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Abstract— The wealth of information associated with the 
exponential increase in digital text, particularly within the 
biomedical field, has the potential to advance medical research, 
improve patient care, and enhance public health outcomes. 
However, the sheer volume and complexity of this data 
necessitate advanced computational tools for effective 
processing and analysis. We investigated the use of various pre-
trained transformer-based language models, particularly 
BERT, PubMedBERT, SciBERT, ClinicalBERT, DistilBERT, 
and the application of prompt engineering with GPT-4, within 
the context of biomedical Named Entity Recognition. Our 
approach incorporates a comprehensive performance 
evaluation analysis utilizing standard NLP evaluation metrics 
and computational resource usage metrics such as training time, 
memory usage, and inference time. Through this multifaceted 
approach, we sought to find out how the few-shot prompting 
approach using GPT4 performs in comparison to the BERT-
variant language models while at the same time identifying 
models that not only excel in performance efficiency but also 
demonstrate computational affordability. Our experimental 
results show that even the most basic transformer-based 
language model outperforms the few-shot prompting approach 
of GPT-4, despite the popularity of the LLM in the more general 
Natural Language Processing tasks. 

Keywords— Name Entity Recognition, Natural Language 
Processing, Transformer-based Language Model, Large 
Language Model, Biomedical Texts. 

I. INTRODUCTION 
The exponential increase in digital text, particularly within 

the biomedical field, presents both an opportunity and a 
challenge. On one hand, the wealth of information has the 
potential to advance medical research, improve patient care, 
and enhance public health outcomes. On the other hand, the 
sheer volume and complexity of this data necessitate advanced 
computational tools for effective processing and analysis. This 
is where Natural Language Processing (NLP), and more 
specifically, Named Entity Recognition (NER), becomes 
essential. NER is a subtask of NLP that involves identifying 
and categorizing key pieces of information in text, such as 
names of people, organizations, or in the case of biomedical 
NER, drug names, diseases, and treatment procedures. The 

importance of NER in biomedical research cannot be 
overstated. It enables the automated extraction of critical 
medical information from unstructured text sources, such as 
clinical notes, research articles, and electronic health records. 

The advent of deep learning has led to substantial 
advancements in pre-trained language model capabilities. The 
introduction of pre-trained transformer-based large language 
models such (LLMs) as the Bidirectional Encoder 
Representations from Transformers (BERT) has set new 
benchmarks in the field. These models, which are trained on 
vast amounts of general or domain-specific text, can be fine-
tuned in a specific domain for domain-specific NER tasks, 
yielding unprecedented accuracy and efficiency [1]. Several 
recent studies [2], [3] have also highlighted various efforts to 
adapt generative LLMs for these tasks, shedding light on both 
the potential and challenges of these endeavors.  These models 
use natural language texts called prompts as inputs. Prompts 
can be in the form of questions or statements and can be as 
simple as a phrase or as complex as multiple sentences or 
paragraphs. The quality of the outputs of generative LLMs, 
i.e., how relevant and useful the outputs are, depends on the 
prompts and they can be improved by iteratively refining the 
prompts. When no refinement is used, the approach is called 
zero-shot prompting as opposed to few-shot prompting which 
uses a small number iteration. The process of designing the 
prompts to guide the LLMs to generate more accurate and 
relevant outputs is called prompt engineering.  

To the best of our knowledge, there is very little work has been 
done that compares the performance of the two different 
language models in biomedical-domain-specific NER. In this 
paper, we present our study that assesses the performance of 
using the few-shot prompting of an LLM and model 
adaptation of transformer models to identify and categorize 
key pieces of information in biomedical texts.  

II. LITERATURE REVIEW 
Our review of the literature reveals substantial progress in 

the development of pre-trained bidirectional transformer-
based language models with models like BioBERT [4] and 
PubMedBERT [5] achieving notable success in extracting 
biomedical entities. While these advancements demonstrate 



the potential of pre-trained language models, they also 
highlight the gap in research concerning the computational 
efficiency of such systems. Case in point, studies by [6] 
introduced BERT, showcasing its capabilities but also its 
substantial resource requirements. The application of these 
models in clinical contexts is further explored by Huang et al. 
when developing ClinicalBERT while underlining the need 
for more computational resources [7]. The existing body of 
research, while advancing the accuracy and scope of 
biomedical NER, has not sufficiently addressed the challenges 
of deploying these technologies in resource-constrained 
settings. Moreover, the literature shows a lack of 
comprehensive strategies to balance the computational 
demands with the performance needs of biomedical NER 
models, particularly in diverse and rapidly evolving medical 
fields. Han et al. [8] identified four key directions of progress 
driven by advances in computational power and data 
availability when reviewing recent breakthroughs in pre-
trained transformer-based language models. They are 
designing effective architectures, utilizing rich contexts, 
improving computational efficiency, and conducting 
interpretation and theoretical analysis. 

Our literature review also found various efforts to adapt LLMs 
for domain-specific applications, shedding light on both the 
potential and challenges of these endeavors. In their paper, 
Ling et al. [2] provide a comprehensive taxonomy for 
categorizing domain-specialization techniques, crucial for 
understanding how LLMs can be tailored to specific fields. 
However, they also highlight critical limitations such as the 
inaccessibility of LLM architecture and the lack of 
standardized evaluation methods, which impede the 
widespread application of these models, particularly for those 
without extensive AI expertise. One such model, ClinicalGPT, 
is an LLM that has been specifically tailored for clinical 
applications in the healthcare domain [9]. However, the 
authors noted that, despite the general effectiveness of large 
language models in NLP, their application in medical settings 
has been challenging due to issues like factual inaccuracies 
and lack of domain-specific understanding. There is also 
TrialGPT [10] that adapts LLMs to the specific domain of 
clinical trials, demonstrating how general-purpose LLMs can 
be fine-tuned to perform specialized tasks such as predicting 
eligibility criteria based on patient notes. 

There have been numerous efforts to address some of these 
challenges associated with using LLMs for domain-specific 
applications. For example, to address the challenge of 
applying data-centric approaches, such as natural language 
prompting, to biomedical language modeling due to the 
underrepresentation of labeled biomedical datasets in existing 
data collections, several researchers introduced BigBIO, a 
comprehensive community library that contains over 126 
biomedical NLP datasets across 12 task categories and more 
than ten languages [11]. Other researchers explored tools like 
LMTuner [12] and QA-LoRA [13]  which aim to simplify and 
economize the adaptation of LLMs. These studies contribute 
to the field by offering solutions to lower the barriers to LLM 
training and fine-tuning. Nevertheless, they stop short of 
providing comprehensive metrics on computational resources, 
an area critical to the theme of resource efficiency. There is 
also an effort to explore the Parameter-Efficient Fine-Tuning 
(PEFT) methods in [14] to provide insights into hardware 
constraints management. However, the study found that PEFT 
methods generally underperform compared to full model 
tuning in resource-limited settings further underscoring the 

complexity of achieving efficiency without sacrificing 
performance. 

The work of Liu et al. [15] and subsequent studies by Labrak 
et al. [16] delve into prompt-based learning and instruction-
tuning, presenting promising avenues for efficient domain 
adaptation. However, these studies reveal an overarching gap: 
a lack of detailed, practical implementation examples and 
comprehensive adaptability assessments in varying domain-
specific contexts. Recent developments have also seen a rise 
in innovative approaches like prompt engineering, particularly 
with generative models like GPT-3 and GPT-4, which have 
shown potential in adapting to specific NLP tasks without the 
need for fine tuning the huge LLMs [17]. This move towards 
efficiency and adaptability is critical in extending the reach 
and application of NLP technologies, especially in specialized 
fields like biomedicine. 

Despite the numerous attention to this area, the finding from 
our review of the literature shows very little work has been 
done that compares the performance of the two different 
language models in biomedical-domain-specific NER. With 
this study, we aim to shed more light on this topic by assessing 
the performance of using the few-shot prompting of an LLM 
and model adaptation of transformer models to identify and 
categorize key pieces of information in biomedical texts.  

III. METHODOLOGY 
An overview of the methodology we employ in this study 

is shown as a flowchart in Figure 1. In general, the method 
involves data collection and data pre-processing stages, 
followed by model selection by considering a wide range of 
transformer-based large language models. The model 
adaptation stage is then carried out on the chosen models to 
tailor the model to the chosen domain before performing the 
NER tasks and evaluating their performances relative to each 
other. 

 
Fig. 1. An overview of the proposed methodology 

 

Data Collection and Pre-processing Stage 

In this part, we focused on gathering and preparing the data 
needed for our biomedical Named Entity Recognition (NER) 
tasks. We used the NCBI-Disease Corpus [18], a well-known 
dataset in the biomedical field, which consists of 793 abstracts 
from PubMed. These abstracts are divided into training, 
development, and testing sets with detailed annotations for 
disease mentions. This dataset was chosen because of its 



relevance to our study and its widespread use in the 
biomedical NER community, making it a standard for 
comparison. The dataset is specifically structured for NER 
tasks, with annotations that mark the disease and type of 
disease mentioned within the text. This structure is crucial for 
our study as it provides a clear framework for training and 
evaluating our models. The dataset presents text data with 
annotations embedded within, categorizing text spans into 
specific biomedical entities such as “SpecificDisease”, 
“DiseaseClass”, “CompositeMention” and “Modifier”. Each 
entry is uniquely identified and associated with relevant 
sections of text, detailing genetic mappings, disease 
associations, and other biomedical phenomena. 

The data pre-processing stage involved formatting and 
segmenting or tokenizing it into tokens suitable for training 
the pre-trained language models. Then, we annotated the text 
according to the BIO tagging scheme, which stands for 
Beginning, Inside, and Outside. This scheme is standard for 
NER tasks and involves labeling each word in a sentence to 
indicate whether it is the beginning of an entity, inside an 
entity, or outside any entity. The purpose of this meticulous 
data collection and pre-processing process is twofold. First, it 
ensures that the models we are testing have a solid foundation 
of high-quality, well-structured data. Second, it allows us to 
compare the performance of different models under consistent 
conditions. By using a standard, recognized dataset and a 
clear, systematic approach to data preparation, we can ensure 
that our results are reliable and comparable with other studies 
in the field. 

 

Model Adaptation Stage 

The domain-specific adaptation process is a critical step in 
adapting pre-trained language models to our specific 
biomedical NER task. This section outlines how we fine-tuned 
each selected model to optimize its performance for 
identifying biomedical entities within text data. Our fine-
tuning process began with the standard procedure of adapting 
each pre-trained model to the NCBI-Disease Corpus. This 
involved: 

1. Data Integration: We integrated our pre-processed 
biomedical dataset into each model's training framework, 
ensuring that the format matched the model's 
requirements. This typically included transforming the 
text into tokens and aligning these with the corresponding 
entity labels. 

2. Hyperparameter Adjustment: We configured each model's 
hyperparameters, such as learning rate, batch size, and 
number of training epochs, based on preliminary tests to 
find the balance between training time and model 
performance. The common starting point was a learning 
rate of 5e-5, a batch size of 32, and three training epochs, 
adjusting as necessary based on initial results. 

3. Training Environment Setup: We ensured that each model 
was fine-tuned in a controlled environment, typically 
utilizing GPU acceleration to expedite the training 
process. This consistency helps in comparing model 
performances fairly. 

4. Model Training: Each model was trained on the annotated 
training subset of our dataset, using the adjusted 
hyperparameters. During training, models learned to 

predict entity labels for text tokens, adapting their 
parameters to better fit our biomedical NER task. 

5. Validation and Adjustment: After initial training, we used 
the development subset of our dataset to evaluate each 
model's performance, making further adjustments to 
hyperparameters if necessary to improve results.  

The fine-tuning process was iterative, with adjustments 
made based on performance metrics and observed challenges. 
This iterative approach allowed us to refine each model's 
ability to handle the complexities and nuances of biomedical 
NER tasks effectively. In summary, the fine-tuning process 
tailored each pre-trained model to our specific biomedical 
NER task, with careful adjustments and evaluations ensuring 
optimal performance. This detailed and methodical approach 
laid the groundwork for the models' successful application to 
biomedical text, as discussed in the subsequent results and 
discussion chapters. 

Unlike the transformer-based language models, LLMs are 
used in a slightly different manner due to their design as a 
generative model. Instead of traditional fine-tuning, we 
employed few-shot prompt engineering, creating and refining 
effective prompts that guided the model to identify and 
categorize biomedical entities within the text. Prompt 
engineering involves crafting input prompts that guide the 
language model to perform specific tasks such as identifying 
and classifying biomedical entities within text. Unlike fine-
tuning, where the model's weights are adjusted, prompt 
engineering keeps the model's weights fixed and instead 
modifies the input data to steer the model's output toward the 
desired task. This approach leverages the generative 
capabilities of the LLM to interpret and respond to structured 
prompts, making it suitable for NER tasks without the need 
for extensive retraining. The design of the prompts considers 
the following criteria: 

1. Prompt Structure: We developed structured prompts that 
included instructions, context, and examples. Each prompt 
was designed to clearly convey the task to the model, 
outlining what biomedical entities are and how they should 
be identified within the text. 

2. Contextual Information: To assist the model in 
understanding the biomedical context, we included brief 
descriptions or examples of biomedical entities, ensuring 
the prompts were anchored in the relevant domain. 

3. Task-Specific Instructions: We crafted prompts that 
explicitly instructed the LLM to identify and label entities 
within the text. This included using specific tags like B-
Disease, I-Disease, and O (Outside) to classify each word 
or phrase accordingly. 

4. Iterative Refinement: Initial prompts were tested and 
refined based on the model's responses. This iterative 
process allowed us to fine-tune the wording and structure 
of the prompts to improve the model's performance on the 
NER task. 

We then evaluated the output and made necessary adjustments 
to the prompts, seeking to improve clarity and effectiveness. 
This included rephrasing instructions, adding more contextual 
information, or providing additional examples. 

Performance Evaluation 

The effectiveness of each approach in NER tasks was 
evaluated based on how well the models identified and 



classified entities in the test texts. For each type of entity, we 
use three standard NER evaluation metrics namely, a) 
Precision (P) which measures the percentage of correctly 
predicted entities from the total number of entity predictions 
made, b) Recall (R) which measures the model's ability to 
identify all relevant entities, and c) F1-score, the harmonic 
mean of the two calculated as: 

 

 

In addition, we also use the Accuracy performance metric 
when analyzing the overall performance of each model. 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
The proposed methodology is implemented in Python 3.9 

on Jupyter Notebook hosted by Google Colab. Additional 
libraries include Pandas, Numpy, Transformers, and OpenAI. 
The training datasets, pre-trained transformer models, and 
data tokenizer function are obtained via the Hugging Face 
platform [19]. Five pre-trained models from different 
variations of the BERT transformer architecture are used. 
They are the original, or cased, BERT [6], PubMedBERT [5], 
SciBERT [20], ClinicalBERT [7], and DistilBERT [21]. For 
the LLM, we consider the latest GPT-4. 

The process of fine tuning all BERT models is described in 
the previous section. While the general approach remained 
consistent, certain model-specific adjustments were necessary 
during the implementation. These are: 

 BERT, PubMedBERT, SciBERT, ClinicalBERT: These 
models were fine-tuned with a focus on adapting their 
understanding of biomedical terminology. For 
PubMedBERT and SciBERT, less adjustment was needed 
in terms of learning biomedical terms, given their pre-
training on scientific literature. 

 DistilBERT: Given its smaller size, we monitored 
performance closely to ensure that the reduction in 
parameters did not significantly impact its ability to 
recognize biomedical entities. 

The few-shot prompt approach is in essence a refined version 
of the zero-shot approach. First, we established a connection 
to OpenAI's service by using our unique API key. This step is 
essential for accessing the “gpt-4-turbo-preview” variant of 
the GPT-4 model. At the time of this study, costs of OpenAI 
GPT-4 per 1k tokens were approximately $0.001 for input and 
$0.002 for output. We crafted structured prompts that instruct 
GPT-4 to identify different biomedical entities within texts. 
These prompts include explanations, examples, and HTML 
tagging rules to ensure the model understands the task 
correctly. The components of the few-shot prompt design that 
we use are shown in Figure 2 below. 

We implemented a function to send text to GPT-4 and receive 
the processed, entity-tagged text. This function allows us to 
input biomedical text into our structured prompt, transforming 
it into a format that the model can understand and respond to 
accurately. We processed biomedical texts by stripping them 
of their original BIO tags and inserting them into our prepared 
prompts. This transformed text was then sent to GPT-4 for 
entity tagging. Once GPT-4 processed the texts, we collected 
the outputs, which include HTML-span tagged entities, and 
saved them for further analysis. 

To evaluate the resource efficiency of our implemented 
models, we tracked the training time, max RAM usage, and 
average inference time per batch. The result is summarized in 
Table 1. This data provides insights into the computational 
efficiency and practicality of each model in resource-
constrained environments. Our results show that while the 
original BERT model requires the least amount of RAM, the 
model takes almost twice as much time as the fastest model, 
ClinicalBERT. On the other hand, the two most resource-
hungry models, PubMedBERT and SciBERT, have almost 
identical average inference time to the BERT model.  

 
Fig. 2. The components of few-shot prompt engineering design 

TABLE I.   RESOURCE USAGE (BERT MODELS ONLY) 

Model Training time 
(seconds) 

Max RAM 
used (in MB) 

Average Inference Time per 
batch (in milliseconds) 

BERT 4.31 1084.35 8.25 
ClinicalBERT 2.60 1339.20 4.67 
DistilBERT 2.71 1371.82 4.76 
PubMedBERT 4.39 1779.45 8.37 
SciBERT 4.36 1776.93 8.48 
 

The overall NER performance of each BERT model and GPT-
4 is shown in Table 2 below. This table provides an at-a-
glance comparison of the overall performance of each model, 
facilitating an understanding of which models are generally 
more effective for biomedical NER tasks. 

TABLE II.  SUMMARY OF RECOGNITION PERFORMANCE 

Model Accuracy Precision 
(weighted) 

Recall 
(weighted) 

F1-Score 
(weighted) 

BERT 0.9475 0.9493 0.9475 0.9468 
PubMedBERT 0.9598 0.9618 0.9598 0.9581 
SciBERT 0.8595 0.8812 0.8595 0.8621 
ClinicalBERT 0.9329 0.9323 0.9329 0.9275 
DistillBERT 0.9228 0.9300 0.9228 0.9120 
GPT-4 0.0640 0.1740 0.0919 0.1203 
 

To delve deeper into each model's capabilities, we also 
analyze the performance at the entity level. This examination 
helps to uncover specific strengths and weaknesses of each 
model concerning the different types of entities identified in 
biomedical texts. The four entities are CompositeMention 
(CM), DiseaseClass (DC), Modifier (Mod), and 
SpecificDisease (SD). The results are shown in Table 3 below. 



TABLE III.   ENTITY-LEVEL RECOGNITION PERFORMANCE 

    CM DC Mod SD 

Precision 

BERT 0.82 0.67 0.87 0.82 
PubMedBERT 0.45 0.66 0.87 0.78 
SciBERT 0.02 0.02 0.87 0.16 
ClinicalBERT 0.67 0.67 0.88 0.79 
DistilBERT 0.56 0.42 0.96 0.76 
GPT-4 0.00 0.22 0.18 0.17 

Recall 

BERT 0.36 0.61 0.74 0.94 
PubMedBERT 0.17 0.63 0.50 0.96 
SciBERT 0.05 0.16 0.89 0.01 
ClinicalBERT 0.22 0.52 0.41 0.91 
DistilBERT 0.06 0.63 0.14 0.87 
GPT-4 0.00 0.10 0.17 0.07 

F1-Score 

BERT 0.50 0.64 0.80 0.88 
PubMedBERT 0.25 0.65 0.64 0.86 
SciBERT 0.02 0.03 0.88 0.01 
ClinicalBERT 0.33 0.59 0.55 0.84 
DistilBERT 0.10 0.50 0.25 0.81 
GPT-4 0.00 0.14 0.18 0.10 

 

The above table indicates that most BERT models performed 
relatively well on the SpecificDisease entity, which can be 
attributed to the distinctive and well-defined nature of disease 
terms in biomedical literature. SciBERT showed significantly 
lower performance compared to other models, potentially due 
to its general scientific corpus training, which may not be as 
focused on diseases as the biomedical corpora. On the other 
hand, recognizing the DiseaseClass entity presented 
challenges across the board, with none of the BERT models 
reaching the level of performance achieved for 
SpecificDisease. However, BERT, PubMedBERT, and 
ClinicalBERT showed comparatively better performance than 
the rest, indicating their efficacy in grasping broader disease 
categories likely due to their biomedical contextual training. 

On recognizing Modifier entities, which include terms 
modifying the properties or implications of medical 
conditions, the table shows a wide range of results. Here, 
while most BERT models exhibit high precision, their recall 
performances are often lower and vary significantly with the 
exception of SciBERT. This suggests this model is better at 
identifying all relevant modifiers in the text without over-
generalizing. Lastly, the table clearly shows that recognizing 
the CompositeMention entities is the most challenging task, as 
evidenced by generally lower scores across precision, recall, 
and F1- score. This indicates a common difficulty in capturing 
entities that span multiple biomedical concepts, an area that 
may require more sophisticated approaches or additional 
training data. 

Tables 2 and 3 show clearly the significant challenges faced 
by the GPT-4 model in adapting to the biomedical NER task 
through prompt engineering. Overall, the model only achieved 
0.0640, 0.1740, 0.0919, and 0.1203 in accuracy, precision, 
recall, and F1-score, respectively. The low performance 
highlights the inherent complexities of the biomedical NER 
task, especially when employing a generalized model like 
GPT-4 without extensive domain-specific fine-tuning. The 
low scores across entity types, particularly for 
'CompositeMention', underscore the model's difficulty in 
grasping the distinctions of biomedical terminology and 
contextual understanding within the constraints of prompt-
based learning. These observations emphasize the need for 
tailored approaches, sophisticated prompt designs, and 
domain-specific optimizations to leverage the full capabilities 

of large language models like GPT- 4 in specialized fields 
such as biomedicine. 

V. CONCLUSION 
We conclude that, despite being the more popular and the 

more novel of the two types of language models, the prompt 
engineering approach with GPT-4 encounters significant 
challenges, when solving domain-specific terminology 
comprehension tasks. Its performance markedly lags behind 
bidirectional transformer-based model approaches, especially 
using the fine-tuned BERT models, thus underscoring the 
importance of targeted fine-tuning and domain adaptation. 
Without it, language models will perform poorly and struggle 
to meet the minimum standards demanded of them. Our 
findings also underscore the critical balance between model 
complexity, accuracy, and resource requirements that need to 
be considered when choosing which approach and model to 
use. For future directions, we would argue that enhancing 
GPT-4's biomedical NER capabilities through refined prompt 
designs and domain-specific training is necessary, alongside 
exploring new models and methodologies for resource-
efficient biomedical NLP applications. 
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