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Abstract

It is well-known that a pile of grains starts and stops flowing at different angles of repose. It

is also known that such starting and stopping angles exhibit thickness-dependent behaviour, with

deeper layers beginning to flow more readily and arresting at lower angles than shallower materi-

als. These considerations have motivated various rheological assumptions in granular constitutive

laws. This paper demonstrates that such observations can instead be partly attributed to inertial

effects. In particular, we examine the roles of two control parameters characterising conventional

chute flow experiments: the rate of inclination of the chute, and the threshold surface velocity as-

sociated with identification of the flow. Both of these parameters control the system’s momentum

at different instances. We perform two-dimensional discrete-element simulations and also develop

a one-dimensional analytic model based on the standard µ(I)-rheology. Results indeed indicate

a difference between the starting and stopping angles as well as a thickness-dependency, despite

the absence of any hysteresis or material length scale in the underlying rheological model. Higher

threshold velocities are shown to produce higher angles at which flow begins. In addition, the

starting/stopping angle increases/decreases with the applied inclination rate. For thick enough

granular layers, no matter how small the rate is, critical angles are shown to deviate from the

quasi-static limit. Therefore, inertial effects should not a priori be neglected. To finalise our argu-

ment, we show the effect of the inclination rate and the threshold velocity in a laboratory set-up,

using small-scale experiments of an inclined chute.

I. INTRODUCTION

For many years, the focus of granular media research has been on the development of

appropriate constitutive laws describing complex flow phenomena. While there has been

much progress on this front that has sustained and stimulated the field, the question of

one all-encompassing rheological model remains open for debate, especially at the transition

between flowing and stationary regimes. Without further contributing to the discussion

by exploring new constitutive assumptions, this paper wishes to explore slightly different

questions: how do inertial effects influence the starting and stopping mechanisms of granular
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systems? Can these effects alone explain the complex flow phenomena previously observed?

The findings could have immediate implications for modelling the dynamics of shearing

granular media, such as landslides, avalanches and earthquake faults (e.g. [1, 2]).

Even though no overall consensus has been reached yet, one of the most widely accepted

constitutive laws for granular materials is the local µ(I)-rheology, where the effective friction

coefficient µ depends on the inertial number I, a non-dimensional parameter accounting for

the stress, shear rate, particle diameter, particle density and packing fraction [3–5]. This

theory has successfully been applied to a wide range of granular flow configurations in

the intermediate (fluid-like) regime, owing its popularity to its applicability and relative

simplicity [6]. Despite being initially constructed for steady flows, the µ(I)-rheology has

proven surprisingly effective even for unsteady flow regimes (e.g. [7, 8]) and, in adapted

form, for complex granular flows [9]. However, in some transient cases, the predictions of

this local law do appear to deviate from experimental results, in particular near the flow to

no-flow transition.

One common discrepancy is with inclined-plane experiments [e.g. 10], which typically

involve beginning with a stationary layer of material on a shallow incline. The inclination

angle is then gradually increased until the static material begins to flow, at which point the

elevation is fixed, defining the starting flow angle for a given layer thickness. If the experi-

ment is conducted with a thicker layer of material, the flow is initiated more readily at a lower

inclination angle. Similarly, once flow has begun, the material erodes downward before com-

ing to a halt, leaving behind a shallower stationary layer of material at the same inclination

angle. On the other hand, the inclination angle of a flowing sample can be reduced below

the starting angle of repose until the motion ceases, determining the stopping flow angle,

again for a given thickness [e.g. 11]. While these experimental observations have been used

to inspire and inform the granular µ(I)-rheology, the model typically struggles to reproduce

the full hysteretic behaviour without introducing additional rheological constraints.

Without presenting new rheological parameters, the aim of this study is to take a step

back and shed light on the role of the inertia (as per its classical definition in physics) of

the granular mass. It will examine to what extent inertia can explain the experimental

observations around the flow to no-flow transition of granular material by examining the

effect of two protocol parameters. These protocol parameters are the rate of inclination and

threshold velocity. The latter parameter represents the inevitable experimental velocity at
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which the grains are considered to start moving. In rotating chute experiments (e.g. [10])

an observer — whether human or programmed machinery — needs a non-zero criterion

to detect motion. Further acceleration of the grains exist during the human/programmed

machinery’s reaction time to this event, and during the time taken by the experimental

machinery to then act in response. The threshold ut provides a value that agglomerates

these three unavoidable experimental factors. In a similar fashion to the thickness of the

layer, both the rate of inclination and threshold velocity are expected to contribute to the

generation of momentum, thereby affecting the starting and stopping angle. Therefore, we

hypothesise that, provided inertia effects are taken into account, the difference between the

critical starting and stopping angle and their dependence on thickness can be replicated by

a continuum model in its simplest form: a one-dimensional momentum balance equation of

the standard incompressible µ(I)-rheology.

In order to be able to isolate the inertia effects, we firstly perform Discrete Element

Method (DEM) analysis. This allows us to represent and study the boundary value problem

in a controlled manner that eliminates erosion mechanisms at the inlet and outlet of the flow

by considering a periodic two-dimensional shear layer, mimicking an infinitely long slope.

Subsequently, we present a one-dimensional, depth-resolved continuum solution of the µ(I)-

rheology that corresponds to the configuration used in the DEM simulations. The ability of

this solution to describe the starting and stopping thresholds of granular flows is evaluated

in order to analytically assess the role of inertia in transient granular flows. Finally, we

perform inclined chute experiments to verify our findings in a non-idealised set-up.

II. INCLINED CHUTE WITHOUT EROSION: DEM AND CONTINUUM MOD-

ELS

Conventional chute flow experiments use a setup in which the inclination angle is gradu-

ally changed until flow is initiated or ceased (e.g. [10]). The onset of the flow is determined

by an observer when they consider the grains to have reached a sufficient velocity. As a

result, the rate of inclination and the threshold velocity of the flow surface are two param-

eters which control the amount of momentum in the system and affect the measurement of

the flow transition. However, these are rarely accurately reported. To investigate the effect

of these parameters in a controlled manner, we first adopt a simplified modelling setup: a
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FIG. 1. Numerical simulation setup. A granular layer is placed on a rough slope whose inclination

angle θ is changed at a constant rate θ̇. The flow is considered homogeneous in the downslope

direction x, like on an infinite slope, and thus depends only on the normal coordinate z. The

surface velocity utop is monitored to identify onset or cessation of the flow and the associated

critical angle. On the right-hand side, the panels (a)-(d) present the development of θ and utop

over time for both the starting and the stopping simulations.

one-dimensional, mass-conserving flow down an infinite chute. Such a setup represents a

boundary value problem, which is solved here by means of both DEM simulations and an

analytic continuum model.

For both the DEM and the continuum approaches, the following protocol, illustrated in

Figure 1, is imposed to determine the angles of repose for flow onset and cessation. In the

case of flow initiation, a granular layer of thickness h is at rest on a mild slope, θ0 = 8◦, well

below the static angle of repose. Next, the inclination angle of the slope, θ, is increased at

a given constant rate θ̇ > 0. This continues until the velocity at the top surface of the flow

(averaged over all downslope positions x) reaches a specified threshold velocity, utop = ut,

see Figure 1c. The corresponding inclination angle at this time, θstart, represents the static

angle of repose, see Figure 1a. For the simulation of flow cessation, the same granular layer

with static thickness h is initially flowing down a slope of θ0 = 24◦, well above the static

angle of repose, at a steady-state velocity. Subsequently, the inclination angle is decreased

at a prescribed rate θ̇ < 0 until the flow comes to a rest, utop = 0, see Figure 1d. The

corresponding inclination angle at this time, θstop (see Figure 1b) represents the dynamic

angle of repose.

5



A. Discrete Element Model

The DEM represents grains as spheres interacting via elasto-frictional contact forces [12].

Motion of individual grains is evolved according to Newton’s laws for the translational and

rotational degrees of freedom. Full details on the method can be found in Appendix A and

in previous works [13, 14], but a summary of the key information is given below.

We adopt the spring-dashpot contact law to describe pair-wise contact forces between

grains. Normal and tangential forces acting on particle i due to particle j are

Fn
ij = −knδijnij + γnmeffu

n
ij ,

Ft
ij = kttij + γtmeffu

t
ij , if F t

ij < µgF
n
ij ,

Ft
ij = µgF

n
ij

tij
tij

, otherwise ,

where kn and kt are normal and shear stiffnesses of the contact, characterised by normal

deflection δij and tangential displacement tij (see Appendix A for their definitions); nij

denotes a unit vector normal to the contact plane and pointing from i to j; γn and γt are

damping coefficients, meff is the effective mass of particles i and j, and un
ij and ut

ij are relative

velocities of the two particles projected into the normal and the tangential directions. The

tangential component of the inter-particle force is truncated by the Coulomb limit µ∗F n
ij,

where µ∗ is grain surface friction coefficient.

The DEM parameters used in this work are listed in Table I. Grain density and size

match the values used in the experiment. Young’s modulus of a grain, E = kn/d = 7 · 108

Pa, is about two orders of magnitude lower than a realistic value in order to speed up the

simulations. In particular, while it is critical to resolve fast grain collisions in the DEM, flow

of grains arises from their rearrangements, which occur on a much longer time scale. The

time scale of grain collisions tcol = d
√
ρ/E is artificially increased by reducing E so that less

time steps are needed to propagate the system between macroscopic grain rearrangements.

Previous studies have shown that under low stresses (as is the situation here), granular

dynamics is insensitive to the value of the elastic modulus [13, 15]. The damping coefficient

γn corresponds to the normal coefficient of restitution of 0.57. The relatively low restitution

coefficient was chosen to quickly dampen vibrations of grains to minimise their contributions

to surface velocity utop, which is monitored to determine the start/stop of the flow. The

restitution coefficient has been shown to have little effect on the flow behaviour except for
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TABLE I. Parameters of DEM simulations

Parameter Symbol Value

grain density ρ 2500 kgm−3

mean grain size d 0.75 mm

polydispersity ±20%

normal stiffness coefficient kn 5.2 · 105 Pam

tangential stiffness coefficient kt 2.6 · 105 Pam

normal damping coefficient γn 4.9 · 105 s−1

tangential damping coefficient γt 0 s−1

grain surface friction coefficient µ∗ 0.5

the high-inertia collisional regime [15, 16]. The dominant mechanism for energy dissipation

in dense granular flows arises from the friction force F t
ij = µ∗F n

ij [15]. On that basis, we

neglect the damping in the tangential force by setting γt = 0.

Granular layers are initialised as random packings by pouring grains onto a flat surface.

The slope is then increased to 24◦ to establish steady flow. For the simulations of flow onset,

the slope is subsequently lowered to 8◦ to produce the initial static configuration. Along

with Figure 1, periodic boundary conditions are applied in the x (downslope) direction to

simulate a mass-conserving flow. This is equivalent to flow down an infinitely long chute.

The size of the periodic cell is Lx = 200d, where d is the mean diameter of the particles,

which are slightly (20%) polydisperse. For a single layer thickness h = 70d, the simulations

were repeated using Lx = 96d to check that the finite size effects are small.

For the sake of reducing computational time and simplifying the analysis, while preserv-

ing the main features of the model, three-dimensional grains form a monolayer in the xz

plane. Their motion is thus restricted to x (downslope) and z (perpendicular to the slope)

directions, making the system dynamics two-dimensional. Moreover, due to the periodic

boundaries, flow is roughly homogeneous along the x direction and its properties vary in z

only. The slope is rough, made of glued grains with alternating sizes 0.5d (±20%) and 2.5d

(±20%). The alternating size of the rough granular bottom induces efficient interlocking of

grains along the bottom of the flow, providing a no-slip boundary condition.
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B. Depth-Resolved Continuum Model

Presented here is the continuum solution as a first-order approximation to the one-

dimensional boundary-value problem corresponding to the setup from Figure 1. For the

derivation, we follow a previous approach [8, 17] and adopt linearised incompressible µ(I)-

rheology [5]. Considering a chute plane aligned at an angle θ to the horizontal, with x

representing the downslope direction and z the direction normal to the base, we impose a

no-slip boundary condition at the chute plane (z = 0) and stress-free boundary conditions

at the free surface of the flow (z = h). Assuming a system that is invariant by rotation and

translation, the reduced components of the momentum balance equation are then given by

ρϕ
∂u

∂t
=

∂σxz

∂z
+ ρϕg sin θ, (1)

ρϕ
∂w

∂t
=

∂σzz

∂z
+ ρϕg cos θ. (2)

Here, u is the downslope (x) velocity, w the velocity in the z-direction normal to the base,

t the time, θ the time-dependent inclination angle, σxz the shear stress, σzz the normal

stress, ρ the intrinsic solid density of the grains, ϕ the solid fraction, and g the gravitational

acceleration. Given our assumption of a system invariant by translation and w = 0 at the

base of the flow, the flow velocity in the direction normal to the base is identically zero,

therefore, equation (2) can be integrated to solve for the normal stress

σzz = ρϕg cos θ(h− z), (3)

which vanishes at the top of the layer. Closing off the system of equations, the solution solely

utilises the momentum equation of the standard incompressible µ(I)-rheology and does not

require any additional constitutive assumptions. In this one-dimensional flow regime, this

constitutive law in linearised form simplifies to

σxz=µ(I)σzz sgn

(
∂u

∂z

)
and µ(I)=µs + βI, (4)

where sgn is the sign function, and µs and β are material-dependent rheological parame-

ters [3, 5]. The inertial number I is a non-dimensional variable representing the ratio of the

macroscopic timescale for bulk deformation to the microscopic timescale for grain rearrange-

ments. For flow that depends only on the normal direction z, the inertial number simplifies
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TABLE II. Rheological parameters used in the continuum model differentiating between the im-

posed parameters and parameters inferred from the DEM analysis.

Parameter Symbol Value

Imposed

grain density ρ 2500 kgm−3

mean grain size d 0.75 mm

Inferred from DEM

solid fraction ϕ 0.52

static friction coefficient µs 0.274

rheological material parameter β 0.93

to

I =

∣∣∣∣∂u∂z
∣∣∣∣ d√ ρ

σzz

, (5)

where d is the particle diameter. This complete system of equations (1)-(5) is solved for the

downslope velocity u(z, t) using a custom RK4 finite difference scheme in MATLAB. To allow

comparison between different rates while minimising the numerical error, the simulation time

step is rate-dependent ∆t = 1e−7θ̇−1.

Table II lists the parameters that have been used in the continuum model. They are cho-

sen to match the DEM simulations. The solid fraction varies between 0.5− 0.6 in the DEM

simulations, as granular layers dilate during flow. In the continuum model, this variation is

neglected, and a single value ϕ = 0.52 is selected along with the assumption of incompressible

flow. The µ(I) parametrization, given by µs and β, is consistent with the rheology observed

in DEM simulations; the selected values reproduce well the steady-state velocity as well as

the shear stress to normal stress ratio. It should be noted that the values of rheological pa-

rameters inferred from DEM are influenced by the dimension of the DEM model (2D vs 3D).

Nevertheless, the difference between the rheological parameters used here and the experi-

mental values for glass beads inferred in other studies [5, 10, 18, 19] is within a factor of two.

9



C. Quasi-Static Variation of the Inclination Angle

In the setup under consideration, the inclination angle θ varies with time. However, if

this variation is slow enough, the flow velocity approaches the same velocity that would

be achieved for a fixed slope inclined at the current angle θ. Such “quasi-static” velocity

depends on the current value of θ and not on the rate of inclination θ̇ and can be formulated

analytically by neglecting the inertia term in the momentum conservation equation (1). As a

result, the shear stress increases linearly with the depth in the layer, similarly to the normal

stress, such that their ratio µ = tan θ. This value of µ corresponds to a unique value of I,

from which the steady-state shear rate can be derived, and consequently, integrated to find

the steady-state velocity profile obeying Bagnold’s form [3, 8]:

u(z) =

∫ z

0

∂u(z′)

∂z′
dz′ =

2(tan θ − µs)
√
ϕg cos θ

3βd

[
h3/2 − (h− z)3/2

]
. (6)

By definition, θstart is the angle at which the flow velocity reaches the threshold velocity ut

at the top surface (z = h). For that reason, in this quasi-static regime in terms of inclination

angle variation, we can substitute into (6) and rearrange to see that h, ut and θstart satisfy

the equation

h =

[
3βdut

2(tan θstart − µs)
√
ϕg cos θstart

]2/3
. (7)

Similarly, θstop complies with (6) when ut = 0, and thus tan θstop = µs. For the value of the

static friction coefficient used here (see Table II), this produces a value θstop = 15.3◦.

D. Results

We evaluate the potential of the continuum solution to describe the flow to no-flow

transition by comparing the results with the DEM solution. Both solutions follow the

same numerical protocol as illustrated in Figure 1. Furthermore, a comparison between the

continuum solution and the quasi-static solution allows us to examine the effect of inertia.

1. Development of the Flow

We begin the analysis by interpreting how the flow evolves for different inclination rates,

considering |θ̇| = 0.1, 1 and 10 ◦/s. Here, the inclination angle is thus perpetually increas-

ing/decreasing with time and no velocity threshold is imposed. The results are summarised
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in Figure 2, where the top Figures 2a - c and bottom Figures 2d - f depict the results for the

starting and stopping simulations, respectively. The static thickness of the layer is h = 110d

in all cases. The agreement between the continuum and DEM solution is good, albeit with

some small discrepancies appearing between the two solutions. This could be explained by

the fact that the solid fraction ϕ is not constant for the DEM solution, but which is assumed

constant ϕ = 0.52 for the continuum solution. This ingredient could easily be added to the

continuum model by considering a dependence of the solid fraction on the inertial number,

as shown by previous studies [5, 15].

Figures 2a and d illustrate the velocity profile with respect to the depth z of the granular

layer when θ = 20◦. For the starting simulations, it can be observed that the flow is more

developed for the slow rate. On the other hand, the results of the stopping simulations show

a velocity profile which is closer to rest for the slow rate. Both these observations illustrate

the relevance of the rate of inclination θ̇ with respect to the transient time needed for the

flow to adjust to a new steady-state. The lower the rate of inclination, the closer the velocity

is to the quasi-static solution given by (6).

A similar interpretation can be made from Figures 2b and e, showing the evolution of the

velocity at the top of the layer utop with the inclination angle θ. Again, the results for the

slowest rate tightly follow the quasi-static solution. By increasing the rate of inclination,

the results deviate from the quasi-static solution, showing a generally lower trend of utop

with respect to θ. Consequently, in the stopping simulations, the fastest rate even predicts

a moving granular layer for negative (upslope) inclination angles. Finally, in Figures 2c

and f, the development of utop has been plotted over time. For the starting simulations

shown in Figure 2c, t = 0 corresponds to the time that θ = arctanµs, while for Figure 2f,

t = 0 represents the initial steady state conditions. Both the DEM and continuum solutions

predict a higher acceleration (starting simulations) or deceleration (stopping simulations) of

the flow with increasing rate.

In summary, faster rates of inclination lead to greater inertia of the flow. This is demon-

strated by the greater magnitude of acceleration |∂u/∂t|. However, the change of flow

velocity with θ, that is ∂u/∂θ = (∂u/∂t)/θ̇, becomes lower for higher rates of inclination.

The maximum ∂u/∂θ is achieved for vanishing rate of inclination. This limit corresponds

to the quasi-static solution characterised by negligible inertia, when the flow velocity is the

steady-state velocity (6) at the actual inclination θ. With increasing the rate of inclination,
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FIG. 2. Development of the flow according to the DEM solution (markers), continuum solu-

tion (solid lines) and quasi-static solution (6) (black, dashed line) for a continuously increas-

ing/decreasing inclination angle θ. Firstly, velocity profiles are shown at a point in time when

θ = 20◦ for the a) starting and d) stopping simulations. Secondly, the evolution of the surface

velocity utop is shown as a function of θ for the b) starting and e) stopping simulations. Thirdly,

the evolution of the surface velocity utop is shown as a function of time t for the c) starting and f)

stopping simulations.

inertial effects become significant, as the flow does not have enough time to adjust to the

changing inclination. The analysis of corresponding time scales will be elaborated on at the

end of this section.

2. Assessment of the Inertia Effects

In the next analysis, we perform the starting and stopping simulations for various static

thicknesses of the granular layer h and the three rates of inclination. For the starting

simulations, we consider a velocity threshold ut = 0.1 m/s. This value is chosen because

it aligns well with the measured values in our experiments (see Section III B). In terms of
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the stopping simulations, for simplicity, we use ut = 0 m/s for the continuum solution. In

the DEM model, the velocity of the particles remains finite due to small vibrations of the

particles, and thus the cessation of the flow is established at ut = 7 · 10−4 m/s.

The results are shown in Figure 3. The key findings are: Firstly, and in line with the

expectations, a higher inclination rate increases θstart and decreases θstop, and thus greater

apparent hysteresis ∆θ = θstart − θstop. This is consistent with the slower evolution of

flow velocity with θ observed in Figures 2b and e, where an arbitrary threshold velocity

utop = ut is reached for higher θstart and lower θstop at greater inclination rate (e.g. orange

vs blue lines). Interestingly, in Figure 3c, the minima of the apparent hysteresis seem to

closely follow the critical thickness hc for the different inclination rates. Secondly, negative

stopping angles can be observed for thick layers under high rates of inclination. Under

such conditions, granular flows have high inertia allowing them to sustain positive velocities

despite the inclination angle already turning negative. Thirdly, the results for the various

rates seem to collapse onto one solution for very small thicknesses h ≲ 20d. Lastly, by

reducing the rate of inclination, the continuum solution approaches the quasi-static solution

in (7).

In combining these results and focusing on the continuum model, another important

observation can be made: The resulting starting angle θstart is always greater than the ‘true’

critical angle tan−1 µs. This directly follows from the quasi-static solution (6) for ut > 0. The

observation is illustrated in Figure 4, where the results have been plotted for various values of

ut while keeping the inclination rate constant at 1 ◦/s. These results demonstrate that θstart

is greater than tan−1 µs = 15.3◦ (dashed line) for any thickness and that θstart increases with

ut. Similarly, θstop ≤ tan−1 µs, assuming ut = 0 in the case of the stopping simulation. As a

consequence, a hysteresis-like behaviour is obtained with θstart > θstop despite no hysteresis

being included in the underlying constitutive law. This apparent hysteresis is solely due to

the inertia of the flow. Furthermore, this deviation between θstart and θstop increases with

increasing rate of inclination or increasing threshold velocity.

When comparing the DEM and the continuum results, there is a good agreement between

the solutions for granular flows for thicknesses h ≳ 25d for the stopping simulations and

h ≳ 50d for the starting simulations. On the other hand, a larger discrepancy between

the two solutions can be observed for the shallower flows. In particular, DEM simulations

provide systematically higher θstart and θstop for small thicknesses. This effect is unrelated
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to inertia, as it remains present for vanishing ut and θ̇. Instead, it may be attributed to

non-local rheology [20, 21], manifested by a finite correlation length, which is not included

in the continuum model. Such a length scale could span the entire layer for small enough

h. As a result, shallower layers are stronger and start/cease flowing at a greater θstart/θstop.

In addition, DEM simulations exhibit a significant variability in θstart depending on the

initial configuration of grains. Tiny differences in porosity or structure of interlocking grains

within the initial packing were observed to lead up to 2◦ difference in θstart for otherwise

the same conditions and protocol parameters. We therefore repeated the entire protocol for

4 different initial configurations and present in Figure 3 the averaged values together with

error bars calculated as the standard deviations. This configurational variability is much

lower in the case of stopping simulations, where the error bars are generally smaller than

the marker size. It is also noted that the configurational variability is larger than finite size

effects associated with using finite periodic cell width in the DEM simulations.

The inertial effects studied here are manifested by departure of the measured flow velocity

(Figure 2) and θstart/stop (Figure 3) from the quasi-static solutions given by Eqs. (6) and (7),

in which inertia of the flow is neglected. To assess conditions under which the inertial effects

arise, two competing time scales need to be considered. The first time scale is associated

with acceleration or deceleration of the flow upon change in the inclination angle. If the

inclination changes by dθ, the flow velocity tends to approach the steady-state velocity at

the new inclination angle. The time scale, t1, associated with the acceleration of the flow

is [8] t1 = |duss|/g = |uss(θ + dθ)− uss(θ)|/g, where uss is the quasistatic velocity given by

Eq. (6) for z = h. The second time scale, t2 = |dθ|/θ̇, is associated with rotation of the

chute, being the time to change the inclination angle by dθ. The inertial effects arise if the

time scale for the change in the inclination angle is shorter than the time scale for the flow

velocity to adjust to the change in the inclination angle. Imposing t1 > t2 gives

|θ̇| > g

duss/dθ
≃ βd

h3/2

√
g

ϕ

√
cos θ[

1
cos θ

− 1
2
(tan θ − µs) sin θ

] , (8)

where algebraic factors of order one have been omitted. The last factor is a slowly varying

function of θ, attaining values 0.88-0.95 in the range of θ = 15.3− 27◦, corresponding with

the range of θstart depicted in Figure 3a, and can be substituted with unity within the same

accuracy. Hence, if the rate of inclination |θ̇| is greater than a threshold βd
h3/2

√
g
ϕ
, then
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FIG. 3. The results of the DEM solution (markers, with error bars representing one standard

deviation), continuum solution (solid lines) and quasi-static solution (dashed line) for a) starting

(ut = 0.1 m/s); b) stopping (ut = 0 m/s) simulations; and c) the corresponding apparent hysteresis

∆θ = θstart − θstop. The critical thicknesses hc based on (9) are indicated on the x-axis for the

three rates of inclination.

inertial effects should be considered, as the measured angle of repose will depend on θ̇.

This criterion can be inverted to define a critical thickness

h3/2
c =

βd

|θ̇|

√
g

ϕ
. (9)

For thin flows, h < hc, inertial effects can be neglected, whereas for thicker flows, h >

hc, inertial effects become important, and measurements of θstart and θstop will suffer from

spurious dependency on θ̇. Predicted values of hc for three different rates of inclination

are indicated in Figure 3. This prediction explains why results of the continuum model

closely match the quasi-static solution up to a certain flow thickness, which increases with

decreasing |θ̇|. Note however that even for as slow a rate as 0.1◦/s, the model data deviate

from the quasi-static limit for h > 100d. Since macroscopic granular flows are often more

than hundreds of grains thick, the inertial effects should be considered in situations when

the inclination varies.

III. INCLINED CHUTE WITH EROSION: EXPERIMENTS

To additionally demonstrate the the role of inertia in a real and non-idealised inclining

chute set-up, a series of experiments have been conducted in an attempt to replicate and

then extend the study by [10]. In the previous work, the authors examined the starting

and stopping mechanisms by performing inclined chute experiments, measuring the angle
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FIG. 4. The results of the DEM solution (markers, with error bars representing one standard

deviation), continuum solution (solid lines) and quasi-static solution for ut = 0 (dashed line)

showing the effect of ut for fixed θ̇ = 1 ◦/s.

at which the grains start to flow (θstart) and the corresponding thickness of the residual

deposit layer (hstop) at that same angle, after material has partially eroded from the bed.

This experimental procedure is therefore different from the previously described numerical

protocol of the stopping simulations, as the material is allowed to flow out of the chute

and come to a rest, while the inclination angle remains constant. While staying true to the

procedure described in [10], this new experimental series studies the flow of granular material

down an inclined chute while mapping the influence of the controlling rate of inclination θ̇

and threshold velocity ut parameters.

A. Setup and Protocol

A schematic representation of the setup is shown on Figure 5a. The experimental protocol

is as follows: the chute, initially inclined at a 14.3◦ angle, is first carefully filled up with glass

beads (with a mean diameter d of 0.75 mm) to form a uniform layer with initial thickness

hstart. While recording the material with a camera from above at a rate of 60 frames per

second, the inclination angle of the chute θ is increased by lifting the chute at a prescribed

rate r using a vertical translation stage. This continues as grains start to flow until motion is

observed over the full length of the camera frame, meaning that a flow has already developed.

At this instant of θ = θstart, the inclination of the chute is manually stopped and a light
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simultaneously switched on to aid image post-processing. The flow partially erodes into the

initial layer and the granular material then flows out of the open chute, leaving behind a

deposit layer of thickness hstop < hstart. The process is then repeated by further increasing

the inclination angle to initiate flow again. Several runs have been performed for different

layer thicknesses and two different rates of the vertical translation stage: a slow rate (r = 1

mm/s) and a fast rate (r = 10 mm/s). These correspond to an initial rate of inclination θ̇

of 0.1◦/s and 1◦/s, respectively, which, for future analysis purposes, have been assumed to

remain constant throughout the course of the experiment.

Once the material has come to a rest, an image is taken from the side of the chute at a

location corresponding to the centre of the top camera view. The layer thickness is inferred

from these images during post-processing of the data, and the angle at each time point θ(t)

is calculated from the position of the vertical inclination stage with approximately a 0.1◦

precision. The threshold velocity ut is found through the post-processing of the top camera

images by means of Particle Image Velocimetry (PIV) analysis in PIVLab for MATLAB

[22]. Figure 5b shows a stack of some example frames that are used in the post-processing of

the data. The moment at which the light is switched on can be detected in the video frames,

and thus allows for the evaluation of ut at that exact instant through PIV analysis. The

mean ut is taken over all of the patches in the whole region of interest, which may consist

of both flowing and stationary patches.

Figure 5c depicts an exemplary spatio-temporal plot of the top camera images, formed

by taking the central line of pixels in the x-direction from each subsequent image. The plot

can be subdivided into three main parts: an initially static period (t0 < t < t1), followed by

a period of flow where the movement of the particles start at the bottom of the chute and

travels upwards until a full avalanche over the whole length has occurred (t = tt). The flow

subsequently comes to a rest resulting in a final static state (tt < t < tend). The time tt is

the moment at which the velocity reaches a threshold value ut. This, inevitably, is related

to the observer, who determines when an avalanche has occurred and therefore arrests the

raising of the chute. The velocity threshold is thus not known prior to the experiment, but

can be computed from PIV analysis of the camera images

.
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FIG. 5. Experimental set-up and protocol: a) Schematic of the set-up, indicating the chute,

inclination angle θ, rate of inclination θ̇ and position of the top camera. b) Successive camera

frames, showing the line of pixels used for constructing spatio-temporal plots. c) An example

spatio-temporal plot identifying stationary (t0 < t < t1), acceleration (t1 < t < tt), and deceleration

(tt < t < tend) phases. The dashed line indicates the time tt at which the velocity reaches ut.

B. Effect of Protocol Parameters

Figure 6 depicts an overview of the experimental results. Figure 6a shows the θstart and

hstop measurements for the slow and fast rates. The θstart and hstop measurements come in

pairs, each pair originating from one continuous experimental run. Indicative interpolation

curves have been included emphasising the general trend of the data. The experimental

results show a noticeable difference between the 0.1◦/s and 1◦/s inclination rate, highlighting

that the fast rate of inclination generally leads to a value of θstart that is approximately 2◦

higher than for the slow rate, given the same initial thickness. Human reaction time may be

partially responsible for this difference since, for the same reaction time, experiments at the

faster inclination rate will reach a higher angle before the slope is arrested. However, using
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the imposed rates and a visual human reaction time of approximately 0.25 s [23], a simple

calculation shows that this reaction alone cannot explain the significant difference in θstart

between the two rates. However, greater inertia, as a result of the faster rate, does offer a

plausible explanation. For the hstop measurements, the trend lines appear to collapse into

one and little to no difference between the rates can be distinguished. This is in line with

expectations since there is no inclination angle variation during the stopping phase of the

experiment, as prescribed by the experimental protocol.

Figure 6b examines the effect of the threshold velocity ut on the starting and stopping

thicknesses. We can see an increase in both of these quantities with increasing values of

ut. However, a more interesting measure is the difference between the starting and stopping

thicknesses, ∆h = hstart − hstop, which can be interpreted as the amount of erosion of

material. Figures 6c and 6d examine the relation between this erosion measure and the

starting thickness hstart and mean threshold ut. In contrast to the relatively small effect of

the rate of inclination on hstop, the amount of erosion, and thus hstop itself, does depend

strongly on both ut and hstart, showing a positive correlation between ∆h and hstart (Figure

6c), and ∆h and ut (Figure 6d). Once again, both of these parameters are directly related

to the overall momentum in the system, with thicker, faster flows having greater inertia.

IV. DISCUSSION AND CONCLUSION

In attempts to improve the µ(I)-rheology, the current line of research of granular media

near the flow to no-flow transition focuses on apparent constitutive mechanisms occurring

at the particle scale. This has led to sophisticated, but often complex, relations based

on different physical explanations at the microscopic scale. For example, different authors

have suggested growing cluster formations [24], self-activated processes of stress fluctuations

[25, 26], or an increasing number of sliding contacts [27] leading to mechanical noise [28].

Following a different approach, this study takes a step back and highlights the importance of

the role of inertia at the bulk scale (as per classical definition in physics) in the description of

shallow granular flows, which appears to have been partially overlooked in previous studies.

On the other hand, inertia effects at the particle scale have been related to the Stokes number

and interparticle friction in the field of immersed granular media [29, 30]. In this study, the

prominence of the inertia is illustrated in a threefold manner: through a two-dimensional
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FIG. 6. The experimental results demonstrating the effects of the protocol parameters. a) Mea-

surements of the starting angle θstart (solid markers) and the thickness of the deposit when the

flow stops hstop (open markers), for the different rates of inclination. b) The starting (hstart) and

stopping (hstop) thicknesses of the granular layer against the threshold velocity ut. The length of

the bars gives measure of erosion ∆h = hstart − hstop. The effect of the initial thickness hstart and

threshold velocity ut on ∆h are shown on plots c) and d), respectively.

DEM study as well as a corresponding one-dimensional depth-resolved model, both without

surface erosion, and finally in an experimental study with surface erosion.

The experimental approach is a reflection of similar experiments performed previously.

It is simple, yet effective in strengthening the argument, as it exemplifies and confirms the

significance of the two protocol parameters θ̇ and ut on the results. The experimental results

demonstrate that a) θstart > θstop for the same flow thickness, b) both θstart and θstop depend

on the flow thickness h, c) θstart increases with increasing the magnitude of the inclination

rate. The same does not apply to θstop, which is independent of the rate of inclination. This

can be attributed to the experimental protocol in which the inclination angle is fixed as the

flow comes to a rest. In conserving the simplicity of the protocol, the reproducibility of the

experiment is increased.

Furthermore, in order to be able to properly study the inertia effects on the boundary

value problem in a controlled setup, a DEM study has been performed and the results of

this study are compared with a continuum solution. These simulation results show that a)

the starting angle is greater than the stopping angle, θstart > θstop, and b) both θstart and

θstop depend on the flow thickness h, despite no hysteresis or intrinsic material length scales
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being included in the constitutive law. The adopted model only solves for the fundamental

momentum equation in the x-direction, and, apart from the standard µ(I)-rheology, requires

no additional constitutive assumptions. The results demonstrate that this hysteresis-like

behaviour is a direct consequence of the inertia effects governed by the protocol parameters:

The non-zero threshold velocity is the root cause of the starting angle being greater than the

‘true’ critical angle, θstart > tan−1 µs. For the stopping simulations, where the initial system

already exhibits inertia, rate effects exist despite ut = 0. As a consequence, the stopping

angle will be smaller than the ‘true’ critical angle, θstop < tan−1 µs. In both cases, higher

inclination rates increase the deviation from the true critical angle. The order of magnitude

of this observed apparent hysteresis ranges from a few degrees to tens of degrees depending

on the employed rate of inclination and layer thickness.

Moreover, out of the two protocol parameters, the determination of the velocity threshold

is more ambiguous. However, we highlight that this parameter is an inevitable part of similar

experimental studies and should be appropriately accounted for when interpreting results.

Contrary to the inclination rate, which can be minimised to reduce inertial effects, the

velocity threshold depends on the experimental observer and the granular system under

consideration. For that reason, no universal value for ut is advocated here.

By considering the transient time needed to reach a new steady-state velocity upon

changing θ, we derive a critical rate of inclination and corresponding critical layer thickness,

above which inertia effects govern the solution. In agreement with experimental results

(Figures 5a and c), for larger flow thicknesses, the inertia effect dominates the problem. This

is a relevant finding in terms of practical applications that go beyond laboratory settings such

as field-scale landslides and avalanches, where the thickness of the granular flow may easily be

more than thousands of grain diameters. Another important observation is the possibility of

negative stopping angles for thick flows under larger (in absolute terms) rates of inclination.

This phenomenon, described by both the DEM and the continuum solutions, matches real-

life avalanches and debris flows whose run-out progresses along horizontal planes (zero angle)

and even uphill (negative inclination), provided that they have enough inertia.

At the same time, it is acknowledged that an extension of the current rheological law,

by including for example non-local effects [20, 31–33], is required to fully represent all ob-

servations. In particular, with regards to the description of very thin granular layers, for

which the results imply that not only inertia is at play. Exemplary results can be found in
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the work by Mowlavi & Kamrin (2021) [21] who carefully minimised the inertia effects in

their study on the interplay between hysteresis and nonlocality. Here, it is thus accordingly

stressed that before developing new constitutive concepts, the contribution of inertia as part

of the boundary value problem needs to be isolated and properly understood. Similarly, it

has been demonstrated that, in porous media, macroscopic velocity weakening should not

be taken as a necessary condition for explaining stick-slip dynamics [34], which serves as a

related example about the necessity of complicated constitutive laws in other materials.
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Appendix A: Discrete Element Simulation Details

The discrete element method solves dynamics of individual grains, considered as spherical

particles, by time integration of momentum conservation laws for the translational and

rotational degrees of freedom

mi
dui

dt
=

∑
j

Fij +mig , (A1)

Ii
dωi

dt
=

di
2

∑
j

nij × Fij , (A2)

where ui, ωi, mi, di, and Ii = mid
2
i /10 are velocity, angular velocity, mass, diameter, and

moment of inertia of grain i, respectively, and g is the gravitational acceleration. The right-

hand sides of (A1) and (A2) are the total force and torque acting on grain i. The total force

consists of pair-wise forces Fij exerted by all grains j contacting i. A unit normal vector

to the contact between grains i and j, is defined as nij = rij/rij, where rij = rj − ri is the

vector connecting centres of grains i and j (and rij is its magnitude).
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The contact force between grains i and j, Fij, is controlled by the overlap of the two

”soft” spheres: δij ≡ di/2 + dj/2− rij. The two grains interact only if they overlap, δij > 0.

In that case, the normal (n) and the tangential (t) components of Fij = Fn
ij +Ft

ij are given

by

Fn
ij = −knδijnij + γnmeffu

n
ij , (A3)

Ft
ij = kttij + γtmeffu

t
ij , if F t

ij < µgF
n
ij , (A4)

Ft
ij = µgF

n
ij

tij
tij

, otherwise .

The first terms in (A3)-(A4) are elastic forces, represented by springs of stiffnesses kn and

kt, which are proportional to the overlaps in the normal and the tangential directions. The

later is calculated by integrating the following equation since the time the contact has been

created
dtij
dt

= ut
ij −

tij · (uj − ui)

r2ij
rij , (A5)

where the last term comes from rigid body rotation around the contact point and insures that

tij always lies in the tangent plane; ut
ij = uj−ui−un

ij+0.5(diωi+djωj)×rij/rij is the relative

velocity between the grains projected into the tangent plane; while un
ij = (uj − ui) · nij nij

is the normal component of the relative velocity.

The second terms in (A3)-(A4) are damping forces, which make collisions inelastic. These

forces are proportional to the damping coefficient γn or γt, the effective mass of grains i and

j, meff = mimj/(mi + mj), and to the relative velocity projected into the normal or the

tangential direction.

The tangential component of the inter-particle force (A4) is truncated by the Coulomb

friction force: µ∗F n
ij, where µ∗ is grain surface friction coefficient. Contacts subject to a

greater applied tangential force than this limit slide, and the difference between the applied

and the friction force is transformed into grains’ inertia.

The equations of motion, (A1) and (A2), are integrated in a series of discrete time instants

using the velocity Verlet integrator [12] with a time step ∆t = 0.1 tcol, where tcol = d
√

ρ/E

is the time scale for a collision of two grains with diameter d, mass density ρ and Young’s

modulus, E. This choice insures that the fastest momentum transfer, i.e. propagation of

elastic waves, is well resolved.

The distribution of grain sizes is derived from Gaussian distribution with the mean size

and the standard deviation both equal to 1d and is truncated to achieve polydispersity of
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±20%.
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