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Abstract: Recent developments in the field of preventive healthcare have received considerable
attention due to the effective management of various chronic diseases including diabetes, heart stroke,
obesity, and cancer. Various automated systems are being used for activity and food recognition
in preventive healthcare. The automated systems lack sophisticated segmentation techniques and
contain multiple sensors, which are inconvenient to be worn in real-life settings. To monitor activity
and food together, our work presents a novel wearable system that employs the motion sensors in a
smartwatch together with a piezoelectric sensor embedded in a necklace. The motion sensor generates
distinct patterns for eight different physical activities including eating activity. The piezoelectric
sensor generates different signal patterns for six different food types as the ingestion of each food is
different from the others owing to their different characteristics: hardness, crunchiness, and tackiness.
For effective representation of the signal patterns of the activities and foods, we employ dynamic
segmentation. A novel algorithm called event similarity search (ESS) is developed to choose a
segment with dynamic length, which represents signal patterns with different complexities equally
well. Amplitude-based features and spectrogram-generated images from the segments of activity and
food are fed to convolutional neural network (CNN)-based activity and food recognition networks,
respectively. Extensive experimentation showed that the proposed system performs better than the
state of the art methods for recognizing eight activity types and six food categories with an accuracy
of 94.3% and 91.9% using support vector machine (SVM) and CNN, respectively.

Keywords: preventive healthcare; activity recognition; food recognition; support vector machine;
convolutional neural network; signal segmentation; accelerometers; gyroscope; piezoelectric sensor

1. Introduction

The physical activity level of Americans has been observed as very low despite the continuous
rise in chronic diet-related diseases [1]. Medical studies suggest that people need physical activity
and a balanced diet to live a healthy life and it also reduces the risk of numerous fatal diseases [2].
Significant resources have been invested in research to develop effective medical treatments and drugs
to lower the impact of various diseases such as obesity, diabetes, cancer, cardiovascular, bone diseases,
etc. To minimize the effect of chronic diseases, technology-based preventive healthcare methods have
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attracted the attention of practitioners. The widespread development of accurate wearable sensing
technology has offered a great platform for healthcare methods. The unique features of skin-inspired
sensors, such as flexibility, stretchability, elasticity, biocompatibility, and communication to smart
devices, the multifunctional sensors could be conformally and seamlessly attached onto the human
body for sensitive monitoring [3,4].

There are several key factors that can minimize the risk of diet-related diseases, especially obesity,
if they are properly managed, for example avoiding late-night food and sedentary behavior [5].
Obesity is defined as an unhealthy medical complication in which a person carries excessive fat in the
body [6]. Obesity or overweight is the source of many diseases and about half of American adults
of all ages are obese [2]. Medical cost associated with controlling obesity was $147 billion in 2008 [7]
and the World Health Organization rated obesity as the fifth major cause of deaths worldwide [8].
Energy balancing is an important factor in weight management. The imbalance between energy
consumed and energy spent is reflected in weight gain [9]. There are many people who do not control
their habit of unscheduled eating and they have low levels of physical activity due to staying more in
a sedentary state, which contributes to obesity [10].

An automated system is therefore needed for monitoring the obesity related factors, such as
physical activities and food contents. The system should have the ability to provide feedback to
participants about the ingested food types and the physical activities performed on each day. Thus,
the system can assist the users to eat low energy foods such as fruits and vegetables over high-energy or
calorie-dense foods, so as to maintain the ratio of energy consumed and energy expenditure. Currently,
significant research has been carried out in the field of physical activity recognition. Some researchers
employed wearable sensors [11–18] while others used video sensors [19–21] for activity recognition.
Wearable sensor-based studies require multiple sensors placed on different body parts to recognize
physical activities [12,13]. The design of wearables restricts the movement of the subjects due to
wired connections. On the contrary, video sensor-based systems do not require subjects to wear
uncomfortable wearable sensors [19–21]. However, video sensor-based systems also suffer from
limitations such as particular spaces equipped with camera, which restrict the subjects’ movements.
Moreover, brightness conditions can also degrade the accuracy of such systems.

Similar to the above studies on physical activity recognition, there have been attempts to design
non-invasive food recognition systems that can recognize different food types [22–28]. The authors
of [29] employed various sensors such as a microphone, camera, gyroscope, strain gauge, piezoelectric
sensor, and weight scale for food recognition. The microphone has been widely used in food
recognition [22–25] as it gives better accuracy than other sensors. Microphone-based food recognition
systems have limitations such as audio sensing fails to classify soft food types due to background
noise [26]. Therefore, microphone-based systems require additional sensors to classify broad food
categories and to minimize the effect of environmental noise. Although some prior studies have
performed well for food recognition in challenging environments [26–28], they have not addressed the
problem of the activity recognition.

The challenges present in existing activity and food recognition systems motivated us to design a
system that can not only recognize physical activities but also can classify food categories. To the best
of our knowledge, no one has proposed a system for combined recognition of activity and food yet.
In this paper, we present an automated monitoring system that can assist individuals in keeping an
eye on their daily routine and diet. Our designed system is based on a smartwatch and a necklace,
which can achieve the goal of recognizing physical activities as well as food categories simultaneously.
The contributions of our research are best explained in four aspects.

• First, we employ the motion sensors of a smartwatch and a piezoelectric sensor with a stretchable
necklace to develop an automated system for monitoring the activities and food types. The motion
sensors generate distinct patterns for the eight physical activities. Likewise, the piezoelectric
sensor produces different patterns for ingestion of six food categories.
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• Second, our food recognition approach based on CNN accurately classifies spectrogram-generated
images of six food categories in real-life settings.

• Third, we propose a new algorithm named as event similarity search (ESS) that helps in the
annotation of experimental data automatically. We choose a segment with dynamic length, which
represents signal patterns with different complexities equally well.

• Fourth, our employed wearable sensors have better user-experience because their design does
not limit the natural movements of the subjects and does not interfere with the subjects’
respiration process.

The rest of this paper is organized as follows. Previous studies related to activity and diet
monitoring are discussed in Section 2. Section 3 describes the experiment process, proposed system
architecture in addition to signal segmentation. Features extraction and selection along with the
classification of the activities and the food categories are explained in Section 4. In Section 5, we present
experimental results and discuss system performance for the activities and food recognition. The paper
concludes with potential plans for the future in Section 6.

2. Related Work

In this section, we present the related work for physical activities and food activity recognition.
Then, we review the conventional neural network (CNN).

2.1. Physical Activities

During the last decade, there have been numerous studies presented in the field of physical
activity recognition using wearable and video sensors [12]. Much of the work on activity recognition
relies on computer vision [30]. Computer vision does not perform well in wearable domain owing to
occlusion and variations in lightning conditions. Therefore, non-visual sensors, such as accelerometers
and gyroscope, have been employed in the analysis of activity and body posture [11–18]. Prior to
smart devices, multiple sensors were attached to the body of the subject for the recognition task [12,13].
Attaching multiple sensors was reported as cumbersome and uncomfortable [31]. However, measuring
the activity of the user has become easy owing to sensor-embedded smart devices.

One-dimensional CNN was used previously for recognizing human activities from data of triaxial
accelerometer [11]. The accelerometer data were transformed into one-dimensional vector magnitude
data that were used for training the CNN. The method proposed in [11] attained an accuracy of
92.71%. Although the authors used a complex CNN algorithm, the performance of the algorithm
degraded due to limitations such as small sampling frequency and a small set of activities. Google
developed an API for recognition of physical activities, such as running, riding a bicycle, walking, and
being stationary [16]. The data were gathered using the sensors present in the smartphones of users.
The performance of Google API is poor when one activity is sandwiched into other activity, for example
running is preceded and succeeded by walking. The main reason for the poor performance of the API
is static segmentation. Static segmentation fails to separate patterns of activities from each other if
some part of the signal pattern of activity is embedded into the signal pattern of another activity.

An Internet of Things (IoT)-based physical activities recognition system was designed to remotely
monitor crucial symptoms related to the condition of chronic heart patients [17]. The system using
learning algorithms inferred health of patient within four physical activities (lie, sit, walk, and run)
and time spent on the activities. The idea of monitoring activities in the context of healthcare is
of importance but the system was employed on a small portion of the population and included a
small set of activities. A deep architecture consisting of convolution-temporal layers was designed
to predict attributes that favorably represent signal segments for recognition of human activities [18].
The network was deployed for identification of the activities encountered the limitations, such as
computational complexity and complex error-prone attributes. For example, moving left and right
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foot in forward direction is considered as walking, but the aforementioned actions could also be used
for running [18].

There is one well-known study based on visual sensors for human activity recognition [19].
In this study, the authors presented an activity recognition system based on multi-fused features,
which recognized activities from depth map sequences [19]. The designed system divided human
depth outlines into parts and obtained human skeleton joint using temporal human motion and
spatiotemporal human body information, respectively. Four skeleton joint features and one body
shape feature were concatenated by using spatiotemporal multi-faced features. Hidden Markov model
(HMM) was trained on the selected multi-fused features and then recognized the activities [19].

2.2. Dietary Behavior

Previous dietary monitoring methods are mainly divided into two broad categories: manual
and automated methods. Manual methods of food intake monitoring are based on food frequency
questionnaires (FFQ) and dietary recall [32–34]. These methods require daily food intake lists in a
special format and expert dietitians to help subjects recall their intake of foods during the past 24 h. It
is hard for individuals to remember the contents and amount of foods all the time. Dependence of
manual procedures on self-reporting often leads to under-reporting of consumption, non-compliance
and discontinued use over a long time. Although a questionnaire-based approach is inexpensive, it
is erroneous because of incomplete food lists, poor user compliance, errors in recording frequency,
and errors in recording the serving size.

As manual methods of meal intake rely on 24 h-recall and questionnaires [32–34] were subjective
and unreliable, an alternative new approach, automated food intake monitoring, has been developed
to investigate monitoring of food intake amount and identification of food type. For alleviating
the problems present in manual methods, different researchers [23–25,27,28,35–41] have developed
automated non-invasive food monitoring methods using different sensors to collect physiological
signals relating to the eating activity. Amft et al. [35] integrated surface electromyography (SEMG)
and a microphone in collar-like fabric to detect and classify swallow during eating and drinking. They
obtained a recognition rate of 73–75% for volume and viscosity classification of the swallow.

A study based on inertial sensors, microphones, and surface electromyography (EMG) was
designed to identify dietary activity events [37]. The authors used the sensors to monitor arm and
trunk movements, while chewing and swallowing sounds were used for recognition of dietary activity.
They detected the four arm movements and two food groups with a recall of 80–90% and a precision
of 50–64% using chewing sound.

Bi et al. developed embedded hardware named as AutoDietary for food intake recognition, which
consists of a throat microphone and a smartphone application [23]. A throat microphone is worn on the
neck of the subject for collecting acoustic signals non-invasively while eating any food. AutoDietary
classifies seven food categories in addition to the binary classes of solid and liquid with an accuracy
of 84.9% and 99.7%. AutoDietary has performed well in classifying the broad range of categories
with enough accuracy in the laboratory setting. However, the accuracy of such a system based on
the microphone can drastically decrease in the real environment because surrounding noise can
interfere with the sound of food intake. Alshurafa et al. also designed a wearable system for nutrition
monitoring that was in the form of necklace embedded with a piezoelectric sensor for detecting skin
motion in lower trachea during ingestion [28]. Their method classifies foods in few classes such as
solid and liquid, hot and cold, and hard and soft using statistical features collected from spectrogram.

Kalantarian et al. introduced a low-cost necklace embedded with a piezoelectric sensor that
helps recognize water, potato chips, and sandwich foods through generating unique voltage patterns
according to skin movements of a user’s neck [27]. The wearable system of [27] has attained accuracies
of 85.3%, 81.4%, and 84.5% for chips, water, and sandwich, respectively. Selected food categories in
their experiment were not representing a broad range of foods. Besides, the accuracy of their method
is low as they smoothed out an important pattern of chewing. The authors of [25] evaluated eating
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behavior with a new modality of the smartwatch as a smartwatch has higher user acceptance. They
used the smartwatch’s built-in microphone to record and detect chews and swallows. Unlike the work
in [24,27,28], the authors did not filter out chewing patterns and therefore their system performed
classification with an F-measure of 94.5%. Although the smartwatch-based system has attained high
food recognition performance in laboratory settings, its performance is expected to decrease in the real
environment due to surrounding noise.

A dining table embedded with a scale [39] or covered with textile pressure sensors [40] can
be deployed to weigh food continuously. The tables can be configured to compute gram changes
in different areas [40]. This method is typically used in a fixed environment. The camera-based
approach captures a picture of intake before and after eating [41]. It requires a trained observer who
can constantly estimate the quantity of food eaten by the subjects. The accuracy of camera-based
approach can be affected if the view of the camera is not aligned to the food plate and lighting
condition. The systems based on table and camera are not practical in daily life because such systems
are immovable and fixed to a particular location. The conventional approaches have limitations and
do not consider activity and food recognition together.

2.3. Preliminary of CNN

A CNN is a deep learning algorithm which is widely applied for solving the complex problems
using images as input. CNN assigns importance to various aspects or objects in the image
through hand-engineered filters and is able to learn to classify images of different categories.
A CNN requires much lower computation as compared to other classification algorithms [42].
CNNs are extremely good at detecting patterns in images, for example recognizing objects, faces,
and scenes [43]. Main applications of CNN in the area of computer vision is self-driving vehicles [44]
and face-recognition [45]. CNN models automatically extract the features and henceforth produce
state-of-the-art recognition results [46]. Different CNN models are designed with layer counts ranging
from tens to hundreds, which learn to extract different features of an image. Filters with different
resolutions are applied to each training image and their convolved output is propagated as the input
to the next layer. Each layer of a CNN carries a different count of neurons. A connectivity pattern of
neurons in the human brain and organization of the visual cortex inspired the researchers to envision
the present architecture of a CNN. Individual neurons respond to stimuli only in a restricted region
of the visual field known as the receptive field. The collected fields overlap to cover the entire visual
area. The researchers designed the filters with different resolutions after gaining inspiration from
the neurons in the human brain. The filters in initial layers detect basic features, such as edges and
brightness, and complex features are found by the last layers.

There are five main layers in the CNN model: convolutional (conv), activation, pooling,
fully-connected (FC), and softmax layer. The conv layer contains a set of convolutional filters, each of
which activates certain features from the images. The filters in each conv layer hold the local features of
the input image, such as edges, blobs, shapes, etc. The activation layer, also known as a rectified linear
unit (ReLU), activates the particular neuron after computing a nonlinear function of the input. Pooling
layer reduces the number of parameters by decreasing the spatial size of the input or the network.
The FC layer, identical to hidden layers of the traditional neural networks, represents important
composite and aggregated features or information from all the convolutional layers appeared before
it. Softmax layer normalizes the predictions and enables the network to generate the outputs as
probabilities. Cross-entropy loss is also measured at a softmax layer. The mathematical representation
of the main five layers of the CNN is given by Equation (1) [47].
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Convolutional layer:

gl
j = xl−1

i (s, t) ∗ωl
ij

=
n1

∑
σ=−n1

n2

∑
ν=−n2

xl−1
i (s− σ, t− ν)ωl

ij(σ, ν) (1a)

Activation or ReLU layer:

xl
j = max(0, ∑

i∈Mj

gl
j + bl

j) (1b)

Pooling layer:

xl+1
j = fp(βl+1

j (xl
j) + bl+1

j ) (1c)

Fully-connected layer:

xL−1 = fc(βL−1xL−2 + bL−1) (1d)

Softmax layer:

zd =
eod

∑C
c=1 eoc

→ exL−1
d

∑C
c=1 exL−1

c
(1e)

An image with three channels (i.e., RGB colors) is fed into the CNN, in which input passes
sequentially through a series of the layers. The layer could be a convolutional, activation, pooling,
fully connected, or a loss layer. The i feature maps (xl−1

i ) of the previous layer are convolved with jth
learnable filter (ωl

ij) present in the current or lth convolutional layer, which outputs jth new feature

map (xl
j) after applying activation or ReLU function. This tells us the new feature map of present layer

l depends on feature maps in the previous layer l − 1. The CNN employs cross entropy loss (Υ) to
determine the deviation between actual distribution and the distribution produced by the model [48].
Υ is computed using Equation (2).

Υ(y, z) = −∑
d

yd log(zd) (2)

For backpropagation, the partial derivative of cross entropy loss Υ is computed with respect to
outputs o of the previous fully connected layer as given in Equation (3).
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∂Υ
∂od

= −∑
c

yc
∂ log(zc)

∂zc
× ∂zc

∂od

= −∑
c

yc
1
zc
× ∂zc

∂od

= −yd(1− zd)− ∑
c 6=d

yc
1
zc
(−zc · zd)

= −yd(1− zd) + ∑
c 6=d

yc · zd

= −yd + ydzd + ∑
c 6=d

yc · zd

= zd(yd + ∑
c 6=d

yc)− yd

∂Υ
∂od

= zd − yd ∵ yd + ∑
c 6=d

yc = 1

(3)

The computed partial derivative value of Υ is backpropagated to previous layers in order to tune
the learnable filters of CNN, and thus backpropagation technique minimizes the recognition error.

Different architectures of CNN, such as ZF Net, GoogleNet, AlexNet, and ResNet, have been
presented. We chose the pretrained AlexNet model [49] and employed transfer learning strategy to
develop the food recognition model. The transfer learning technique provides a convenient way to
implement deep learning without requiring complex computation, training time, and a huge dataset.
The employed neural network, which has 60 million parameters and 0.65 million neurons, contains five
conv layers followed by activation, pooling, and three FC layers with a final softmax layer. Dropout
technique is used to regularize the model and thus enables the model to avoid overfitting.

3. Proposed System Architecture and Methods

In this section, we first present the system architecture. Then, we discuss the experiment protocol
and event similarity search algorithm.

3.1. System Architecture

Our system consists of a smartwatch (Samsung gear fit2), a piezoelectric sensor (LDT0-028K)
embedded in a necklace along with a LilyPad Simblee microcontroller and an application (App)
running on a smartphone (developed on Tizen studio platform). The LDT0-028K sensor comprising
of a 28 µm thick piezoelectric PVDF polymer film laminated to a 0.125 mm polyester substrate
and fitted with two crimped contacts. One end of the piezoelectric sensor is connected to the
general-purpose input/output (GPIO) pin of the simblee microcontroller, which has a built-in analog to
digital converters (ADCs), and the other end of the sensor is grounded. The sensor produces voltages
within standard CMOS input voltage ranges when deflected directly. The sensor can operate under
thermal conditions ranging from 0 to 85 ◦C. The LDT0-028K is available with additional masses at
the tip that reduces the resonant frequency but can also increase the sensitivity of the device. In the
configuration without an additional mass at the tip, the sensor has a sensitivity of approximately
50 mV/g at baseline and 1.4 V/g at resonance [50]. We utilized a smartwatch (Samsung gear fit2), which
consist of STMicroelectronics LSM6DS2 sensor, featuring a 3D accelerometer and a 3D gyroscope [51].
The sensor requires a voltage between 1.71 V and 3.6 V, with smart FIFO up to 8 kbyte based on features
set. The sensor performs at 1.25 mA (up to 1.6 kHz ODR) in high performance mode and enables
always-on low-power features for an optimal motion experience. The sensor is used for applications of
indoor navigation, IoT and connected devices, intelligent power saving for handheld devices, vibration
monitoring and compensation, and 6D orientation detection.

The wearable sensors employed in this work perform the data collection and wireless data
transmission to a smartphone. Body acceleration and angular movement were recorded with motion
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sensors present in the smartwatch. Neck skin movements were captured by a piezoelectric sensor
embedded into the necklace. The smartwatch and the necklace communicate with the app running on
the smartphone through Bluetooth, as shown in Figure 1. The app transmits the received data to a
cloud server for data analytics at a sampling frequency (Φ) of 20 samples/second.

Data Analytics

Figure 1. Architecture of the activity and food recognition system.

Data stored in cloud server are processed offline in MATLAB2017b. The architecture of the
proposed wearable sensors system is shown in Figure 1. The signals of the piezoelectric sensor and
motion sensors during different activities are shown in Figure 2.
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Figure 2. The signals of accelerometers, gyroscope, and piezoelectric sensor: (a–c) acceleration in (xyz)
axes; (d–f) angular velocity in (xyz) axes; and (g) the piezoelectric sensor signal.

3.2. Experimentation Protocol

We recruited 20 test subjects (6 females and 14 males, average age 32.5 ± 11.34 years, average
body mass index (BMI) 27.42 ± 7.1 kg/m2) to analyze our proposed system in a realtime environment.
Each subject signed a consent form prior to the experiment and their rights were protected following
the declaration of Helsinki. Subjects were healthy, could perform physical activities freely, and did
not suffer from any disease which would impact their ingesting any food. The activities performed
by the subjects were (A): Downstairs (1); eating (2); upstairs (3); walking (4); running (5); sitting (6);
standing (7); abd laying (8). Eating activity (E) was further sub-divided into the following six categories
of food (E): chips (21); cookie (22); nuts (23); pizza (24); salad (25); and water (26). Each activity and
food class was assigned a label (i), which was used later. Each subject participated in the experiment
three times. Subjects had to perform all activities and eat two food categories of their own choice in
each visit. Three visits by each subject constituted a total of sixty visits for analyzing proposed study.
Subjects followed a protocol during each visit, which started with 1 min speaking, 1 min talking on
the phone, performing all the activities, and ended with eating two food categories of choice. Each
subject performed the activity in Set A twice without any restriction of a time limit. For eating activity,
subjects chose two types of food of their own choice from Set E. The motion sensors of the smartwatch
continuously monitored for any sign of activities listed in A, whereas the necklace sensor listened
exclusively for the eating activity (E).

All activities performed by the subjects illustrated the daily-life activities. The participants were
allowed to run or walk at their natural speed. Food categories consumed by the individuals were
representative of food items that may be ingested in a meal or as a snack. There was no restriction on
the subjects’ body movement throughout the experimentation.
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3.3. Event Similarity Search Algorithm

We developed and applied a new technique of the signal segmentation named as Event Similarity
Search (ESS) (See Algorithm 1). We divided the input data into 20 samples/mini-segments. Each
mini-segment is defined as an “event” (e). The motion sensors generate distinct signals for a different set
of the activities and the piezoelectric sensor generates unique ingestion patterns for the food categories.

The signals belonging to different classes are grouped into different clusters using ESS. The signals
of accelerometer and gyroscope are denoted by αx, αy, αz and βx, βy, βz in x-, y- and z-axes, respectively.
The notation γ represents the signal of the piezoelectric sensor. All sources of signals are indexed
by (q). ESS is a two-step approach. 1. Presetting: While activity is being performed, the first 5ei,q

l s of

the input data for each activity are saved and defined as a reference segment (Si,q
r [l]) which creates a

dictionary (D) as given by Equations (4a) and (4b). 2. Correlation: ESS tries to identify the activity being
performed by correlating every input eq

κ with Si,q
r [l] from the dictionary D. If an eq

κ correlates with an
Si,q

r [l], then ESS identifies the particular activity being performed, as shown in Equation (5). The events
with almost no correlation are considered as noise and, hence, discarded.

D =
{

Si,q
r [l] | i ∈ ψ & l ∈ {1, 2, . . . , 5}& q ∈ {1, 2, . . . , 7}

}
(4a)

Si,q
r [l] =

{
ei,q

l | i ∈ ψ & l ∈ {1, 2, . . . , 5}& q ∈ {1, 2, . . . , 7}
}

(4b)

rκ = Corr
(

eq
κ , D

)
≥ rθi → eq

κ ∩ Si,q
r [l] = 1→ ei,q

k → Si
j ∀q (5)

Oψ =
{

Si
j | i ∈ ψ & j ∈ N

}
(6a)

Si
j =

{
ei,q

k | i ∈ ψ & q ∈ {1, 2, . . . , 7}& k ∈ {1, 2, . . . , 5}
}

(6b)

where ψ equals {A or E}, rθi is correlation threshold value, rκ is correlation coefficient computed

between the events ei,q
l in Si,q

r [l] of D, and eq
κ contains all sources of signals q and is acquired in

κth second.
The working principle of an ESS approach is shown in Figure 3. This approach of signal

segmentation requires only a segment of each physical activity and food category. Each already
saved segment consists of five events. Therefore, five events of motion sensors signal for eight different
activities and five events of the piezoelectric sensor for six food categories are saved in Presetting stage.
ESS correlated each remaining unlabeled event containing motion sensors signal with each already
saved segment (i.e., motion sensors signal) of different activities. The label is assigned to an unlabeled
event based on an outcome of its correlation with the saved segments of the activities. An unlabeled
event (eu) attains a vote if it is correlated to the event of the segment of particular activity higher than
the reference threshold (i.e., rθ). This way, eu is correlated to the segment of each activity five times.
We set an odd number of events in each segment of the activities because these events help to annotate
the eu with a particular label. The annotation is done based on majority voting results of correlation
between eu and the already saved segments of the activities. Thus, all eus of data carrying information
about the activities are annotated. An eu annotated with eating activity triggers the annotation process
for the eu of piezoelectric sensor signal because food categories are sub-classes of eating activity. Similar
to the annotation of the activities data, all eus of the data carrying piezoelectric sensor signals for food
categories are annotated.
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Algorithm 1 Event similarity search algorithm.

1: Input:αx, αy, αz, βx, βy, βz, γ; k = 1; i ∈ ψ; λ : ClassType
2: /* Presetting */

3: for i = 1 to in do

4: for l = 1 to τ (τ=5seconds data) do

5: Si,1
r [l], Si,2

r [l], Si,3
r [l]← ei,1

l , ei,2
l , ei,3

l ← Φ({αx, αy, αz}, l)
6: Si,4

r [l], Si,5
r [l], Si,6

r [l]← ei,4
l , ei,5

l , ei,6
l ← Φ({βx, βy, βz}, l)

7: Si,7
r [l]← ei,7

l ← Φ({γ}, l)
8: end for
9: end for

10: /* Correlation */

11: for κ = 1 to tmax do

12: e1
κ , e2

κ , e3
κ ← Φ({αx}, κ), Φ({αy}, κ), Φ({αz}, κ)

13: e4
κ , e5

κ , e6
κ ← Φ({βx}, κ), Φ({βy}, κ), Φ({βz}, κ)

14: e7
κ ← Φ({γ}, κ);

15: [ALabel , eALabel ,q
k ] = EventLabel(e, Sr[l], q = [1 : 6], κ, A, k); q: for activities

16: if (ALabel == eating) then

17: [FLabel , eFLabel ,q
k ] = EventLabel(e, Sr[l], q = [7], κ, E, k); q: for foods

18: end if
19: end for
20: Function EventLabel (e, Sr[l], q, κ, λ, EI)
21: for λ = 1 to λn(λn=all classes) do

22: rκ = Corr(eq
κ , Sλ,q

r [l]) ≥ rθλ
→ eq

κ ∈ λ→ Vλ++; ∀q; ∀l
23: if (Vλ ≥ 3) then

24: return [λ, eλ,q
EI ]⇐ eλ,q

k ← eλ,q
κ ← eq

κ ∈ λ; (EI : EventIndex)
25: end if
26: end for
27: EndFunction

We annotated the experimental data event-wise because we were trying to solve the concept
of interleaved or complex patterns. An activity or a food eating pattern can be simple or complex.
A simple pattern consists of a repetitive behavior for a long period of time, whereas a complex pattern
is defined as a unique behavior that is distinct from its succeeding and preceding patterns. It is possible
in real-life settings that the participants running initially start walking for a while, and then start running
again. Walking is sandwiched between running activity. A simple, fixed sliding window can easily
represent a simple pattern [26–28] but fails to identify a complex or interleaved pattern. Thus, ESS
approach performs equally well for simple patterns and complex patterns of the activities and the
food categories.

We combined the annotated events in the form of segments. We set the length of the segment to
dynamic as the activities performed by the individuals occur with different durations. Each segment
consists of a minimum of three events and a maximum five events. We chose the dynamic length
of the segments in order to represent short and long patterns equally. At the end of an activity, ESS
has arranged all ei,q

k s of the input data into dynamic segments (Si
js) with varying lengths of 3–5 ei,q

k s,

where each ei,q
k has the same activity label. Finally, all the Si

js are organized into observational data
Oψ as given by Equations (6a) and (6b). We solved two challenges of signal segmentation using ESS
which could not be overcome using contemporary static signal segmentation approaches[26–28]. First,
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ESS assisted in automatic labeling of all the eus and avoided the trivial approach of manual labeling.
Second, it helped in grouping the patterns of the signals with different complexities. Since a complex
pattern occurs for a short span of time, it is impractical to use a fixed length window and a long
segment. To extract the complex pattern, dynamic Si

j is chosen with a variable length of 3–5 ei,q
k s. This

dynamic value of varying length is chosen after exploring the segment length in the range of 1 to 10.
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Figure 3. Event similarity search algorithm.

4. Features and Classification

In this section, we explain the procedure of feature extraction and select most discriminant
features to train the activity recognition model. Moreover, we discuss the computation of
spectrogram-generated images for the segments of food types, which are then used for training
the food recognition model.

4.1. Features Extraction and Selection

The distinct patterns were generated by the sensors of the smartwatch according to the activity
performed by the individuals (see Figure 2a–f). It can be seen that the patterns of most of the activities
are unique. For example, running has a higher acceleration and velocity magnitude than other
activities in all of the axes. On the contrary, stationary activities such as laying, sitting, and standing
have smaller acceleration and velocity magnitudes. The motion sensors generate higher amplitude
signals for dynamic (walking/running) activities versus static (standing/sitting) activities. Different
amplitudes of generated signals form distinct patterns for dynamic and static activities, as illustrated
in Figure 2. Statistical features extracted from the distinct patterns are fed into the classifier to associate
the patterns to a particular activity class. Since features play the main role in the recognition of
activities, they need to characterize the patterns effectively without carrying redundant information.
The amplitude-based features are extracted from each segment of OA data for training the activity
model. Those features are the arithmetic mean, standard deviation, inter-quartile range, kurtosis,
geometric mean, median, maximum, range, skewness, the energy of a signal, waveform length, entropy,
RMS, and ratio of RMS to maximum. Forward features selection (FFS) or filter method is applied to
the computed features to reduce redundancy and to avoid overfitting [28]. The Top 8 features selected
using FFS are fed into a quadratic SVM to develop the activity recognition model.
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Different food categories require different force amount to break the food during ingestion
because each food type has different levels of hardness, tackiness, and crunchiness. Therefore, the
piezoelectric sensor embedded in the necklace generates distinct patterns of signals for each food
category. Actually, the neck moves differently while ingestion (i.e., chewing and swallowing) of each
food type. The piezoelectric sensor translates different movements of the neck skin by generating
unique signal patterns because the neck skin for different food types applies a different amount of
force over the necklace. We computed the spectrogram using the squared magnitude of the short-time
Fourier transform (STFT) for each segment (i.e., Si

j) of OE data using Equation (7).

STFT{s f [n]}(m, ω) = S f (m, ω) =
∞

∑
n=−∞

s f [n]ω[n−m]e−jωn (7)

where s f denotes the segment of OE in Equation (7). We convert the spectrogram generated for each
segment into RGB-images (see Figure 4). The necklace sensor generates a high amplitude varying
signal at the occurrence of eating activity and remains silent during other activities (See Figure 2g).

(a) (b)

(c) (d)

Figure 4. Cont.
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Figure 4. Spectrogram generated images of different food categories: (a) chips; (b) cookies; (c) nuts;
(d) salad; (e) water; and (f) pizza.

4.2. Activity and Food Classification

The activity recognition model was trained and evaluated using a 10-fold cross-validation
technique with leave-one-subject-out. We employed a supervised machine learning algorithm of
quadratic SVM to recognize the physical activities based on body acceleration (α) and angular velocity
(β). This technique of the training of allowed every subject to be used once in the model validation
and the final result is the average of the 10 validation results. The Top 8 features with the most
discriminatory information about the patterns of the activities were fed into the classifier to determine
the class of each segment of OA data. As discussed in the next section, quadratic SVM achieved a high
recognition score the over eight physical activities.

For food recognition model, we exploited transfer learning of a pre-trained deep learning model
of AlexNet [49] to recognize food categories from the spectrogram generated images (See Figure 5).
We trained Alexnet and then evaluated it using 10-fold cross-validation with leave-one-subject-out
technique. The deep learning-based method extracted features automatically from the spectrogram
generated images of the necklace signal. The extracted features represent the ingestion patterns of
food categories efficiently because Alexnet extracted them at different resolutions of the image. Thus,
spectrogram-generated images of all the food categories were classified with high accuracy using
Alexnet (See Figure 6b).
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Fully connected

 layer
Food categories

recognition

Convolutional  

layer

Convolutional  

layer

Convolutional  
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Pooling  
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Pooling  

layer Pooling  

layer

Fully connected

 layer
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Input image

Figure 5. Pre-trained convolutional neural nNetwork for food recognition.
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Figure 6. Recognition performance of proposed system (a) activity recognition using SVM; and (b) food
recognition using CNN.

5. Results and Discussion

Figure 6 shows the recognition performance of our proposed system using SVM and CNN. It is
observed is Figure 6a that eating is recognized with higher accuracy than other activities because
of forearm movement while eating causes the sensors to generate a distinct pattern (see Figure 6a).
Downstairs attained the lowest accuracy and most of its segments are incorrectly classified as the
physical movement involved for running and going downstairs is related to some extent. For example,
the gravitational force accelerates the movement of subjects by applying a force downward when they
perform a downstairs activity. The walking speed is increased when the subjects go downstairs owing
to the natural phenomenon of gravity. Therefore, there is a possibility that the participants while
performing a downstairs activity prefer natural movement (i.e., increased speed) rather than applying
anti-force to cancel the effect of force pulling downward. For food classes, Alexnet recognized water
with the highest accuracy and cookie with the lowest accuracy (see Figure 6b). Being a liquid, ingestion
pattern of water is quite different from other food classes, whereas cookie might have exhibited a
pattern resembling those of other classes.

Our food recognition model based on Alexnet performs better than prior state-of-the-art
studies [26–28] because our study has extracted efficient features automatically from the spectrogram
generated images. The extracted features carry discriminant information for food categories. Therefore,
our food recognition model has achieved high accuracy of 91.9%. Prior studies [26–28] employed fixed
static signal segmentation approaches which may fail for signal patterns with varying complexities.
On the contrary, we employed a segment of dynamic length r to effectively represent the activities
with different complexities. Our study based on SVM and Alexnet has recognized the activities
and food categories with high accuracy of 94.3% and 91.9%, respectively. Moreover, we annotated
the experimental data automatically and avoided manual labeling, which is labor-intensive and
prone to human error. The proposed activity and food recognition system outperforms all previous
state-of-the-art activity or food recognition systems detailed in Table 1.
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Table 1. The comparison of the previous related studies and the proposed study in terms of the
recognition performance.

Proposed Algorithm Sensor(s) & (Classes) Accuracy (%)

In [11], the data for human activity collected using the triaxial
accelerometer were employed to train one-dimensional CNN.
The performance of the designed approach degraded due to the
small sampling frequency and a small number of activities.

Triaxial
accelerometer (3)

92.1%

An assembly-related activity was recognized using LDA and
HMM based on accelerometer and microphone as signal
sources [14]. The model has a generalization problem.

Accelerometer and
Microphone (9)

75.9%

Recently, Google developed an API to recognize four physical
activities, such as running, riding a bicycle, walking and
stationary [16]. Smartphone sensors were used to gather the data.
The developed API encountered the recognition error owing to
poor signal segmentation technique.

The motion sensors
of smartphone (6)

89%

A deep learning architecture-based activity recognition system
was designed to predict attributes that could represent signal
segments relating to physical activities. The model has limitations,
such as computational complexity and error-prone attributes [18].

Seven inertial
measurement units (5)

90.8%

The authors designed an embedded hardware system to monitor
food intake [23]. The system mainly consists of a throat
microphone, which is worn around the neck of participants to
collect food-related acoustic signals. The performance of the
system drastically decreased as the surrounding noise interferes
with the food-related acoustic signals.

Throat microphone (7) 84.9%

In previous study [24], the performance of two different signal
sources (piezoelectric and microphone) was compared for food
dietary intake. The maximum accuracy for the microphone and
the piezoelectric is 91.3% and 79.4%, respectively. The microphone
despite being affected by surrounding noise performs better than
the piezoelectric because the signal of the piezoelectric sensor is
poorly processed.

Microphone and
Piezoelectric (3)

91.3%
and
79.4%

A low-cost necklace embedded with the piezoelectric sensor
was developed to monitor food-ingestion of the subjects [27].
The wearable system recognized chips, water, and sandwich with
an accuracy of 85.3%, 81.4%, and 84.5%, respectively.

Piezoelectric(3) 83.7%

A new method using a watch-like configuration of the sensors
was presented to detect the periods of eating. The method
manually segmented the data and classified eating and non-eating
episodes [36].

Accelerometer and
gyroscope (2)

81%

We proposed an activity and food recognition system that consists
of the motion sensors in a smartwatch and a piezoelectric sensor.
The system employed an event similarity search algorithm, a new
technique for dynamic segmentation, to effectively segment the
signals of the sensors and automatically annotate the segments.
Our proposed system employed SVM and CNN models to
accurately recognize the eight activities and six food classes
(Proposed System).

Accelerometer,
gyroscope,
and Piezoelectric (8
and 6)

94.3%
and
91.9%

We analyzed the usability test of the necklace by conducting the survey based on the user
experience. The survey we conducted considered our designed necklace in terms of size, comfortability,
and usage in real-life settings. Most participants in our experiments are comfortable with the
stretchable necklace-type sensor. The worn sensorized necklace does not cause any discomfort or pain.
The presented motion sensors of the smartwatch are easier to wear than wearing multiple sensors
on different body parts [11–14]. Nowadays, the smartwatch is commonly available and equipped
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with motion sensors. The design of smartwatch makes it ideal for monitoring the activities of the
individuals. It is a very simple intuition that people feel more comfortable wearing a smartwatch
than wearing any medical device. Moreover, a smartwatch is the preferred choice of the subjects
in real-life settings. The proposed physical activities recognition system based on the sensors of a
smartwatch is better than previous studies based on video sensing [19–21] because our study does not
require special spaces equipped with cameras. Henceforth, our proposed system does not restrict the
natural movement of the subjects. Additionally, the performance of the proposed system for activity
recognition does not degrade due to lighting conditions.

6. Conclusions and Future Work

We propose a novel wearable system for recognition of activity and food classes using the
motion sensors of a smartwatch and a piezoelectric embedded in a necklace. This work exploited
amplitude-based features and spectrogram-generated images to develop activity and food recognition
models. Our proposed system recognized eight different activities and six classes of food with an
accuracy of 94.3% and 91.9% using SVM and CNN, respectively.

The number of subjects, the variety of food classes, and the activities chosen for this work is
limited. We will extend the number of subjects, food classes, and activities in future work. In the future
study, we also aim to include other physiological parameters such as sleep duration, stress, etc., which
have a relationship with obesity.
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