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A B S T R A C T

80 % of accidents in the maritime sector are due to human error. This could be the result of operator fatigue on
top of daily tasks. This paper aims to evaluate the effect of fatigue as a Performance Shaping Factor(PSF) on
seafarers. An engine room simulator study was conducted, using a TRANSAS 5000 series simulator, to investigate
the influence fatigue has on human performance using a fault detection and correction task.
20 participants were recruited for the investigation; all 20 received training with the engine room simulator.

The participants undertook a 30-min scenario where they had to detect and correct a fault. During this inter-
action, half of the participants experienced simulated increased fatigue. The other half were given a standard
task. Functional Near-Infrared Spectroscopy (fNIRS) was utilised to measure neurophysiological activation from
the Dorsolateral Prefrontal Cortex (DLPFC). The use of fNIRS is the cornerstone of this studies novelty as brain-
computer interface (BCI) fNIRS studies are rare in the maritime sector, and the use of BCI-fNIRS on engine room
operators to assess their performance has never been done to date. The results indicated increased activation of
lateral regions of the DLPFC during fault correction, this trend was significantly enhanced due to the addition of
fatigue. From the results of this study, a scientific human error model was developed and can be used by the
maritime industry to better evaluate and understand human error causation. This approach can provide guidance
on implementing effective risk control measures, automation strategies, and training programs. By improving
risk assessment, identifying optimal work-rest schedules, developing targeted training programs and identifying
tasks suitable for automation we can create a significant impact on maritime safety. By reducing error rates
within the engineering sector, it has the potential to generate significant financial savings. This model can also be
applied in other areas such as aviation transportation through the engineering sector. This model could also be
tailored to assess the majority of high-profile roles where error would have huge consequences within various
sectors.

1. Introduction

This study is an investigation into the effect of Performance Shaping
Factors (PSF) on ship engine room operators. More specifically, this part
of the investigation looks at fatigue as a PSF.

80 % of maritime incidents reported are linked to human error
(National Transport Safety Board (NTSB)) (Bye and Aalberg, 2018) (Fan
et al., 2019). In comparison with other sectors, maritime incidents are of
a high financial significance (GOV, 2017) (National Transport Safety
Board (NTSB)). Despite many efforts in maritime safety studies in

general and specifically human error, it has been reported that human
error alone costs the maritime sector millions of dollars per annum
(European Maritime Safety Agency, 2017) (Bielic et al., 2017). There-
fore, there is a research gap that needs more advanced methods to be
developed with respect to human error and the seafarers’ evolved roles
in the development of the maritime industry. Thus, this project provides
an in-depth investigation into the duties, training methods and PSFs that
negatively affect operators within the engine room of a ship. Starting
with the PSF fatigue. Fatigue is a significant safety concern in the
maritime industry due to its potential to impair cognitive function and
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increase the risk of human error. Understanding the impact of fatigue on
engine room operators is crucial for developing effective countermea-
sures and improving overall safety. The investigation can be achieved by
using a neuroimaging technique called functional Near-Infrared Spec-
troscopy (FNIRS). FNIRS allows us to visualise the mental workload of
human beings whilst partaking in their daily duties. FNIRS also offers a
unique approach to measuring fatigue by providing real-time insights
into brain activity. By monitoring changes in oxygenated and deoxy-
genated haemoglobin, fNIRS can detect the cognitive effects of fatigue,
such as decreased attention, impaired decision-making, and reduced
reaction time. The use of fNIRS in maritime research can provide valu-
able insights into the relationship between fatigue and human error. By
identifying the specific cognitive processes affected by fatigue, re-
searchers can develop targeted interventions to mitigate its risks and
improve operator performance. FNIRS has not been widely used in
maritime research, making this study a pioneering effort. By applying
this innovative technique, the researchers aim to contribute to a better
understanding of fatigue-related human errors in the maritime industry.

It is hypothesised that fatigue has a large detrimental effect on engine
room operators. This project will answer the following research ques-
tions: 1 – What is the full effect fatigue has on engine room operators
compered to standard operations? 2 – Are the effects of fatigue signifi-
cant enough to cause human error? 3 – How does fatigue quantitatively
affect the performance and safety of seafarers in the engine room?

Previous studies have used various Human Reliability Analysis
(HRA) methods to analyse human error in the maritime sector (Akyuz
et al., 2018) (Jahanshahloo et al., 2006) (Li et al., 2014). HRA is an
approach used to identify the potential risk of human error events and to
accurately estimate the Human Error Probability (HEP) using experi-
mental data, modelling or expert judgement (Xi et al., 2017). The
findings of this study could have significant implications for maritime
safety. By identifying the specific factors that contribute to
fatigue-related errors, researchers can develop evidence-based recom-
mendations for improving training, workload management, and best
practices in the maritime industry. This study aims to provide novel
insights into the cognitive effects of fatigue and inform the development
of effective countermeasures to improve maritime safety.

1.1. Maritime human error

Of the 80 % of accidents resulting from human errors, it is said that
45 % of those stem from inefficiently or incorrectly dealing with a fault
in the engine room (TRANSAS) (Fan et al., 2017) (GOV, 2017) (Verdiere
et al., 2018). Another factor is that the majority of HRA studies are
conducted with a focus on bridge operations from navigational per-
spectives (Gautier et al., 2016) leaving engine room errors unaddressed.
These statistics warrant a full investigation into human error within the
engine room. A full evaluation of the maritime databases (TRANSAS)
(European Maritime Safety Agency, 2017) (GOV, 2017) (Takashi et al.,
2006) (National Transport Safety Board (NTSB)) (Baker et al., 2018) was
conducted in order to obtain the most common errors within the engine
room. The accident databases were analysed with respect to incidents
relating to the ship engine room only. The accident reports were con-
sulted to see the specific PSFs reported as a contributing factor towards
the errors. Reoccurring issues reported from the statistical analysis are
multitasking at 20 %, and fatigue at 11 %. The tasks that showed to be
the most consistent with human error are ballasting, oil transfer, ma-
chine maintenance, fuel system tasks and sea water treatment.

Fatigue, a critical Performance Shaping Factor (PSF), significantly
impacts human performance (Bielic et al., 2017), particularly in
demanding and safety-critical industries such as maritime operations
(Chiarelli et al., 2017). When seafarers are fatigued, their cognitive
abilities, such as attention, decision-making, and reaction time, deteri-
orate (Gevins and Smith, 2005). This can lead to increased errors, ac-
cidents, and near-miss incidents (Hitoshi and Kazuki, 2009). To mitigate
the risks associated with fatigue, it is crucial to understand its impact on

human performance and implement effective countermeasures. This
study aims to investigate the neurophysiological effects of fatigue on
seafarers’ cognitive performance during critical tasks, such as fault
detection and correction. By gaining insights into the underlying
mechanisms of fatigue-induced performance degradation, we can
develop evidence-based strategies to enhance maritime safety. One of
the tools used in the analysis of fatigue as a PSF is an engine room
simulator.

1.2. Engine room simulator

A TRANSAS ERS 5000 TechSim engine room simulator was used to
carry out the operator analysis. The simulator (Fig. 1a) closely mimics a
real container ship engine room. Utilising a high degree of realism, it
allows real-time, real-life exercises to be conducted as they would be in
the engine room of a real vessel (TRANSAS).

A scenario with exercises was designed and implemented on the
simulator where candidates will participate in the task under the eval-
uation of the simulator instructor. The instructor sees the effect of the
PSF and areas of the scenario where participants experienced significant
mental workload outputs from fNIRS. Testing of participants on a
simulated scenario allows for the implementation of a scientific human
error model of the relationship between Operator Functional State (OFS)
and adverse PSF’s (Fan et al., 2017).

Candidates participating in the simulated scenario were connected to
the neuroimaging device fNIRS. This provides the cornerstone of the
project’s novelty. Due to the weakness in current HRA methods within
the maritime sector and the relative success of the aviation sector’s use
of fNIRS (Verdiere et al., 2018), it could be said that there is an urgency
to implement fNIRS in maritime human error studies.

1.3. Functional near infra-red spectroscopy

Due to the relative transparency of human tissue which surrounds
the skull (Gautier et al., 2016), infrared light can penetrate said cranial
tissue (Takashi et al., 2006), coupled with this, haemoglobin absorbs
infrared light (Baker et al., 2018). This facilitates visualisation of rela-
tive change in oxygenated and deoxygenated haemoglobin (Chiarelli
et al., 2017). It is therefore possible to continuously, non-continuously,
and non-invasively monitor the concentration of Oxygenated Haemo-
globin (HBO) and De-oxygenated Haemoglobin (HBD) volumes within
the human cerebrum (Felix et al., 2013). Fig. 1b shows the detection
range of the infrared light.

Neurophysiological activation results in increased cerebral haemo-
globin volume due to neurovascular coupling (Gevins and Smith, 2005).

Fig. 1a. Engine room simulator.
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This coupling leads to a deviation in localised HBO and HBD volume
(Felix et al., 2013). These changes in haemoglobin can be shown using
the fNIRS system’s infra-red emitters and detectors (Hitoshi and Kazuki,
2009), which transmit the information back to the NIRx (This is hard-
ware that stores haemoglobin volume data from each participant) soft-
ware, interfaced via computer. It is proven that the higher the HBO, the
higher the mental workload of the participant (Shimizu et al., 2009).
Therefore, this indicates the difference the PSF has on the operator’s
mental workload and functional state when compared to a standard
task. Moreover, the higher the mental workload, the more potential
there is for human error occurrence (Parasuraman et al., 2011).

For this study, participants were connected to the fNIRS system via a
skullcap containing infrared light emitters and detectors. Together, the
emitters and detectors create a channel. These channels can be com-
bined showing readings from a large area, or analysed individually, to
show readings from a specific area with respect to the cerebrum (Ayaz
et al., 2017).

1.4. The research gap

A thorough literature search was conducted into human error within
a ship engine room prior to the study. To date, there are no studies that
evaluate the effect of fatigue in a ship engine room in the maritime
sector. Moreover, there are very few studies that investigate PSFs within
a ship engine room. There are a few studies in the aviation sector that
analyse the effects of fatigue (TRANSAS) (Fan et al., 2017). However,
these studies are for aircraft pilots and air traffic controllers. The tech-
niques used in these studies have proved to be good assessment tech-
niques of neurophysiological activation, however, there is no definition
that the PSF being evaluated is fatigue even though it is assumed.
Moreover, the tasks in the study mainly involved working memory and
additional duties (autopilot vs manual landing/remembering in flight
values) which could be defined as an increase in workload. This study
specifically looks at fatigue as a PSF. Also, fatigue is induced in this study
using techniques validated by the military (Verdiere et al., 2018).

Engine rooms are complex and often hazardous environments,
requiring operators to perform tasks under pressure and with a high
degree of concentration. Seafarers often work long hours in rotating
shifts, which can disrupt sleep patterns and increase the risk of fatigue.
Fatigue can impair cognitive function, leading to errors, reduced situa-
tional awareness, and increased risk of accidents. The unique demands
of the maritime industry, such as isolation, confinement, and exposure
to environmental stressors, can exacerbate the effects of fatigue.

Investigating fatigue in the engine room is crucial to understanding
its impact on seafarers’ performance and developing effective strategies
to mitigate its risks. This research can inform the development of better
work schedules, training programs, and technologies to improve safety
and efficiency in the maritime industry.

1.5. Project aims and objectives

The main questions proposed from the maritime risk and safety
sector are:

1. What are the main factors that are contributing towards human error
within a ship engine room?

2. What is the significance of the PSF fatigue on human performance
leading to error?

Objectives to achieve the above aims involve:

1. Analysing the maritime accident databases to obtain the main per-
formance shaping factors (PSF) associated with human error within a
ship engine room.

2. Developing a simulated engine room scenario incorporating said PSF
compared to a standard engine room scenario.

3. Using fNIRS to measure operator functional states (OFS).
4. Modelling data to obtain the classification performance of

participants.

2. Method

This section outlines how the PSF and task was identified, the
experiment design, and the scenario phases. This section also looks at
the optimum area of the cerebrum to evaluate with respect to human
performance.

2.1. Identification of the performance shaping factor (PSF)

There are multiple hypothesis in relation to human error causation
within the engine room. Meetings with experts in the maritime sector
(conducted by the principle investigator), revealed that engine room
operators are all trained to different competencies depending on the
school/college/university in which they were trained (Meeting with
John Carrier, 2017), some operators can cope better with work place
factors (for example, fatigue, increased workload or distraction)
compared to other operators (Meeting with Jonathan Warren, 2018). A
multitude of maritime accident databases were accessed and analysed,
to show incidents caused due to human error within the engine room
only. The accident reports were then evaluated to see if there were any
tasks with a high significance with respect to human error and PSFs
reported as a factor contributing towards the human errors. Reoccurring
issues reported from the statistical analysis are distraction 11 %,
multitasking 20 %, fatigue 10 %, engine room temperature 16 %, noise
and vibration 6 %, and time pressure 16 %. The tasks that showed to be
the most consistent with human error from statistical analysis were:
ballasting, oil transfer, machine maintenance, fuel system tasks and sea
water treatment system.

The results from the maritime accident databases indicate there are a
number of PSFs that significantly influence human error. Fatigue,
distraction and multitasking can be easily investigated due to the soft-
ware capabilities of the engine room simulator allowing for an increased
workload or long monitoring/watch keeping, and various alarms to
distract operators (TRANSAS). However, engine room temperature and
noise/vibration would require the use of external equipment or hard-
ware. Therefore, the investigation increased workload/multitasking,
distraction, and fatigue. The first PSF investigated was fatigue, as this
scenario can be easily constructed using a long monitoring task. This
would also fall in line with the duties experienced by operators on real
operations (Hiteshk, 2017a) and adhere to the requirements set about by
shipping regulators (Gausdal and Makarova, 2017). The tasks being
conducted when human errors occurred showed to be random with no
‘stand out’ specific scenario. However, the task being conducted which
had the highest frequency of human error occurrence is ballasting.
Therefore, for the thoroughness of the investigation, ballasting will be

Fig. 1b. fNIRS infra-red detection range (Aghajani et al., 2017).
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used as the experimental scenario.

2.2. Experimental design and participants

Below we will look at the specific area of the human cerebrum that
will be analysed during the experiment and the specific task that will be
performed by each participant in this study.

2.2.1. The pre-frontal cortex
The dorsal lateral pre-frontal cortex (DLPFC) was the area of the

cerebrum monitored throughout previous brain-computer interface
(BCI) fNIRS studies using a continuous wave system in the following
sectors: Automotive (Solovey et al., 2012), Rail (Kojima et al., 2004),
and aviation (Verdiere et al., 2018) (Gautier et al., 2016) (Takeuchi,
2000). Monitoring of the DLPFC in the aforementioned studies can be
further substantiated given that this is the area of the brain that governs
executive functions like working memory, impulse, attention and
cognitive flexibility, etc. (Parasuraman et al., 2011). Therefore, using 7
emitters and 7 detectors, creating 15 channels, DLPFC may be fully
analysed. This montage is shown below in Fig. 2a (see Fig. 3a).

Candidates participated in a scenario (coupled with PSF’s) on the
engine room simulator, permitting the evaluation of the cause of any
increases in activation. This is shown by the level of HBO (Thibalut et al.,
2015) (the activation will be higher when the participant is under a
higher mental workload (Verdiere et al., 2018)). However, to converge
towards optimal accuracy, it has been shown to be more beneficial to
focus on the left side 5 and right side 5 channels and have less focus on
the middle DLPFC region (Aghajani et al., 2017). The middle region of
the DLPFC is less utilised in practical or working memory tasks (Bruce
et al., 2012). This has been shown in previous studies to cause anomalies
in oxygenated haemoglobin data (Toppi et al., 2016) (Baker et al.,
2018).

2.3. Workflow of the ballasting scenario

The workflow scenario design was based on the duties that would be
carried out by a 2nd engineer (Hiteshk, 2017b) whilst detecting and
correcting a fault with a steam powered pump on a ballasting scenario. A
2nd engineer’s duties were chosen over the duties of a chief or 4th en-
gineer as a chief engineer’s role is a managerial role overseeing the
duties completed by the 2nd engineer (Mobility, 2017). The 4th engi-
neer, not common to most ships, is there as a trainee or assistant to a 2nd
engineer (Hiteshk, 2017a). The participants will be trained prior to
starting the task, as discussed in 2.2.3. A summary of the workflow
stages is given below.

Each participant is required to complete five stages of the workflow.
These stages include:

The first baseline will be used as a datum reading for each partici-
pant. Each participant will have a differing baseline output of HBO.
Therefore, in the standard scenario, a 5-min baseline will be taken from
the participant monitoring system screens. The fatigued scenario is
significantly longer in order to induce fatigue (this is discussed in more
detail in 2.2.3). This allows for an analysis of increased activation with
respect to the individual participant for each workflow stage.

The second workflow stage is the fault occurrence stage. Unknown to
the participants, after the 5-min baseline (or longer for the fatigue sce-
nario) is taken, a system fault will occur, indicated by a red flashing light
alarm in the top right-hand corner of the monitor. The participants were
tested on the time taken and their ability to navigate to the correct
system screens to acknowledge the alarm.

The third stage of the workflow is the fault detection stage. This part
of the task requires the participants to navigate to the correct system
screens; make a note of the alarm codes, and based on the alarm codes,
locate the fault and the cause of the fault via various system checks
prompted by the alarm codes.

The fourth stage of the workflow requires the participants to solve
the problem. The participants will be required to navigate through
various system screens, re-routing the water line, opening and closing
valves, switching on and off ballast pumps and completing various
system checks along the way.

The fifth and final stage is the 2nd baseline. A second baseline is
taken from each participant to see how their neurophysiological acti-
vation has changed compared to the first baseline. This final stage is the
same as the first stage where participants are monitoring system screens.

2.3.1. The ballasting scenario

2.3.1.1. Experiment participants. 20 candidates were used for this study.
All 20 had qualifications to the level of a BEng or higher in marine en-
gineering. 10 of the twenty participants had experience working at sea
in a ship engine room. 4 of the participants were marine engineering
PhD students. 3 were ex-navy engineering officers. The average age of
the standard test group was 28 and the fatigued group 24. 18 were male
and 2 were female. The rest were a mixture of post graduate MEng
marine engineering students and undergraduate marine students in their
master’s year.

2.3.1.2. Participant training. All 20 participants had no prior experience
with a ship engine room simulator.

The following training methods were conducted based on the engine
room regulations set by the International Maritime Organisation (2019).
The training course was developed with the assistance of experienced
and qualified trainers (Meeting with Jonathan Warren, 2018) (Meeting
with Geraint Phylip, 2017) (Meeting with John Carrier, 2017).
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The 20 candidates were given a 2-h training session following a
customised TRANSAS simulator trainee manual. The training session
covered the theoretical study of the following areas:

• The liquid cargo handling screen (LCS)
• The alarm system
• The ballast system
• The cargo control room ballast pumps
• The cargo control room ballast system mimic panel

This was followed by 1 h of practical ballasting tutorials. The tuto-
rials consisted of questions to answer and sub-tasks to complete in
relation to the areas listed above. Participants were required to navigate
the simulator system screens by answering the tutorial questions,
completing the sub-tasks (aided by the trainee manual and their training
notes), and generally familiarising themselves with the simulator sys-
tem. This method was chosen based on the work by Christophe Faisey
(Faisy et al., 2016), stating that participants with practical and theo-
retical knowledge when compared to participants with solely theoretical
knowledge (book learning) usually show a better working memory of
the task at hand due to having applied the learned theory practically.

All candidates were permitted to bring their own notes written
during the training sessions, along with their personally annotated
TRANSAS simulator manual whilst participating in the ballasting sce-
nario. This was decided as engine room operators would have access to
engine room manuals whilst at sea carrying out their duties (Kaushik).

2.3.1.3. The experiment
2.3.1.3.1. Baseline. For the first baseline, the participants were ex-

pected to monitor the LCS whilst ballasting from pump number two as
shown in Fig. 2b (ballasting from pump two was set up by the instructor
before the task started). The participants had no active input for the
monitoring stage to allow for a 5-min (300s) baseline to be taken.

2.3.1.3.2. Fault occurrence. For the fault occurrence stage of the
workflow, pump number two will fail. The participant must:

a) Orientate to the alarm as shown in Fig. 2c. The alarm is visual
with no audio.

(b) Navigate to the alarm summary screen (see Fig. 2d) to record the
details of the alarm.

(c) check the ship’s log, noting any previous faults or maintenance
work.

2.3.1.3.3. Fault detection. During the fault detection stage, partici-
pants must localise the presence of a fault with ballast pump number
one. This is achieved by:

(a) Navigating back to the LCS screen to check flow rate (Fig. 2b).
(b) Navigating to the ballast system screen to check the water line as

shown below in Fig. 2e. The participant should be looking to see if
there is or isn’t an active water flow (the active flow is shown by
the illuminated green piping line). If there is an active water flow,
then this indicates that there is no blockage or leak in the water
line indicating that the problem is a fault with the ballast pump.

(c) Accessing the cargo control room ballast pump screen (Fig. 2f) to
check the pump pressure gauge (as prompted by the alarm
summary screen in Fig. 2c).

2.3.1.3.4. Fault solution. The next stage of the workflow requires the
participants to determine a solution to correct the fault. To correct this
fault, participants must:

(a) navigate to the cargo control room ballast pump screen (Fig. 2f)
and switch off pump number two,

(b) access the ballast system mimic panel (Fig. 2g below),
(c) open valves BA538F, BA547F and BA544F and close valves

BA537F, BA546F and BA543F in order to re-route the water line
to ballast pump number one.

(d) Access the screen for engine room three (ER3) to power on pump
number 2 (the additional task of synchronisation to an additional
power generator was performed by the instructor prior to starting
the test due to the complexity and the amount of additional time
that would be required).

(e) Navigate back to the cargo control room ballast pump screen
(Fig. 2f) to check that pump number 2 has power and switch the
pump on.

(f) Re-access the ballast system screen to check that there is a water
flow through the new pump as shown in Fig. 2h below.

(g) Return to the LCS to identify the new flow rate as shown in
Fig. 2b.

2.3.1.3.5. 2nd baseline. The last stage of the workflow requires the
participants to continue to monitor the LCS until the tank has filled to
the required volume set by the instructor before the task.

2.3.1.4. The addition of fatigue to the scenario. This experiment repli-
cated the previously mentioned stages for a fault occurrence to the 2nd
Baseline. The difference being that all fatigue participants would have a
35-min (2100s) monitoring task instead of the normal 5 min (300s) for
the 1st baseline stage of the workflow.

3. Analysis

To quantify the data presented by fNIRS, a modified version of the
Beer-Lambert law is used (Bu et al., 2018) as the Beer-Lambert law alone
can only be used on non-scattering data (Solovey et al., 2012). There-
fore, it cannot be applied to biological tissue without modifying the law
to allow for light scattering (Shimizu et al., 2009). The raw data is
filtered using the NIRx software and exported into Excel, as a large
numerical table of time in frames, measured against oxygenated hae-
moglobin volumes. Typically, there is an output of 15 columns of
oxygenated and deoxygenated haemoglobin results from all 15 chan-
nels. A correction-based signal improvement algorithm is applied to the
data as described below.

To investigate the impact of fatigue on seafarers’ cognitive perfor-
mance, we employed a rigorous research design combining behavioural
and neurophysiological measures. We assessed participants’ perfor-
mance on simulated fault detection and correction tasks, measuring key

Fig. 2a. Skull cap montage of optodes.
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performance indicators such as cerebral oxygenation volumes and task
completion time.

We employed statistical techniques, such as analysis of variance and
linear discriminant analysis, to analyse the data. ANOVA allowed us to
compare the performance of fatigued and non-fatigued participants,
while LDA helped identify specific neural patterns associated with
fatigue.

By combining these methods, we aimed to quantify the impact of
fatigue on seafarers’ cognitive performance, identify neurophysiological
markers of fatigue-related impairment, and develop a comprehensive
understanding of the underlying mechanisms. Ultimately, these findings
will inform the development of effective countermeasures to mitigate

the negative effects of fatigue in the maritime industry.

3.1. Correction based signal improvement (CBSI)

CBSI is a technique used to improve the accuracy of the fNIRS signal
based on the negative/transverse correlation between oxygenated and
deoxygenated haemoglobin dynamics. Improving signal quality and
reducing noise artifacts, especially noise induced by head motion, is
challenging, particularly for real time applications. In an investigation of
the properties of head movement induced noise, it was discovered that
motion noise resulted in the measured oxygenated and deoxygenated
haemoglobin signals, which are typically highly negatively correlated,
to become more positively correlated (Xu et al., 2009). Therefore, the
CBSI method was introduced to reduce noise based on the rule that the
concentration changes of oxygenated and deoxygenated haemoglobin
should have a negative correlation (Baker et al., 2018).

This is done by using the equation:
CBSIn = (HBO/2) - (δHBO/2) * HBB

where δ represents the standard deviation. (1)

For example, the equation for the first row on channel 1 would read:
CBSI(Ch1 row 1)¼ 0.5 * (Ch1 row 1 HBO) – ((δHBO (column 1)/

δHBB (column 1)) * (Ch1 row 1 HBB) where:

• CBSI (Ch1 row 1) represents the "CBSI" value for the first row of
channel 1.

• HBO and HBB are variables or data points related to the channel and
row.

• δHBO (column 1) and δHBB (column 1) represent the differences or
changes in HBO and HBB values within the first column. (2)

HBO = Oxygenated Haemoglobin, HBB = Deoxygenated
Haemoglobin,

The CBSI data from each candidate was separated into three sets.
Channels 1 to 5 took haemoglobin readings from the left side of the

Fig. 2b. The liquid cargo monitoring screen showing ballast tank readings (e.g. tank volume).

Fig. 2c. The ship alarm.
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DLPFC, channels 6 to 10 from the middle and channels 11 to 15 from the
right. This is for the ease of analysis and allows the visualisation of the
specific parts of the DLPFC in use whilst participating in the study. This
is also useful due to the varying functions of the right and left sides of the
DLPFC (van den Heuvel and Sporns, 2013). The left side is linked with
verbal commands/receiving auditory input, word reading, processing
information, linear and logical thinking (Heike et al., 2016). The right
side is linked with visualisation, spatial reasoning, and interpreting in-
formation (Shimizu et al., 2009).

Using the formatted data, the average haemoglobin volumes for each
candidate were calculated for each workflow stage and put into a data

table. A second table displays each participant’s time taken to complete
each workflow stage. This data was then exported to a statistical analysis
software package.

3.2. Statistical package for the Social sciences (SPSS)

SPSS is a software package that can analyse data files from many
varying formats (for example: R-studio, Excel and MatLab). SPSS allows
the analyst to perform a running inferential statistical analysis such as
Analysis Of Variance (ANOVA) with pairwise comparisons. Alternative
software packages are available. For example: sequent and STIM, but all

Fig. 2d. Alarm summary screen.

Fig. 2e. Ballast system screen showing water flow through pump 2.
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are closely related and the author had previous experience with SBSS
hence, this was the software package used.

3.3. ANOVA analysis

ANOVA is used to evaluate how much of the total variance comes
from the variance between the groups of participants, and how much

from the variance within the groups of participants. This is done by
implementing the following ratio:

F = Between Groups / Within Groups (3)

If a null hypothesis is true, then the F value will be close to 1.0. A
large F ratio shows that the variation among the group means there is
more of a variation than you would expect to observe than by chance

Fig. 2f. Ballast water pump control panel.

Fig. 2g. Ballast system mimic panel.
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(Zar, 2010). This calculation is done with respect to the degrees of
freedom. For example:

F(b,w) (4)

Where b is the degree of freedom for variance between groups and w is
the degree of freedom for variance within groups. Calculated as follows:
b = number of groups – 1, w = total number of observations – the
number of groups.

The ratio F is established from a significance value P. The value P
represents a percentage of potential error in the resulting F value. For
example, in psychology any P values of less than 0.05 are deemed
acceptable and less than 0.01 are ideal. Therefore, if the P value is less
than 0.05 then the author can be confident in the accuracy of the results.

In summary, if most of the variation is between groups, then there is
likely a significant effect. If most of the variation is within the groups,
then there is probably not a significant effect (Hocke et al., 2018).

SPSS can go on to evaluate sums and means over columns or rows of
data, create tables and charts containing summary statistics for a large
group of participants, and conduct pairwise comparisons of each
workflow stage to see if any relate to one another (Wenlin and Haiming,
2018). Pairwise comparisons will be a useful evaluation for this study as
we have a 5-stage workflow.

The data will then be exported from SPSS back to R-studio for further
processing as described below.

3.4. R-studio

The R-studio software package is used to write and implement the
relevant analysis code. The software sorts the data sets into time-based
epochs. This indicates the effect of the PSF and workflow at very specific
parts of the task and sub tasks. Then, when modelling the relationship
between OFS and PSF using Linear Discriminant Analysis (LDA), we can
predict HEP using operator performance classification based on
oxygenated haemoglobin volumes provided by fNIRS (Verdiere et al.,
2018).

3.5. Linear discriminant analysis

LDA is used as an operator performance classification model. LDA is

a feasible option as it is effective at handling cases where the within class
outputs are variable and where performance data is generated randomly
(Gautier et al., 2016). The LDA method maximizes the ratio of variance
between classes to variance within classes in any given data set, hence
guaranteeing optimal separability (Aghajani et al., 2017). Similar
models (for example: principal component analysis) change the shape
and the location of the original data set when transformed to a different
space, whereas LDA does not alter the location but tries to provide
greater amounts of class separation and draw an accurate decision re-
gion between the various classes (Bruce et al., 2012). LDA also provides
a better understanding of the distribution of feature data.

3.5.1. Data classification

3.5.1.1. Data pre-processing. NIRS-analysis aids in the changing of raw
fNIRS data to optical densities. In this process, the NIRS Star software is
applied to remove artifacts and apply a band pass filter to the raw data.
R-Studio was used to apply a wavelet interpolation method for artifact
correction as this technique showed the highest signal to noise ratio in
comparison to other artifact removal techniques available (Thibault
et al., 2018). A high pass filter (cut-off: 0.01Hz – order 3) and a low pass
filter (cut-off: 0.5 Hz – order 5) was used for the band pass filtering stage.

The artifact-free, filtered data is then converted into oxygenated
(HbO) and de-oxygenated (HbR) haemoglobin concentrations. The data
is then extracted and imported into an Excel spreadsheet. The CBSI
formula was then applied as per the description in 3.1.

The CBSI processed FNIRS data was then extracted from Excel and
imported into R studio. R studio is used to write the mechatronic code
needed to sort the datasets into epochs. The HBO datasets for the entire
task for one participant consisted of an average of 82,000 frames
(~546s). The task duration (~484s + or – 15, ~546 + or – 33s, ~445 +

or – 6.5) slightly differed for each candidate. The number of extracted
epochs was fixed, based on the task duration. This resulted in 52
(approximately~8s) epochs. Each epoch was analysed independently as
this showed the exact parts of the task that had the greatest levels of
activation.

3.5.1.2. Oxygenation measures. Oxygenation measures are computed by
applying HbO signals on each epoch for each of the 20 participants. The

Fig. 2h. Ballast system showing water flow through pump 1.
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value x represents the HbO signal for one epoch (52 samples) and for one
channel. The Six oxygenation measures computed are as follows:
Average, Variance, Area Under the Curve, Skewness, Slope and Kurtosis.

The Average, Variance, Skewness and Kurtosis were calculated using
the following formula:

Average(x) = E(x) Variance (x) = E
[
(x − E(x))2

]
(5)

Skewness (x) =
E
[
(x − E(x))3

]

(
E
[
(x − E(x))2

]3
2

Kurtosis (x) =
E
[
(x − E(x))4

]

(
E
[
(x − E(x))2

]2
) (6)

The Area Under the Curve (AUC) was calculated using the sum of the
absolute values of the signal:

Area Under the Curve=⅀|x| (7)

The slope was evaluated by using the least-squared linear regression
with the polyfit MATLAB application.

3.5.2. Feature extraction

3.5.2.1. Region of interest. To reduce the quantity of data for processing,
the 15 channels were condensed to 3 Regions Of Interest (ROI): The left
side of the DLPFC, the middle DLPFC and the right side DLPFC. The
oxygenation features were extracted by formulating an average of all the
available oxygenation features from the 15 channels included in the
three ROIs. This gave us 6 viable measures for each epoch per
participant.

3.5.3. Classification and cross-validation
For this study LDA with regularization of the empirical covariance

matrix by shrinkage (the shrinkage method) was used, as this technique
has proved in previous studies to be robust for use with Brain-Computer
Interfaces (BCI) and passive BCI (pBCI) application (Verdiere et al.,
2018) (Hasan et al., 2011) and also with fNIRS (Ayaz et al., 2017)
(Thibalut et al., 2015).

3.5.3.1. The shrinkage method. The shrinkage method is used to
penalize the less informative predictors resulting in a greater classifi-
cation accuracy. Based on the prediction equation, shrinkage finds co-
efficients β̂ that decrease the sum of squared residuals (RSS) with the
goal of finding coefficients that make predictions as close as possible to
the observed responses (make residuals as low as possible).

minimize RSS=
∑n

i=1
(yi − ŷi)2 Where (yi − ŷi)= residual (8)

Workplace factor fatigue was separated via an intra-subject binary
classification (e.g fatigued participant 1, standard test participant 0).
Each candidate performed 1 of the 2 different workflow scenarios
(standard or fatigued). Data was processed to obtain 52 × 8s–9.5s
epochs per task for each participant. There were 10 candidates for each
of the 2 differing workflow scenarios (10 × 52s epochs = 520 samples
per workflow, 3120 samples in total). The performance prediction for
this LDA classifier model was achieved by using stratified cross valida-
tion. This has previously proven to be a good trade-off between variance
estimation and bias (Verdiere et al., 2018). The classifier was trained
using 8 of the 10 participants (80/20 split [52 x 8 = 416 samples]) and
used to predict datasets from two candidates (one of each workplace
factor, i.e., 2 x 52 = 104 sample datasets). This method was applied for
each of the two workflow scenarios (standard and fatigued) using the
intra-subject binary classification system as mentioned above (fatigue
(National Transport Safety Board (NTSB)) ~ standard test [0]) and the
average performance of each subject was recorded. With Regards to the
oxygenation features, three different types of comparisons were done.
The first was evaluating each of the six oxygenation features separately.
Secondly, features were combined to evaluate their mutual potential.

They were merged into the highest performing couples (2 x 2) and the
classification performance of each combined couple was evaluated
(Thibault et al., 2018). The third comparison was done by combining all
six oxygenation features. The results used in this study’s evaluation will
be a result of the best accuracy outcome of the three comparisons.

3.5.4. Statistical assessment

3.5.4.1. Subjective workload comparison. Paired sample t-tests were
conducted to achieve a comparison of the average mental workload
obtained in HbO for the workflow scenarios, the workflow stage and ROI
amongst participants.

3.5.4.2. Classification performance significance. For a problem involving
two-classes, the theoretical chance level for classification is 100/2 = 50
%. However, this is only accurate for an infinite sample size. To assess
our classifier’s significance or decoding error, the classification error
was evaluated using a binomial cumulative distribution, as this has
shown to work well in previous studies (Shimizu et al., 2009). The
binomial cumulative distribution was calculated using the following
formula:

P(Z)=
∑n

i=z

(
n
k

)

x
(
1
c

)i

×

(
c − 1
c

)n− 1

(11)

Where P is the probability that an accurate class is predicted by at least
‘Z’ times, n is the sample number and c is the number of classes.

The performance classification was assessed by repeating the strati-
fied cross validation for standard and fatigued tests and then averaging
the results. As previously stated, our classification model was trained
using 8/10 (80 %) candidates (416 samples) and tested on 104 samples.
Using the cumulative binomial distribution, it sets the 5 % significance
classification threshold at a 56.02 % chance percentage.

3.5.4.3. Classification performance comparison. To compare the classi-
fication performance values for each oxygenation feature, a repeated
measure ANOVA was used considering FEATURES (or COMBINED
FEATURES) within factors.

4. Results

This section outlines the results from the ANOVA and LDA classifi-
cation study of fatigued participants against standard test participants.
Moreover, this section describes in detail the differences between groups
nominally.

4.1. ANOVA results

The datasets from this study were analysed by ANOVA procedures
using SPSS v.26. Outliers were identified as any value that deviated
more than three standard deviations from the mean value and were
omitted from ANOVA testing.

4.1.1. Analysis of fNIRS data
Average levels of oxygenated HbO were estimated using fNIRS for

fault detection and fault solution workflow phases. Data from all chan-
nels were averaged into three regions of interest corresponding to the
left, medial and right regions of the prefrontal cortex. All HbO data was
subsequently baselined using data gathered during the first phase of the
workflow that lasted for 300s, i.e., baselined HbO = (HbO during the
task phase) – (HbO during the 300s baselined period), hence positive
HbO values indicates an increase above baseline levels.

Activation of the prefrontal cortex during the fault detection phase
was explored via a 2 (fatigue/standard) x 3 (left, medial and right ROI)
ANOVA. This analysis revealed no significant effect for fatigue [F(1,18)
= 1.97, p = .241] or ROI [F(1,18) = 0.93, p = .45], and no significant
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interaction.
Activation of the prefrontal cortex during the fault solution stage was

explored via a 2 (fatigue/standard) x 3 (left, medial and right ROI)
ANOVA. The analysis revealed significant main effects for fatigue [F
(1,18) = 61.7, p < .01, eta^2 = 0.913] and ROI [F(1,18) = 31.7, p< .01,
eta^2 = 0.741]. The ANOVA also revealed a significant interaction be-
tween both factors [F(1,18) = 36.92, p < .01, eta^2 = 0.95]. The main
effect for fatigue indicated that the mean HbO was significantly greater
during the fatigue group (M = 0.019, s.e = 0.005) compared to the
standard group (M = 0.009, s.e = 0.002). For ROI, the main effect
revealed that the mean HbO at the medial ROI2 (M = 0.0008, s.e =

0.002) was significantly lower than either the left lateral ROI1 (M =

0.016, s.e = 0.002) or right lateral (M = 0.021, s.e = 0.002) (p < .01) –

see Fig. 3b below.
To explore the interaction, a number of post-hoc t-tests were con-

ducted. These tests revealed that the mean HbOwas significantly greater
than the fatigue group compared to that of a standard test as left lateral
ROI1 [t(18) = 3.91, p < .01] and right lateral ROI3 [t(18) = 6.39, p <

.01], but there was no significant effect of fatigue at the medial ROI2
region, see Fig. 3b for descriptive statistics.

4.2. LDA results

The datasets used in the LDA classification model were taken from
the fault solution workflow stage. This was done due to the fault solution
stage having the most significance as outlined by the ANOVA results
above. The fatigue stressor is analysed individually against a standard
test.

4.2.1. Classification of fatigue and individual features with respect to
chromophore

Fig. 3c shows the classification performance percentage of fatigued
candidates for each of the six oxygenation features, using HBO signals.
To compare the classification performance percentages with oxygena-
tion features, a repeated measure ANOVA study was conducted. A sig-
nificant effect was discovered for oxygenation feature type on the
classification performance percentage for fatigued participants [F(5,
234) = 8.11, p < .01]. Pairwise comparisons showed significant differ-
ences between oxygenation features for the HBO signals. Moreover, the
Area Under the Curve (77.29 %) had a slightly better performance than
Variance (76.26 %) and a significantly better performance than Kurtosis
(70.45 %), Slope (71.94 %), Skewness (74 %) and Average (71.9 %).

Every oxygenation feature resulted in an average classification per-
formance above chance (>56.02 %).

Table 1 below shows the classification performance percentage of
each oxygenation feature individual for each of the twenty participants.
This indicates the effect of fatigue against a standard test by the resultant
classification performance percentage. The greater the classification
performance percentage, the greater the difference between a standard
test and fatigued participants, thus, the greater the effect of fatigue on
OFS (Verdiere et al., 2018). Again, similar to what is mentioned previ-
ously in 3.2.1, there is a trend between a greater classification perfor-
mance percentage and the oxygenation feature AUC.

5. Discussion

This section discusses the findings from the ANOVA and LDA results.
Furthermore, this section details the specific differences between
groups, participants, and oxygenation features.

Fig. 3a. Flow chart representing the data processing steps.

Fig. 3b. Average HBO for ROI with respect to fatigue stressor.

Fig. 3c. Classification performance of Fatigued participants.
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5.1. ANOVA

No significant effect was shown for fatigue for the fault detection
workflow phase. This was not expected as the mean HBO for fatigued
participants showed a greater HBO for all workflow phases combined
when compared to standard test participants. An explanation for no
significant effect being found could have been due to the units of mea-
surement being such minute increments. Another reason could have
been due to the fault detection workflow stage being short. Therefore,
there may not have been enough time or subtasks to show the effect of
fatigue. However, a significant effect was found for the fault solution
workflow phase. This suggests that fatigued participants only began to
struggle in comparison to the standard test group, when the sub-tasks
became longer and involved a greater amount of system navigation.
This outcome is contradictory to the investigation findings of Bu, Lg
et al. (Bu et al., 2018) where fatigued candidates were found to have
larger levels of neurophysiological activation from the start of their task.
The main differing factor between the two investigations is that in Bu
et al.’s investigation, the majority of the participants are elderly.
Therefore, the age difference would have been a factor in the larger HBO
volumes induced by fatigue earlier in the task (Aghajani et al., 2017).
The fatigue analysis for our study was maritime-based (done on a ship
simulator) whereas, the other fatigue studies were conducted using
differing equipment with respect to the other engineering sectors
(aerospace (Verdiere et al., 2018) (Thibalut et al., 2015) (Thibault et al.,
2018), automotive (Bruce et al., 2012) (Hitoshi and Kazuki, 2009),
National Rail Networks (NRN) (Kojima et al., 2004) (Takashi et al.,
2006) and video gaming (Li et al., 2018)). However, due to the other
studies being similar to this investigation in the sense that they are also
‘BCI’ studies of PSFs conducted on a simulator, they share many simi-
larities with our investigation. Manipulation of the scenario to induce
fatigue in participants was done in a similar way to other studies in other
engineering sectors, where a monotonous visual of a readout is

monitored by the participant for an elongated period of time (35 min for
our study, between 20 min and 1 h for others). The outcome from the
two NRN investigations referenced above showed that fatigue, similarly
to our investigation didn’t find any significance until the latter stages of
the test. However, the aerospace and automotive investigations showed
fatigue to have a significant effect on OFS and performance from the
start of the task. This may be due to the slightly impoverished nature of
the simulator in comparison to a ‘real life’ situation for ours and the NRN
investigations, in which no ‘real life’ consequences are experienced
when a task is failed, or an incident occurs. The participant would
simply start the task again. Whereas an A300 and A320 aircraft simu-
lator (the hardware used in the aerospace investigations) and an auto-
motive simulator with hydraulically simulated movements, have a very
realistic feel and consequence for failure from the beginning of the
experiment. Another explanation, as previously mentioned, could have
been due to the units of measurement. However, the same units of
measurement and software was used by Dehais (Thibalut et al., 2015)
and Verdiere (Thibault et al., 2018) for their investigation and fatigue
was found to have a significant effect from the start of the test.

Fatigued participants in this investigation had a larger HBO volume
on average for all workflow stages, in comparison to standard test par-
ticipants. The difference in HBO volume increased further for the fault
solution workflow stage. It can be seen in the results in section 3.1 that
the fault solution stage had a significant difference when compared to
the other workflow stages. The resulting differences found in mean HBO
volumes between fatigued and standard test participants for the fault
solution phase had such a large effect that it resulted in fatigued par-
ticipants having an overall higher HBO volume for the whole task.
Moreover, the HBO volumes for all workflow phases except the fault
solution stage are similar for both, fatigued and standard candidates.
Looking at the workflow phases critically, it could be said that if the
Fault detection phase was longer, then the fatigue element of the test
could have had a higher prevalence. This can be visualised by the large

Table 1
Fatigued vs a standard test classification performance with respect to feature type.
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difference in HBO volume between fatigued and standard test partici-
pants for the longer, and higher workload, fault solution phase. Simi-
larly, this is also found in the investigation done by Besikci et al., where
fatigue was found to be more prevalent in the longer tasks even if they
were deemed to be easier (Elif et al., 2015). Besikci concluded by stating
that the fatigue element of their investigation was induced using verbal
reasoning tasks over a long period of time (2 h). There was a short break
(3–5 min) before starting their main test. All candidates showed similar
results for the first 10–12 min of the test then differences started to
occur. By the end of the test (25 min) all candidates had a significantly
greater HBO volume when compared to those who partook in a standard
test.

5.2. LDA

The main motivation behind this investigation was to use BCI-fNIRS
technology to develop a scientific human error model that could be used
to assess OFS whilst dealing with adverse PSFs commonly experienced
on board a ship. Our subjective measures confirmed that a normal
workplace environment is heavily contrasted to that of an artificially
induced fatigued scenario. This led to significantly higher average HBO
levels for the whole task when compared to a standard test.

The classification performance result confirmed that fatigued par-
ticipants could be discriminated from standard test participants using
BCI-fNIRS technology. This is substantiated by past neuro-ergonomics
investigations finding that fNIRS is well suited for operator mental
state monitoring in ecological situations (Aghajani et al., 2017) (Bruce
et al., 2012) (Verdiere et al., 2018) (Li et al., 2018).

The highest classification performance accuracy percentage reached
77.29 %, taken from the AUC oxygenation feature. This result could be
used as a datum against classification performance scores post imple-
mentation of training applications or risk control options. This would
allow researchers to obtain an optimal risk control option or training
intervention. This result compares favourably with other investigations.
For instance, Kevin Verdiere et al. (2018) obtained a classification per-
formance percentage of 66.9 % on 11 subjects using combined
oxygenation features. Studies by Hong et al. (2015), Holper and Wolf
(2012), Naseer et al. (2016) obtained a classification performance per-
centage of 75.6 %–81 % on 10–12 subjects. At first glance these out-
comes compare similarly with ours however, these investigations did
not take into consideration a continuous but multiple set sub-tasks
assessment of specific cognitive activity contrarily to our engine room
simulator task which involved different executive and attentional skills.
Khan and Hong, 2015 (Khan and Hong, 2015) showed that oxygenation
features could yield a high accuracy (84.9 %) using a driving simulator
to monitor fatigue/drowsiness.

The comparison of oxygenation features’ classification performance
percentage revealed that AUC and Variance resulted in significantly
higher classification percentage values. This is similar to the investiga-
tion conducted by Vierdiere et al. (Verdiere et al., 2018) where AUC was
also found to be the oxygenation feature with the most significance.

It is interesting to note that features present complementary ad-
vantages. All oxygenation features are an uncomplicated and low-cost
computational measurement to effectuate. This is considerably advan-
tageous when passive BCI is implemented. Moreover, the oxygenation
features computed in our investigation can consider both time and
chromophore. Oxygenation features from fNIRS data has been used for a
long period of time to evaluate operator performance in the aerospace
sector, but up until now has not been utilised in the maritime sector for
the analysis of engine room operators. Therefore, it is difficult to
compare results from other maritime investigations. Based on the
comparisons to other investigations above, undertaken using oxygena-
tion features as a classifier we can say that our investigations outcome
was a success. Our study provides some novel methodological guidance
for the implementation of fNIRS based BCI metrics in the maritime in-
dustry. To the best of our knowledge, to date, this study is unique, to be

the first to benchmark different fNIRS oxygenation metrics and to use
them for classification purposes in ecological settings for the benefit of
HRA. It paves the way forward towards OFS estimation in an ecological
maritime environment, but some challenges remain.

5.3. Validity check

The data gathered via fNIRS and ANOVA analysis was validated
within the limits available. It is always preferable to validate work based
on what has already been proven. However, due to the novelty of this
project it is impossible to test the findings from fNIRS on a simulated
environment against real life events at sea. Therefore, validity has been
achieved via:

• 10 fold cross validation of fNIRS datasets from all 15 channels.
• Data was separated in epochs for cross validation to prevent ‘double-
dipping’.

• Outcomes are checked against R-studio, MatLab and Python software
platforms.

• A manual ‘step by step’ linear regression with ANOVA was applied
using Excel to check the validity of each workflow stage against PSF.

6. Conclusion

The study successfully demonstrated the potential of fNIRS-based
BCI technology for assessing operator fatigue and performance in a
maritime context.

To be critical, the results from this study being, that fatigue causes an
increased activation in participants could have been predicted prior to
this study. However, the level of activation that fatigue caused the
participants could not have been predicted prior to this study. Also, the
activation levels can be compared to that from other PSFs, resulting in a
quantifiable value of risk associated with the PSFs. When compared to
one another, this would allow decision makers to see the PSFs that
contribute detrimentally to human performance thus, have the highest
prevalence of risk.

The study successfully demonstrated the potential of fNIRS-based
BCI technology for assessing operator fatigue and performance in a
maritime context. Key findings revealed a significant impact of fatigue
on task performance during complex phases, suggesting the effective-
ness of fNIRS-based BCI for monitoring operator mental state. The study
achieved a high classification accuracy (Felix et al., 2013) in discrimi-
nating fatigued participants from standard test participants, high-
lighting the potential of this technology for real-world applications.
Specific oxygenation features were identified as promising indicators of
fatigue, contributing to the development of a scientific human error
model for maritime environments [61]. This research provides a foun-
dation for future studies and applications in operational safety and
performance improvement.

By leveraging fNIRS-based BCI technology, the maritime industry
can gain valuable insights into operator fatigue and develop strategies to
mitigate its risks [61]. Future research could explore the application of
this technology in other high-risk environments, such as aviation and
healthcare, to improve safety and efficiency.

While the study is a valuable contribution to understanding the
impact of fatigue on seafarers, it’s important to note that it does have
limitations. A sample size of 20 participants, while sufficient for initial
investigation, may not be representative of the entire seafarer popula-
tion. It would have been preferable to have a larger sample size as a
larger sample size would increase statistical power and improve the
generalisability of the findings.

While the study attempted to simulate fatigue, it’s difficult to
perfectly replicate real-world fatigue conditions, which can vary
significantly in terms of duration, intensity, and individual factors. It
would have been preferable to explore the impact of different fatigue
levels and durations on human performance, but time restraints would
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not allow this.
The simulator environment, while controlled, may not fully capture

the complexities of real-world maritime operations, which involve
various stressors and distractions. A simulator would always be a
somewhat impoverished approach to real world applications.

The study focused on a specific fault detection and correction task.
Real-world maritime operations involve a multitude of tasks and
decision-making processes, which could be influenced by fatigue in
different ways. However, such an in-depth analysis would have been too
time consuming.

While fNIRS is a valuable tool for measuring brain activity, it has
limitations, such as sensitivity to noise and movement artifacts. The
artifacts are corrected using NIRx software coupled with MatLab and
Python. However, the raw data processing is very time consuming and
should be improved. The specific interpretation of fNIRS data can be
challenging, and further research is needed to fully establish robust
correlations between brain activity and cognitive performance.

The findings may not be directly applicable to all seafarers and
differing vessels, as individual differences in fatigue tolerance and
cognitive abilities can vary. Also, further research is needed to explore
the impact of fatigue on different demographic groups and experience
levels.

6.1. Recommendations for future research

• To Investigate the impact of task complexity and duration on fatigue-
related performance changes.

• Explore the potential of fNIRS-based BCI for real-time monitoring
and intervention in other maritime operations. For example,
bunkering operations, port piloting operations or other adverse
working conditions (hot/cold temperatures, noise & Vibration, dis-
tractions etc).

• Conduct larger-scale studies to further validate the findings and
establish norms for fatigue assessments in maritime settings.

• Future studies could incorporate additional physiological and self-
reported measures. For example; heart rate variability (HRV), elec-
troencephalogram (EEG), and salivary cortisol levels. The afore-
mentioned measures could provide objective evidence of fatigue.
Additionally, participants could complete self-reported fatigue scales
at regular intervals to capture subjective perceptions of fatigue. By
combining these measures with the existing task-based simulation,
the study may be able to provide a more comprehensive and
convincing assessment of the impact of fatigue on human error in the
engine room.

By addressing these recommendations, future research can further
refine the application of fNIRS-based BCI technology in maritime envi-
ronments, enhancing safety and efficiency.
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