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1  |  INTRODUC TION

Tropical coral reefs support vast levels of biodiversity and provide 
valuable ecosystem services to millions of people (Eddy et al., 2021; 
Fisher et al., 2015; Mora et al., 2011) but are increasingly threatened 
by global climate change and direct anthropogenic disturbances 
(Williams, Graham, et al., 2019). In the face of these threats, reefs 

require effective methods of ecosystem monitoring to support 
their management and conservation (Fisher et al., 2015; Nichols & 
Williams, 2006).

A promising tool for characterizing and monitoring the diversity 
of broad taxonomic groups on coral reefs is the sampling of envi-
ronmental DNA (eDNA). eDNA comprises trace genetic material in 
the environment originating from sources including gametes, mucus, 
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Abstract
Environmental DNA (eDNA) metabarcoding has been widely employed to describe 
biological communities in the marine environment and to compare the richness and 
diversity of sites across large spatial scales. However, fine-scale temporal eDNA 
dynamics are poorly understood and the time of eDNA sample collection is rarely 
reported in publications. Here, we collected surface eDNA samples every 6 h, for 
3 days, at two coral reef sites to assess fine-scale changes in the eukaryotic commu-
nities detected. Distinct eukaryotic communities were detected at two sites within 
the same lagoon. Sampling time was found to have a significant effect on ESV and 
class richness, both peaking during the 1 p.m. sampling time at both sites. Sampling 
time also had a significant effect on the detection of eukaryotic taxa, with relative 
read frequency showing clear diurnal patterns in line with the migratory behavior 
of planktonic groups. Other groups of organisms showed considerable variation in 
read frequency, highlighting the dynamic nature of marine eukaryotic communities 
and potential stochasticity of eDNA detections. For eukaryotic communities, eDNA 
samples can provide a “snapshot” of contemporary biodiversity and provide informa-
tion on short-term community dynamics on hyperdiverse coral reefs. However, our 
findings add to growing evidence that sampling time should be clearly considered and 
reported in marine eDNA studies and that multiple samples from the same site are 
needed to facilitate more robust comparisons across sites.
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feces, and sloughed cells from macroscopic organisms (Kamoroff & 
Goldberg, 2018; Sassoubre et al., 2016; Stewart, 2019), and whole 
microorganisms (Pawlowski et al., 2020). An advantage of eDNA is 
that sampling is based on the collection of easily accessible envi-
ronmental media such as water or sediments. This facilitates sam-
pling in physically challenging, remote, and inaccessible settings that 
are beyond the logistical, visual, and taxonomic limits of traditional 
surveys (Rourke et al., 2021). eDNA can be used for single species 
detection via quantitative PCR (qPCR), digital droplet PCR (ddPCR), 
and CRISPR (Kutti et  al.,  2020; Thalinger et  al.,  2021; Williams, 
O'Grady, et  al.,  2019) or assessment of multispecies communities 
via next-generation sequencing (NGS), referred to as metabarcod-
ing (Taberlet et al., 2012). eDNA can also complement established 
biomonitoring methods by alleviating the bias against small and 
cryptic organisms that often constitute the majority of biodiversity 
(DiBattista et al., 2017; Nichols et al., 2021; Pearman et al., 2018). 
Within the marine realm, eDNA is commonly utilized to character-
ize the diversity of sharks (Bakker et  al.,  2017; Dunn et  al.,  2022; 
Mariani et al., 2021), fish (Goldid et al., 2021; Jensen et al., 2022), 
corals (Dugal et al., 2022; Nichols et al., 2021), plankton (de Vargas 
et al., 2015; Djurhuus et al., 2018), and microbial communities (Bakker 
et al., 2019; Djurhuus et al., 2020). Further uses include population 
genetic analyses (Dugal et al., 2021; Weitemier et al., 2021), dietary 
analysis (Nalley et al., 2021), and monitoring ecological events, such 
as spawning (Ip et al., 2022; Tsuji & Shibata, 2020). Demonstrated by 
the above examples, the inference of presence/absence of species 
using eDNA approaches has been well documented across multiple 
taxonomic groups. Moving beyond this, several laboratory studies 
have found positive correlations between species abundance/bio-
mass and eDNA particle concentration or relative read abundance 
(Hilário et al., 2023; Jo & Yamanaka, 2022). However, in the natu-
ral environment, these relationships have been found to be weaker, 
most likely due to more dilute DNA concentrations and stochasticity 
in environmental parameters and organism behavior that are known 
to impact the release, transport, and degradation of eDNA (Rourke 
et  al.,  2021; Yates et  al.,  2019). With careful consideration of key 
environmental parameters however, there is a promising outlook 
for answering quantitative questions in natural environments using 
eDNA (Morrison et al., 2023; Yates et al., 2023).

Coral reef surveys reporting community composition and diver-
sity from eDNA found in the water column have been conducted 
on regional (e.g., the Caribbean; Bakker et al., 2019), national (e.g., 
Indonesia; Madduppa et al., 2021) and local (e.g., within a single reef 
system; DiBattista et al., 2019; Oka et al., 2020) spatial scales. The 
rapid degradation of in situ genetic material and limited transport of 
eDNA is thought to able to provide a high-resolution tool for moni-
toring these marine communities (Collins et al., 2018). Documented 
eDNA degradation rates in tropical marine environments concur 
that higher water temperatures decrease eDNA half-lives, with esti-
mated half-lives of between 2 and 15 h at 28°C (Kwong et al., 2021; 
Tsuji et al., 2017). However, all current rates are calculated from lab-
oratory or mesocosm studies and may not fully represent the natural 
environment. Several studies have also highlighted the detection 
of stable communities over multiple tidal cycles (Kelly et al., 2018; 

Lafferty et  al.,  2021) suggesting that the transport of eDNA into 
a given location is unlikely to influence the overall community de-
tected. Evidence for fast degradation and limited eDNA transport 
is growing, with a number of studies reporting the detection of 
fine-scale habitat association and local differentiation (60 m to 5 km) 
of communities with eDNA metabarcoding (Jeunen et  al.,  2019; 
O'Donnell et al., 2017; Port et al., 2016; West et al., 2020; Wilms 
et al., 2022). However, it is still unknown as to whether single eDNA 
samples, as are often collected in biomonitoring campaigns, provide 
a complete picture of diversity and community structure, or whether 
such “snapshots” may be influenced by fine-scale temporal changes 
in eDNA. More studies are necessary to understand these dynam-
ics and the implications for large spatial surveys (Jensen et al., 2022; 
Kelly et al., 2018).

With a few exceptions (Ely et  al.,  2021; Jensen et  al.,  2022; 
O'Rorke et al., 2022; Pawlowski et al., 2018), community variation 
introduced by time of sampling is rarely reported in eDNA studies 
(Jensen et  al.,  2022). Variation in sampling time could lead to in-
accurate comparisons between sites and taking single “snapshots” 
of communities could lead to an incomplete picture of community 
structure and diversity. The diurnal cycle influences the behavior, 
reproduction, and habitat uses of many marine organisms (Tessmar-
Raible et  al.,  2011). Foraging and predator–prey interactions are 
likely significant sources of eDNA and have been shown to occur on 
predictable diurnal cycles in many taxa (Bosiger & McCormick, 2014; 
Fox & Bellwood, 2011; Meyer et al., 2007; Shulman, 2020). Diurnal 
variation in organism abundance may also result from movement, 
most notably due to the diurnal vertical migration (DVM). DVM be-
havior is observed in a taxonomically diverse group of organisms, 
but most commonly refers to the movement of zooplankton to sur-
face layers at dusk to feed and to deeper layers during the day to 
avoid predation (Brierley, 2014). To date, some diurnal patterns in 
the detection of copepods and fish events have been observed using 
eDNA, indicating potentially short signal persistence also in temper-
ate marine ecosystems (Jensen et al., 2022; Suter et al., 2020; Tsuji 
& Shibata, 2020). Potential diurnal partitioning of spawning corals 
has also been documented with eDNA signals from both day and 
night spawning corals observed in samples taken at corresponding 
times (Ip et al., 2022). This indicates that time of sampling may be 
an important consideration in eDNA studies for varying taxa, with 
inconsistent sampling potentially introducing detection biases unac-
counted for in analysis of eDNA communities.

Here, we investigate diurnal changes in community composi-
tion on a tropical coral reef recovered from eDNA metabarcoding. 
Surface water samples were collected every 6 h for 3 days at two 
sites to explore the fine-scale temporal dynamics exhibited by the 
eukaryotic community. We hypothesize that the communities de-
tected from eDNA samples will differ between sampling times and 
sampling days, reflecting both expected diurnal abundances and 
stochastic detections of ecologically important reef taxa. A better 
understanding of fine-scale temporal variation in marine eDNA is 
important to ensure that the application and analysis of these meth-
ods on broad spatial and temporal scales are appropriate in highly 
diverse and dynamic environments, such as coral reefs.
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    |  3 of 12DOWELL et al.

2  |  METHODS

2.1  |  Study site and sampling

We collected surface water samples to assess community compo-
sition using eDNA detection from two sites in the Peros Banhos 
atoll, Chagos Archipelago, between the 26th of April and 1st of May 
2021 (Figure 1). The two study sites are lagoonal coral reefs found 
at ~30 m depth and at least 700 m from the nearest land. The two 
sites were 20.4 km apart. Samples were collected every 6 h at 1 a.m., 
7 a.m., 1 p.m., and 7 p.m. at each site. These times were chosen to 
coincide with sunrise (07:11) and sunset (19:02) and provide even 
sampling throughout the day. The site in northwest Peros Banhos 
(5.262056° S, 71.769917° E) was sampled for 2.5 days, from 1 a.m. 
on the 26th of April to 7 a.m. of the 28th of April, while the south-
west site (5.446583° S, 71.77° E) was sampled for 3 days from 1 p.m. 
on the 28th of April to 7 a.m. on the 1st of May (Table S1). At each 
sampling site, water temperature was recorded and was between 
29.3°C and 30°C during the whole sampling period. A previous 
study at a nearby site in the southwest of the lagoon described this 
area to have a low and stable flow velocity of ~0.2 m/s and wave 
height of ~0.25 Hs (m) (Steyaert et al., 2022). Conditions during this 
study were likely to be similar, and there were no significant weather 
events during the sampling period. There was a full moon on April 
26th, the first night of sampling.

A water sample was collected from 1 m below the surface 
every 6 h using a 5 L Niskin bottle and was processed immediately. 
Three one-liter subsamples were drawn through three 0.22 μm 
Sterivex-GV filters (Merck Life Sciences) using a vacuum pump, be-
fore the Sterivex filters were run dry and 2.5 mL of Longmire's buffer 
(Renshaw et al., 2015) was added to preserve the DNA. Sterivex fil-
ters were then capped and stored at room temperature for 2 months 
until extraction. All sampling equipment was washed with 20% 
Clorox bleach solution and rinsed thoroughly with sterile water be-
tween uses. Field blanks consisting of sterile water (500 mL) were 
processed through the filtration system on the first day of sampling 
at each location (April 26th and 28th) to assess contamination from 
the filtration equipment during sample processing. The same filtra-
tion system was used at both sites.

2.2  |  DNA metabarcoding

2.2.1  |  Extractions

DNA was extracted following the protocol described by Spens 
et  al.  (2017) using the DNEasy Blood and Tissue kit (Qiagen). All 
DNA extractions were carried out in a dedicated pre-PCR room. 
Extraction blanks were performed using nuclease-free water. 
Extracted DNA was eluted in 100 μL nuclease-free water and 

F I G U R E  1 Map of (a) the wider Indian Ocean region with the British Indian Ocean Territory marine protected area highlighted in purple 
and (b) the Chagos Archipelago with (c) inset showing study sites in the Peros Banhos atoll. The two study sites are denoted by purple 
triangles. Islands within the atoll are shown in black.
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quantified using a Qubit flex fluorometer (Life Technologies). 
Extracted DNA was stored at −20°C. DNA extracts were amplified 
using primer sets targeting a 130-bp region of the V9 18S rDNA: 
1389F 5′-TTGTACACACCGCCC-3′, 1510R, 5′ CCTTC​YGC​AGG​TTC​
ACCTAC 3′ (Amaral-Zettler et  al.,  2009). Triplicate PCR replicates 
were performed for each sample in 25 μL reactions, including the 
extraction blanks. Each PCR reaction included: 5 μL HOT FIREPol 5× 
MasterMix, 0.5 μL forward and reverse primers (10 μM), 5 ng of tem-
plate DNA, and made up to 25 μL with PCR grade water. The ther-
mocycler conditions were an initial denaturation at 94°C for 12 min, 
followed by 30 cycles of 10 s at 94°C, 30 s at 57°C, 30 s at 72°C, and 
a final 10-min extension at 72°C. A negative control with no DNA 
template was included in all PCR runs. 1% agarose gels stained with 
SYBR safe (Invitrogen) were run to confirm success of the PCRs, be-
fore PCR replicates were pooled.

To prepare libraries for sequencing, PCR products were purified 
with AppMag PCR cleanup beads (Appleton Woods) and the puri-
fied DNA was used as templates for the index PCR. A second 50 μL 
PCR reaction to add Nextera XT indexes (Illumina) was performed. 
The reaction comprised 10 μL HOT FIREPol 5× MasterMix, 5 μL of 
each index primer, 5 μL of purified PCR product, and 25 μL of PCR 
grade water. The PCR conditions were as follows: 95°C for 15 min, 
followed by 8 cycles of 30s at 95°C, 1 min at 55°C, 1 min at 72°C, 
and a final 10-min extension at 72°C. Indexed PCR products were 
purified as above and verified using an Agilent 4200 TapeStation. 
Libraries were sequenced on an Illumina MiSeq platform using V2 
chemistry (2 × 250 bp paired end reads).

2.3  |  Data analysis

Sequences were automatically demultiplexed into individual li-
brary fastq files using the Illumina MiSeq Reporter software. 
Demultiplexed sequences were then trimmed, denoised, and 
merged using the DADA2 pipeline in R to produce exact sequence 
variants (ESVs) (Callahan et  al.,  2016). The default parameters of 
MaxN = 0 and MaxEE = 2 were applied. Taxonomic assignment of 
ESVs was performed using IDTaxa and the SILVA (v138) reference 
database, with the assignment confidence threshold set at 40% 
(moderate) (Murali et  al.,  2018; Quast et  al.,  2013). Potential con-
taminant sequences were removed using decontam package in R 
(Davis et  al.,  2018) with a stringent threshold of 0.5, where ESVs 
more prevalent in field negatives than positive samples were identi-
fied as contaminants and removed from the dataset. Samples were 
rarefied to the minimum library size, with replacement, 100 times as 
advised by Cameron et al. (2021) to allow for robust diversity analy-
sis using samples of equal library size but accounting for potential 
data loss during rarefaction.

Alpha diversity measures (ESV richness, Shannon, and Simpsons 
indices) and Jaccards dissimilarity (presence/absence) scores for 
non-metric multidimensional scaling (NMDS) plots were calcu-
lated using the Phyloseq package (McMurdie & Holmes, 2013) and 
metaMDS functions of the R-package vegan (v.2.6–4) (Oksanen 

et  al.,  2022), respectively. Analysis of variance (ANOVA) and post 
hoc tests were run to test the effect of site, sampling time (1 a.m., 
7 a.m., 1 p.m., and 7 p.m.), and sampling day (1–6) on alpha diversity. 
Betadisper tests were used to test for homogeneity and determine 
community dispersion (Anderson et al., 2006) within site, sampling 
time, and sampling day. The ADONIS function of the vegan package 
was used to conduct a permutational multivariate analysis of vari-
ance (PERMANOVA) to test the effect of site, sampling time, and 
sampling day on community composition, calculated using Jaccard 
similarity. We examined diurnal patterns in relative read frequency 
of key eukaryotic phyla throughout the sampling period. ESVs as-
signed to taxa of interest were subset and two-way ANOVA and 
post hoc tests were used to test if site and sampling time influenced 
ESV abundance and richness. Cube root transformation was applied 
to data, if needed, to meet model assumptions of normality and 
variance.

3  |  RESULTS

18S rDNA metabarcoding obtained a total of 2,722,305 reads in 
total from 22 samples, with read counts per sample ranging from 
94,862 to 184,246. After quality filtering, merging, and chimera 
elimination, a total of 2,275,611 reads remained with individual 
samples ranging from 75,525 to 141,966 reads (average of 103,437 
reads per sample) (Table  S2). One hundred and ninety-four ESVs 
(48,988 reads), representing 1.97% of reads across all samples, were 
identified as contaminants and removed. The identities of all ESVs 
removed as contaminants can be found in the supplementary infor-
mation; however, the most abundant contaminants were predomi-
nantly non-marine and included ESVs in the classes Embryophyta, 
Alphaproteobacteria, Maxillopoda, Insecta, and Mammalia. ESVs 
unassigned or not assigned as eukaryotic at the domain level were 
also removed, leaving a total of 4097 ESVs for further analysis. 
Rarefication curves (Figure S1) were examined to determine 72, 000 
reads as an appropriate library size for normalization.

3.1  |  Alpha and beta diversity metrics

Eukaryotic richness varied from 1011 to 1529 ESVs, with the low-
est richness observed at 1 a.m. in the southwest site and the high-
est richness observed at 1 p.m. in the southwest site (Figure  2). 
ESV richness was significantly different between sampling times 
(ANOVA, median p = 0.022) with significantly higher ESV richness 
observed at 1 p.m. compared to 1 a.m. (TukeyHSD, adj p = 0.017). 
The highest richness of eukaryotic classes was 92, observed dur-
ing 1 p.m. sampling at the northwest site (Figure S2). Sampling time 
also had a significant effect on eukaryotic class richness (ANOVA, 
median p = 0.050). There were no significant differences in ESV, or 
class richness observed between sites and sampling days. There was 
also no significant difference in the richness of genera or orders and 
no significant difference in Simpson's or Shannon's alpha diversity 
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measures calculated with ESV data between sites, sampling times, 
and sampling days (Table S1).

PERMANOVA analyses carried out using presence/absence 
(Jaccard's similarity) to investigate the influence of site, sampling 
time, and sampling day on community composition, showed that site 
and sampling day had a significant effect on the eukaryotic commu-
nity detected (Table 1). NMDS plots created using Jaccard's similarity 
index indicate that samples primarily split by the two sampling sites 
on the x-axis (Figure 3). There was no clear clustering at any sampling 
time (denoted by colors in the plot) at either site, with 1 a.m. samples 
spanning the greatest ordination space, indicating the highest com-
positional variability. Communities from the southwest site show 
greater variation than those in the northwest site. Higher dispersion 
was recorded in the southwest site with a median distance to group 
centroid of 0.4513 compared to 0.3889 in the northwest site.

3.2  |  Diurnal patterns in ecologically 
important taxa

The eukaryotic phyla (and respective classes) with the high-
est number of reads were Dinoflagellata (Dinophyceae), Cnidaria 
(Hydrozoa), Arthropoda (Maxillopoda), Tunicata (Appendicularia), 
and Protalveolata (Syndiniales) (Figure  S3). ESVs assigned to the 
above five classes were found in all samples, across all sampling 
times and sites. However, the proportion of reads assigned to some 
classes varied between samples and within each sampling time. 
For example, Appendicularia accounted for 38% of reads at 7 a.m. 
on April 30th but decreased to only 5% of reads at the subsequent 
1 p.m. sampling.

From the four most abundant phyla detected (Dinoflagellata, 
Cnidaria, Arthropoda, and Tunicata), particular taxa were chosen that 
represent ecologically important planktonic and benthic groups and 
comprise useful indicators of environmental variation (Frederiksen 
et  al.,  2006; McQuatters-Gollop et  al.,  2019). In total, three phyla 
(Dinoflagellata, Tunicata, and Porifera), two classes (Hydrozoa and 
Anthozoa), and one subclass (Copepoda) were chosen. The classes 
Hydrozoa and Anthozoa were looked at separately within the phy-
lum Cnidaria due to large differences in ecology and Copepoda was 
chosen as the most abundant subclass in the phylum Arthropoda. 
Porifera was also investigated as a further benthic group and was the 
12th most abundant phylum.

Six classes of Copepoda were detected, of which Calanoida had 
the most ESVs (n = 43) (Appendix S2). The relative frequency of reads 
assigned to Copepoda showed a clear diurnal cycle, peaking at 1 a.m. 
and declining during daytime hours (Figure  4a). Copepoda reads 

F I G U R E  2 Eukaryotic ESV richness throughout the sampling period at both the northwest (left) and southwest (right) sites. Libraries have 
been rarefied 100 times to 72,000 reads with the average class richness of all normalized libraries plotted in red. Shaded areas indicate night 
hours.

TA B L E  1 Table of results of permutational multivariate analysis 
of variance (PERMANOVA) performed on repeatedly rarefied 
libraries to explore community changes in relation to site, sampling 
time, and sampling day.

df SS R2 F p

Site 1 0.331 0.139 3.300 0.001**

Time 3 0.324 0.136 1.080 0.214

Day 1 0.138 0.058 1.380 0.035*

Site*Time 3 0.289 0.121 0.965 0.600

Note: Median values of 100 PERMANOVAs are reported. Results 
are reported for both presence/absence (Jaccard's coefficient) data. 
Significant values are indicated with *where p < 0.05 and **where 
p < 0.005.
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were significantly different across sampling times (ANOVA, median 
p = 0.019), were more frequent at 1 a.m. than 7 p.m. (TukeyHSD, 
padj = 0.0186), and were not significantly different between sites. 
High read frequency was not driven by higher Copepoda ESV rich-
ness, with no significant difference between sampling times and 
sites. Read frequency of Dinoflagellata (Figure  4b) demonstrated 
the reverse pattern to Copepoda, with significant differences found 
across sampling times (ANOVA, median p = 0.041), and higher read 
frequency at 1 p.m. compared to 1 a.m. (TukeyHSD, padj = 0.0447) 
and 7 a.m. (TukeyHSD, padj = 0.00432). There was no significant ef-
fect of site on Dinoflagellata read frequency, and no significant ef-
fect of sampling time and site on ESV richness.

Sampling time did not have a significant effect on the relative 
read frequency assigned to Tunicata (Figure 4c). The high frequency 
of Tunicata reads appears to be driven by large numbers of reads 
assigned to Copelata, a free-swimming tunicate, from three non-
consecutive samples across both sites. Hydrozoa were among the 
most abundant taxa observed. Both site (ANOVA, median p = 0.003) 
and sampling time (ANOVA, median p = 0.033) had a significant ef-
fect on read frequency of Hydrozoa, with increased read frequency 
detected during 7 p.m. sampling events and in the northwest site 
(TukeyHSD, padj = 0.034) (Figure S4).

There was a roughly 10-fold decrease in the frequency of reads 
assigned to Porifera and Anthozoa, compared to the taxa discussed 
above (Figure  S5). However, these were the two most abundant 

benthic groups detected across all samples. Read frequency of both 
groups was more variable during the 1 a.m. and 7 a.m. sampling 
times, with up to 8% of reads assigned to Porifera in one 1 a.m. sam-
ple. Although due to stochastic detection, median read frequency 
remained close to 0 for both groups at most time points. Sampling 
time and site had no significant effect on the read frequency and 
ESV richness of either of these groups.

4  |  DISCUSSION

Here, we show that eDNA metabarcoding from surface water sam-
ples not only detects distinct communities between coral reef sites 
but can also detect diurnal patterns in planktonic taxa by considering 
the change in relative read frequency. However, we also show that 
individual water samples only provide a partial view of the biodiver-
sity present on coral reefs and that it is important to consider time 
of sampling to avoid making inaccurate comparisons between sites.

Sampling eDNA at different times of day has been shown to influ-
ence the detection of organisms, primarily fish, due to daily changes 
in behavior and habitat use (Ely et  al.,  2021; Jensen et  al.,  2022; 
Suter et al., 2020). Copepods are known to make diurnal migrations 
vertically in the water column to avoid predation at depth during the 
day, moving to the surface at night to feed (Olsson & Granéli, 1991). 
Here, this expected movement of copepod biomass was mirrored in 

F I G U R E  3 Non-metric multidimensional scaling (NMDS) plot of Jaccard's (presence/absence) distances between samples from both sites 
and all four sampling times. Libraries have been rarefied 100 times and all communities included in the nMDS. Sites are denoted by shape 
(circle = northwest site, tringles = southwest sites) and sampling time by color. Clusters are annotated by a number indicating the day of 
sampling (1–6).
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the frequency of reads assigned to this class during diurnal eDNA 
sampling. The opposite pattern was observed in dinoflagellates with 
decreased detection of reads during night and morning sampling 
events. Dinoflagellates have also been observed to exhibit diurnal 
vertical migrations (Bollens et al., 2012), migrating to the surface to 
photosynthesize during the day (Kamykowski, 1981). The reduction 
in these phytoplanktonic groups at the surface during the night could 
also be driven by predation from zooplankton (Casey et al., 2019). 
These findings suggest that these groups were detected most prom-
inently when they were present in the immediate vicinity of sam-
pling, and that eDNA samples can be used to investigate the diurnal 

movements of planktonic organisms. Although the relationship be-
tween read frequency and organism abundance or biomass is yet to 
be fully tested, there is considerable evidence for correlation in mul-
tiple taxa (Bourque et al., 2022; Rourke et al., 2021). Repeating this 
experiment with the collection of eDNA samples at multiple depths 
would consolidate these findings and provide further evidence for 
the feasibility of eDNA metabarcoding to track such behaviors.

When applying molecular methods to assess the abundance of 
planktonic organisms, such as copepods and dinoflagellates, a con-
sideration of the source of genetic material is also required. Reported 
densities of zooplankton and phytoplankton at similar Indian Ocean 

F I G U R E  4 Box plots showing the relative read frequency of pelagic taxa at each sampling time point for (a) Copepoda, (b) Dinoflagellata, 
(c) Tunicata, and (d) Hydrozoa. Each time facet contains 100 consecutive boxplots, each representing one rarefied library. The median read 
frequency is shown for each library by the black line.
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sites vary significantly, with estimates of up to 50 × 106 and 15 × 106 
cells L−1, respectively, as well as average copepod densities of 3700 
individuals/100 m3 (Radhakrishnan et al., 2020; Shaama et al., 2020; 
Soondur et al., 2022). With a total volume of 3 L filtered per sample, 
it is certain that whole microplankton would have been processed 
and contribute to relative read frequency recorded here. However, 
with larger taxa such as copepods, we detected multiple ESVs from 
different classes within each sample, which if each derived from a 
whole organism would most likely dominate the sample and be re-
flected with much higher single-species read frequencies than we 
observed. In this study, it is likely that the eDNA signal is derived 
from both the capture of whole organisms and the release of extra-
organismal material due to increased movement and predator–prey 
interactions at these times. Further work investigating the source 
of organismal DNA is required to confidently infer these read fre-
quency to abundance relationships.

Not all taxa investigated here exhibit clear diurnal patterns, and 
the eukaryotic community detected by eDNA does appear to be 
more dynamic than similar studies investigating fish (Ely et al., 2021; 
Jensen et  al.,  2022). In a few samples, reads assigned to tunicata, 
predominantly from the class Appendicularia, accounted for large 
proportions of the total reads, and over 60% of reads at 1 a.m. on 
29th of April at the Southwest site. Appendicularia, more commonly 
referred to as larvaceans, are free-swimming, gelatinous members of 
the zooplankton community that can bloom in response to changes 
in phytoplankton abundance and composition (Sordino et al., 2019). 
The spikes in read abundance seen here are most likely due to the 
capture of whole organisms and the discharge of mucus for their tem-
porary secreted houses (Galt & Sykes, 1983; Robison et al., 2005). 
Benthic taxa, such as sponges (Porifera) and corals (Anthozoa), were 
also only detected sporadically. This adds evidence to conclusions 
that surface water samples are unlikely to be the most effective way 
to target benthic groups on coral reefs outside of spawning events 
(Ip et al., 2022).

However, eDNA from water samples can consistently detected 
distinct communities at two sites that are found within the same la-
goon and have comparable water depth and distance to land. The 
eukaryotic community detected in the northwest site was found 
to be more stable across both sampling times and sampling days. It 
is likely that this lagoon is subject to recurrent flushing of oceanic 
water due to tides and currents (Sheehan et al., 2019) and surface 
currents and winds are predominantly westward in the region during 
the sampling period in April (Nyadjro et al., 2020). Therefore, there 
may be higher water movement expected over the southwest site 
due to fewer islands and less rim reef providing shelter, potentially 
driving the decreased stability of detected eukaryotic communities 
compared to the more sheltered northwest site. This indicates the 
importance of understanding the role of hydrodynamics in the sta-
bility of eDNA signals in the marine environment.

In this environment, it is likely that eDNA signals are highly dy-
namic and influenced by variable eDNA release, fast degradation, 
water movement, and species behavior. Sampling time, and not 
site or day, was found to affect the alpha diversity (ESV richness) 

of the eukaryotic community, and less than half of the total diver-
sity of Copepoda ESVs were detected in any one sample. In the 
PERMANOVA analysis, however, communities were found to be sig-
nificantly different between sites and sampling day, indicating that 
eDNA samples reflect both diurnal signals and stochastic species 
presence over the sampling period. Recent developments including 
automated (Formel et  al.,  2021; Hendricks et  al.,  2022) and natu-
ral samplers, such as sponges (Cai et al., 2022; Mariani et al., 2019; 
Turon et  al.,  2020), may begin to alleviate some of the difficulties 
with taking multiple samples at individual sites (e.g., time, cost, and 
resources), by sampling larger volumes of water, and over a longer 
time period.

Overall, we conclude that eDNA metabarcoding of water sam-
ples can be a useful tool to examine surface eukaryotic communities 
on a tropical coral reef. Utilizing eDNA metabarcoding and relative 
read frequency could further provide the ability to investigate be-
havior in the surface ocean. However, a single water sample is likely 
insufficient to fully describe the community present, with temporal 
replicates needed to provide a comprehensive picture of species 
richness. Finally, a consistent time of sampling is likely important 
to appropriately compare eDNA samples across spatial scales. We 
strongly recommend that time of sampling be reported in available 
metadata to facilitate accurate data comparisons.
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