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A B S T R A C T

Ship collisions pose a significant threat to life and property, presenting a major challenge in maritime safety. 
Current risk analysis methods have been criticized in terms of a lack of capacity of quantifying the risks of 
different features and a standardized database reflecting the multidimensional risks of human, mechanical, 
environmental, and management factors. Additionally, traditional analysis sometimes involves strong assump-
tions that 1) the established and widely used databases can capture all the essential features of ship collisions and 
2) the modelling of ship collision process can be simplified by focusing the analysis on a single causal relationship 
at once. This paper aims to develop a new approach to enabling multi-dimensional analysis of the causation of 
ship collisions through the establishment of a new database for ship collisions by innovatively combining Text 
Mining (TM), Association Rule (AR), and Functional Resonance Analysis Method (FRAM). The new approach 
enables to construct a risk analysis network based on FRAM, and the model’s practicality and effectiveness are 
validated through expert reviews and case studies. As a result, thirty-eight key risk factors have been successfully 
identified as per their influence to ship collision incidents, encompassing human error, mechanical failures, 
adverse environmental conditions, and operational issues. The findings not only offer a new perspective and 
methodology for ship collision risk analysis, but also enrich the theoretical framework of ship safety manage-
ment, providing valuable guidance for ensuring ship navigation safety.

1. Introduction

Shipping plays a pivotal role in the security of global supply chains 
and economic growth. However, its safety is challenged by the intricate 
nature of maritime transport, still drawing widespread concern despite 
the technological advancement in recent years. The International 
Maritime Organization (IMO) data indicates that annually, over 500 
ship collisions occur worldwide, resulting in more than 300 fatalities 
[1]. A study of Canadian waters from 2012 to 2022 revealed 2,456 ship 
accidents, with collisions accounting for 34.57% (849 accidents) [2]. In 
response to the frequent ship collisions, the IMO has formulated the 
International Regulations for Preventing Collisions at Sea (COLREGs) 
and International Convention for the Safety of Life at Sea (SOLAS). 
Although laws and regulations are in place to ensure navigational safety, 
they only provide the minimum requirements for safety. These re-
quirements are passive in nature. To take a proactive approach, collision 
risk analysis should be conducted to prevent and anticipate ship 
collisions.

Collision risks have been analysed by scholars from various 

perspectives, including ship collision avoidance [2–6], simulation [4, 
6–8], AIS data-driven [4,7,9–11], and qualitative or quantitative risk 
assessment based on probabilistic models [1,12–14]. In terms of prob-
abilistic models, Yu et al. [15] utilized Failure Mode and Effect Analysis 
(FMEA) and Bayesian Network (BN) to analyse collision risks between 
ships and offshore facilities, elucidating risk factor causality. Sokukcu 
et al. [16] focused on collision risks for ships at berth, developing a 
collision risk Fault Tree (FT) and BN model to identify primary causes. 
Zhang et al. [17] employed Human Factors Analysis and Classification 
System (HFACS) and FT models to quantify collision risks for ice-
breakers in ice-laden waters. Commonly, the studies in the field leverage 
methods such as FT [16,18,19], Event Tree (ET) [20,21], FMEA [15,22,
23], BN [24–26], and fuzzy theory [16,27,28] for qualitative and 
quantitative risk assessments of ship collisions. However, these studies 
often rely on a single source of data which may result in less compre-
hensive in identifying risk factors. Meanwhile, when dealing with a large 
amount of accident data, there is a strong subjective element, making it 
difficult to accurately and objectively identify those key factors of 
collision risk. Moreover, previous studies are found to be associated with 
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strong assumptions against which the complex ship collision process is 
simplified into a single or linear causal relationship, ignoring its 
complexity and variability [29,30]. It is worth noting that with the 
continuous advancement of information technology and data mining, 
TM provides new solutions to risk identification. It has been used in such 
areas as financial analysis [31,32], medical field [33], and mining safety 
[34,35] to extract valuable information from massive text data and to 
support accurate and comprehensive risk factor identification.

Given this, it is therefore crucial to develop a TM-based method 
enabling new exploration of the causes of ship collision risk and better 
understanding of the relationship between risk factors in the collision 
process for ship navigation safety. To achieve it, this reveals three 
challenges and gaps wanting new solutions to be found. 

(G1): Due to the limited coverage of collision risk factors in a single 
database and the non-uniformity of accident data formats across 
different databases, it is challenging to encompass all factors 
involved in ship collision risk, including those from multiple di-
mensions, such as human errors, ship machinery and equipment 
factors, management factors, environmental factors.
(G2): Current risk causation analysis methods depend on subjective 
judgment or manual statistics, which makes it challenging to accu-
rately and efficiently analyse extensive unstructured accident data 
and investigate the correlation between risk factors. Consequently, 
there is a need for a mature and efficient risk identification algorithm 
capable of handling extensive accident data, delving into the hidden 
risk factors, and further exploring the complex correlation relation-
ships behind these risk factors.
(G3): Current research fails to comprehensively model the causation 
of ship collisions when employing a single or linear causal relation-
ship analysis method. It is due to the fact that not all risks follow a 
linear pattern, and accidents of random causation can occur. 
Therefore, it is necessary to develop a critical risk causation analysis 
method that can take into account non-linear or non-single causality 
when dealing with complex ship collision processes.

To address the above three questions, this paper aims to develop a 
new TM-FRAM method to conduct deep mining and visualisation anal-
ysis of ship collision risk factors. It can provide new theoretical per-
spectives for ship navigation risk assessment and implications for 
making safe navigation policy. The paper’s contributions are as follows: 

C1: Techniques that can leverage big data, information and data 
mining technologies are continuously evolving, requiring the 
establishment of a specialized database before taking their advan-
tages for ship collisions analysis. This paper employs maritime ac-
cident data sources from different regions/countries to develop a 
new standardized database involving all the key factors influencing 
ship collisions in the current literature. As data entries become richer 
and the volume grows, this database will progressively become more 
comprehensive and exhaustive.
C2: With the advancement in data mining technology, TM is now 
being used to effectively identify the risk factors of ship collision. 
Application of this method for causation analysis of ship collision can 
effectively address the deficiencies of the previous studies which rely 
on subjective judgment and manual statistics and hence introduce 
subjective bias and inaccuracy into the identification of risk factors. 
Additionally, it can uncover a direct link between the identified key 
risk factors, providing insights for in-depth analysis of the causes of 
ship collision risk.
C3: Ship collisions often present complex and constantly evolving 
processes. FRAM can be used to formulate a functional resonance 
network capable of dealing with such complication. Unlike tradi-
tional linear models, it captures the emergent behaviors and vari-
ability inherent in complex systems, making it an ideal tool for 
understanding the multifaceted nature of ship collision risks. 

Additionally, it has been successfully applied in multiple risk analysis 
domains. However, In the current literature, there are few studies 
combining TM and FRAM in risk causation analysis, and fewer in the 
application of TM-FRAM into the maritime sector. This innovative 
approach effectively addresses the limitations of traditional single or 
linear causality, overcoming the challenges of constructing risk 
causality in complex and variable collision accident processes. As a 
result, it reveals both methodological and applied research 
innovation.

The rest of this paper is organized as follows. Section 2 provides an 
overview of the current research progress and defines the-state-of-the- 
art in the field of risk assessment for ship collision accidents. Section 3
presents the data sources utilized in this paper and outlines the meth-
odology employed, encompassing TM, AR, and FRAM. The findings and 
discussions are described in Section 4. Section 5 draws the conclusion.

2. Literature review

2.1. Ship collision data

Accident data underpins ship collision risk studies, and a well- 
structured and uniform database is pivotal for thorough risk factor 
analysis. Scholars have harnessed historical data to advance ship colli-
sion risk assessment significantly. Baksh et al. [36] assessed collision 
and grounding risks by using Arctic Portal data, while Afenyo et al. [24] 
drew from the ArcticData database to pinpoint key collision accident 
causes through BN. Uflaz et al. [19] investigated human error’s role in 
collision risk by integrating evidential inference with FTA, using Marine 
Accident Investigation Branch (MAIB) database insights. Further, Liao 
et al. [37] crafted a scenario probability model for ship collisions from 
Global Integrated Shipping Information System (GISIS) data, and Ung 
et al. [38] scrutinized GISIS data from 2005 to 2015, identifying 
personnel fatigue and irregular operations as main risk contributors. 
Moreover, Zhang et al. [39] exploited data from the Changjiang Mari-
time Safety Administration (CMSA) to evaluate navigation safety, model 
collision risk, and deduce scenarios. However, many current studies only 
rely on a single database like MAIB [19] or GISIS [37,38], making it 
difficult to comprehensively cover the diversity of risk factors when 
assessing the risk of ship collisions by using a single database. Table 1
displays the literature about the GISIS, MAIB, NTSB, and TSB databases 
utilized in the past decade.

Variations in risk factors included in accident reports across these 
databases. For instance, MAIB furnishes detailed accident scene infor-
mation, ship and navigation data, accident analysis, and recommenda-
tions [56]. In contrast, National Transportation Safety Board (NTSB) 
covers accidents in US waters, but its reports mainly focus on basic ship 
information, time and place, and causes of accidents, omitting details 
such as crew qualifications, training, and safety management [85]. 
Transportation Safety Board (TSB) provides comprehensive information 
including crew qualifications, communication records, training, and 
ship speed [85]. GISIS, on the other hand, compensates for the lack of 
geographical coverage of the former three by integrating ship accident 
data from various countries and providing extensive data support for 
global ship safety research [45,86].

Table 1 
Data sources and relevant literature utilising the database in the last decade.

Database Relevant literature

GISIS [40–52] [53] [54–58] [59–61]
TSB [62–65]
MAIB [66–72] [64,73]
NTSB [74–84] /
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2.2. Identification of risk factors

In exploring the factors contributing to ship collision risk, traditional 
methodologies frequently utilise tools such as FT [16,18,87], ET [20,
21], FMEA [15,22,], and the HFACS [17]. Moreover, the literature 
analysis [16,88] and manual statistical evaluations [26,85] are preva-
lent approaches. These conventional methods predominantly focus on 
the identification of risk factors through manual statistical analysis, and 
largely involve personal experience and judgment [34]. As a result, they 
may have limited ability to handle large amounts of data and may 
introduce error and bias [89]. In contrast, TM provides a more objective 
analytical framework, facilitating the extraction of pertinent informa-
tion from voluminous text data [90]. This approach enhances the pre-
cision and breadth of risk assessments, offering a more comprehensive 
and accurate evaluation of ship collision risks.

With the rise of big data and increased computing power, TM has 
seen significant improvements in accuracy and efficiency [33,31]. They 
are now widely applied in fields such as accounting [31], sentiment 
analysis [33], healthcare [33,91], and mining engineering [34]. These 
studies effectively showcase TM’s advances in handling vast amounts of 
data, extracting accident information, and objectively identifying risk 
factors.

In the field of water transport safety, TM has yielded research find-
ings. Xia et al. [90] employed TM to effectively pinpoint primary risk 
factors in inland vessel accidents and subsequently developed a 
comprehensive risk assessment index system for such accidents. Simi-
larly, Dorsey et al. [92] applied TM to dissect the causal elements of 
collision accidents involving inland vessels. Furthermore, Wang et al. 
[89] leveraged TM to identify and extract risk factors pertinent to inland 
ship accidents. Their research underscores the method’s capacity to 
significantly reduce uncertainty and subjectivity, thereby affirming the 
practicality and efficacy of TM in the realm of maritime risk evaluation 
[32,33]. Nonetheless, these studies are still limited by the use of singular 
nature of accident data sources, and the identification of risk factors is 
hence affected. Further, they have yet incorporated the TM with other 
approaches in a holistic way to deal with the non-linear relationship of 
risk factors and the associated complication.

2.3. Inter-relationships between risk factors

In the current literature of ship collision risk analysis, BN is identified 
as a primary approach to capturing the inter-relationships between the 
risk factors. In terms of BN inference, the causal relationship between 
parent and child nodes is reflected through conditional probabilities, 
and changes in the state of the parent node will directly affect the state of 
the child node [4,36,85]. Similarly, the FT starts from a specific accident 
and analyses the causes of its occurrence layer by layer until revealing 
the basic causes at the lowest level, and uses logic gates to connect these 
causes, to reveal the causal relationship of the event [19,21,87]. It is 
worth noting that despite the difference in expression between FT and 
inference BN, they both embody linear causality [16,18].

This approach, however, does not account for the non-linear nature 
of risk transfer in various hazard scenarios, where accidents can occur 
unexpectedly [93]. Recognizing the complexity and temporal evolution 
inherent in ship collisions, FRAM has been validated as a potent 
analytical tool for dissecting the multifaceted causes of such accidents 
[93,94]. FRAM’s adaptability to complex and unpredictable scenarios 
has facilitated its extensive application across diverse sectors, including 
aerospace [95,96]. This is evidenced by the work of Salihoglu et al [97], 
who employed FRAM in qualitative evaluations of marine oil spills, 
thereby elucidating the nuanced risk factors involved. Similarly, Guo 
et al. [94] merged FRAM with a dynamic BN, formulating a model to 
assess the developmental trajectory of ship collision risks. Salihoglu 
et al. [97] employed FRAM for the Prestige Oil Spill analysis, facilitating 
the modelling of intricate interactions inherent in such events and 
enhancing comprehension of the system’s operational dynamics via the 

functional modelling of maritime accidents. Furthermore, it aids in 
identifying prospective alterations in system functionalities and pro-
vides elucidations for potential causative factors of associated accidents. 
This underscores FRAM’s capability to reveal more intricate causative 
interactions than those typically reported in accident reports. Ma et al. 
[98] advanced a hybrid methodology that synthesizes FRAM, fuzzy sets, 
and risk matrices to quantitatively evaluate the risks instigated by the 
Critical Links (CLs) throughout the continuum of the Human-Centered 
Maritime Transport System (HCMTS). Through the application of 
FRAM, a functional network delineating the standard operation of the 
HCMTS was established, enabling the identification of CLs linking up-
stream and downstream functionalities. The advantages of FRAM, as 
documented in various studies [94,95,99], encompass its efficacy in 
complex system assessments, even with limited data availability. It is 
particularly proficient in describing and analysing systems that involve 
human factors and inherent uncertainties. The method’s emphasis on 
the analysis of entire system functionalities facilitates a deeper 
comprehension of interrelated actions and potential risks, making it a 
valuable tool in safety and risk management fields.

FRAM applications currently depend largely on expert knowledge or 
subjective judgment. For instance, Fu et al. [99] integrated FMEA with 
FRAM to assess the risk of nuclear-powered icebreakers in polar regions. 
This subjectively constructed FRAM method arguably lacks objective 
data support. Thus, FRAM should be combined with other methods to 
ensure its construction is adequately supported by data. This paper ap-
plies an AR algorithm to thoroughly analyse the connection between 
collision risk factors, laying a solid data foundation for constructing the 
FRAM network.

AR, as a machine learning-based algorithm, have been widely used in 
maritime accident data mining [25,100]. Lan et al. [101] analysed 1554 
maritime accidents resulting in a total loss by utilising AR. They iden-
tified that the age of the ship was the primary factor causing casualties. 
This demonstrated the effectiveness of AR in discovering the relation-
ships among risk factors. Jia et al. [88] used the same method to 
investigate information risk in maritime logistics services. They 
emphasized that AR were useful in exposing the interrelationships 
among risk factors. Yu et al. [102] examined the temporal and spatial 
correlation of risk factors leading to ship collisions by AR. They revealed 
the collision risk relationships in different regions. Özaydın et al. [103] 
combined AR and BN to construct a hybrid model of fishing vessel ac-
cidents. They identified the key risk factors. Wang et al. [100] used a 
time-based AR approach to study the domino effect in different types of 
maritime accidents. They revealed the hidden relationships between risk 
factors. These studies provide confirmation that AR is crucial in ana-
lysing the risks associated with maritime activities.

Although AR is advantageous in identifying frequent relationships in 
large datasets, it has also revealed some limitations. Firstly, AR mining 
can only reveal correlations among item sets, but it cannot capture 
causal relationships among risk factors [88]. This is where FRAM excels 
as it can more accurately describe the functional and causal pulse within 
a system [94,99]. Secondly, AR mining is often used for analysing static 
data and may not be suitable for studying time series data or 
time-varying analysis of system behavior [103,104]. However, FRAM 
concentrates on how different system functions interact with each other, 
and adapts to the dynamic changes in the internal and external envi-
ronment of the system (Salihoglu, 2020). Lastly, AR mining is primarily 
based on analysing frequent item sets, which can make it challenging to 
capture the complex relationships among multidimensional risk factors 
[101,102]. In contrast, FRAM can comprehensively consider all of the 
multidimensional factors and reveal the intricate linkages among risk 
factors in a deeper way [105,106].

Y. Wang et al.                                                                                                                                                                                                                                   
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3. Data and methodology

3.1. Data sources

According to the ship collision database mentioned above, a total of 
975 ship collision reports were reviewed from 2014 to 2023. After 
removing duplicate and invalid reports, 210 reports were selected for 
the new database by the three steps stated below. The criteria for valid 
reports include [46,107]: (1) Authority, issued by official maritime 
agencies and safety investigation bureaus to ensure data reliability; (2) 
Completeness, includes essential details such as time, location, and 
weather, along with a thorough account of the accident’s cause, pro-
gression, and outcome. (3) Uniform Format, written in English, con-
forming to international maritime standards, and provided in a 
non-image text format to facilitate effective data extraction and anal-
ysis. These reports analysed various risk factors that contribute to ship 
collision accidents, such as ship information, navigational data, accident 
history, accident causes analysis, personnel qualifications and training, 
ship machinery and equipment, safety inspections, weather conditions, 
sea state, hydrography, and navigational environment. Table 2 provides 
a detailed comparison between different databases and the newly con-
structed database in this paper [45,46]. The data filtering steps are as 
follows: 

Step 1: Data searching

The search for ship collision accidents was limited to accidents that 
occurred between January 1, 2014 and December 31, 2023. Preliminary 
results of 975 records were obtained from four databases GISIS, MAIB, 
NTSB, and TSB as public users. 

Step 2: Data cleaning

After removing inconsistent, duplicate, incomplete, irrelevant, and 
inaccessible reports totaling 353, all reports that were not consistent 
with the objectives of the study were eliminated to ensure the accuracy 
and completeness of the data. 

Step 3: Data screening

During the data screening stage, standardisation was carried out to 
address the differences in formatting and terminology between different 
databases, and the formatting and naming of all data fields were unified. 
At the same time, files in image format were filtered, totalling 210 after 
retaining only files in pdf, doc and docx formats. This step aimed to 

improve the consistency and analysability of the data, laying a solid 
foundation for subsequent data mining and analysis.

3.2. Methodology

In this paper, TM techniques are employed to analyse 210 ship 
collision accident reports. This helps to identify the risk factors associ-
ated with ship collisions. Subsequently, utilizing the AR, a rule-based 
association mining technique [103,104], to conduct a more in-depth 
analysis of the identified risk factors. The aim is to investigate the re-
lationships between various factors and comprehend their influence on 
accidents involving ship collisions. Using the identified risk factors and 
their interrelations, a FRAM network is established to qualitatively 
analyse the causal factors behind such accidents. The flow of the 
TM-FRAM model is depicted in Fig. 1.

Integrating TM with AR can effectively extract the underlying causes 
responsible for ship collisions from the unstructured and extensive ac-
cident reports. Further, the analysis of AR can unveil correlations among 
various risk factors, which serve as the foundation for constructing a 
FRAM network and evaluating the risk associated with ship collision 
accidents. This integrated approach helps identify the key risk factors 
contributing to ship collisions, providing a more comprehensive 
perspective and aiding decision-making processes [100,103].

3.2.1. Text mining
For accurate analysis of ship collision causation, it is necessary to 

clean the collected accident accidents before building a table to record 
cleaned data [33,34]. The dataset for ship collision analysis is created by 
isolating the segment that details the causes of accidents. R language and 
micro-wordcloud are used for TM and visualization [101]. Subsequent 
steps involve establishing tables for stopwords, professional terms, and 
merging words. Stopwords, including but not limited to intonational 
words, adverbs, prepositions, conjunctions, and punctuation marks, are 
identified as having minimal impact on the sentence’s overall meaning 
[33,34]. Stopwords is based on lists provided by the “Natural Language 
Toolkit”, “Harbin Institute of Technology”, “spaCy”, and “Baidu”, 
further refined by incorporating insights from accident reports, the 
above thesauruses feature comprehensive and reliable stopwords, 
proven as efficient resources for text preprocessing through extensive 
testing and application [30,73]. Additionally, they are particularly 
suited for scientific and technology-driven text analysis projects like text 
mining and sentiment analysis [34,91]. Professional words aim to pre-
vent the misclassification of specialized terminology during textual 
analysis. It is achieved by amalgamating terms from the domains of 
water transport engineering, safety engineering, shipping, meteorology, 
and more, augmented by details from accident reports. The inconsis-
tency in accident report formats often results in varied expressions for 
identical causes of accidents, generating an abundance of synonymous 
terms. To improve the precision of the analysis, these terms are stan-
dardized, culminating in the creation of a thesaurus, as outlined in 
Table 3.

The calculation of Term Frequency-Inverse Document Frequency 
(TF-IDF) involves the integration of TF and IDF [30,108]. This index 
serves to gauge a term’s relevance and scarcity within a dataset. TF 
measures the frequency of a term within a document, normalized by the 
total term count to counterbalance biases caused by document length. 
Accordingly, a term’s significance increases with its frequency of 
occurrence. Conversely, IDF assesses the term’s rarity across a collection 
of documents, with higher values indicating less common terms [29, 
109]. Furthermore, risk factors identified in accident reports are 
depicted through a word cloud visualization. The mathematical for-
mulas for calculating TF, IDF, and TF-IDF are explicitly outlined in Eqs. 
(1)–(3): 

TF =
ni,j

∑
kni,j

(1) 

Table 2 
Information covered by MAIB, NTSB, TSB, and new databases.

MAIB NTSB TSB GISIS New 
database

Ship particulars ✓ ✓ ✓ ✓ ✓
Voyage particulars ✓  ✓ ✓ ✓
Marine casualty information ✓ ✓ ✓ ✓ ✓
Communication ✓  ✓  ✓
Personnel certification and 

experience
  ✓  ✓

Safety Staffing ✓ ✓ ✓  ✓
Emergency response ✓    ✓
Organizational and 

management factors
  ✓ ✓ ✓

Vessel certification and 
inspection

✓  ✓  ✓

Safety system    ✓ ✓
Accident analysis ✓ ✓ ✓ ✓ ✓
Ship machinery and equipment  ✓ ✓  ✓
Weather and sea conditions ✓ ✓ ✓ ✓ ✓
Hydrology   ✓  ✓
Navigation environment  ✓  ✓ ✓
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IDF = log
|D|

⃒
⃒
{
j : ti ∈ dj

}⃒
⃒

(2) 

TF − IDF = TF × IDF (3) 

In ship collision risk identification, where ni,j denotes the frequency 
of collision risk factor ti in the j ship collision incident report dj, and 
∑

kni,j indicates the aggregate frequency of all risk factors in accident 
report dj. Furthermore, |D| represents the total number of all collision 
accident reports in the corpus, and |

{
j : ti ∈ dj

}
| signifies the count of 

accident reports in the corpus that contain the risk factor ti.
For example, if the term " Insufficient training " appears 2 times in a 

report containing 30,000 words, TF would be calculated as 2/30,000 =
0.00015. If " Insufficient training" appears in 36 out of 210 reports, IDF is 
calculated using the formula log(210/36) = 0.766. Therefore, the TF- 
IDF value for "inadequately trained" is the TF-IDF = 0.00015 * 0.766 
= 0.015. 0.766 = 0.0113%.

3.2.2. Deep mining of ship collisions utilising an AR approach
Ship collision accidents pose a significant challenge to maritime 

Fig. 1. The flowchart of the TM-FRAM model.
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transportation safety. This paper utilizes AR mining algorithms to 
conduct in-depth analysis of ship collision accident databases, aiming to 
discover potential AR among risk factors and provide a basis for con-
structing the FRAM for ship collision accidents. AR mining algorithms 
explore the dataset for frequent itemsets, revealing strong associations 
that highlight underlying correlations among risk factors. Support, 
confidence, and lift are crucial metrics in the process of AR mining [100,
102]. The lift is a key indicator of the relevance and dependence be-
tween two itemsets within an AR. A lift value greater than 1 signifies a 
strong association, equal to 1 suggests no association, and less than 1 is 
considered to lack practical significance. Calculation formulas are pro-
vided [88,101]:

Consider the set I = {I1, I2, I3,…, In} representing all items in the 
database D, with t as a non-empty subset of the itemset I. The support for 
the AR A ⇒ B is defined as the probability of A and B occurring together 
in a transaction, and is calculated as follows [100,103]: 

support(A⇒B) = P(A ∪ B) =
count(A ∪ B)

count(D)
(4) 

Where both A and B belong to I and A ∩ B = ∅. 

confidence(A⇒B) = P(B|A) =
count(A ∪ B)

count(A)
(5) 

lift(A⇒B) =
P(B|A)
p(B)

=
support(A ∪ B)

support(A)⋅support(B)
(6) 

A and B represent the set of collision risk factors respectively, and 
count(A ∪ B) denotes the number of simultaneous occurrences of set A 
and B. The support reflects the probability of simultaneous occurrences 
of all risk factors in the AR. For instance, in a collision report, if "A" 
represents "insufficient training" and "B" denotes "improper emergency 
response," the confidence measures the probability of an improper 
emergency response occurring when insufficient training is already 
known to have happened. The term "lift" refers to the extent to which the 
presence of risk factor A increases the probability of risk factor B 
occurring, it helps to discover strong correlations between rules.

3.2.3. FRAM
FRAM is a method widely used for system safety analysis. It aims to 

help identify and understand the coupling relationships among diverse 

functional modules within a system, as well as the factors that may lead 
to unintended outcomes. This method analyses the characteristics and 
functional relationships of each functional module in the system to 
identify functional changes and couplings, and provides protective and 
control strategies [106,110,111], as shown in Fig. 2. An analysis of 
functional resonance networks, specifically focusing on ship collision 
accidents, can be executed following the outlined steps: 

Step 1: Functional Identification and Description

Following a comprehensive review of the literature and analysis of 
accident reports, this paper delineates three primary phases in the ship 
navigation system: pre-navigation preparation, navigation, and collision 
avoidance response [94,112]. The pre-navigation phase encompasses 
crew training (F1), organization and management (F2), decision-making 
and planning (F3), prepare to set sail (F4). The navigation phase covers 
actual navigation (F5), observations and lookouts (F6), and discovering 
collision risk (F7). Finally, the collision avoidance phase includes steps 
such as emergency handling (F8), communication and exchange (F9), 
ship manoeuvring (F10) and emergency collision avoidance (F11). This 
paper extends the functional module of pre-navigation preparation 
based on the FRAM network delineation on ship collision accidents by 
Guo et al. [94]. An in-depth examination of accident reports and TM 
reveal that key risk factors for collisions include insufficient personnel 
training, defective safety management systems, crossing channels, and 
deviating from routes, which pose a serious threat to the navigation 
safety. Consequently, these findings were integrated into the FRAM 
network, augmenting its framework. Additionally, there are similarities 
between ship and aviation collisions, Carvalho et al. [95] identified 
pre-flight preparation as a critical module in the FRAM network for 
aviation collisions, addressing key factors such as route planning and 
approvals. Recognizing the distinct differences in navigational condi-
tions, speeds, and emergency responses between maritime and aviation 
domains, this paper selectively incorporates applicable FRAM elements 
from aviation, like pre-flight preparation, while excluding those irrele-
vant to maritime settings in developing ship FRAM networks [95]. 
Aviation and ship collisions are massively different, as most of air crafts 
collisions occur in airport, and it is rare to have collisions in sky, while 
ships do collide each other at sea.

The 11 functional modules delineate the sequence of events leading 
to ship collisions and encompass risk factors including human error, 
organizational deficiencies, and environmental influences, which are 
derived from the mining results in Section 3.2.1. The FRAM for ship 
collisions is constructed by linking the inputs, outputs, prerequisites and 
others utilizing the AR findings from Section 3.2.2 along with compre-
hensive literature review. Amendments were also made with reference 

Table 3 
Merging words for ship collision accidents mining.

Risk factors Semantic description in accident reports

Negligence in lookout Failure to maintain proper lookout, serious neglect in 
lookout, lookout negligence, failure to utilize all available 
means to maintain continuous and effective lookout.

Insufficient 
qualifications

Ship personnel lacks competency, insufficient ship 
handling skills and emergency response abilities, absence 
of appropriate ship handling qualifications, lack of 
professional knowledge and skills for fishing vessel 
operations.

Failure to take evasive 
action

Failed to take evasive action, did not take the most 
effective action to avoid collision, improper evasive 
measures, did not take correct evasive measures, failed to 
take any evasive action, not prompt in evasive measures.

Poor management Inadequate safety management system, significant non- 
compliance in safety management system, failure to 
establish safety management procedures, deficiencies in 
wave prevention measures, ineffective implementation of 
safety management system, failure to comply with safety 
management system requirements.

Judgment errors Failed to make correct judgments, did not accurately assess 
collision danger, failed to properly evaluate collision 
danger, insufficient judgment regarding collision danger, 
did not adequately assess the situation and collision 
danger.

…… ……

Fig. 2. Hierarchical model for collision coupling.
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to literature, collision avoidance guide and accident reports to ensure 
the accuracy of the network. Appendix 1 offers an exhaustive account of 
each functional module along with its relevant indicators. Taking F2 as 
an example, which focuses on the organizational management level and 
covers risk factors such as insufficient safety inspections, improper 
maintenance of ship equipment, inadequate safety management system, 
insufficient manning, among others. The inputs to F2 are derived from 
the outputs of F1, and its outputs contribute directly to F3. When the 
output of F2 is the improvement of the safety management system, 
effective implementation of safety inspection, and sufficient manning, it 
will be the premise of F4 [94]. Additionally, the output of F2 serves as a 
resource for F6, F7, and F9. Crew lookout, collision risk discovery, and 
communication exchanges covered by these functional modules depend 
on the support of the ship’s equipment, such as radar, AIS system, 
collision warning system, and various types of communication equip-
ment [99]. Consequently, the output of F2 is highly linked to the 
resource of F6, F7, and F9 within the FRAM framework, and the con-
structed FRAM is shown in Fig. 3. 

Step 2: Identifying changes in functions

Analysis of the 11 identified functional modules related to ship 
collision accidents offers insights into potential changes during actual 
operation. Examining these changes enhances understanding of the 
causes and risk factors for ship collisions, facilitating functional coupling 
analysis and the development of preventive and control strategies. 
FRAM consists of three forms of causing functional changes: internal 
changes, external changes, and functional coupling (outlined in step 3), 
and the detailed changes are shown in Table 4. 

1) Internal changes: the effectiveness of F1 is influenced by the re-
quirements for training, personnel turnover, and training quality, 
which in turn can alter crew proficiency, safety consciousness. F2′s 
efficacy hinges on the appropriateness and adaptability of manage-
ment decisions and operational plans, which should align with real- 
world sailing demands and the current state of the crew [94,106]. 
Additionally, F9′s functionality is impacted by crew communication 
effectiveness and the reliability of communication devices, including 
radar systems. Finally, F10 operates under constraints related to ship 
navigation, communication efficacy, and the selection of risk 

Fig. 3. Ship collision function resonance network.

Table 4 
Identification of functional changes in ship collisions.

Function Function Type Source of 
Variation

Relevant Factors

F1 Personnel Internal 
Variation

Crew proficiency, safety 
awareness

F2 Organizational External 
Variation

Management system, work 
arrangement, navigation 
planning

F4 Environment External 
Variation

Severe weather, poor sea 
conditions

F5 Personnel, 
Environment

External 
Variation

Negligent lookout, low visibility

F6 Personnel, Vessel 
Equipment

External 
Variation

Judgment errors, vessel 
equipment failures

F8 Personnel External 
Variation

Operation errors, improper 
emergency response

F9 Personnel, Vessel 
Equipment

Internal 
Variation

Communication breakdown, 
radar and sensing equipment 
failures

F10 Personnel Internal 
Variation

Failure to perform emergency 
avoidance, communication 
breakdown
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mitigation strategies, necessitating vigilant monitoring of response 
adaptations in practice.

2) External changes: the F5 module, responsible for observation, may 
undertake variations in its capability, lookout periods, and equip-
ment status during operations, affecting risk detection and reporting. 
F6 depends on various information sources, including radar and 
lookout reports, which may be compromised by equipment mal-
functions or inaccurate information [106]. F4′s decision-making and 
planning are shaped by operational schedules and route planning, 
relying on external inputs such as nautical charts and weather data 
[94,106]. F8, focused on emergency handling, operates within the 
constraints of navigational directives and the vessel’s immediate 
condition [93,111].

Step 3: Functional coupling

Functional coupling refers to the relationship between different 
functional modules that depend on and influence each other. In 
analyzing ship collisions using the FRAM, this paper reviews relevant 
literature and accident reports to identify the subsequent changes and 
effects of functional coupling.

Firstly, there is a strong coupling between the F1 and the F2 modules. 
As the need for new or additional crew members arises, the personnel 
and training module will make inputs on requirements of the crew 
training [111], while the organisation and management module will 
make outputs on management decisions and operational arrangements 
based on the navigation tasks and crew status [110]. Such functional 
interplay necessitates modifications in crew training and management 
practices, ultimately influencing crew quality and proficiency [112].

Secondly, F4 is coupled with the F6 module. Operational scheduling 
requirements serve as inputs for F4, whereas F6 generates collision 
warnings utilizing radar data and lookout reports [93,105]. Modifica-
tions in operational scheduling prompt adjustments in route planning 
and risk control strategies [106]. These adjustments consequently in-
fluence inputs and outputs of F6, impacting the efficacy of collision risk 
detection [99].

Finally, the interaction between F8 and F10 demonstrates a signifi-
cant functional coupling. F8 processes inputs from navigation com-
mands and ship status to execute movements, course adjustments, or 
speed changes [94]. Subsequently, F10 initiates collision avoidance 
maneuvers, relying on collision warnings and the actions taken by F8 
[106]. Alterations in this coupling can necessitate modifications in ship 
manoeuvring strategies, thereby influencing the operational responses 
of F10 for collision avoidance [96,106]. 

Step 4: Functional Protection and Control

Conducting a functional protection and control analysis requires a 
detailed examination of the functional modules and their in-
terconnections within the FRAM. With insights into the functional de-
pendencies and changes outlined in Step 3, strategies and measures can 
be developed to mitigate the risks associated with each functional 
module [94,106].

Firstly, according to the coupling analysis of Step 3 between the F1 
module and the F2 module, specific measures should be taken to 
enhance the crew’s skills, safety awareness, and risk management ca-
pabilities. This includes implementing a comprehensive training pro-
gram, strengthening crew competency assessments, conducting an in- 
depth study of the International Regulations for Preventing Collisions 
at Sea, continuously assessing crew performance, and establishing 
effective communication channels to convey safety information [106, 
111]. Secondly, regarding the coupling between the F2 module and the 
modules F1, F3, F4, F6, F7, and F9, the following measures should be 
implemented: 1) Formulate a comprehensive training plan to ensure 
crew members undergo extensive training in safety operations, emer-
gency responses, and regulatory compliance, regularly updating their 

skills and qualifications according to the latest international standards 
[99]. 2) Optimize the voyage planning process by establishing an effi-
cient information flow mechanism, ensuring all decision-making levels 
operate based on the most current and accurate data [94]. 3) Thor-
oughly examine and optimize pre-sailing preparations, taking into ac-
count all potential risks, such as mechanical failures and meteorological 
conditions, with timely notifications to the relevant crew [93,106]. 4) 
Enhance emergency response capabilities by regularly rehearsing colli-
sion risk responses, ensuring crews can swiftly and effectively execute 
emergency collision avoidance measures, and introducing 
decision-support systems like collision warning systems. 5) Strengthen 
communication efficiency by optimizing the information transfer and 
feedback mechanisms to ensure the rapid and accurate exchange of 
critical information [113].

In the F4 module, coupling analysis reveals that it is coupled with the 
F2, F3, F5, and F6 modules. Consequently, when the F4 module expe-
riences functional resonance, it may induce resonance in these modules. 
Therefore, the following measures are recommended: 1) ensure orga-
nizational support for a comprehensive pre-sailing inspection, covering 
hull integrity, mechanical performance, navigational equipment, and 
safety equipment [113,96]. 2) Maintain an unimpeded flow of infor-
mation before and during the voyage, facilitating communication 
among crew members and with the ship’s management team [110,111]. 
For the Navigation Module (F5), its coupling with F2, F4, and F7 mod-
ules means that functional resonance in F5 could also resonate with 
these related modules. The suggested actions include: 1) complete all 
necessary preparations before departure and establish a multi-stage final 
confirmation process to mitigate safety risks [93]. 2) Ensure that man-
agement directly supervises key voyage decisions and conducts regular 
safety reviews. Regularly update and optimize navigational procedures 
and policies in line with international standards [105]. 3) Equip ships 
with modern collision warning systems and provide effective training 
for crews [99]. For the F10 module, due to its coupling with the F9 and 
F11 modules, the following measures are essential: 1) regularly train 
crew members in communication and conflict resolution skills, 
enhancing efficiency under stress or in emergencies. 2) Conduct regular 
emergency avoidance drills to ensure crew proficiency in critical ma-
neuvers. 3) Utilize data recording and analysis tools to monitor ship 
maneuvering performance and crew response efficiency. Regularly re-
view safety policies and practices to reduce collision risks effectively 
[94].

3.2.4. Methodology validation
To verify that the identified risk factors for ship collisions are not the 

result of random occurrence, a multi-stage random sampling of accident 
reports at intervals of 5%, 10%, 15%, and 20% is performed. The pur-
pose of this multi-stage sampling is to evaluate the stability and con-
sistency of the TM method across varying extents of data coverage. The 
method’s reliability in pinpointing critical risk factors across datasets of 
different sizes was gauged by comparing the outcomes at various sam-
pling rates. Each sampling acts as an independent assessment on a 
distinct dataset, thereby strengthening the validation process and 
enhancing understanding of how the analytical method responds to data 
variations. Additionally, risk factors are determined manually on an 
individual case basis to maintain objectivity and precision. By drawing 
comparisons with prior studies, pivotal risk factors in ship collisions are 
pinpointed, laying a robust groundwork for future risk management, 
prevention, and control initiatives. Should the key factors prove insuf-
ficiently representative, refining the data preprocessing steps and aug-
menting risk identification accuracy through consultations with domain 
experts may be required.

Variations in outcomes at distinct sampling rates offer a crucial 
foundation for evaluating the model’s robustness. A significant 
discrepancy in results may suggest heightened sensitivity of the model to 
dataset size or quality, necessitating appropriate adjustments. Through 
in-depth examination of these variations, the most stable and reliable 
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risk factors, as well as those influenced by data volume or quality, can be 
pinpointed. These insights enable the refinement of models and 
analytical approaches, incorporating robust statistical methods to 
improve result reliability and validity.

In the development of the FRAM for ship collisions, this paper 
infused AR results, accident reports and literature to refine and amplify 
its efficacy, resulting in marked enhancements in both practicality and 
adaptability. To assess the actual impact of FRAM, representative acci-
dent cases have been carefully selected for in-depth analysis. This pro-
cess confirmed the efficiency and reliability of the FRAM in real-world 
applications.

4. Results and discussions

4.1. Preliminary results by applying TM

In the analysis outlined in Section 3.1, a total of 96 keywords were 
initially extracted. However, this set included terms not directly relevant 
to the risk factor analysis of ship collision accidents. A manual review 
was conducted to filter out unrelated terminology, such as "classification 
society," "container," and "certificate of registry." Following this metic-
ulous review, 38 keywords were identified as significant risk factors for 
ship collision accidents. The findings, including these 38 risk factor 
keywords ranked by their TF-IDF frequency, are displayed in Table 5, 
while Fig. 4 illustrates the occurrence frequency of these keywords in the 
accident reports. An examination of Table 5 and Fig. 4 reveals that, 
although the ranking of risk factors by TF-IDF generally aligns with their 
frequency of occurrence, discrepancies are observed with terms like 
"Helm failure," "Mismanagement," as well as "Bad weather," "Obstacles," 
and "Poor boating skills."

Firstly, risk factors with higher weights warrant special attention. 
Notably, issues like "Negligent lookout", "Inadequate safety checks", 
"Low visibility", and "Inadequate management system" have received 
high frequency. These elements are prevalent in navigation safety con-
cerns and significantly influence navigation safety. Secondly, it is 
important not to overlook risk factors with lower weights. While factors 
such as "Failure of ship equipment" and "Failure to maintain safe dis-
tance" might receive lower scores, the possible impact of these elements 
on navigation safety should still be considered.

TM quantitatively evaluates maritime risk factors utilizing both 
frequency analysis and TF-IDF, revealing discrepancies between the two 
methodologies. According to Fig. 4 and Table 5, risk factors such as 
"Negligent lookout", "Inadequate safety inspections", "Low visibility", 
and "Lack of management system" have been identified as highly sig-
nificant. This highlights their prevalence in real-world scenarios and 

their potential to significantly compromise navigation safety. To miti-
gate these risks, it is recommended that safety oversight and training be 
enhanced by the appropriate authorities. On the other hand, the ranking 
of certain risk factors, like "Rudder failure" and "Improper management," 
varies when analyzed through frequency as opposed to TF-IDF. This 
variation suggests that the significance of these factors may differ across 
different contexts and accident types. Frequency analysis captures the 
total occurrences of risk factors across all incidents, whereas TF-IDF 
assesses their relative significance within specific accident categories, 
suggesting that TF-IDF may offer a more context-specific understanding 
of risk factor importance.

Fig. 5 presents a word cloud generated from the TF-IDF analysis of 
risk factors, where the size of the font corresponds to the frequency of 
occurrence within the dataset. Words situated closer to the center of the 
cloud denote a more substantial causal association with collision risks. 
The examination of both Table 5 and Fig. 5 demonstrates that certain 
risk factors, including "Negligent lookout," "Insufficient safety in-
spections," "Low visibility," and "Imperfect management system," occur 
frequently and exert a notable influence on navigation safety. Chief 
among these, "Negligent lookout" is mainly ascribed to the crew’s failure 
to maintain continuous vigilance over the vessel’s surroundings, thereby 
impeding their capacity to promptly identify potential hazards. "Insuf-
ficient safety inspections" signify lapses in the enforcement of compre-
hensive safety protocols, thereby permitting potential threats to remain 
undetected. The risk factor of "Low visibility," often resulting from 
adverse weather conditions such as fog or heavy rain, is a critical 
element in maritime accidents by impeding navigational visibility. 
Moreover, "Imperfect management systems" are associated with in-
sufficiencies in operational oversight and safety practices, typically 
stemming from the inadequate implementation of safety measures by 
shipping companies or regulatory bodies. Additional significant factors 
include poor communication, which is frequently emphasized due to its 
role in engendering misunderstandings and navigational errors among 
crew members. Fatigue, which detrimentally impacts crew alertness and 
decision-making, is also underscored, indicating the necessity for 
enhanced management of work schedules and rest periods. Further-
more, insufficient manning is identified as a substantial cause of oper-
ational overload and error, highlighting the need for adequate crew 
staffing on vessels. Collectively, these factors, frequently accentuated in 
the word cloud, delineate critical areas where interventions can be made 
to mitigate the risks associated with maritime accidents.

4.2. Mining results utilising Apriori algorithm

Utilizing the AR mining based on the Apriori algorithm, as detailed in 

Table 5 
Risk factors in English accident reports.

Risk factor Frequency TF-IDF Risk factor Frequencyy TF-IDF

Low visibility 597 0.1404% Inadequate security precautions 53 0.0172%
Poor communication 652 0.1331% Failure to use light or sound signals 51 0.0170%
Safety management system 513 0.1251% Aids to navigation system failure 44 0.0145%
Fatigue 372 0.0847% Poor sailing plans 39 0.0141%
Improper emergency response 354 0.0806% Heavy traffic on route 41 0.0137%
Negligence in lookout 236 0.0717% Adverse weather 37 0.0126%
Safety awareness 206 0.0679% Information exchange 38 0.0119%
Ship equipment failure 204 0.0507% Insufficient training 36 0.0113%
Failure to adequately consider risks 159 0.0410% Lack of experience 29 0.0094%
Insufficient manning 157 0.0406% Inspection and maintenance 21 0.0073%
Break the rule 146 0.0381% Insufficient qualifications 20 0.0069%
Not using safe speed 106 0.0334% Strong tidal streams 15 0.0056%
Safety culture 109 0.0298% Failure to wear a pfd 13 0.0046%
Drug and alcohol 100 0.0279% Crew competence 12 0.0043%
Situational awareness 92 0.0266% Poor concentration 12 0.0043%
Improper operation 90 0.0252% Sleep debt 10 0.0038%
Conversation 84 0.0237% Stability and structure 5 0.0020%
Omission 69 0.0221% Manoeuvrability of the vessel 4 0.0016%
Failure to take emergency evasion 55 0.0187% Wind 5 0.0013%
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Section 3.2.2, this paper extensively analyses the relationships among 
38 risk factors. This analysis serves as the foundational groundwork for 
the development of the FRAM. Rstudio 4.0, equipped with the arules and 
arulesViz packages from the R programming language, was employed 
for conducting the AR mining. Within the Apriori algorithm, support and 
confidence are critical conditional metrics, with their threshold settings 
significantly influencing the outcomes of the AR mining process. The 
existing literature on AR mining does not prescribe a standard for 
determining the minimum thresholds for support and confidence [100, 
103]. To balance between avoiding the generation of superfluous rules 
and overlooking crucial ones, this paper adopts the average TF-IDF value 
of the risk factors as a reference point for setting the minimum support 
threshold [102,104]. Following this approach, adjustments to different 
levels of confidence were made, leading to the determination of the final 
thresholds for minimum support and confidence after numerous 
iterations.

For the determination of thresholds, it is established that the mean 
value of the frequency of occurrence of each attribute feature serves as 
the reference for the minimum support threshold [88,103,104]. Based 
on this reference, various combinations of minimum support and 

confidence are determined through many trials. After repeated trials and 
integration of prior studies [100–102], the minimum support and con-
fidence thresholds are ultimately established. After extensive trials, 
thresholds of 0.1 for minimum support and 0.7 for minimum confidence 
are established. This process yielded a total of 705 initial rules. 
Following Eq. (6), a higher lift indicates a stronger AR, whereas a lower 
value suggests a weaker association. Following the analysis, it was 
determined that the average lift value was 1.22. Subsequent experiments 
established the lift threshold at 1.22. The range of lift values observed 
after screening fell between 1.22 and 2.53. Consequently, rules that 
were duplicate, invalid, or had a lift less than 1.22 are excluded, 
resulting in 92 robust ARs being identified. Tables 5 and 6 display 
selected ARs along with their support, confidence, and lift. Additionally, 

Fig. 4. Risk factors in the mining of accident reports.

Fig. 5. Wordcloud of risk factors using TM.

Table 6 
AR between risk factors by using the apriori algorithm (only a part).

Rules Support Confidence Lift

{Insufficient training} => {Negligence in 
lookout}

0.1842 0.7778 1.2315

{Improper operation} => {Improper 
emergency response}

0.2105 0.8000 2.1714

{Improper operation} => {Failure to 
adequately consider risks}

0.1842 0.7000 1.6625

{Failure to use fog light or sound signals} =>

{Not using safe speed}
0.2895 0.9167 2.0490

{Failure to use fog light or sound signals} =>

{Break the rule}
0.2368 0.7500 1.7813

{Poor communication} => {Failure to take 
emergency evasion}

0.3158 0.8000 1.5200

{Break the rule,Failure to use fog light or sound 
signals} => {Failure to take emergency 
evasion}

0.2105 0.8889 1.6889

{Break the rule,Not using safe speed} =>

{Failure to use fog light or sound signals}
0.2105 0.8000 2.5333

{Not using safe speed,Judgment error} =>

{Failure to take emergency evasion}
0.1842 0.8750 1.6625

…… …… …… ……
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Fig. 7 illustrates a scatter plot visualizing the relationship among sup-
port, confidence, and lift values.

The lift is a crucial metric for evaluating the effectiveness of asso-
ciation rules. Analysis of Table 6 and Fig. 6 indicates that in scenarios 
involving "Failure to use safe speed" and "Violation of collision avoid-
ance rules", The situation of "Not using fog lights or audible signals" 
exhibits a significantly higher lift (support 0.2105, confidence 0.8, lift 
2.533). This indicates that under foggy or low visibility conditions, the 
absence of sound or light signals, compounded by unsafe speeds and 
disregard for collision avoidance regulations, elevates the risk of ship 
collisions. Conversely, the link between "insufficient training" and 
"negligent lookout" shows a less pronounced lift (support 0.1842, con-
fidence 0.7778, lift 1.2315), suggesting that inadequate training results 
in a failure to maintain vigilant observation, thereby increasing collision 
risks. Consequently, for the enhancement of maritime safety, it is 
imperative for shipping companies to improve crew training and un-
derscore the adherence to international collision avoidance protocols. It 
is essential to instruct crews on maintaining safe speeds and effectively 
utilizing navigational signals, including auditory and visual cues.

Analysis of mining data reveals a high confidence level for the co- 
occurrence of a lack of safety awareness with violations of collision 
avoidance rules, and the failure to execute emergency avoidance ma-
neuvers (support 0.2632, confidence 0.9091, lift 1.7273). This indicates 
that scenarios involving crew members’ deficiency in safety awareness 
and non-compliance with navigation rules are likely to result in a 
delayed or absent emergency response. Conversely, the confidence for 
the combined occurrence of inadequate emergency response, negligent 
lookout, and insufficient safety awareness is comparatively lower 
(support 0.1842, confidence 0.7, lift 1.33), suggesting a lesser likelihood 
of these events happening together. These findings offer significant in-
sights into improving crew safety awareness and adherence to naviga-
tion rules.

In addition, some of the AR involve more risk factors, such as "Poor 
emergency response" caused by the combination of five risk factors, 
"Helm failure, bad weather, unsuitable personnel, faulty on-board 
equipment, and high and low tides". This indicates that the occurrence 
of navigational risks is often the result of a combination of risk factors 
rather than a single factor.

4.3. FRAM case analysis results

In this paper, FRAM model was validated using a ship collision ac-
cident data from Irish waters in 2015 as a case study. The incident, 
which involved two fishing vessels, resulted in the severe damage and 
sinking of one vessel, while the other sustained moderate damage. It was 
examined in depth utilizing the FRAM network as described in Section 
4.3. 

Step 1:Functional Identification and Functional Description

Employing the FRAM network outlined in Section 3.2.3, the analysis 
condensed the ship collision process into eleven critical functional 
modules. Through comprehensive examination of accident reports, 
essential modules associated with collisions were pinpointed, including: 
F1 personnel training, F2 organizational management, F5 navigation, F6 
observation and lookout, F7 detection of collision risks, F8 emergency 
response, F9 communication and exchange, F10 ship manoeuvring, and 
F11 emergency avoidance. 

Step 2: Identify changes in functions

The analysis of the accident report indicates that the primary cause 
of the collision was crew fatigue, which impaired the ability for prompt 
risk detection and situational awareness. Additionally, the crew’s lack of 
adequate training, deficient seamanship skills, and unfamiliarity with 
the vessel’s AIS and navigation tools hindered their capacity to 

Fig. 6. Visualisation results for AR.
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maneuver effectively and prevent the collision. Moreover, the absence of 
collision risk alarms, mandatory under international maritime regula-
tions, was a critical oversight. Detailed variations in each function 
during the accident are elaborated in Table 7. 

Step 3: Functional coupling

Utilizing the FRAM network from Section 3.2.3 and the identified 
functional changes, Fig. 7 illustrates the functional coupling network for 
the collision. Key functions involved are shown as blue modules, with 
purple lines (1-9) indicating failure points in the links between them. 
Line 1 failures denote inadequate crew training affecting operational 
procedures and safety knowledge, impacting organizational manage-
ment, like insufficient route planning. Lines 2-6 failures highlight 
shortcomings in safety inspections, ship maintenance, and safety man-
agement, jeopardizing navigation. These failures could amplify damage 
and impede correct crew response in a collision, aligning with the ac-
cident’s primary risk factors. The failure associated with line 7 points to 
insufficient lookout measures, which delay timely maneuvers to avoid 
imminent collision risks. Line 8′s failure highlights the absence of 
essential alarm equipment, a critical component for enabling prompt 
crew action in the face of collision risks. Furthermore, the breakdown in 
line 9, attributable to poor seamanship skills and inadequate crew 
training, obstructs effective emergency maneuvers to circumvent 
collision. 

Step 4: Functional Protection and Control

1) For Line 1 failure (insufficient crew training)
Shipping companies should enhance safety and operational training 

for crew by developing regular and systematic training programs that 
ensure all crew receive comprehensive training, including emergency 
response and accident prevention. Maritime authorities should intensify 
the oversight of training quality provided by shipping companies to 
ensure that all crew training meets international maritime standards.

2) In response to the failure of Lines 2-6 (safety inspection, ship 
maintenance, and inadequacy of the safety management system)

Maritime Administration should regularly conduct comprehensive 
safety reviews and ship inspections to ensure that all equipment and 
operations comply with the latest safety standards. Shipping companies 
should implement an internal safety audit program, carry out regular 
self-inspections, and respond swiftly to identified issues to prevent po-
tential safety hazards from becoming actual risks.

3) In response to Line 7 failure (negligence in lookout)
Shipping companies should enhance lookout training for crew 

members, especially in complex or busy waters. Advanced surveillance 
technologies should be adopted to support manual lookouts, such as the 
installation of enhanced radar and Automatic Identification Systems 

(AIS). Maritime authorities should establish stricter lookout re-
quirements and conduct regular checks to ensure compliance.

4) In response to Line 8 failure (failure to install necessary alarm 
equipment)

Shipping companies should ensure all ships are equipped with alarm 
systems that meet the latest standards, such as collision warning systems 
and emergency response systems, and maintain and upgrade these sys-
tems regularly. Maritime authorities should regularly inspect ships for 
the proper installation of alarm systems and take punitive actions 
against those with inadequately installed or maintained systems.

5) In response to Line 9 failures (inadequate seafaring skills and lack 
of training for crew)

Shipping companies should increase training in advanced seaman-
ship skills, such as advanced navigation and emergency management, 
and provide ongoing support for career development. Insurance com-
panies could incentivize shipping companies to enhance their training 
quality by offering insurance discounts to those with exemplary training 
records and low accident rates.

4.4. Comparative analysis for model and result validation

4.4.1. Case study validation of FRAM
This paper developed the FRAM through AR and used the mined 

rules to improve the accuracy and consistency of the analysis. However, 
there is still some subjectivity and uncertainty present in the system 
analysis and modelling process. To evaluate the constructed FRAM (as 
shown in Fig. 3), it was compared with litertures, accident reports and 
ship avoidance guidelines issued by IMO. The evaluation results indicate 
that the FRAM is effective in the pilotage collision accident scenario of 
the case study and its functional modules and coupling structure are 
consistent with experience. Furthermore, the case study detailed in 
Section 4.3 demonstrates the utility of FRAM in identifying primary risk 
factors for ship collisions through the FRAM network analysis. This 
evaluation is based on the historical data and detailed account of a ship 
collision from an accident report, ensuring consistency with the report’s 
findings and recommendations.

4.4.2. Validation of risk factors
To verify the accuracy of the mining results, a manual sampling 

method was used to sample and validate 5%, 10%, 15%, and 20% of the 
accident reports. The results confirmed that the identified risk factors 
are consistent with the mining results, as shown in Fig. 8. In addition, to 
enhance the identification accuracy, this paper conducted an exhaustive 
comparison and analysis with other relevant literature. The studies 
reveal that there is consistency in identifying risk factors [62,87]. 
However, it also found significant differences upon closer analysis. 
Notably, the use of alcohol and drugs was scarcely mentioned in pre-
vious studies and was uncommon but infrequent in accident reports. 
This variation is mainly due to differences in culture and legal regula-
tions across countries. For instance, Chinese laws explicitly prohibit the 
use of alcohol and drugs during navigation, which is a contributing 
factor to the difference.

The results of the sample study showed consistent trends for 5%, 
10%, 15%, and 20% of the samples. None of these samples showed 
“Stability and structure”, indicating that most ships are stable before 
they set sail. The most common issue found was the “Negligence in 
lookout”, which was attributed to the traditional reliance on human 
lookout, judgment, and maneuvering in ship navigation. Crew members’ 
psycho-physiological and subjective interferences were identified as the 
main causes of such negligence. Secondly, “Safety awareness” and 
“Failure to take emergency evasion” are also noteworthy. Long voyages 
and extended crew operations can lead to a lapse in vigilance, coupled 
with insufficient safety education and training, resulting in ineffective 
emergency response when confronted with collision risks. This aligns 
with Sotiralis’s [21] research highlighting the increased likelihood of 
collisions caused by human errors such as negligent lookout and 

Table 7 
Functional changes identified for collisions in Northern Ireland waters in 2015.

Functional 
module

Function type Variation Relevant factors

F1 Personnel Internal Insufficient crew training and 
lack of familiarity with the 
ship’s equipment.

F2 Organizational External Failure to maintain the ship on a 
regular basis

F5 Personnel Internal Failure to follow COLREGs rules
F6 Personnel, 

environment
External Failure to maintain proper 

lookout due to fatigue and other 
factors

F7 Personnel, 
equipment

External Failure of a ship to install 
required navigation alarm 
equipment.

F10 Personnel External Poor sailing skills and 
emergency response
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Fig. 7. Functional module failures for collisions in Northern Ireland waters in 2015.

Fig. 8. Validation results for manual sampling of 5%, 10%, 15% and 20%.
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operational mistakes on ships.
It is worth noting that factors such as “Ship equipment failure”, 

“Conversation” and “Heavy wind” were not involved in either the 5% or 
10% samples, suggesting that the risks posed by these factors are rela-
tively small during ship navigation. However, risk factors such as 
miscommunication and high winds were present in 15% and 20% of the 
samples. In particular, 10% of the sample did not include factors like 
“Ship equipment failure”, “Conversation”, “Adverse weather”, and 
“Stability and structure”. This implies that these factors may have a 
lower probability of contributing to ship collisions. In contrast, “Con-
versation” was involved in 15% and 20% of the samples, indicating a 
higher potential impact on safety in actual navigation compared to 
factors like “Ship equipment failure”, “Conversation”, and “Stability and 
structure”.

4.5. Implications and discussions

Analysis of accident reports reveal inconsistencies in the accident 
reporting standards across different national maritime administrations, 
including report format, content, and accident descriptions. These dis-
crepancies complicate manual statistical analyses and data mining ef-
forts due to the variance in documentation. It is advisable for the IMO 
and other maritime entities to establish uniform accident reporting 
standards applicable to all nations. The structure of these reports should 
encompass detailed descriptions and specifics of the involved vessels, an 
examination of the accident’s causative factors including human ele-
ments, ship machinery and equipment, environmental and navigational 
conditions, as well as organizational and managerial aspects. Addi-
tionally, the reports should detail the findings of the accident, actions 
taken for safety improvement, and further recommendations. Ensuring 
the comprehensiveness of accident reports is vital, including all perti-
nent information for an effective safety analysis.

The methodology of integrating TM and AR overcomes the subjec-
tivity inherent in traditional inductive statistical approaches, offering a 
novel theoretical framework for identifying maritime and other sector- 
specific security risks. Building upon the risk factors such as human 
and management factors mentioned in previous studies [87,101], it 
enables the discovery of various risk factors not commonly highlighted 
in prior studies, including drug and alcohol use, omission of emergency 
evasion actions, neglect in using light or sound signals, and sleep 
deprivation among others. These factors, although less frequently cited 
in prior research and underrepresented in conventional databases, 
emerge as crucial elements in our extensive analysis, significantly 
contributing to ship collisions. Specifically, the impairment of tactile 
abilities, judgment, and operational skills due to drug and alcohol con-
sumption among crew members can lead to such collisions. Addition-
ally, in conditions of low visibility, such as fog, the failure to activate 
lights or sirens in line with collision avoidance regulations can hinder 
the detectability of the vessel by others, increasing the likelihood of 
accidents.

In the AR-based deep mining study, appropriate support and confi-
dence thresholds were determined based on the specific context of the 
research. The determination of these thresholds considers the study’s 
objectives, the characteristics of the dataset, and insights from previous 
studies. Adjusting these thresholds facilitates the extraction of ARs at 
varying levels, enabling a more detailed analysis of the factors 
contributing to ship collision accidents. It is important to acknowledge 
that varying support and confidence thresholds yield different AR 
findings. Lower thresholds might uncover a broader array of ARs, 
including some that are less significant or contain noise. Conversely, 
higher thresholds could overlook certain potential associative relation-
ships. Hence, in applying AR mining techniques, the selection of 
thresholds should be carefully considered to ensure the derivation of 
accurate and meaningful ARs, tailored to the study’s specific needs.

The application of the FRAM in examining ship collision accidents 
enhances comprehension of the underlying mechanisms and 

contributing factors. Unlike traditional linear analysis methods [85] and 
the AR algorithms, which can only capture correlations between risk 
factors [88], FRAM addresses the challenges of dissecting complex and 
dynamic systems by moving beyond conventional linear analyses, of-
fering insights into accident complexity. It underscores the criticality of 
training crew members in effective lookout procedures and the timely 
updating of collision warning systems, particularly in intricate and 
heavily trafficked waterways, a consideration that has been compara-
tively underemphasized in traditional studies, facilitating, and enables 
the identification of potential negative resonances between functions. 
This method elucidates the intricate factors and their interactions 
leading to accidents, crucial for developing effective prevention and 
mitigation strategies. Nevertheless, applying FRAM to ship collision 
accidents presents certain limitations. Constructing and analyzing 
FRAM networks necessitates extensive data and expertise, with practical 
applications often hampered by data acquisition challenges, particularly 
concerning novel risk factors and functional modules. To address these 
challenges, this study incorporates the AR mining with the FRAM. This 
integration utilises both the data mining capabilities of AR to provide 
data support for FRAM, and the interpretive capabilities of FRAM to help 
understand the possible causal mechanisms of the mined rules in the 
context of ship collisions. Therefore, this innovative framework further 
extends and improves ship collision accident analysis, offering a 
data-driven and objective benchmark in this domain.

To mitigate potential risk factors including low visibility, commu-
nication barriers, and inadequate safety management systems, shipping 
companies can enhance risk management to diminish accidents, reduce 
economic losses, and augment the efficiency and safety of ship opera-
tions. It can also lower the costs associated with repairs, insurance, and 
legal fees due to accidents. Maritime administrations and authorities 
bear the responsibility to improve the oversight of ship safety manage-
ment systems, develop more effective policies and regulations, and 
establish legal standards regarding issues like alcohol and drug use. 
Implementing safety awareness education, training, and compliance 
checks can decrease accidents resulting from negligence, fatigue, or 
improper handling. Moreover, ensuring optimal crew training and cer-
tification processes is essential for crew members to acquire necessary 
skills and qualifications. Insurance companies can motivate shipping 
companies to adopt preventive measures through accurate risk assess-
ment and setting reasonable premium rates, potentially influencing in-
surance product pricing strategies and reducing claim risks. For 
researchers in ship collision analysis, the integration of TM and FRAM 
offers innovative research methodologies and encourages interdisci-
plinary collaboration, deepening the understanding of the systemic na-
ture of ship collisions. Manufacturers of maritime equipment should 
prioritize the development of advanced technologies and equipment, 
including enhancements to ship stability, manoeuvrability, and auxil-
iary navigation systems, while ensuring reliability and minimal main-
tenance requirements. These manufacturers are also tasked with 
providing comprehensive technical support to shipping companies, 
ensuring the effective use of such advanced equipment.

5. Conclusions

This paper constructs a new maritime accident database to 
comprehensively explore the risk factors of ship collision, which not 
only fills the gap of the lack of risk data but also overcomes the limita-
tion of previous studies that were largely based on standardised forms of 
secondary data source. Furthermore, the database also provides robust 
data support for combining TM and FRAM to analyse the causes of ship 
collision risks. During the review of various accident reports (Section 
2.1), it was discovered that there are significant differences in the format 
and content of the reports, depending on the country. The findings can 
serve as a valuable reference for IMO and other maritime organisations, 
to standardize the format and content of accident reports.

This paper utilizes TM to identify 38 risk factors that are associated 
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with ship collision accidents. These risk factors are multi-dimensional 
and beyond the state-of-the-art in the literature, including human 
error, lookout negligence, lack of safety awareness, failure of ship ma-
chinery and equipment, steering gear failure, Inadequate safety man-
agement system, insufficient training, adverse environment, limited 
visibility, storms, and dense navigational environment. Additionally, the 
study introduced a machine learning algorithm based on AR to discover 
strong associations between these risk factors. This analytical approach 
lays the groundwork for investigating the causes of ship collision acci-
dents and constructing the FRAM network of ship collision.

Employing the Apriori deep mining technique, it constructs a time 
series-based FRAM network to analyse ship collision accidents. The 
collision process is segmented into 11 functional modules, facilitating a 
comprehensive qualitative analysis of the causative risk factors inherent 
in each module. The findings indicate that the primary causal factors in 
the human module include negligence of lookout, operational errors, 
and insufficient safety awareness. Concurrently, rudder failure emerges 
as a significant factor within the ship machinery and equipment module. 
The proposed TM-FRAM model facilitates a comprehensive analysis of 
the factors contributing to ship collisions. By segmenting the collision 
process into distinct functional modules, the model yields critical and 
new insights for ensuring the safe navigation of ships. This methodology 
not only strengthens the theoretical underpinnings of maritime safety 
risk assessment but also provides insight for pioneering a methodolog-
ical framework applicable across various domains.

Future study should be devoted to collecting a wide range of data on 
ship collision accidents, continuously improving the data collection 
mechanism, constructing a more complete specialised thesaurus, and 
merging the thesaurus, to further improve the accuracy of risk causation 
mining. With ongoing advancements in data mining technology, incor-
porating time series analysis could enable researchers to examine the 
dynamic evolution of risk elements over time, thereby enhancing the 
promptness of risk assessments. The effectiveness of the FRAM meth-
odology is contingent upon the thoroughness and reliability of the data. 

To mitigate these constraints, it is advisable to augment data stan-
dardization and incorporate sophisticated validation techniques to 
refine future analyses. Moreover, subsequent efforts should contemplate 
its integration with other risk assessment methodologies, such as FTA 
and BN, to construct a more exhaustive risk assessment framework. 
Furthermore, a detailed exploration of the functional resonance mech-
anism within the FRAM is crucial for understanding the interplay and 
impact of various functions on ship collision incidents, ultimately 
facilitating quantitative analysis within the FRAM framework.
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Appendix

Table 8 
FRAM function module detailed description.

Functional 
module

Input Output Precondition Resource Time Control

Crew training Untrained crew Trained crew, training 
certificates, 
seaworthiness certificates

When new or 
additional crew is 
required

Trainers, training 
facilities, teaching 
materials

Before working on 
the ship

Shipping companies

Organisation and 
Management

Navigation tasks, crew 
status

Completed safety 
inspections and ship 
maintenance, adequately 
manned and with a sound 
management system

Ship in operation with 
crew on duty

Managers, 
communication 
systems, etc.

Before the ship sets 
sail

Managers, 
management system 
regulations for 
shipping companies

Decision-making 
and planning

Ship operating 
arrangement 
requirements

Develop route planning, 
risk control measures

Sailing plans need to be 
determined

Captain, navigation 
equipment, risk 
assessment tools, etc.

Pre-departure and 
continuous updates

Captain, navigation 
system

Prepare to set sail Sailing command, ship 
status

Fully equipped, awaiting 
sailing

Safety inspection and 
ship equipment 
maintenance have 
been carried out, and 
the ship is seaworthy

Ship equipment, 
crew, navigation 
information

Before sailing, when 
the ship arrives at 
the port

Notice of sailing

Navigation Ship ready, awaiting 
sailing

Navigate following 
maritime rules 
(International Maritime 
Rules (COLREGS)), 
maintain safe speed

Ship ready and 
received sailing 
commands

Navigational 
equipment, crew, 
communication 
system

During navigation Captain, navigation 
system

Observations and 
lookouts

Current navigation 
status, observation 

Report navigation status, 
navigation environment, 
natural conditions, etc.

During vessel 
operation

Telescope, radar, AIS 
system, etc.

During lookout, in 
real-time

Lookout personnel

(continued on next page)
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Table 8 (continued )

Functional 
module 

Input Output Precondition Resource Time Control

requirements, lookout 
equipment

Discovering 
collision risk

Lookout report, radar, 
AIS, and other data

Collision warning When there is a 
potential collision risk

Radar, collision 
warning system, crew

As soon as there is a 
potential collision 
risk

Collision warning 
system

Emergency 
handling

Collision warning, 
emergency plan

Emergency action Collision warning 
issued

Emergency 
equipment, crew

Immediately in an 
emergency

Emergency plan, 
captain

Communication 
and exchange

Communicating and 
conveying evasive 
actions when emergency 
action is inconvenient

Communicate and 
convey evasion 
information

When Information 
Exchange is Needed

Communication 
Equipment, Crew

During 
Communication, 
Real-Time

Communication 
Equipment, 
Communication 
Protocol

Ship manoeuvring Navigation Commands, 
Ship Avoidance 
Information

Execute Maneuver, 
Change Course or Speed, 
etc., for Emergency 
Collision Avoidance

When Need to Change 
Course or Speed

Helmsman, Ship 
Steering Equipment

Execute Upon 
Command Delivery

Captain, Helmsman

Emergency 
Collision 
Avoidance

Emergency Collision 
Avoidance Instructions, 
Emergency Reports, etc.

Actions to Adjust Ship 
Position to Avoid

Avoidance Instructions 
Issued

Emergency steering 
system, emergency 
avoidance manual, 
etc.

Immediate Action in 
Emergency

Avoidance Guide, 
Captain

Data availability

Data will be made available on request.
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[58] Özkan U, Umut Y, Ersan B. Analysis of grounding accidents caused by human 
error. J Mar Sci Technol 2015;23. https://doi.org/10.6119/JMST-015-0615-1.

[59] Fan S, Yang Z, Blanco-Davis E, Zhang J, Yan X. Analysis of maritime transport 
accidents using Bayesian networks. Proc Inst Mech Eng Part O J Risk Reliab 2020; 
234:439–54. https://doi.org/10.1177/1748006×19900850.

[60] Fan S, Yang Z, Wang J, Marsland J. Shipping accident analysis in restricted 
waters: lesson from the Suez Canal blockage in 2021. Ocean Eng 2022;266: 
113119. https://doi.org/10.1016/j.oceaneng.2022.113119.

[61] Kum S, Sahin B. A root cause analysis for Arctic Marine accidents from 1993 to 
2011. Saf Sci 2015;74:206–20. https://doi.org/10.1016/j.ssci.2014.12.010.

[62] Arici SS, Akyuz E, Arslan O. Application of fuzzy bow-tie risk analysis to maritime 
transportation: the case of ship collision during the STS operation. Ocean Eng 
2020;217:107960. https://doi.org/10.1016/j.oceaneng.2020.107960.

[63] Ebrahimi H, Sattari F, Lefsrud L, Macciotta R. Analysis of train derailments and 
collisions to identify leading causes of loss incidents in rail transport of dangerous 
goods in Canada. J Loss Prev Process Ind 2021;72:104517. https://doi.org/ 
10.1016/j.jlp.2021.104517.

[64] Graziano A, Teixeira AP, Guedes Soares C. Classification of human errors in 
grounding and collision accidents using the TRACEr taxonomy. Saf Sci 2016;86: 
245–57. https://doi.org/10.1016/j.ssci.2016.02.026.

[65] Rudin-Brown CM, Harris S, Rosberg A. How shift scheduling practices contribute 
to fatigue amongst freight rail operating employees: findings from Canadian 
accident investigations. Accid Anal Prev 2019;126:64–9. https://doi.org/ 
10.1016/j.aap.2018.01.027.

[66] Çakır E. Fatal and serious injuries on board merchant cargo ships. Int Marit 
Health 2019;70:113–8. https://doi.org/10.5603/IMH.2019.0018.

[67] Coraddu A, Oneto L, Navas De Maya B, Kurt R. Determining the most influential 
human factors in maritime accidents: a data-driven approach. Ocean Eng 2020; 
211:107588. https://doi.org/10.1016/j.oceaneng.2020.107588.

[68] Djurhuus R. Fumigation on bulk cargo ships: a chemical threat to seafarers. Int 
Marit Health 2021;72:206–16. https://doi.org/10.5603/IMH.2021.0039.

[69] Fan S, Yang Z. Analysing seafarer competencies in a dynamic human-machine 
system. Ocean Coast Manag 2023;240:106662. https://doi.org/10.1016/j. 
ocecoaman.2023.106662.
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[103] Özaydın E, Fışkın R, Uğurlu Ö, Wang J. A hybrid model for marine accident 
analysis based on Bayesian Network (BN) and Association Rule Mining (ARM). 
Ocean Eng 2022;247:110705. https://doi.org/10.1016/j.oceaneng.2022.110705.

[104] Chen Y, Lou N, Liu G, Luan Y, Jiang H. Risk analysis of ship detention defects 
based on association rules. Mar Policy 2022;142:105123. https://doi.org/ 
10.1016/j.marpol.2022.105123.

[105] Peng C, Zhen X, Huang Y. A multi-layer Fram based approach to short-term 
human-automation resilience assessment: a case study on dynamic positioning 
system in offshore tandem offloading process. Ocean Eng 2022;266:112728. 
https://doi.org/10.1016/j.oceaneng.2022.112728.

[106] Qiao W, Ma X, Liu Y, Deng W. Resilience evaluation of maritime liquid cargo 
emergency response by integrating FRAM and a BN: a case study of a propylene 
leakage emergency scenario. Ocean Eng 2022;247:110584. https://doi.org/ 
10.1016/j.oceaneng.2022.110584.

[107] Fan S, Yang Z. Accident data-driven human fatigue analysis in maritime transport 
using machine learning. Reliab Eng Syst Saf 2024;241:109675. https://doi.org/ 
10.1016/j.ress.2023.109675.

[108] Uronen L, Moen H, Teperi S, Martimo KP, Hartiala J, Salanterä S. Towards 
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