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Abstract: 5G is expected to deal with high data rates for different types of wireless traffic. To enable
high data rates, 5G employs beam searching operation to align the best beam pairs. Beam searching
operation along with high order modulation techniques in 5G, exhausts the battery power of user
equipment (UE). LTE network uses discontinuous reception (DRX) with fixed sleep cycles to save UE
energy. LTE-DRX in current form cannot work in 5G network, as it does not consider multiple beam
communication and the length of sleep cycle is fixed. On the other hand, artificial intelligence (AI) has
a tendency to learn and predict the packet arrival-time values from real wireless traffic traces. In this
paper, we present AI based DRX (AI-DRX) mechanism for energy efficiency in 5G enabled devices.
We propose AI-DRX algorithm for multiple beam communications, to enable dynamic short and long
sleep cycles in DRX. AI-DRX saves the energy of UE while considering delay requirements of different
services. We train a recurrent neural network (RNN) on two real wireless traces with minimum root
mean square error (RMSE) of 5 ms for trace 1 and 6 ms for trace 2. Then, we utilize the trained RNN
model in AI-DRX algorithm to make dynamic short or long sleep cycles. As compared to LTE-DRX,
AI-DRX achieves 69% higher energy efficiency on trace 1 and 55% more energy efficiency on trace 2,
respectively. The AI-DRX attains 70% improvement in energy efficiency for trace 2 compared with
Poisson packet arrival model for λ = 1/20.

Keywords: discontinuous deception; multiple beam communications; artificial intelligence; energy
efficiency; 5G; wireless communications

1. Introduction

The use of cellular gadgets, like smartphones, notebooks, and tablets has comforted our life.
The Ericsson mobility report predicts the rise of cellular traffic to 8.8 billion by 2024 [1]. These extensive
growing cellular users require improved data rates with heterogeneous services in next generation
networks. 5G expects to deal with various types of traffics including periodic and delay tolerant traffic
for IoT devices or burst type of traffic for delay intolerant services [2,3]. 3rd Generation Partnership
Project (3GPP) planned the standardization of GHz spectrum (mm-wave) to address the users’ demand
of high bandwidth. However, communication over high-frequency bands of the mm-wave requires
directional air interface and narrower beams to reduce the path loss. In directional air interface, UE has
to search for best beam pairs and make adequate beam alignment with the next generation nodeB (gNB)
[4]. In addition to beam searching process in 5G networks, massive MIMO, higher order modulation
schemes and advanced coding techniques also increase UE energy expenses.
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Long term evolution (LTE) networks utilize DRX mechanism to reduce the energy consumption
of the UE [2,5]. DRX enables a UE to save energy by switching off the radio circuitry part, in case of no
incoming data. LTE-DRX turns off radio part during long and short sleep cycles in order to reduce the
energy consumption of UE. The sleep cycles in LTE-DRX are of the fixed time period. If any new packet
arrives during the fixed time sleep cycle, the packets will be buffered at evolved NodeB (eNB). The eNB
serves the stored packets after the completion of each sleep cycle in LTE-DRX. Hence, the LTE-DRX
saves the UE energy at the cost of delay [6,7]. LTE-DRX in its current form is not suitable for energy
savings in 5G enabled cellular devices [8,9], due to two main reasons.

• The communications in LTE do not consider beamforming, whereas in 5G networks UE has to
align the best beam pair before the start of communications.

• The LTE-DRX mechanism has a fixed length of sleep duration, which increases the energy
consumption and delay. Hence, LTE-DRX is not suitable for low latency communications in
5G networks.

Authors in [3] propose DRX for 5G network, which requires UE to search for best beam pairs
after completion of each sleep cycle in order to serve the packets. The additional beam searching
operation after each sleep cycle enhances the energy consumption of UE. The work in [10] suggests
beam aware DRX approach for 5G enabled machine to machine communications, in which UE has
prior information about best beam pairs. Similarly, beam aware DRX mechanism for energy saving
in the 5G network is proposed in [11]. The beam aware mechanism may not perform well in case
of UE mobility and beam misalignment [12]. Kwon et al. [12] show that the probability of beam
misalignment increases with an increase in UE velocity. The probability of misalignment is 0.1 and
0.38 if a UE moves with the velocity of 30 Km/h and 60 Km/h, respectively.

The DRX with built-in state of beamforming is proposed by Liu et al. [13]. Authors present the
concept of DRX for multiple beam communications and utilize the semi-Markov model to design
eleven-states of DRX. Their approach considers the beam training process only in case of beam
misalignment and after completion of long sleep duration. Hence, authors save the energy of UE while
minimizing the delay for 5G services. However, the fixed duration of sleep cycles in their approach
may cause more energy consumption.

On the other hand, Recurrent Neural Network (RNN) in AI has shown incredible results to predict
the upcoming value of a given sequence [14]. Long Short-Term Memory (LSTM) is a popular type
of RNN that is specially designed to learn long-term dependencies of a sequence for predicting the
upcoming value of a sequence [15]. The term long-term dependency refers to the sequence, whose
desired/current output values (prediction results) depend on long-sequence of previous input values
rather than the only single previous input value.

Motivated by the success of RNN to learn and predict long-term dependent sequence values in
various applications [11,14,16], we use RNN to extract the pattern of packet arrival time from real
wireless traffic traces and to predict the values of the next packet arrival time. Based on the prediction
results, we propose an AI-DRX algorithm that works on a ten-state DRX model to enable energy saving.
AI-DRX for multiple beam communications in 5G network saves the UE energy by enabling dynamic
short and long sleep cycles, respectively. To be more specific, the following are our key contributions
to save UE energy in multiple beam communications scenario of 5G networks.

• We perform the training of the LSTM neural network on wireless traffic. During training, LSTM
network extracts the packet arrival time pattern from the wireless traffic trace. The prediction
results show that the trained model predicts with minimum RMSE of 5 ms on random test set
from trace 1 and 6 ms on random test set from trace 2, respectively.

• We devise DRX as a ten-state model.
• We propose an artificial intelligence based DRX mechanism for multiple beam communications in

5G networks. We suggest AI-DRX algorithm using ten state model to enable dynamic short or
long sleep cycles, depending on the prediction results.
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• We evaluate the performance of AI-DRX in terms of energy efficiency and mean delay. AI-DRX
achieves the energy efficiency of 59% on trace 1 and 95% on trace 2, respectively; while considering
the mean delay requirements of different services.

The remaining paper is organized as follows. In Section 2 we present an overview of existing DRX
mechanism and introduce the RNN with focus on LSTM neural network. Section 3 proposes AI-DRX
algorithm with a ten-state DRX model, to enable dynamic short or long sleep cycles in multiple beams
communications of the 5G network. Section 4 presents the performance analysis of AI-DRX in terms of
energy efficiency and mean delay. Finally, we conclude our work in Section 5.

2. Related Work

2.1. DRX in LTE

LTE networks use DRX mechanism to minimize the power consumption of UE. The energy
expenditure of UE can be reduced by switching off radio components during the unavailability of
incoming data packets [17]. LTE-DRX is configured and controlled by evolved node B (eNB). The eNB
informs the UE to turn off its radio components in case of no data in the buffer. The LTE-DRX can be
regulated by radio resource control (RRC) layer at eNB. RRC sends the packets’ information to UE
via a physical downlink control channel (PDCCH). RRC operates in two modes: (1) RRC_connected
mode; (2) RRC_idle mode, after a UE is turned on [18]. The RRC_idle mode is only responsible
for paging operations, UE neither receives nor transmits the data, but only monitors the paging
signals during the paging occasion. Whereas, all the data exchange between UE and eNB takes place
during RRC_connected mode. Since all transmissions take place during the RRC_connected mode
and this mode is responsible for more energy consumption of UE, our work focuses on the DRX in
RRC_connected mode. Figure 1 shows the LTE-DRX in RRC_connected mode that works on two types
of states. These states are:

• Active State
• Sleep State

DRX Sleep State

DRX Active State

RRC Inactivity 
Timer

Packet Activity

RRC_ 
connected

RRC_ idle

Active

Short 
Sleep

Long 
Sleep

RRC_connected Mode

DRX 
Inactivity 

Timer

RRC_idle Mode

Figure 1. LTE-DRX in RRC_connected mode.

Based on the above two states, different DRX parameters are configured in RRC_connected mode
while considering various services’ delay requirements.
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2.1.1. Active State

A UE sends or receives the data packets during DRX active state. This state does not allow UE to
save the energy because UE has to receive the data packets during this state. Moreover, a UE has to
turn on the radio circuitry throughout the active state. The active state of DRX can be controlled by
two parameters.

• Inactivity timer
• Active time

All the data packets are transmitted/received during the active time. The inactivity timer is a
countdown timer in DRX active state. This timer re-starts every time a new data packet arrives at eNB
and then eNB serves the received packets to UE. In case of no new packet arrival, the inactivity timer
gets expired and the UE switches to sleep state for a certain time period.

2.1.2. Sleep State

A UE turns off the radio components during sleep state in order to save power. UE cannot receive
or send the data packets during DRX sleep state but can only monitor the PDCCH for any incoming
data. DRX in a sleep state is controlled by the following parameters:

• ON time
• Short sleep cycle
• Short sleep timer
• Long sleep cycle
• Long sleep timer

During ON time, a UE monitors the PDCCH. ON time always starts after completion of each
sleep cycle. A short sleep cycle is a small duration of time that saves the UE energy by switching off
the transceiver part. A short sleep cycle is repeated up to Nsc number of short sleep cycles. After
the expiry of Nsc, a UE transits to the long sleep cycle. The long sleep cycle and long sleep timer are
similar to short sleep cycle and short sleep timer but have a longer time period than the counterpart,
respectively.

Figure 2 delineates the timing diagram of LTE-DRX. As shown in Figure 2, all the data transmission
and reception take place during the active state. After reception of each new packet, inactivity timer
restarts. In the case that no new packet reaches and inactivity timer finishes the countdown timer, then
UE switches to short sleep cycle. After every short sleep cycle, a UE monitors the PDCCH for any
incoming packet during the ON time. If no new packet arrives before the completion of short sleep
timer, the UE switches to the long sleep cycle and remains there until intimation of the new packet
is received. UE transits from a long sleep to idle state if no new packets arrive and the long sleep
timer expires.
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Figure 2. LTE-DRX timing diagram.

2.2. Non-Compatibility of LTE-DRX for 5G Networks

The LTE-DRX mechanism in its existing form is not suitable for 5G networks. The main reason
for non-suitability is the directional communications in 5G networks, which require beamforming
operation prior to data transmission [4]. Whereas, LTE-DRX mechanism does not include beam
searching operation [19,20]. Figure 3 shows the concept of directional communication with multiple
beams in 5G network. The gNB transmits K number of beams and a UE has L number of beams.
A UE needs to search and align the best beam pair form K × L beam pairs, prior to the start of
communications [4]. The process of beam searching and beam alignment in 5G is not included in
LTE-DRX. Moreover, the process of beam searching in 5G network causes a UE to remain in the
active state more than that of the LTE-DRX, which also increases the power consumption of UE [21].
Furthermore, the beamforming process in 5G requires additional time for beam searching and aligning
best beam pairs [22]. The additional beam searching and beam alignment time cause more delay
than the delay in LTE-DRX. Hence, directional communications in 5G is one of the reasons, which
makes LTE-DRX mechanism in its existing form, not a suitable solution for power saving in 5G
networks [21,22].

The second main reason for non-compatibility of existing LTE-DRX mechanism with 5G networks
is the fixed length of sleep cycles in LTE-DRX [11]. LTE-DRX uses fixed length short and long sleep
cycles to economize the power consumption of UE. Whereas, 5G network is expected to deal with
different types of services, simultaneously [4]. These services may have different size of packet lengths,
variable packet arrival time and variable transmission time interval (TTI) [23]. The fixed length of sleep
cycles in LTE-DRX mechanism may not be suitable for 5G services as these cycles may under-utilize or
over-utilize TTI. Moreover, fixed length sleep cycles in 5G may be responsible for least power savings
in 5G enabled devices [23]. However, DRX design can still be used for 5G [9,24,25].
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UE
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Figure 3. Directional communication with multiple beams in 5G network.

2.3. Recurrent Neural Network for Predicting Sequential Data

Recurrent Neural Network (RNN) is a part of AI that is widely used for predictions over sequential
data [26]. Long short-term memory (LSTM) network is one of the popular kinds of RNN that performs
well while predicting the long-term dependent time sequences [15]. LSTM is different from other
kinds of RNN due to its gated structure and internal cell state in every single unit, as shown in
Figure 4. LSTM neural network utilizes various previous inputs to decide the values of internal gates
(forget gate, input gate, input modulation gate, output modulation gate), which contributes to cell
state. Cell state helps the LSTM to remember or forget the impact of past inputs while deciding the
prediction results. This is the main reason LSTM has better performance for predicting the long-term
dependent sequences [14,15]. Table 1 shows the notations used in our work.

LSTM unit includes forget gate FT that can be mathematically shown by Equation (1). The output
of forget gate varies from 0 to 1, due to sigmoid Sig = 1

1+e−T function. The letters wx and wh in
the Equation (1) represent the weights associated with the current input xT and previous output
hT−1, respectively. The term bF is the bias for the forget gate. Similarly, the input gate (IT) and
input modulation gate (GT) can be calculated by Equations (2) and (3), respectively. The hyperbolic
tangent function in input and output modulation gates can be mathematically written as tanh(T) =
2Sig(2T)− 1 and ranges from −1 to +1. Moreover, bI and bC are biases for input gate and cell state,
respectively.

FT = Sig(wxxT + whhT−1 + bF) (1)

IT = Sig(wxxT + whhT−1 + bI) (2)

GT = tanh (wxxT + whhT−1 + bC) (3)



Electronics 2019, 8, 778 7 of 19





Sigmoid 
Layer

Hyberbolic Tangent 
Layer

 Pointwise Multiplicative 
Operation


Hyp 
Tan  Cell 

Predicted 
Time of 
Next Packet

Input Gate

Forget Gate

Output Gate

Current 
Packet Time

Previous 
Packet Time 
Value

Hyp 
Tan

Input 
Modulation Gate

Output 
Modulation Gate

Hyp 
Tan

Sig Sig

Sig

Sig
Pointwise Additive 

Operation

Tx

1Th −

TG
TI

TC

1TC −

TO

Th

TF

Figure 4. Gated structure of single long short-term memor (LSTM) unit.

Table 1. List of abbreviations.

Abbreviation Notation Abbreviation Notation

Forget gate FT DRX active time TAc

Input modulation gate GT DRX ON time TON

Input gate IT DRX Inactivity timer TIN

Output layer OT Packet inter-arrival time λκ

Cell state CT DRX Dynamic sleep time TDY

Output modulation gate hT Weight corresponding to each gate wi

Cell state CT and the output layer OT can be calculated by Equations (4) and (5), respectively.
The final prediction results can be observed by output modulation gate (hT) using Equation (6).

CT = FT ⊗ CT−1 + IT ⊗ GT (4)

OT = Sig(wxxT + whhT−1 + bO) (5)

hT = OT ⊗ tanh(CT) (6)

During the training process, LSTM learns to extract the relationship between the input and desired
output (upcoming value of sequence) by adjusting various weight values in Equations (1)–(3) and (5).
Once the model is trained with the least error, the learned weight values can be used in Equations (1)–(6)
to calculate the output values of a sequence (prediction). The error between prediction result and
observed (actual) value can be computed by the root mean square error (RMSE) and is given as:

RMSE =

√
∑N

T=1(PredictedT − ObservedT)2

N
(7)

where the notation T represents the number of samples and N shows the maximum number of samples.
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3. AI-DRX for Multiple Beam Communications

3.1. System Model

In 5G directional air interface, beam information is a very crucial operation as a UE wakes
up to receive data or control packet [3]. Hence, our work considers DRX for multiple beam
communications [13], having dynamic long and short sleep cycles instead of fixed length sleep cycles.
Dynamic sleep cycles have different values of sleep time in each cycle rather than one static time value
in each sleep cycle. The random values of dynamic sleep time can be predicted based on previous
values of packet arrival time.

We model DRX as a ten-state model. These states range from S0 to S9 and are shown in Figure 5.
Let us elaborate on the states below.

• S0 is the active time. A UE sends and receives the data during S0 state. UE predicts the dynamic
time TDY during S0 state.

• S1 state is threshold comparison state. S1 compares TDY with both threshold values (ThMin and
ThMax) to decide whether to remain in the active time or switch to the dynamic sleep cycle.

• S2 state is dynamic short sleep cycle. It saves the UE power for a short period of time up to
TDY. The predicted value of TDY in the dynamic sleep cycle is always lower than that of value in
S3 state.

• S3 state highlights the dynamic long sleep cycle. It is similar to S2 state but has a larger sleep
period than S2. The predicted value of TDY always has larger value of dynamic long sleep cycle
than that of the dynamic short sleep cycle.

• S4 state shows beam training during active time. This state allows UE to train and search for best
available beam pairs between gNB and UE.

• S5 state represents feedback after beam training operation in active time.
• S6 state shows active time after best beam pairs are aligned. S6 is different from S0 as S6 always

occurs after beam training and feedback process. Moreover, S6 enables UE to search beam pairs in
active time until best beam pairs are found.

• S7 state delineates beam training process after the execution of dynamic long or short sleep cycle.
• S8 state is feedback operation that occurs after beam training and after the execution of dynamic

long or short sleep cycle, respectively.
• S9 state is the ON period, a UE only monitors PDCCH for an incoming packet. UE could not send

or receive data packets during ON time.

3.2. Proposed AI-DRX Algorithm

We propose artificial intelligence based DRX (AI-DRX) algorithm for multiple beams
communications in 5G network. Our proposed algorithm enables DRX to achieve dynamic long
or short sleep cycles and to reduce the power consumption of UE. AI-DRX algorithm works on
ten-state model of DRX as shown in Figure 5. Algorithm 1 demonstrates AI-DRX mechanism and is
elaborated below:

• AI-DRX algorithm takes ON timer TON , minimum threshold value ThMin and maximum threshold
value ThMax as input (Line 1).

• AI-DRX examines the buffer for any incoming data packets (Line 2).
• If any packet is received in the buffer, the packets will be served and the value of dynamic sleep

time TDY will be predicted, simultaneously (Line 4).
• During the active time, if no beam misalignment occurs between UE and gNB, AI-DRX compares

the predicted value of dynamic sleep time TDY with threshold values ThMin and ThMax.
• If the predicted value of dynamic sleep time TDY is less than the minimum threshold value ThMin

(Line 8), UE continues to remain in the active time (Line 9).
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• If the predicted value of dynamic sleep time TDY is greater than or equal to the minimum threshold
value ThMin and less than maximum threshold value ThMax (Line 11). UE observes dynamic short
sleep cycle (Line 12).

• In case of any beam misalignment after UE wakes up from dynamic short sleep cycle (Line 13), UE
starts the beam training process (Line 14) and Feedback (Line 15) followed by ON time (Line 16).

• During ON time, if beam pairs are still misaligned (Line 17), UE searches beam pairs again
(Line 18).

• During ON time, if a new packet arrives (Line 21), UE switches to active mode and start receiving
data packets (Line 22).

• After completion of ON time, if no new packet arrives, UE continues to sleep for previous
predicted time value TDY of the long sleep cycle or short sleep cycle. respectively (Line 24).

• If TDY is greater than ThMax (Line 28) the UE will go to dynamic long sleep cycle (Line 29).
• UE will perform beam training and feedback after completion of each dynamic long sleep cycle

(Line 30).
• In the case of beam misalignment during an active time (Line 35), UE performs beam training

(Line 36) and feedback (Line 37) and then re-enter active time (Line 38).
• During the active time (Line 38), if UE still find beam misalignment (Line 39), AI-DRX executes

beam training process again (Line 40).
• After the alignment of beam pairs, the UE transits to active time (Line 42).
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Figure 5. State diagram for AI-DRX.
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Algorithm 1 AI based DRX for Multiple Beam Communications.
1: Input TON , ThMin, ThMax

2: Examine buffer for incoming packets
3: if Packets in buffer > 0 then
4: Serve the packets and Predict TDY (S1)
5: else
6: if No Beam Misalignment then
7: Check TDY (S1)
8: if TDY < ThMin then
9: Go to Step 4 (S0)

10: else
11: if ThMin ≤ TDY < ThMax then
12: Go to Dynamic Short Sleep up to TDY (S2)
13: if Beam Misalignment then
14: Execute Beam Training (S7)
15: Feedback (S8)
16: ON (S9)
17: if No Beam Aligned then
18: Go to Step 14 (S7)
19: end if
20: else
21: if New packet arrives before completion of ON Time TDY then
22: Go to Step 4 (S9 to S0)
23: else
24: Go to Dynamic sleep for previous predicted time TDY (S2/S3)
25: end if
26: end if
27: else
28: if TDY > ThMax then
29: Go to Dynamic Long sleep (S3)
30: Go to Step 14 (S7)
31: end if
32: end if
33: end if
34: else
35: if Beam Misalignment then
36: Execute Beam Training (S4)
37: Feedback (S5)
38: Active after Beam Training (S6)
39: if No Beam Aligned then
40: Go to Step 36 (S4)
41: else
42: Go to Step 4 (S0)
43: end if
44: end if
45: end if
46: end if

3.3. AI-DRX for Enabling Dynamic Long and Short Sleep Cycles

Algorithm 1 (AI-DRX) demonstrates the use of artificial intelligence in the implementation of
DRX for 5G networks. AI-DRX makes dynamic short and long sleep cycles in DRX. AI-DRX utilizes
trained LSTM model to predict the upcoming value of packet arrival time and subsequently to enable
dynamic sleep cycles in DRX. The training process is conducted offline on two traces of real wireless
traffic acquired from the University of Massachusetts (UMass) trace repository [27] and Crawdad
data set repository [28]. Training process learns the packet arrival time pattern of increasing sequence
values from both traces. Once the LSTM network is trained offline with least prediction error, the
trained model predicts the upcoming packet time of real wireless traffic. AI-DRX algorithm calculates
the dynamic sleep cycles by using prediction results of upcoming packet arrival time value.
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AI-DRX enables a UE to reduce power consumption in multiple beam communications scenario
of 5G networks. AI-DRX saves energy by enabling dynamic short and long sleep cycles, respectively.
AI-DRX enables dynamic short sleep cycles or dynamic long sleep cycles based on two threshold values
ThMin and ThMax. The values of ThMin and ThMax can be varied according to delay requirements of
various services. We discuss three cases of AI-DRX: (1) dynamic short sleep cycles; (2) dynamic long
sleep cycles; (3) dynamic inactivity timer.

During an active time of AI-DRX, the packets are served to UE. The trained LSTM model predicts
the value of upcoming packet arrival time (TDY) while serving the packets. UE checks for new packets
in the buffer via PDCCH during ON state of AI-DRX. If no new packet is observed in the buffer, UE
continues to sleep up to TDY. However, if a new packet is observed in the ON state, UE transits to
active time and receives the packet(s). Meanwhile, inactivity timer in the active mode is restarted on
the reception of every new packet. Furthermore, AI-DRX also considers the case of the active state
having empty buffer, the UE counts down for dynamic inactivity timer (third case below) to complete
and then transits to sleep cycle for predicted sleep time (TDY).

The first case enables dynamic short sleep cycle if the value of TDY is greater than or equal to
ThMin and less than ThMax. The condition of dynamic short sleep cycle gets satisfied and UE sleeps
for the predicted time value of TDY. There are very small chances of beam misalignment after a short
sleep period [12,13]. Hence, AI-DRX considers the beam training process after dynamic short sleep
cycles only if beams are misaligned. Figure 6 shows the timing diagram of dynamic short sleep cycle
using AI-DRX algorithm.
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Figure 6. Timing diagram of AI-DRX based dynamic short sleep cycle.

The second case considers the dynamic long sleep cycle up to the predicted value of TDY, if TDY is
greater than ThMax. The concept of the dynamic long sleep cycle is depicted in Figure 7. The dynamic
long sleep cycle saves more energy than that of short sleep cycle. Moreover, there are more chances of
beam misalignment after the dynamic long sleep cycles. Hence, AI-DRX performs beam training and
feedback after completion of each dynamic long sleep cycle.

The third case deals with dynamic inactivity timer. If the predicted value of TDY is less than
ThMin, the UE will remain active until the period TDY or any new packet arrives. The concept of
dynamic inactivity timer can be seen in Figures 6 and 7. AI-DRX also addresses the problem of beam
misalignment during active time. AI-DRX performs beam training and feedback in case of any beam
misalignment during active time.

It may be noted that AI-DRX utilizes dynamic short and long sleep cycles instead of static fixed
time sleep cycles. Moreover, the inactivity timer value is also dynamic according to the prediction
results (using trained LSTM model). Our proposed algorithm keeps updating the predicted time value
based on most recent received packets and their packet arrival time.
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Figure 7. Timing diagram of AI-DRX based dynamic long sleep cycle.

DRX saves the power of UE at the cost of delay. Hence, we considered two performance
parameters: energy efficiency (EE) and mean delay. The performance parameter; EE of the UE
is the ratio of dynamic short sleep time and dynamic long sleep time to the sum of active time (TAC),
ON time (TON), beam training time, feedback time, dynamic short sleep (TDY) time and dynamic long
sleep time (TDY). EE can be calculated by Equation (8). The beam training and feedback processes are
considered during active time (TAC) and dynamic short and long sleep cycles take place during (TDY).

EE =
TDY

TAC + TON + TDY
(8)

Similarly, for packet inter-arrival time λκ , the mean holding period of active state can be calculated
as [5]:

TAC =
1 − e−λκ TIN

e−λκ TIN (1 − e−λκ )
(9)

Furthermore, the packets arrived during the sleep state and ON duration are stored in the buffer
until next ON period. The packet arrival events are the random observer to the sleep period and ON
state. Therefore, the mean delay is defined as the sum of mean sleep time and ON duration and is
given as:

Mean Delay =
TDY

2
+

TON
2

(10)

4. Performance Analysis

We use MATLAB 2019a for training and testing of RNN on two different traces (data sets).
These traces of burst traffic type are taken from the Crawdad dataset repository (trace 1) [28] and
UMass trace repository (trace 2) [27]. The trace 2 shows the traffic pattern of HTTP and video streaming
applications. The video streaming trace is used as it is expected by 2024 over three-quarters of mobile
data traffic will be video traffic [1]. The trace 1 and trace 2 include seven parameters as shown in [11].
These parameters are: (1) serial number; (2) packet arrival time in seconds; (3) source address of the
packets; (4) destination address of the packet; (5) protocol used; (6) length of packets in bytes; and
(7) additional information. We have utilized the time parameter from both traces to train the LSTM
network. Time parameter contains the information of packet arrival time. Our purpose is to train the
LSTM network until it learns the time interval pattern of packet arrival time from a given sequence.
Data pre-processing makes the training process simple and avoid training from the divergence [11,29].
Hence, we standardize the data with zero value of mean and unit value of the variance of the training
set during the training process. Moreover, we also standardize the test set during the prediction time.

Hyper-parameters in LSTM network are selected manually to make the training process more
efficient. These parameters include the number of hidden units, learning rate drop factor, the maximum
number of epochs, initial learning rate, and the optimizer used. The best selection of hyper-parameters
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may result in the learning with least prediction error. The training process performance can be
measured in terms of RMSE. The less the value of RMSE, the better is the prediction results of the
trained model on unseen data (test set). We have selected 200 and 125 hidden units in LSTM network
during training process over trace 1 and trace 2, respectively. The value of the learning rate drop factor
remains 0.2 for both traces. Maximum number of epochs during the training process of trace 1 are
considered to be 600 while for trace 2 are 1000 epochs. Initial learning rate during the training process
of both traces remains 0.004. Furthermore, the optimizer used during the training process for both
traces is Adam optimizer. The above mentioned hyper-parameters reduce the RMSE during training
and testing processes.

We have considered the total length up to 130,820 sample values (323.886 s) of trace 1, while
trace 2 has 77,470 values of time samples (417.642 s) [11]. We have divided both traces into 10% of
samples as the training set and a number of different test sets randomly selected from the remaining
90% of both traces. Each test set has an equal number of samples. Figure 8a shows the RMSE for the
initial test set of trace 1 that is as small as 12 ms. Whereas, Figure 8b shows the RMSE value for trace 2
is 10 ms for the first random test set.
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Figure 8. Prediction result and root mean square error (RMSE) for first test set.

The RMSE values for random test sets from the remaining 90% samples of trace 1 and trace 2 are
shown in Figure 9. It can be seen from Figure 9a,c that the minimum value of RMSE is least at 6 ms
and 5 ms on random test sets from samples 70,500 to 71,953 and 90,700 to 92,153 of trace 1, respectively.
Whereas, Figure 9b,d show the RMSE value of 6 ms and 8 ms from 10,000 to 10,899 and 65,000 to
65,899 samples of trace 2, respectively.

AI-DRX can be implemented at the gNB of 5G network. During the execution of AI-DRX,
we consider packet generation event, active event, dynamic long sleep event, dynamic short sleep
event, ON duration event, beam searching event and feedback event. Moreover, our approach
enables dynamic sleep cycles in multiple beam communications scenario for 5G networks. The packet
generation event in our simulation scans the time column of both traces and produces the data packets
of the identical length on the same instant in the respective trace. The generated data packets are
collected in the buffer and served to the UE during the active event. UE checks the buffer during ON
period, in case of any packet in buffer, the UE switches to the active event, or else continues to sleep.
During an active event, the buffered packets are served to UE after getting the beam pairs alignment
between UE and gNB. At the same time, packet arrival time is inputted to the trained LSTM model to
predict the upcoming packet arrival time. We can obtain the dynamic sleep duration by subtracting
the previous packet arrival time value from the predicted dynamic time value TDY (upcoming packet
arrival time).
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Figure 9. Prediction results and RMSE for random test sets.

Figure 10a,b, demonstrate the energy efficiency and mean delay with varying ON Period (TON)
for AI-DRX and LTE-DRX over trace 1 & trace 2, respectively. In Figure 10, TON is varied from 1 ms
to 160 ms while the values for ThMin = 20 & ThMax = 100 are considered. Figure 10a highlights the
decrease in energy efficiency with increase in TON . The reason for the drop in energy efficiency is,
UE waits for longer period in ON state prior switching to active state (to serve packets). It can be
seen from Figure 10b, the mean delay for trace 1 ranges from 150 ms to 194 ms with an increase in
ON period. The reason for rise in mean delay lies in the feet that with an increase in ON duration,
the time spend by UE in ON state will be higher, which results in higher delay. Moreover, by selecting
the optimum value of TON , delay observed by UE can be minimized. From Figure 10a, it is noticed
that the energy efficiency of trace 2 is higher than that of trace 1 due to higher arrival rate of trace 1 as
compared to trace 2.

We have compared the performance of AI-DRX with LTE-DRX. To implement the LTE-DRX, we
select the value of short sleep cycle to ThMin, the value of long sleep cycle to ThMax and fed trained
model with trace 1 and trace 2. It is observed in Figure 10a AI-DRX energy efficiency for trace 1 is 69%
higher than that of LTE-DRX, at the cost of higher delay. The reason arises from the fact that AI-DRX
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calculates sleep time form real wireless traffic trace based on arrival rate, while LTE-DRX uses ThMin
and ThMax to set the short and long sleep time. For AI-DRX, the small value of ThMin and ThMax
achieves higher energy efficiency as UE easily transits to long sleep time, which results in a larger
delay. Whereas, for small values of ThMin and ThMax in LTE-DRX, a UE sleeps for a short period that
results in less energy efficiency and smaller mean delay. AI-DRX achieves 55% higher energy efficiency
as compared to that of LTE-DRX using trace 2.

0 50 100 150
ON Period T

ON
 (ms)

20

40

60

80

100

E
ne

rg
y 

E
ff

ic
ie

nc
y 

(%
)

AI-DRX Trace 1
AI-DRX Trace 2
LTE-DRX Trace 1
LTE-DRX Trace 2

(a) Energy Efficiency.

0 50 100 150
ON Period T

ON
 (ms)

50

100

150

200

M
ea

n 
D

el
ay

 (
m

s)

AI-DRX Trace 1
AI-DRX Trace 2
LTE-DRX Trace 1
LTE-DRX Trace 2

(b) Mean Delay.

Figure 10. AI-DRX energy efficiency and mean delay with varying TON (ThMin = 20, ThMax = 100).

Figures 11 and 12 present the energy efficiency and mean delay with varying ON period TON for
ThMin = 200 & ThMax = 1000 and ThMin = 300 & ThMax = 1600, respectively. It is observed from
Figures 11 and 12 that the energy efficiency and mean delay of LTE-DRX increase with an increase
in ThMin & ThMax, as UE sleep longer. The energy efficiency of AI-DRX decreases with an increase
in ThMin & ThMax, as UE will not able to transit to sleep state if TDY < ThMin. With a small value of
sleep time TDY or higher value of ThMin & ThMax, UE remains in the active state, which results in less
energy efficiency.
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Figure 11. AI-DRX energy efficiency and mean delay with varying TON (ThMin = 200, ThMax = 1000).
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Figure 12. AI-DRX energy efficiency and mean delay with varying TON (ThMin = 300, ThMax = 1600).

To validate our proposal, we have compared our work to traditional Poisson arrival model.
We generated three data sets considering Poisson arrival rate (λ) with mean value of λ = 1/20,
λ = 1/10, and λ = 1. We have trained model using Poisson arrival rate. The generated traces are
fed to AI-DRX algorithm to analyze the energy efficiency and mean delay. Figure 13a,b shows the
energy efficiency and mean delay for AI-DRX trace 2 and Poisson arrival with varying TON . The energy
efficiency of AI-DRX is 70% higher than Poisson arrival rate (λ = 1/20). The corresponding mean delay
of AI-DRX is 100 ms (on an average) higher as compared to Poisson arrival for λ = 1/20. The gain in
energy efficiency is achieved as AI-DRX considers real traffic arrival rate for selection of sleep cycles
and inactivity timer, while Poisson arrival considers mean arrival rate. The energy efficiency and mean
delay both are zero for higher Poisson arrival rate λ = 1. The reason lies in the fact that for higher
arrival rate, UE could not transit to sleep state to save the power.
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Figure 13. AI-DRX energy efficiency and mean delay comparison with Poisson Arrival with varying
TON (ThMin = 300, ThMax = 1600).

Various services in a wireless network can tolerate different delay levels while not compromising
quality of service (QoS). QoS class identifier (QCI) is a metric that is used to identify the characteristics
of traffic. QCI measures the QoS with two parameters; (1) packet loss rate (PLR) and (2) packet
delay budget (PDB). PDB can be defined as maximum tolerable waiting time by a packet during
its delivery from eNB to UE. Standardized QCI characteristics are shown in Table 2 [6,30,31]. In
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various kinds of non-real-time services like email, web browsing, after a certain time period, a
UE does not require to monitor PDCCH continuously [6,32]. Hence, these types of services can
tolerate higher delays up to 300 ms [6,30,31]. These types of services require DRX with higher values
of sleep time (TDY > ThMin & TDY > ThMax) and smaller values of ON timer for better energy
efficiency. Whereas, the real-time services like voice and live video streaming cannot tolerate delay
[33]. Therefore, the delay should be a higher priority than energy saving. If we limit the mean
delay to 125 ms, the energy efficiency will be 95.02%. For this energy efficiency we have to select
ThMin = 200 , ThMax = 1000, TON = 6 ms. If we increase the TON the energy efficiency of UE
decreases as UE remains in active state. The mean delay also increases with increase in TON as UE
does not receive the data during ON period but only monitors the Physical Downlink Control Channel
(PDCCH). The mean delay observed by UE increases to 150 ms when TON = 80, with energy efficiency
of 80.2%. The network can maximize the energy efficiency of UE by selecting optimum value of
ThMin, ThMax, TON depending on QCI value of different services.

Table 2. Standardized QoS class identifier (QCI) characteristics in LTE/LTE-A [6,30,31].

Type Qos Class Identifier Packet Loss Rate Packet Delay Budget Examples

GBR 1 10−2 100 ms Voice services

GBR 2 10−3 150 ms Live streaming services

GBR 3 10−3 50 ms Real time gaming services

GBR 4 10−6 300 ms Buffered streaming services

Non-GBR 5 10−6 100 ms IMS Signaling services

Non-GBR 6 10−6 300 ms TCP based application services

Non-GBR 7 10−3 100 ms Interactive gaming services

Non-GBR 8 10−3 300 ms TCP based video services

Non-GBR 9 10−6 300 ms TCP based video services

5. Conclusions

In this work, we have suggested an AI-based DRX mechanism for energy saving in multiple
beams communications scenario. We have modeled DRX as a ten-state model and suggested AI-DRX
algorithm depending on these 10 states. AI-DRX algorithm enables dynamic short and long sleep
cycles for energy efficiency of UE in the 5G network. We have trained LSTM network, a popular type
of RNN, to extract the packet arrival time pattern from real wireless traffic traces. Later, we have
utilized the learned model in AI-DRX algorithm for energy saving in 5G enabled devices. AI-DRX
economizes power consumption of a UE by enabling dynamic short and long sleep cycles. Extensive
training with selected hyper-parameters achieves the least RMSE of 5 ms on a random test set from
trace 1 and 6 ms on a random test set from trace 2, respectively. The energy efficiency obtained with
AI-DRX is approximately 60% and 95% for trace 1 and trace 2, respectively. AI-DRX achieves 69%
higher energy efficiency on trace 1 and 55% more energy efficiency on trace 2 as compared to LTE-DRX,
respectively. We also validated the performance of AI-DRX with traditional Poisson packet arrival
model. AI-DRX attains 70% more energy efficiency on trace 2 as compared to Poisson packet arrival
rate for λ = 1/20.
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