCP or QUIC, MPQUIC performs the crypto-
graphic handshake over the first path. Each path created in
MPQUIC/MPTCP is referred to as a subflow. MPQUIC uses
Path Manager to control the subflows (creation and deletion).
Each packet has a PATH ID in the public header and each
subflow is identified by that PATH ID. The presence of PATH
ID allows MPQUIC to use multiple flows even during net-
work address translations by middleboxes in the path. Since
the QUIC stream can be bi-directional, the paths created by

145864 VOLUME 8, 2020



M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

the client will have an odd PATH ID to avoid PATH ID
clashes. Unlike MPTCP that requires a three-way handshake
for its subflow establishment, MPQUIC can leverage the
0-RTT path establishment for all subflows after establishing
the initial subflow.

Packet Scheduler: The path manager establishes multi-
ple subflows and MPQUIC Packet Scheduler schedules the
packets from streams on subflows. The Packet Scheduler
considers both subflows’ properties and stream requirements.
The transmission strategy in MPQUIC is more flexible,
as the QUIC frames are not constrained to particular subflow.
Hence, the QUIC frames are independent of the packet con-
taining them. In MPQUIC, the scheduler duplicates the data
over new subflow when a subflow is created, as the newer
subflow’s characteristics are not known yet.

Packet Number and Timers: Similar to QUIC, for reliable
communication, MPQUIC considers unique packet numbers
and stream offsets for each subflow. The Packet scheduler
detects any under-performing or broken subflows bymonitor-
ing the subflow statistics (e.g. round-trip-time and timeouts)
and speed up the handover process for mobility cases.

Congestion Control: The congestion control is used to
achieve fairness on the shared bottleneck. By default,
MPQUIC adapts OLIA coupled congestion control
scheme [28] to control the congestion [8]. However, in wire-
less environment, MPQUIC adopts the CUBIC congestion
control scheme [29]. The CUBIC scheme is used in our
experiments as it adapts to bandwidth-delay better in wireless
environment.

D. SOCKS PROTOCOL
SOCKS is an Internet protocol that uses a network firewall
to separate an organizational internal network structure from
an exterior network [16], [18]. The firewall system works
as an application-layer between network and offers con-
trolled TELNET, FTP, and SMTP access [16]. Sock protocol
provides a convenient and secured utilization of network
firewalls for client-server applications in both the TCP and
UDP domain. This protocol does not enable network getway
services like ICMP message forwarding. Moreover, SOCKS
work as a ‘‘shim-layer’’ between the application and the
transport layer [16].

The SOCKS Version 4, provides unsecured firewall traver-
sal for TELNET, FTP, HTTP, GOPHER and TCP-based
client-server applications. SOCKS Version 5, overcomes the
weaknesses of SOCK Version 4. The SOCK Version 5,
includes UDP, provides strong authentication schemes and
extends the addressing scheme by considering the domain-
name & V6 IP addresses [16]. The SOCKS protocol
implementation involves the appropriate use of encapsulation
routines in the SOCKS library for TCP-based client appli-
cations [16]. The Procedure for TCP-based clients is given
in [16]. The SOCKS implementation with Multipath TCP,
enables simultaneous utilization of different access links,
which increase the throughput of TCP connections. However,
it increases the TCP connection establishment time by several

round-trip-times between client and SOCKS server [18].
SOCKSv6 is proposed in IETF [30] for enhancing TCP prox-
ification using TCP Fast Open (TFO) option. This does not
work for QUIC as its designed only for TCP. Additionally,
in case of HTTPS connection, it also includes multiple RTTs
of SSL handshakes, increasing the overall Page Loading
Time (PLT).

E. PROXIFICATION OF MULTIPATH PROTOCOL
The Multipath protocols (MPTCP/MPQUIC) can combine
both cellular and Wi-Fi networks. However, the server-side
deployment might take a longer time. SOCKS is a proto-
col used by proxy servers for session management. SOCKS
handshake further increases the connection establishment
time for TCP. QUIC accelerates the HTTP traffic, reduces the
connection establishment time and provides a stable connec-
tion. However, SOCKS and QUIC do not work hand-in-hand.
Motivated from the above studies, we proposed QSOCKS
which enables (1) Proxy design; (2) 0-RTT/1-RTT connec-
tion establishment; (3) Enhanced security; (4) Improved page
Loading Time (PLT)/Video Loading Time (VLT).

III. PROPOSED QSOCKS
In this section, we introduce the design of QSOCKS. The pro-
posed approach reduces round-trip-time during proxification
and thus improves the connection establishment time.

A. DESIGN GOALS
We aim to develop a solution considering the following goals:

(i) SOCKS Overhead: Reduce the latency of SOCKS con-
versations by leveraging 0RTT properties of QUIC.

(ii) Non-Blocking Request: The client asynchronously
sends the data along with SOCKS Request without
waiting for the response.

(iii) Security: All the SOCKS Authentication and the
Connection requests must be secured.

(iv) Confidentiality: Assures end-to-end encryption between
client and server.

(v) Reliability: Guarantees the control messages to be
reliably delivered with high priority.

(vi) Robust: The protocol should be extensible via options
without breaking backward-compatibility.

B. DESIGN
In this subsection, we present the design and implementation
of QSOCKS. The proposed QSOCKS is a SOCKS exten-
sion for QUIC protocol. QSOCKS consists primarily of two
phases: QSOCKS Authentication, and QSOCKS Request.

1) QSOCKS AUTHENTICATION
QSOCKS integrates its SOCKS authentication with the
QUIC Crypto handshake. QSOCKS introduces QSOCKS
METHOD (’QSKM’) and QSOCKS AUTH (’QSKA’) tags
in the Client Hello (CHLO) message as shown in Fig. 3.

VOLUME 8, 2020 145865



M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

FIGURE 3. QSOCKS METHOD exchange using QSKM tag in QUIC Inchoate
CHLO.

• Client advertises the client-supported SOCKS AUTH
(Authentication) methods using the QSKM tag in QUIC
CHLO packet. The server selects one among the adver-
tised methods and communicates the selected method
using QSKM in QUIC REJ packet to the client. For
our current design, we consider a simple set of AUTH
methods as follows:
- X’00’ NO AUTHENTICATION REQUIRED
- X’01’ GSSAPI
- X’02’ USERNAME/PASSWORD
- X’03’ to X’7F’ IANA ASSIGNED
- X’80’ to X’FE’ RESERVED
- X’FF’ NO ACCEPTABLE METHODS

• QSKA is an optional feature that contains the SOCKS
AUTH (authentication) sub-negotiation as shown
in Fig. 4. The QSOCKS client, based on the selected
AUTH method, advertises its credentials via QSKA
request in the QUIC Client Hello message (CHLO). The
QSOCKS server verifies the supplied credentials and
responds via the QSKA response in the QUIC Server
Hello message (SHLO).

2) QSOCKS REQUEST
Once the QSOCKS authentication is complete, every new
SOCKS session is initiated via a QSOCKS Request.
QSOCKS Request is integrated with the payload of a QUIC
STREAM frame. The proposed QSOCKS Request header
format is depicted in Fig. 5.

In addition to the legacy SOCKS CMD values, QSOCKS
introduces two additional options to support TCP (X‘04’)
and UDP (X‘05’) over QUIC protocol. The SOCKS server
will typically evaluate the request based on source and
destination addresses, and return one or more reply mes-
sages, as appropriate for the request type. This blocks the
application data to be sent to actual destination server.

FIGURE 4. QSOCKS AUTH sub-negotiation using QSKA tag in QUIC CHLO.

FIGURE 5. QSOCKS Request Header format.

FIGURE 6. Comparison of QSOCKS SYNC and ASYNC Requests. ASYNC
Request enables 0-RTT data transfers.

Hence, QSOCKS introduces an additional field in QSOCKS
Request, REQ.TYPE. If REQ.TYPE is asynchronous, then it
allows the Data to be piggybacked along with the request.
If the server responds an error later, the stream is can-
celed. Fig. 6 compares the asynchronous and synchronous

145866 VOLUME 8, 2020



M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

QSOCKS Request exchange. The user application sessions
are made 0-RTT by leveraging asynchronous QSOCKS
request.

C. QSOCKS ADVANTAGES OVER SOCKSv5
The key issue in SOCKSv5 is that, it requires 7-RTTs (TCP
Handshake, method negotiation, authentication, connection
request, connection response, TLS negotiation, TLS grant)
for a secured proxy connection and 5-RTTs for a plain proxy
connection to exchange data. The QSOCKS is designed to
reduce the initial establishment overhead, exchanging data
in 0-RTT (illustrated in Fig. 7). This impacts the short-lived
connections and page loading time. In addition to the hand-
shake improvement, QSOCKS also enhances the security by
making QSOCKS AUTH and QSOCKS REQUEST incog-
nito using 0-RTT keys.

FIGURE 7. The overall flow of QSOCKS and its comparison with TCP
SOCKSv5.

IV. PERFORMANCE EVALUATION
This section presents the performance of our proposal.
QSOCKS is evaluated through live experiments and mininet
based simulation results.
Live Air Experimental Results and Analysis: To prove the

deployability and improved performance in real-world envi-
ronments, we run our QSOCKS solution implemented on the
Samsung Galaxy S9.

A. WEBPAGE DOWNLOAD
To show the efficiency of our QSOCKS solution, we compare
the Page Loading Time (PLT) recorded with QUIC Booster
(MPQUIC over QSOCKS) and the prevalent GigaLTE
(MPTCP over SOCKSv5) [19]. We measured the overall
PLT, consisting of the Transport handshake, the Session
(QSOCKS/SOCKSv5) handshake, and the HTTP requests
for all webpage dependencies including all essential files
(i.e., JavaScript, CSS, and images). Each data pointed in the

graphs represents ten trials with the QUIC booster solution
and the average has been plotted.
HTTP Connections: Our first scenario is the study of

HTTP webpage downloads in various round-trip-time con-
ditions. We hosted a webpage with multiple objects (object
size varying from 10 kB to 100 kB), at different regions
and we tested with S9 Smartphones running QUIC Booster
and GigaLTE. Fig. 8 confirms the performance improve-
ment of our QSOCKS solution over existing legacy solu-
tions. QSOCKS improves the PLT by 1813 ms, 2375 ms,
3869 ms, and 4404 ms for Delhi, Korea, Virginia, and Brazil,
respectively. The 0-RTT session establishment approach in
QSOCKS helps in fetching the HTTP wepages 18% faster
than SOCKSv5.

FIGURE 8. PLT Comparison of Plain HTTP Pages between QUIC Booster
and GigaLTE.

HTTPS Connections: As of April 2018, 33.2% of Alexa
top 1, 000, 000 websites use HTTPS as default [31] protocol.
Moreover, 57.1% of the Internet’s (137, 971) most popular
websites have a secure implementation of HTTPS [32], and
70% of loaded pages (measured by Firefox Telemetry) use
HTTPS [33]. Hence, we evaluate our proposal on the top
HTTPS websites with different properties as shown in the
Table 1.

TABLE 1. HTTPS Webpages Properties.

Unlike HTTP, HTTPS additionally uses TLS handshake
for establishing a secured connection. We notice that the
performance of QUIC Booster is far better than GigaLTE.
Fig. 9 shows that QSOCKS reduces the PLT by up-to 42%
as compared to SOCKSv5. On the other hand, the PLT in
SOCKSv5 is up-to 60% slower than the traditional single path
direct TCP connection.

VOLUME 8, 2020 145867



M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

FIGURE 9. PLT Comparison of top websites using QUIC Booster, GigaLTE
and direct TCP.

FIGURE 10. PLT Comparison in different loss conditions using QUIC
Booster, GigaLTE and direct TCP.

To evaluate QUICBooster against legacy protocols in lossy
network conditions, we performed Page load tests of the
top 1000 sites on various loss conditions. To capture the
real world wireless loss conditions, we simulated packet loss
ranging from 0.0001% to 0.1% with TC netem tool. From
the results in Fig. 10, we can clearly infer that the existing
protocols like GigaLTE and TCP under-perform with respect
to PLT as the packet loss increases. However QUIC Booster
copes well with lossy conditions, taking advantage of QUIC’s
fast loss recovery and pacing in congested networks.

The improvement in PLT using QUIC Booster is
mainly because of a) 0-RTT proxification using QSOCKS;
b) Leveraging QUIC property to couple TLS negotiation
with connection establishment. Whereas, GigaLTE under-
goes multiple round-trip-time for SOCKSv5 and HTTPS
negotiations. As the top websites are yet to adapt the QUIC
protocol, our future work presupposes the evaluation of
QSOCKS with legacy QUIC as well.

B. FILE DOWNLOAD
To study the commercial prospect of QSOCKS solution in
real-world environment, we evaluate the download times for
different file sizes and network characteristics. Each data

FIGURE 11. File Download in Homogeneous Environment.

FIGURE 12. File Download in Heterogeneous Environment.

pointed in the box plot represents 100 trials with the GigaLTE
and our proposed QUIC Booster solution.
QUIC Booster and GigaLTE Operates Similar in Homo-

geneous Environment: We use Wi-Fi and LTE with simi-
lar characteristics. The average latency in both the path is
around 20 ms. We download multiple files of 10 kB, 100 kB,
10MB and 100MBwith the help of S9 Smartphones running
QUIC Booster and GigaLTE. Fig. 11 shows the comparison
graph of different file size in homogeneous environment. For
small file size (10 kB and 100 kB), QSOCKS outperforms
the SOCKSv5 solution, whereas for larger file size (10 MB
and 100 MB) we observe similar performance in terms of
download time. The SOCKSv5 handshake impacts the small
file downloads in GigaLTE, whereas QUIC Booster com-
pletes the download faster with the help of QSOCKS 0-RTT
handshakes.
MPQUIC Performs Better in Heterogeneous Environment:

For the heterogeneous scenario (latency of 20 ms for Wi-Fi
and 50 ms for LTE), we observe that QUIC Booster outper-
forms the GigaLTE solution irrespective of the file sizes. The
MPQUIC Packet Scheduler, with the help of RTT stats and
leveraging the QUIC’s adaptability to varying network char-
acteristics, copes up better to the heterogeneous conditions

145868 VOLUME 8, 2020



M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

than MPTCP. As depicted in Fig. 12, the path utilization in
MPQUIC is prevalent in heterogeneous conditions and hence,
QUIC Booster is comparatively more suitable in real time
scenario.

V. CONCLUSION
This paper proposed a robust QSOCKS, which enhances
the capabilities of QUIC. We presented a novel proxy-based
design for QUIC (QSOCKS), bundled with QUIC/Multipath
QUIC. QSOCKS ensures 0RTT/1RTT connection time,
enhances the Page Loading Time (PLT) and short-lived
connections. Moreover, QSOCKS improves the handshake
mechanism and also enhances the transmission security
as compared to existing SOCKSv5 protocol. Our live air
experiments and extensive simulations show that, proposed
QSOCKS outperforms the existing mobile proxy solutions in
the market such as GigaLTE. Our future work presupposes
to propose QSOCKS in 3GPP, to enhance the operation of
Access Traffic Steering, Switch and Splitting (ATSSS-TR
23.793 Rel 13) support in 5G Systems.

REFERENCES
[1] P. Jonsson, S. Carson, G. Blennerud, J. K. Shim, B. Arendse, A. Husseini,

P. Lindberg, and K. Ôhman. (Nov. 2019). Ericsson Mobility Report.
[Online]. Available: https://www.ericsson.com/4acd7e/assets/local/
mobility-report/documents/2019/emr-november-2019.pdf

[2] A. Handa, System Engineering for IMS Networks. London, U.K.: Newnes,
2009.

[3] A. Langley, A. Riddoch, A.Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, and J. Bailey, ‘‘The QUIC transport
protocol: Design and Internet-scale deployment,’’ in Proc. Conf. ACM
Special Interest Group Data Commun., 2017, pp. 183–196.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions for
Multipath Operation With Multiple Addresses, document RFC 6824, 2013.

[5] R. Stewart, Stream Control Transmission Protocol, document RFC 4960,
2007.

[6] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
‘‘Multipath QUIC: A deployable multipath transport protocol,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–7.

[7] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, ‘‘QUIC: A UDP-based
secure and reliable transport for HTTP/2 draft-tsvwg-quic-protocol-02,’’
Google, IETF Netw. Work. Group Versions: 00 01 02, Tech. Rep., 2017.

[8] Q. De Coninck and O. Bonaventure, ‘‘Multipath QUIC: Design and eval-
uation,’’ in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol., Nov. 2017,
pp. 160–166.

[9] I. Livadariu, A. Elmokashfi, and A. Dhamdhere, ‘‘Characterizing IPv6
control and data plane stability,’’ in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[10] I. Livadariu, S. Ferlin, Ö. Alay, T. Dreibholz, A. Dhamdhere, and
A. Elmokashfi, ‘‘Leveraging the IPv4/IPv6 identity duality by using multi-
path transport,’’ inProc. IEEEConf. Comput. Commun.Workshops (INFO-
COM WKSHPS), Apr./May 2015, pp. 312–317.

[11] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, ‘‘How hard can it be? Designing and
implementing a deployable multipath TCP,’’ in Proc. 9th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2012, pp. 399–412.

[12] Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, ‘‘A measurement-based study of MultiPath TCP performance
over wireless networks,’’ in Proc. Conf. Internet Meas. Conf. (IMC), 2013,
pp. 455–468.

[13] O. Bonaventure and S. Seo, ‘‘Multipath TCP deployments,’’ IETF J.,
vol. 12, no. 2, pp. 24–27, 2016.

[14] D. Wischik, M. Handley, and M. B. Braun, ‘‘The resource pooling princi-
ple,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp. 47–52,
Sep. 2008.

[15] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, ‘‘Explor-
ing mobile/WiFi handover with multipath TCP,’’ in Proc. ACM SIGCOMM
Workshop Cellular Netw., Oper., Challenges, Future Design (CellNet),
2012, pp. 31–36.

[16] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, SOCKS
Protocol Version 5, document RFC 1928, 1996.

[17] Q. D. Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, ‘‘A first
analysis of multipath TCP on smartphones,’’ in Proc. 17th Int. Passive Act.
Meas. Conf. Heraklion, Greece: Springer, 2016, pp. 57–69.

[18] (2018). Socks and Multipath TCP. [Online]. Available: http://blog.
multipath-tcp.org/blog/html/2018/12/21/socks_and_multipath_tcp.html

[19] Samsung, KT Announce 5G GiGA LTE, Available for S6 and S6
Edge Today. [Online]. Available: https://www.sammobile.com/2015/06/
16/samsung-kt-announce-5g-giga-lte-available-for-s6-and-s6-edge-today

[20] J. Heuschkel, A. Frömmgen, J. Crowcroft, and M. Mühlhäuser, ‘‘Virtual-
Stack: Adaptive multipath support through protocol stack virtualization,’’
in Proc. Int. Netw. Conf. (INC), 2016, pp. 73–78.

[21] M. Kheirkhah, I. Wakeman, and G. Parisis, ‘‘MMPTCP: A multipath
transport protocol for data centers,’’ in Proc. IEEE INFOCOM-35th Annu.
IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[22] D. Lukaszewski and G. Xie, ‘‘Multipath transport for virtual private net-
works,’’ in Proc. USENIX Workshop Cyber Secur. Experimentation Test
(CSET), 2017, pp. 1–8.

[23] M. Scharf and T. Banniza, ‘‘MCTCP: A multipath transport shim layer,’’
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2011,
pp. 1–5.

[24] J. R. Iyengar, P. D. Amer, and R. Stewart, ‘‘Concurrent multipath transfer
using SCTPmultihoming over independent end-to-end paths,’’ IEEE/ACM
Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[25] The Chromium Projects. [Online]. Available: https://www.chromium.
org/quic

[26] G. Sinha, M. R. Kanagarathinam, S. R. Jayaseelan, and G. K. Choudhary,
‘‘CQUIC: Cross-layer QUIC for next generation mobile networks,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Seoul, South Korea,
May 2020, pp. 1–8, doi: 10.1109/WCNC45663.2020.9120850.

[27] G. K. Choudhary, M. R. Kanagarathinam, H. Natarajan, K. Arunachalam,
S. R. Jayaseelan, G. Sinha, and D. Das, ‘‘Novel MultiPipe QUIC protocols
to enhance the wireless network performance,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Seoul, South Korea, May 2020, pp. 1–7,
doi: 10.1109/WCNC45663.2020.9120821.

[28] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, ‘‘MPTCP is not
Pareto-optimal: Performance issues and a possible solution,’’ IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[29] S. Ha, I. Rhee, and L. Xu, ‘‘CUBIC: A new TCP-friendly high-speed TCP
variant,’’ ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 64–74,
Jul. 2008.

[30] SOCKS Protocol Version 6. [Online]. Available: https://datatracker.
ietf.org/meeting/99/materials/slides-99-mptcp-sessa-socks-protocol-
version-6-00

[31] HTTPS Usage Statistics on top 1M Websites. Accessed: Oct. 20, 2018.
[Online]. Available: https://StatOperator.com

[32] Qualys SSL Labs-SSL Pulse. Accessed: Oct. 20, 2018. [Online]. Available:
https://www.ssllabs.com

[33] Let’s Encrypt Stats. Accessed: Oct. 20, 2018. [Online]. Available:
https://LetsEncrypt.org

MADHAN RAJ KANAGARATHINAM (Senior
Member, IEEE) received the B.E. degree in com-
puter science and engineering from Anna Uni-
versity, Chennai, India, in 2012. He has seven
years of working experience in design and devel-
opment of TCP/IP protocols, multipath TCP, and
UNIX flavored operating systems. He was an
Engineer with Aricent Technology Private Ltd.,
India. He is currently a Chief Engineer with Sam-
sung Research and Development India-Bengaluru.

He is the author of ten articles. He holds more than 20 inventions. His
current research interests include communication and networks, include pre-
6G/beyond 5G, next generation mobile networks, software defined network
architecture, 40 transport layer protocols, and cross layer optimization tech-
nique. He is a member of ACM.

VOLUME 8, 2020 145869

http://dx.doi.org/10.1109/WCNC45663.2020.9120850
http://dx.doi.org/10.1109/WCNC45663.2020.9120821


M. R. Kanagarathinam et al.: QSOCKS: 0-RTT Proxification Design of SOCKS Protocol

SUKHDEEP SINGH (Member, IEEE) received
the Ph.D. degree from Sungkyunkwan University,
South Korea. He is currently a Chief Engineer
with Samsung Research and Development India-
Bengaluru. His work was published by the IEEE,
Wiley, Taylor and Francis, and IET. His research
interest includes 5G/6G wireless communications.

SUJITH RENGAN JAYASEELAN received the
B.Tech. degree in computer science and engi-
neering from the National Institute of Technol-
ogy, Trichy. He is currently a Software Engineer
with Samsung Research and Development India-
Bengaluru. His current research interests include
next generation mobile networks and transport
protocols.

MUKESH KUMAR MAHESHWARI received the
master’s degree from the University of Leicester,
U.K., and the Ph.D. degree from Sungkyunkwan
University, South Korea. He is currently a Faculty
Member with the Department of Electrical Engi-
neering, Bahria University, Pakistan. His work was
published by the IEEE, Wiley, Taylor and Francis,
and IET. His research interests include 5Gwireless
communications and energy-efficient networks.

GUNJAN KUMAR CHOUDHARY has an overall
12 years of industry experience. He worked on
Android framework and HTTP protocol. He is
currently a Senior Chief Engineer with Samsung
Research and Development India-Bengaluru. His
work was published by the IEEE. His current
research interests include QUIC protocol and con-
nectionless oriented protocols.

GAURAV SINHA (Member, IEEE) graduated in
computer engineering from the Thapar Institute
of Engineering and Technology, India, in 2018.
He joined Samsung Research and Development
India-Bengaluru, where he is currently a Senior
Software Engineer with the Mobile Communica-
tion Division. His research interests include next
generation mobile networks, AI in wireless, cross-
layer optimizations, applied machine learning, and
natural language processing.

145870 VOLUME 8, 2020


