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Abstract: Evapotranspiration plays a vital role in the design of irrigation systems, water
resource management, and hydrological modeling, especially in arid and semi-arid re-
gions. This study focuses on projecting evaporation rates using three machine learning
models: a Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Gaussian
Process Regression (GPR), in combination with Principal Component Analysis (PCA) for
dimensionality reduction. Meteorological data from 1980 to 2022, including the minimum
and maximum temperatures, rainfall, and solar radiation, were used to train and test the
models. Projections were made for Kirkuk Governorate by downscaling five global climate
models under two climate scenarios: SSP2-4.5 and SSP5-8.5. These scenarios were used to
predict future evaporation rates at a rainwater harvesting site for four future periods (P1,
P2, P3, and P4) and compare them to the historical reference period (RP). The performance
of the models was evaluated using three statistical metrics: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and the regression coefficient (R2). Among the mod-
els, the MLP demonstrated superior predictive accuracy, with values of MAE = 0.02 mm,
RMSE = 0.10 mm, and R2 = 0.95. The SVM model showed a slightly lower performance,
with MAE = 0.21 mm, RMSE = 0.13 mm, and R2 = 0.92. The GPR model’s performance
was comparable, yielding MAE = 0.22 mm, RMSE = 0.37 mm, and R2 = 0.91. The historical
reference period (RP) showed an average evaporation rate of 1370.9 mm per year. Under
the SSP2-4.5 scenario, evaporation is projected to increase by 57.2%, while under SSP5-8.5,
the increase is projected to be 85.9%. Under the SSP2-4.5 scenario, the evaporation rate for
period P1 (2031–2050) showed a slight increase of 1.61%, while for periods P2 (2051–2070)
and P3 (2071–2090), the increases were smaller, at 1.89% and 1.93%, respectively. The
highest increase occurred in P4 (2091–2100), with a rate of 2.68%, compared to an observed
value increase of 1.33%. These findings suggest that climate change will significantly
elevate evaporation rates in the region, emphasizing the need for adaptive water resource
management strategies.

Keywords: evaporation; climate change; water sustainability; semi-arid region

1. Introduction
Reference Evapotranspiration hereinafter referred to as evaporation plays a critical

role in the hydrological cycle, where water transforms from liquid to vapor through heat
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energy input. Managing limited water resources sustainably, especially amidst rapid
population growth, is increasingly crucial for agricultural production [1]. Evaporation
uses up a large amount of the water supplies accessible in hot regions by contributing
considerably to water loss from rivers, canals, and open-water bodies. Even in humid
areas, evaporation is still important, albeit accumulating precipitation, especially during
rainy seasons, may dominate it. Additionally, the rate of evaporation plays a crucial role in
understanding climate change and global warming, as it accounts for a significant portion
of global precipitation loss [2].

Understanding the magnitude and variability of evaporation losses is essential for
designing and managing water resources effectively [3]. Reliable models are necessary
to quantify these losses accurately, especially as water resources become scarcer. Water
resource development projects and irrigation systems rely heavily on long-term average
values of evaporation for their design and operation [4]. As a result, an accurate evapo-
ration calculation is essential to guaranteeing the sustainable and effective management
of water resources. In addition to machine learning-based models, another widely used
approach for measuring evaporation is the Penman evaporation equation, which combines
energy balance and aerodynamic principles to estimate evaporation from a surface. This
method accounts for factors such as the temperature, solar radiation, wind speed, and
humidity. A recent study by [5] applied the Penman equation in the context of rainwa-
ter harvesting systems for ablution purposes, highlighting its feasibility and accuracy in
predicting evaporation rates.

Evaporation rates are affected by various meteorological factors, such as maximum
and minimum temperatures, sunshine duration or solar radiation, wind speed, relative
humidity, rainfall, and vapor pressure, which are specific to each location [6]. However,
continuously and accurately measuring pan evaporation is difficult. In these cases, stochas-
tic or neural network models are vital for estimating pan evaporation from available
climatic data, often producing more reliable results than direct measurements [7]. Since
a direct evaporation measurement using evaporation pans is costly and inconvenient
due to the experimental setup and logistical issues, evaporation is typically estimated
through regression-based methods or other parametric models like Empirical Evaporation
Equations, as well as the Water-Budget and Energy-Budget methods [8].

Researchers have developed various models for predicting evaporation pan evapora-
tion across different locations in this globe. Numerous evaporation forecasting techniques
currently in use are based on empirical correlations derived from climatological parameters
or deterministic principles, such as the integrated energy balance-vapor transfer approach.
These approaches often require rigorous local calibration, which limits their applicability
on a global scale [9]. To recognize these limitations, there is a growing need to enhance
conventional modeling techniques to achieve a better performance by adopting new and
advanced methods.

Evaporation is a complex process characterized by non-linear behavior, making it
suitable for modeling using Artificial Neural Networks (ANNs). To anticipate evaporation
data, artificial intelligence (AI) methods like support vector machines (SVM) and artificial
neural networks (ANN) have been widely and successfully applied. A major benefit of these
AI methods is their nonparametric nature, meaning they do not require prior knowledge of
the relationships between input variables and output data. ANNs are capable of capturing
complex patterns and relationships in data, which traditional methods may find difficult to
handle [10]. By leveraging ANNs, researchers aim to improve the accuracy and robustness
of evaporation predictions across diverse geographical and climatic conditions. In summary,
the evolution towards advanced modeling techniques like ANNs is driven by the desire to
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overcome the limitations of existing models, enhance the predictive accuracy, and enable
the more effective management of water resources impacted by evaporation [11].

Numerous researchers have developed various models using Artificial Neural Net-
works to predict pan evaporation in different regions around the world. For instance,
Al-Sudan and Saleem [7] demonstrated in their study the evaporation prediction by us-
ing machine learning techniques in Diyala in Iraq by using different models with five
input variables; the results showed a prediction enhancement in terms of MAE and RMSE
by 7.17% and 21.01%, 16.51% and 15.74%, and 23.14% and 26.64%, respectively. While
Gohrbani et al. [12] utilized a hybrid model of an artificial neural network to predict pan
evaporation in northern Iran as a semi-arid region, the results show that an optimal MLP-
FFA model outperforms the MLP and SVM model for both tested stations. For Talesh,
a value of WI = 0.926, NS = 0.791, and RMSE = 1.007 mm day−1 is obtained using the
MLP-FFA model, compared with 0.912, 0.713, and 1.181 mm day−1 (MLP) and 0.916, 0.726,
and 1.153 mm day−1 (SVM), whereas for Manjil, a value of WI = 0.976, NS = 0.922, and
1.406 mm day−1 is attained that contrasts 0.972, 0.901, and 1.583 mm day−1 (MLP) and
0.971, 0.893, and 1.646 mm day−1 (SVM). Hamza [13] used an artificial neural network to
predict evaporation in the southern region of Iraq in Basrah as a semi-arid region and he
used four input variables (temperature, rainfall, sunshine hours, and wind speed).

Konapala et al. [1] examined seasonal hydro-climate regimes using a non-parametric
analysis methodology. They assessed changes in the water availability brought on by simul-
taneous changes in the mean and seasonal precipitation and evaporation using precipitation
and evaporation. Rai et al. [14] used support vector machines, random forest approaches,
multiple linear regression, multivariate adaptive regression splines, and weekly pan evap-
oration modeling. Statistical metrics including the coefficient of determination (R2), the
Nash–Sutcliffe coefficient of efficiency (NSE), and root mean square error (RMSE) were
used to assess the efficacy of weekly pan-evaporation-estimating models for the Ranichauri
station, which is situated in Uttarakhand, India’s Mid-Himalayan area. Both under- and
over-predicted outcomes can be seen in the weekly pan evaporation values. However, all
these researchers utilized the pan evaporation prediction in different locations, but none of
these studies utilized the evaporation prediction under the impact of climate change and a
future projection. This study presents an original approach by employing and comparing
three advanced machine learning models—a Multi-Layer Perceptron (MLP), Support Vec-
tor Machine (SVM), and Gaussian Process Regression (GPR)—which are integrated with
climate projections and climatic scenarios. A unique aspect of this research is the incorpora-
tion of Principal Component Analysis (PCA) for dimensionality reduction, enhancing the
accuracy and performance of the models. Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) are both widely used dimensionality reduction techniques,
but they differ significantly in their approach and objectives. PCA is an unsupervised
technique, meaning it does not take into account any class labels when reducing dimen-
sions. It aims to maximize the variance in the data by identifying principal components in
orthogonal directions in which the data vary the most. PCA is particularly useful when
the goal is to capture as much information (variance) as possible from the original dataset,
irrespective of any classification or group membership. This study leverages five global
climate models under two significant climate scenarios: Shared Socioeconomic Pathways
(SSP2-4.5 and SSP5-8.5), providing a robust analysis of the potential impacts of climate
change. The research focuses on the semi-arid region of Kirkuk, in northern Iraq, to predict
evaporation rates under changing climate conditions, which has critical implications for
water resource management in such vulnerable environments.

The comparative analysis of three sophisticated models (MLP, SVM, and GPR), in
combination for this application with the integration of PCA with these models, improves
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the model efficiency and highlights the most important features influencing evaporation.
The application of this advanced methodology integrated under two climate scenarios
(SSP2-4.5 and SSP5-8.5) is specific to a semi-arid, climate-sensitive region (Kirkuk), offering
valuable insights into climate change impacts on evaporation in arid environments. The
main aim of this study is to predict evaporation under the impact of climate change by
developing multiple models including MLP, SVM with PCA, and GPR with PCA under
the impact of climate change and GCMs, and comparing these models and choosing the
best model for the evaporation prediction. This paper is organized as follows: Section 2
includes the climatic data and study region, then Section 3 illustrates the methodology,
Section 4 the results and discussion, and finally, Section 5 includes the conclusion.

2. Climatic Data and Study Region
2.1. Study Region

The Kirkuk Governorate is located in northern Iraq, bordered to the northeast by the
Zagros Mountains and to the west by the Lower Zab and Tigris Rivers, known for their
gentle flow. Kirkuk lies about 250 km (155 miles) from Baghdad, the capital and largest city
of Iraq. The study area is situated between latitudes 35◦28′ N and 35◦47′ N, and longitudes
44◦24′ E and 44◦40′ E, at an elevation of 350 m. The northeastern highlands of Iraq begin in
southern Kirkuk and stretch toward the borders of Turkey and Iran. Kirkuk is divided into
three distinct neighborhoods: Daquq, Al-Hawiga, and Dibis. Despite its relatively small
size, the governorate spans approximately 9679 square kilometers, representing around
2.2% of Iraq’s total land area. Kirkuk holds significant importance in agriculture [15].
According to Iraqi government estimates in 2007, Kirkuk’s population was about 902,019,
making up roughly 3% of Iraq’s total population.

2.2. Climatic Data

The climate in the Kirkuk Governorate ranges from semi-arid to Mediterranean,
characterized by warm summers and cold, rainy winters. The region experiences four
distinct seasons, with winter lasting from December to the end of February. During this
time, the weather is relatively mild to cool, with average daytime temperatures ranging
between 10 ◦C and 15 ◦C, though night-time temperatures can occasionally drop close
to freezing. The spring season lasts from March to May, and it is mild with average
temperature ranging from 16 ◦C to 25 ◦C; it is also one of the wetter seasons. Meanwhile,
the summer season is from June to September; it is hot and dry, often with temperatures
exceeding 40 C during the hottest months (July and August) and there is no rainfall during
these months. The autumn in Kirkuk is from October to November and is mild, and the
temperature starts to drop down and rainfall begins to increase during this time.

The rainfall season is mainly in winter through spring in the Kirkuk Governorate and
the average annual rainfall varies from 300–400 mm. Table 1 illustrates the average values
for the four main climate factors (the Min. temperature, Max. temperature, rainfall, and
sunshine hours for the period 1980–2022). Figure 1 shows the values of climatic data for the
study region of the Kirkuk Governorate. Four climatic variables were utilized in this study
(the Min. temp, Max. temp, rainfall, and sunshine hours SSH). The values of climatic data
varied, and the rainfall showed variation from maximum values around 45 mm to zero
values. Meanwhile, the max and min. temp. varied slightly as well. The sunshine hours
variation was less than the other three climatic variables. A Pearson correlation test was
performed for the climatic parameters and evaporation. The correlation test shows that
there is a strong correlation between the max. temp and min. temp. as the result equals
0.969, while the correlation between SSH, the max. temp, and min. temp. equal 0.927
and 0.900, respectively, and that indicates that there is a strong correlation between those
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variables. Rainfall shows less of a correlation with the max. temp., min. temp, and SSH
as the results were 0.699, 0.626, and 0.728, respectively. The evaporation shows a strong
correlation with the max. temp, min. temp, and SSH as the results were 0.949, 0.936, and
0.905, and less of a correlation with rainfall which was equal to 0.669, as shown in Figure 2.
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Table 1. Average values for main climatic data.

Months Av. Tmax. (◦C) Av. Tmin. (◦C) Av. Rainfall (mm) Av. SSH (hours)

J 10.1 9.8 66 5.4
F 15.9 6 62.8 6.1
M 20.4 9.5 48.8 7.2
A 26.9 14.7 40 7.8
M 34 20.7 16.1 9.2
J 40.2 25.7 0.2 11.2
J 43.6 28.8 0 14.5
A 43.1 28.2 0 11.0
S 37.4 24.0 1 10.2
O 31.6 19.2 15.1 8.1
N 22.6 11.5 45.8 6.6
D 15.4 6.5 57.2 4.5

3. Methodology
3.1. Input Data and Calibration

The study’s method for statistically downscaling future climate variables follows the
approach outlined by [16]. The downscaling employs statistical relationships between
large-scale GCM outputs and local climate variables to produce high-resolution projections.
This method assumes that historical climate data and large-scale atmospheric patterns (from
GCMs) can be used to predict local future climate conditions based on the projected changes.
Several statistical downscaling models, such as Nonhomogeneous Hidden Markov Models
(NHMM), MarkSim GCM, and the Long Ashton Research Station Weather Generator (LARS-
WG), have been identified [17]. The sixth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR6) uses data from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) (IPCC, 2023), which is incorporated into LARS-WG 8.0 [18,19].
Numerous tests have demonstrated that this model is successful in reproducing past
climatic conditions in a variety of locations [20].

Based on baseline parameters obtained from recorded weather data for the Kirkuk Gov-
ernorate from 1980 to 2010, climate forecasts for future periods were generated [21]. These
projections were created using CMIP6 data from the LARS-WG version 8.0 weather gener-
ator. The five global climate models (GCMs), CSIRO-Mk3.6.0, HadGEM2-ES, CanESM2,
MIROC5, and NorESM1-M, were chosen for the downscaling of future precipitation pro-
jections. These GCMs simulate how the Earth’s climate system will respond to increasing
greenhouse gas concentrations, providing important insights into future climate changes.
CSIRO-Mk3.6.0: developed by the Commonwealth Scientific and Industrial Research Or-
ganization (CSIRO), this model focuses on understanding the interaction between the
atmosphere, oceans, and land, with a specific emphasis on Australian and regional climate
impacts. HadGEM2-ES: Created by the UK Met Office, this model includes a fully cou-
pled Earth system approach, simulating physical, chemical, and biological processes. It is
particularly used for climate change projections across the globe.

CanESM2: developed by the Canadian Center for Climate Modeling and Analysis,
CanESM2 is an Earth system model that integrates atmospheric, oceanic, and biogeochem-
ical processes, providing climate projections for various regions, including Canada and
beyond. MIROC5: The Model for Interdisciplinary Research on Climate (MIROC) is devel-
oped by Japan. MIROC5 focuses on the interaction between atmosphere, oceans, and sea ice
and provides projections related to regional and global climate impacts. NorESM1-M: the
Norwegian Earth System Model (NorESM1-M) is developed to understand climate change
from both a regional and global perspective, particularly focusing on high-latitude regions
like the Arctic. These GCMs were selected for downscaling future precipitation under
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two climate scenarios: SSP2-4.5 and SSP5-8.5, which are part of the Shared Socioeconomic
Pathways (SSPs) framework.

The SSP framework represents different pathways of socioeconomic development,
combined with varying levels of greenhouse gas (GHG) emissions, to project possible
future climate conditions. This approach allows for the evaluation of the impacts of
both moderate (SSP2-4.5) and more extreme (SSP5-8.5) warming scenarios on regional
precipitation patterns.

The input parameters used in this study are rainfall, minimum and maximum tem-
peratures, and solar radiation (sunshine hours), which are utilized to predict evaporation
for the same period. However, future predictions beyond 2022 and extending to 2100
are not solely based on historical data from 1980–2022. Instead, they are derived from
climate projections using global and regional climate models (GCMs/RCMs) under dif-
ferent emission scenarios. Specifically, future climate data are generated based on Shared
Socioeconomic Pathways (SSPs), including SSP2-4.5 and SSP5-8.5, which simulate future
climate conditions under varying greenhouse gas emission levels.

These projected climate variables (rainfall, temperature, and solar radiation) serve as
inputs into our model for estimating future evaporation rates. The model is first trained
on historical data (1980–2022) to establish relationships between the input variables and
evaporation. Once the model is trained, it uses the projected climate data from the SSP
scenarios to predict evaporation rates for the period up to 2100.

For this study, all data were carefully calibrated, validated, and adjusted according to
the specific conditions of the Kirkuk study area, following the methodology outlined in the
study by [19]. The validation process involved both graphical tests (based on mean and stan-
dard deviation) and statistical tests, including the p-value and Kolmogorov–Smirnov (K-S)
test, to ensure a close similarity between the measured and synthetic climate data. Figure 3
illustrates the study’s methodological framework, providing a comprehensive overview of
the steps taken in the analysis. The model uses daily input parameters, including rainfall,
minimum temperature (Tmin), maximum temperature (Tmax), and sunshine hours (SSH).
These daily inputs are aggregated to produce monthly evaporation estimates, which serve
as the output of the model. To account for variations in the number of days per month, the
model dynamically adjusts by summing or averaging daily data depending on the context.
This ensures that the input dimensions remain consistent and reliable across all months,
providing accurate monthly evaporation predictions. The evaporation was calculated by
using Penman–Monteith evaporation method for the monthly observed evaporation.

3.2. Multi-Layer Perceptron Neural Network

A multi-layer neural network, also known as a multi-layer perceptron (MLP), is an
artificial neural network composed of multiple layers of interconnected nodes (neurons).
Each node functions as a simple processing unit, and the network is designed to model
complex relationships between inputs and outputs [8]. A multi-layer perception consists
of several interconnected layers of nodes (neurons), each acting as a simple processing
element. The network’s architecture is defined by the number of layers and nodes per
layer [22]. These hidden layers contain neurons that serve as computational units, often
described as the “black box” of the network due to their role in processing and transforming
the input data through complex computations.

The architecture of an MLP is characterized by the connections between neurons,
which are organized into a network of synaptic weights. Each of these weights signifies the
strength of the connection between two neurons. A weight of zero indicates the absence of
a connection, effectively isolating the neurons from each other.
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Notably, connections between neurons are only formed between different layers; there
are no intra-layer connections, meaning neurons within the same layer do not directly
interact [23]. This organized structure enables the network to learn patterns and make
predictions based on the input data.

Each node (neuron) in the network computes an input (Ij), which is the weighted
sum of the outputs (Oj) from the nodes in the preceding layer. Mathematically, this can be
expressed as:

Ij = i ∑ Wij × Oi (1)

where Wij represents the weight connecting node i in the previous layer to node j in the
current layer. Oi is the output of node I in the preceding layer. Figure 3 illustrates a
classic MLP structure, providing a visual representation of this interconnected architecture.
Figure 4 illustrates the input variables with hidden layers and output variables of MLP.
Figure 5 shows the training structure of input layers and a number of variables, the hidden
layers, and output layers of the multi-layer perceptron neural network of this research study.
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3.3. Support Vector Machine with PCA

SVM is a powerful tool that has been extensively applied to both classification and
regression tasks due to its robustness and effectiveness. SVM is not only useful for classifi-
cation, but also highly effective in regression problems, where it is referred to as Support
Vector Regression (SVR). The key idea behind SVM is to find a function that best fits the
data while maintaining a balance between model complexity and prediction accuracy. This
balance is achieved by minimizing a loss function subject to certain constraints, ensuring
that the predictions are as accurate as possible while avoiding overfitting [24]. The SVM
regression function can be expressed as:

f (x) = w.∅ (x) + b (2)
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where w is the weight vector that defines the orientation of the hyperplane in the trans-
formed feature space and ϕ(x) is a non-linear function that maps the input vector x into
a higher-dimensional space, allowing the model to handle non-linear relationships in the
data, while b is the bias term that adjusts the output to align with the target values. The ob-
jective of SVM in regression is to find the optimal weight vector w and bias b that minimize
the prediction error while satisfying the margin constraints. The model tries to fit the best
possible hyperplane (or line, in the case of linear regression) that lies within a predefined
margin of tolerance for error. The model was combined with PCA to improve the results
and minimize the error. This model was developed by using MATLAB software version 23.

3.4. Guassian Process Regression (GPR) and PCA

Gaussian Process Regression (GPR) is a non-parametric, Bayesian approach to re-
gression that provides a probabilistic framework for modeling and predicting complex,
non-linear relationships between input variables and outputs. Unlike traditional regression
models, GPR offers flexibility by defining distribution over functions, allowing for the
incorporation of prior knowledge and the estimation of uncertainty in predictions. The
method relies on a kernel function to measure the similarity between data points, with
common choices including the squared exponential and Matérn kernels [25].

3.5. Model Evaluation and Performance

Several common statistical parameters were used to evaluate the model structures’
performance after they had been calibrated using the training dataset. According to
Adamowski [24], these standards are crucial for measuring model prediction mistakes
and giving a precise indication of accuracy in subsequent forecasts [25]. Several different
statistical measurements, including the coefficient of correlation (R), mean absolute error
(MAE), mean squared error (MSE), and root mean squared error (RMSE), will be used in
the model calibration. Equations (3)–(6) provide a summary of these indications.

MAE =
∑N

m=1
∣∣xo − xp

∣∣
N

(3)

MSE =
∑N

m=1
(
xo − xp

)2

N
(4)

RMSE =

√
∑N

m=1
(
xo − xp

)2

N
(5)

R =

 ∑N
m=1 (xo − xo)

(
xp − xp

)√
∑(xo − xo)

2∑
(
xp − xp

)2

 (6)

where N is the sample size, xo stands for observed water consumption, xp for expected
water demand, xp for the mean of predicted demand, and xo for the mean of observed
consumption.

To estimate future evaporation, the projected climate data from the downscaled model
are applied to an MLP. It is assumed that the model parameters, such as weights and the
number of MLP neurons, remain constant in the future.

4. Results and Discussion
4.1. Evaporation Using MLP Model with PCA

To build and train the neural network for evaporation prediction, the MLP model
was created using MATLAB 2023a. Numerous statistical procedures were used to evaluate
the model’s functionality. The ANN model was constructed using evaporation data as its
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output and the daily rainfall, minimum and maximum temperature, and sunshine hour
data as the input parameters. Three subsets of the dataset were created: a training set (70%),
an evaluation set (15%), and a validation set (15%). The 1980–2022 timeframe for the data
allowed for a rapid and effective model training approach. The data were analyzed first
by applying PCA, which can help reduce overfitting and reduces dimensionality. Figure 6
illustrates the PCA analysis for the input and output climatic parameters.
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The network was trained using the training set, and its performance was tracked
during the training phase using the validation set. When the validation set’s error dropped
to its lowest value, training was stopped. A test dataset that was not used during the
training phase was then used to evaluate the model’s performance. With an R2 value of
0.95, which indicates a high level of accuracy in the model’s predictions, Figure 7 shows
the relationship and validation model between the observed and projected evaporation.
The time series and relationship between the simulated and observed evaporation for the
historical data (1980–2022) are displayed in Figure 8. The model performed well, as the
observed and simulated results closely aligned, showing only an R2 of 0.95, which indicates
a good performance and accuracy for the model.
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In comparison to the baseline era, the evaporation rate for period P1 (2031–2050)
increased by about 1.5% under the SSP2-4.5 scenario. There was a 1.73% increase for P2
(2051–2070) and a 1.81% increase for P3 (2071–2090). P4 (2091–2100) had the largest increase,
with the evaporation rate rising by almost 2.12% above the baseline. With rises of 1.76% and
1.87% in P1 and P2, respectively, and 1.92% and 2.23% in P3 and P4, the SSP5-8.5 scenario
demonstrated higher evaporation increases than SSP2-4.5. In the Kirkuk study area, the
SSP5-8.5 scenario had a greater effect on evaporation than SSP2-4.5. Figures 9 and 10,
respectively, display time series data for evaporation over all time periods under the SSP2-
4.5 and SSP5-8.5 scenarios for MLP with PCA. Table 2 presents the evaluation results for
the MSE, MAE, and R2 of the three average evaporation models.
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Table 2. Evaluation of Three Average Evaporation Models.

Model Input Type MAE (mm) RMSE (mm) R2

MLP 0.02 0.10 0.95

SVM 0.21 0.13 0.92

GPR 0.22 0.37 0.91
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Figure 10. Time series evaporation under SSP5-8.5 scenario for MLP and PCA.

4.2. Evaporation Using SVM Model with PCA

The second model was developed using Support Vector Machine (SVM) techniques
to predict and estimate evaporation. An SVM is a non-statistical binary classification
technique that has gained significant attention from researchers in recent years [26]. There
are two types of SVM models: Support Vector Classification (SVC) and Support Vector
Regression (SVR). While SVC is used for classifying data into different categories, the SVR
framework is designed for prediction problems [27] This study applied the SVR model
using four predictors: rainfall, minimum temperature (minT), maximum temperature
(maxT), and sunshine hours (SSH). Figure 11 illustrates the validation model for the mean
ensemble evaporation with an R2 value of 0.92, indicating good model accuracy, although it
is slightly lower than the Neural Network model. Figure 12 shows the relationship between
the observed and predicted evaporation values in the time series for SVM with PCA. Under
the SSP2-4.5 scenario, the evaporation rate for period P1 (2031–2050) showed a slight
increase of 1.61%, while for periods P2 (2051–2070) and P3 (2071–2090), the increases were
smaller, at 1.89% and 1.93%, respectively. The highest increase occurred in P4 (2091–2100),
with a rate of 2.68%, compared to an observed value increase of 1.33%. Figures 13 and 14
depict the evaporation time series under both the SSP2-4.5 and SSP5-8.5 scenarios for SVM
with PCA.
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4.3. Evaporation Gaussian Process Regression (GPR with PCA)

Figure 15 illustrates the validation model of observed values versus the predicted
values for evaporation. The R2 value equals 0.91. Figure 16 demonstrates the time series
values for observed and predicted values for the historical data (1980–2022). While Figure 17
depicts the time series of observed and predicted evaporation values for all periods under
the SSP2-4.5 scenario. The evaporation values increased under the SSP5-8.5 scenarios and
as illustrated in Figure 18.

The future projection for evaporation is increased for both models MLP and SVM but
the MAE, and RMSE for the MLP model are less than in SVM for all periods and under
both climate scenarios. The ensemble validation R2 for MLP is 0.95 and higher than in
SVM which is 0.92, the MAE RMSE for MLP model values were 0.02 mm and 0.10 mm
respectively, and less than the validation values of SVM of 0.21 mm, and 0.13 mm which
means that MLP model is more accurate and reliable than SVM model. While GPR model
showed values of model performance for MAE, and RMSE equal to 0.22 mm and 0.37 mm
respectively. Therefore, the performance of the MLP technique is more adequate than
the SVM and GPR models. The following Table 3 shows the average annual evaporation
of the baseline compared to future projection evaporation under the SSP2-4.5 and SSP5-
8.5 scenarios.
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Table 3. The average annual evaporation of RP/historical compared to future projection evaporation
under the SSP2-4.5 and SSP5-8.5 scenarios.

Scenario AV. Evaporation mm year−1 Av. Evaporation Rate Change %

Baseline period 1370.9 -

SSP2-4.5
P1 P2 P3 P4

57.2%
1634.1 1651.3 1671.8 1689.8

SSP5-8.5 1732.2 1744.2 1753.4 1764.3 85.9%

4.4. Evaporation Using SVM, MLP, and GPR with PCA

Compared to the baseline period, the evaporation rate under the SSP2-4.5 scenario
shows a gradual increase across future periods. The percentage increases in evaporation
rates presented in this research are based on the comparison between baseline historical
evaporation rates (1980–2022) and the future predicted rates under the SSP2-4.5 and SSP5-
8.5 climate scenarios. For P1 (2031–2050), evaporation rises by approximately 1.5%. This
increase continues with a 1.73% rise in P2 (2051–2070) and 1.81% in P3 (2071–2090). The
largest increase occurs in P4 (2091–2100), where the rate climbs by nearly 2.12% above the
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baseline. In contrast, the SSP5-8.5 scenario presents higher increases in evaporation across
all periods compared to SSP2-4.5. For P1 and P2, the evaporation rate increases by 1.76%
and 1.87%, respectively. In P3, it rises by 1.92%, while in P4, the increase reaches 2.23%.
These figures demonstrate that the SSP5-8.5 scenario has a stronger impact on evaporation,
particularly in the Kirkuk study area, where its effect is more pronounced than under
SSP2-4.5. The MAE and RMSE values for MLP were 0.02 and 0.10, respectively; compared
to the SVM values with PCA, the values were higher and equal to 0.21 and 0.13, respectively,
and for the evaporation rates under the SSP2-4.5 scenario, the evaporation rate for period
P1 (2031–2050) showed a slight increase of 1.61%, while for periods P2 (2051–2070) and
P3 (2071–2090), the increases were smaller, at 1.89% and 1.93%, respectively. The highest
increase occurred in P4 (2091–2100), with a rate of 2.68%, compared to an observed value
increase of 1.33%. For GPR with PCA values of the model performance for MAE and RMSE,
the results were equal to 0.22 and 0.37, respectively, and higher than the MLP and SVM
with PCA. Therefore, the performance of the MLP technique is more adequate than the
SVM and GPR models with PCA. The average annual evaporation was calculated by using
the Penman–Monteith method as a baseline period and as following in Table 3.

The average evaporation rate change under SSP2-4.5 was 57.2 and 85.9%while under
SSP5-8.5 respectively, which means that the evaporation rate is increased under the SSP5-8.5
scenario compared to baseline period and SSP2-4.5 scenario and that The MLP model has
been approved and validated as the best model for evaporation prediction for this study.

5. Conclusions
Evaporation plays a critical role in the hydrological cycle, though its natural process is

inherently complex and often unpredictable. In this study, we utilized machine learning
techniques, namely the Multi-Layer Perceptron (MLP), Support Vector Machine (SVM),
and Gaussian Process Regression (GPR) with Principal Component Analysis (PCA), to
estimate and predict evaporation rates. These models were based on historical data and
future projections under two climate scenarios: SSP2-4.5 and SSP5-8.5. Among these
techniques, the MLP model demonstrated a superior performance, providing the most
accurate evaporation estimates compared to the SVM and GPR models, though all three
were effective.

The evaporation model incorporated key input variables such as rainfall, sunshine
hours (SSH), and the minimum and maximum temperatures (Tmin and Tmax). Both the
SSP2-4.5 and SSP5-8.5 climate scenarios indicated an increase in evaporation rates, with
SSP5-8.5 exhibiting a notably larger rise. When compared to historical evaporation rates,
the SSP5-8.5 scenario projected a significantly greater increase than SSP2-4.5, highlighting
the impact of more extreme climate changes.

The evaluation values for GPR with PCA, MAE and RMSE are equal to 0.22 and
0.37 mm respectively, and higher than SVM with PCA and MLP equal to (0.21, 0.13, 0.02,
and 0.10 mm respectively). This study underscores the importance of estimating and
forecasting evaporation rates, particularly in the context of changing climates, which
is especially relevant for semi-arid regions where the impacts on water resources are
more pronounced. The findings emphasize the need for resilient and sustainable water
management strategies to ensure future water security in these vulnerable areas.
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