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Abstract  

The effects of resistance training (RT) on muscle mass, strength and insulin sensitivity are 

well established, but the underlying mechanisms are only partially understood. The main aim 

of this study is to investigate whether RT induces changes in endothelial enzymes of the 

muscle microvasculature, which would increase NO bioavailability and could contribute to 

improved insulin sensitivity. Eight previously sedentary males (age 20±0.4y, BMI 24.5±0.9 

kg.m-2) completed 6wk of RT 3x/week. Muscle biopsies were taken from the m. vastus 

lateralis and microvascular density and endothelial specific eNOS content, eNOS Ser1177  

phosphorylation and NOX2 content were assessed pre- and post-RT using quantitative 

immunofluorescence microscopy. Whole body insulin sensitivity (measured as Matsuda 

Index), microvascular filtration capacity (functional measure of the total available endothelial 

surface area) and arterial stiffness (augmentation index, central and peripheral pulse wave 

velocity) were also measured. Measures of microvascular density, microvascular filtration 

capacity, microvascular eNOS content, basal eNOS phosphorylation and endothelial NOX2 

content did not change from pre-RT to post-RT. RT increased insulin sensitivity (P <0.05) 

and reduced resting blood pressure and augmentation index (P <0.05), but did not change 

central or peripheral pulse wave velocity. In conclusion RT did not change any measure of 

muscle microvascular structure or function. 
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Abbreviations 

AIx   Augmentation index 

AIx@75bpm   Augmentation index normalised to 75 beats per minute 

AUC   Area under the curve 

CC   Capillary contacts 

CD   Capillary density 

CFPE   Capillary-fibre perimeter exchange   

cPWV   Central pulse wave velocity 

DBP   Diastolic blood pressure 

eNOS   Endothelial nitric oxide synthase 

eNOS ser1177   eNOS phosphorylated at serine1177 

ET    Endurance training 

Kf   Filtration capacity 

NAD(P)Hox  Nicotinamide adenine dinucleotide phosphate-oxidase 

NOX2    Subunit of the NAD(P)Hox complex 

NO   Nitric oxide 

MAP   Mean arterial pressure 

 O2
-   Superoxide anion 

pPWV   Peripheral pulse wave velocity 

PWV   Pulse wave velocity 

UEA-I FITC   Ulex Europaeus-FITC conjugated  

RT   Resistance training 

SBP   Systolic blood pressure 

SIT   Sprint interval training 

WGA-350   Wheat germ agglutinin-350 



1RM   1 repetition maximum 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

There a number of publications providing compelling evidence that impairments in 

endothelial nitric oxide (NO) production in the skeletal muscle microvasculature are 

implicated in the development of skeletal muscle insulin resistance (1, 3, 33), anabolic 

resistance leading to sarcopenia (30) and potentially in  capillary rarefaction seen in ageing, 

obesity and the metabolic syndrome (15, 24, 42). An attenuated endothelial NO production 

has also been implicated in the reduction in exercise hyperaemia known to occur in elderly 

humans (12, 35). As such, interventions which increase skeletal muscle microvascular NO 

bioavailability should be regarded as primary therapeutic strategies in sedentary and insulin 

resistant populations. 

 

NO bioavailability is determined by the balance between NO synthesis and scavenging by 

reactive oxygen species. The rate limiting enzyme for endothelial NO synthesis has been 

shown to be endothelial nitric oxide synthase (eNOS), with eNOS protein content and 

serine1177 (ser1177) phosphorylation state together determining eNOS activity and NO 

production.  The main signals that activate eNOS via serine1177 phosphorylation are meal 

induced increases in plasma insulin and exercise induced increases in blood shear stress and 

VEGF production (42). A major source of reactive oxygen species production and NO 

scavenging in obesity, cardiovascular pathology and ageing is the enzyme NAD(P)Hoxidase 

(NAD(P)Hox) (4, 37). However, the physiological role of NAD(P)Hox in young healthy 

individuals is not entirely clear. Reactive oxygen species are likely to be important in 

intracellular signalling leading to mitochondrial biogenesis and angiogenesis (14), but may 

also reduce NO bioavailability via NO scavenging (15). 

 



A recent study by Cocks et al. (9) has shown that endurance training (ET) and sprint interval 

training (SIT) are effective means to increase skeletal muscle microvascular eNOS content in 

healthy young individuals, suggesting that both of these exercise interventions may increase 

skeletal muscle microvascular NO bioavailability. However to date, no studies have 

investigated the effect of resistance training (RT) on skeletal muscle microvascular eNOS 

content and eNOS ser1177 phosphorylation state. RT forms a fundamental component of the 

American College of Sports Medicine and American Heart Association guidelines for 

physical activity and public health (18), due to its established effects on insulin sensitivity 

(whole body and muscle), muscle mass and muscular strength, variables that are strongly 

related to promotion and maintenance of independence and health (18).  

 

Due to the paucity of data regarding the effect of RT on the skeletal muscle microvasculature 

we first sought to determine the effects of 6wk RT on the protein content of microvascular 

enzymes (eNOS and NOX2) and eNOS ser1177 phosphorylation, specifically in the 

endothelial layer of the muscle microvasculature using quantitative immunofluorescence 

microscopy (10). We also investigated the effect of RT on capillary-fibre-perimeter exchange 

(CFPE) index, a measure of microvascular density, and filtration capacity (Kf), a functional 

measure of microvascular density, which have not previously been measured in young 

individuals following RT. Thirdly, we aimed to investigate the effect of 6wk RT on 

microvascular eNOS ser1177 phosphorylation in the resting fasted state. Finally, the effects of 

6wk RT on arterial stiffness and blood pressure were measured to investigate how different 

vascular beds respond to RT training and investigate earlier claims that RT may have a 

negative effect on arterial stiffness (31). We hypothesized that microvascular density and 

eNOS content and ser 1177 phosphorylation state would not increase in response to 6wk RT. 

 



Materials and Methods 

The percutaneous muscle biopsies taken in this study have been used both for the 

measurements described in this manuscript and for the measurement of intramuscular 

triglycerides (IMTG) and perilipin-2 and perilipin-5 content. The latter results are reported in 

a separate manuscript (36). Measures such as whole body insulin sensitivity are relevant for 

the interpretation of both studies and are presented in both manuscripts. 

 

Participants 

Eight healthy sedentary males participated in the study (Table 1). The sedentary state was 

defined as performing <1h/wk of structured physical activity (e.g. sports club, commercial 

gym or exercise class) per week. All participants provided written informed consent and the 

protocol adhered to the Declaration of Helsinki and was approved by the Black Country NHS 

Research Ethics Committee. The functional measurements and training intervention were 

performed at the University of Birmingham and analytical measurements were completed at 

the University of Birmingham and Liverpool John Moores University. 

 

Familiarisation and 1RM 

Participants were first familiarised with all the resistance training equipment and instructed 

on correct lifting technique. Eight motion guided resistance exercise machines (Cybex 

International Inc., MA, USA) targeting both the upper and lower body were used (leg press, 

leg extension, seated leg curls, chest press, lat pull down, shoulder press, arm curls, and arm 

extensions).  In order to determine the initial load for the training period, 1 repetition 

maximum (1RM, maximal load that can be lifted on a given exercise) was determined on all 

eight machines, using the method of Kraemer and Fry (25).  

 



Experimental protocol 

Experimental testing took place over 2 days and included measures of vascular function, 

insulin sensitivity (day 1) and a muscle biopsy (day 2). Pre- and post-training testing was 

identical in all respects and all testing procedures were conducted at least 48 hours after the 

last exercise bout to minimise the acute effects of exercise. On all occasions testing was 

performed following 24 hours of a standardised diet and following an overnight fast. 

Standard diets were matched to the participant’s average daily energy intake, calculated using 

a 3 day diet diary. The composition of the standard diet was 50% carbohydrate, 35% fat and 

15% protein. 

 

Experimental procedures 

Arterial stiffness 

Supine blood pressure was measured using an automated sphygmomanometer (Omron 

7051T, Omron Corporation, Kyoto, Japan) following 15 minutes of supine rest. Systemic 

wave reflection was then investigated using pulse wave analysis, conducted using a semi-

automated device and software (SphygmoCor, AtCor Medical, Sydney, Australia), using this 

augmentation index (AIx) was calculated as described previously (9). To control for the 

influence of heart rate on AIx, AIx was normalised to a heart rate of 75 beats per minute 

(AIx@75) (43). Central (carotid- femoral, cPWV) and peripheral (carotid- radial, pPWV) 

artery stiffness were investigated by pulse wave velocity, assessed using a semi-automated 

device and software (SphygmoCor, AtCor Medical, Sydney, Australia) as previously 

described (9). All measurements were made in triplicate.  

 

Venous occlusion plethysmography 



Microvascular filtration capacity (Kf) was measured through venous occlusion 

plethysmography, using the principles described by Gamble et al. (16). The measurements 

were made in a quiet temperature controlled room following a supine rest of at least 30 

minutes. Measurements were made with the left calf elevated to the level of the heart and a 

congestion pressure cuff placed around the left thigh. Changes in calf circumference were 

measured using a passive inductive transducer with an accuracy of ±5 μm, in response to five 

10 mmHg cumulative congestion pressure steps. The maximum pressure never exceeded the 

participant’s diastolic pressure.  

 

Oral glucose tolerance test and Matsuda insulin sensitivity index 

A baseline 25 ml blood sample was taken, an oral glucose tolerance test was then conducted, 

following the procedure originally proposed by Matsuda & DeFronzo (28) for the assessment 

of whole body insulin sensitivity. Plasma was separated by centrifugation (10 minutes at 

3000 rpm) and stored at -80oC until analysis. Plasma insulin concentrations were determined 

by enzyme linked immuno-sorbent assay (ELISA) using a commercially available kit 

(Invitrogen, UK).  Plasma glucose concentrations were analysed using an automated analyzer 

(IL ILab 650 Chemistry Analyzer, Diamond Diagnostics, USA).  

 

Area under the curve (AUC) for insulin and glucose during the oral glucose tolerance test 

was calculated using the conventional trapezoid rule. The Matsuda index was used to provide 

a measure of whole body insulin sensitivity (28).  

 

Muscle biopsy 

On day 2 following an overnight fast a muscle biopsy was taken from the lateral portion of 

the m. vastus lateralis under local anaesthesia (1% lidocaine) using the percutaneous needle 



biopsy technique, as recently described (39).  Excess blood and visible collagen or fat were 

removed before samples were embedded in Tissue-Tek OCT Compound (Sakura Finetek 

Europe, Zoeterwoude, Netherlands) and immediately frozen in liquid nitrogen cooled 

isopentane (Sigma-Aldrich, Dorset, UK). Samples were then stored at -80oC until analysis 

was performed. 

 

Training 

Participants trained three times per week completing a minimum of 16 and maximum of 18 

sessions during the 6wk. Participants completed the training sessions in the School of Sport, 

Exercise and Rehabilitation Sciences at the University of Birmingham under the instruction 

of the research team. Eight motion guided resistance exercise machines (discussed above) 

targeting both the upper and lower body were used. During the first 3 sessions, participants 

completed 3 sets of 10-12 repetitions at 50%, 60% and finally 70% 1RM. Following the first 

week participants completed 2 sets of 10-12 repetitions, the third set was then performed to 

volitional fatigue. Loads of 80% 1RM were used. To ensure progression, load was increased 

by 2.27Kg following successful completion of 3 sets of 12 lifts. 

 

Quantitative immunofluorescence microscopy 

The immunofluorescence staining protocol and quantification has previously been described 

in detail by Cocks et al. (10). The overall coefficient of variation for 5-6 duplicate 

measurements of one muscle sample for eNOS content, eNOS ser1177 phosphorylation and 

NOX2 content of the endothelium and membrane were 7%, 7% and 9.5% 6.5%, respectively 

(10). Briefly, samples orientated to provide muscle fibre cross-sections were cut (5μm) and 

placed on glass slides. Both pre- and post-training samples within an individual were placed 

on the same slide. Sections were fixed in acetone and ethanol (3:1). Following fixation 



section were incubated overnight with antibodies for the following: NOX2 (Santa Cruz 

Biotechnology, Santa Cruz, CA, gp91-phox/NOX2 (C-15), cat No. sc-5827), eNOS 

(Transduction laboratories, Lexington, KY, cat No. 610297) or p-eNOS ser1177 (Cell 

Signalling Technology Beverly, MA, p-eNOS ser1177, cat No. 9570L). Sections were then 

incubated with appropriately labelled secondary antibodies (Invitrogen, Paisley, UK), the 

endothelial marker Ulex Europaeus-FITC conjugated (UEA-I-FITC; Sigma-Aldrich, UK) and 

the cell membrane marker wheat germ agglutinin-350 (WGA-350; Invitrogen, UK). For 

image capture, muscle sections were viewed using a Nikon E600 microscope using a 40x 

0.75 numerical aperture objective, illuminated with a 170W Xenon light source. Images were 

captured using a SPOT RT KE colour three shot camera (Diagnostic Instrument Inc., MI, 

USA) coupled to the microscope. 

 

Once captured images were analysed using Image Pro Plus 5.1 software (Media Cybernetics 

Inc, Bethesda, MD, USA). Endothelial specific fluorescence was determined using the UEA-I 

FITC (endothelial marker) image, which was extracted and overlaid onto the corresponding 

eNOS, p-eNOS ser1177 or NOX2 image. Cell membrane specific fluorescence for NOX2 was 

determined using WGA-350 as a stain to create an outline of the cell membrane. The latter 

was extracted and overlaid onto the corresponding NOX2 image. Fluorescence intensity of 

the eNOS, p-eNOS ser1177 or NOX2 signal was quantified within the endothelium or cell 

membrane specific area.  Values were normalised to pre-training values. 

 

Capillarization 

Muscle sections were incubated with anti-myosin type I (developed by Dr Blau DSHB) 

followed by goat anti-mouse IgM 350 (Invitrogen, Paisley, UK) to identify type I muscle 

fibres. This was performed in combination with UEA-I-FITC (Sigma-Aldrich, UK) and 



wheat germ agglutinin-350 (WGA-350; Invitrogen, UK) as markers of the endothelium and 

plasma membrane, respectively. Capillaries were manually quantified in a fibre type specific 

manner, using the UEA-I, WGA-350 and myosin heavy chain images. The following indexes 

were measured as previously described (21): 1) number of capillaries around a fibre 

(capillary contacts (CC)), 2)  capillary density (CD) and 3) capillary-fibre-perimeter 

exchange (CFPE) index. Fibre cross sectional area and perimeter were measured using 

ImagePro Plus 5.1. 

 

Statistics 

Statistical analyses were performed using SPSS for windows version 16.0 (SPSS, Chicago, 

IL)). Capillary contacts, capillary-to-fibre ratio on an individual-fibre basis, capillary-fibre-

perimeter exchange, fibre cross sectional area and perimeter were analyzed using a factorial 

ANOVA, with the factors ‘training’ (pre versus post) and ‘fibre type’ (type I versus type II).  

All other variables were analysed using paired samples t-tests for comparison. Significance 

was set at P ≤ 0.05. Data is presented as means ± S.E.M. The primary aim of the study was to 

compare the effects of RT on muscle microvascular eNOS content. G*Power 3.1 software 

(G*Power Software Inc., Kiel, Germany) was used to calculate the required sample size. The 

study was designed to detect an effect size of dz=0.98, representative of a large sized effect 

(11) adopting an alpha of 0.05 and power of 0.80. We deemed a dz of 0.98 to be a 

physiologically relevant difference, as we previously observed an effect of this size following 

6wk of ET and sprint interval training (SIT) in sedentary individuals (11). 

 

 

 

 



Results 

Training effects 

As expected participants exhibited significant gains in strength following RT. 1RM increased 

by 43%, 33%, 32% and 38% for the leg press, leg extension, chest press and shoulder press, 

respectively (all variables P < 0.05; Table 1).  Resting heart rate was unchanged by training 

(P = 0.119; Table 1), while brachial systolic blood pressure (SBP), diastolic blood pressure 

(DBP) and mean arterial pressure (MAP) were all reduced following training (P < 0.05; 

Table 1). 

 

Insulin sensitivity 

The Matsuda insulin sensitivity index was significantly increased by 31% following RT (P < 

0.05; Table 1). Both glucose and insulin AUC were reduced following training (P < 0.05; 

Table 1). 

 

Microvascular enzymes 

Skeletal muscle endothelial specific eNOS content and ser1177 phosphorylation were not 

significantly different pre- and post-RT (eNOS content: P = 0.091, Fig. 1; eNOS ser1177 

phosphorylation: P = 0.075; Fig. 2). Skeletal muscle endothelial specific and membrane 

specific NOX2 content were also not changed by RT (endothelial specific: P = 0.319; 

membrane specific P = 0.164; Fig.3). 

 

Filtration capacity and capillarization 

Kf was unaltered by training (pre 3.16± 0.41 mL min-1 100mL-1 mmHg-1 x10-3 vs. post 3.71± 

0.52 mL min-1 100mL-1 mmHg-1 x10-3; P = 0.333). Fibre cross sectional area and perimeter 

were not changed by RT in either type I or II fibres (fibre cross sectional area: P = 0.827; 



perimeter: P = 0.625). No significant difference was found in capillary density following RT 

(P = 0.715). Type I fibres had significantly higher capillary contacts and capillary-fibre-

perimeter exchange than type II fibres both before and after training (P < 0.05). However, no 

parameter of capillarization was significantly changed as a result of RT (CC: P = 0.716; 

CFPE, P = 0.654; Table 2). 

 

Arterial stiffness 

AIx@75bpm was significantly decreased following training (P < 0.05; Fig. 4c), but neither 

cPWV nor pPWV were affected by training (cPWV P = 0.934, pPWV P = 0.708; Fig. 4a and 

b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

This study demonstrates that significant improvements in insulin sensitivity following 6wk of 

resistance training in sedentary males occurs in the absence of changes in skeletal muscle 

capillary density, in the content and ser1177 phosphorylation of skeletal muscle microvascular 

endothelial eNOS or in the protein content of NOX2. In addition, our results contrast 

previous suggestions that RT increases central arterial stiffness (31) and show that AIx a 

systemic index of arterial stiffness was reduced by 28% (P<0.05) following RT.  

 

Capillary density, eNOS content and phosphorylation 

In the current study, we did not observe a significant change in capillary density (CD) in 

response to RT. This finding is in agreement with several previous studies (17, 29) 

confirming that RT does not increase skeletal muscle capillary density. However, in contrast 

to the present study RT has previously been shown to increase the number of capillaries per 

fibre (17, 29). This rise in number of capillaries following RT was suggested to be 

proportional to fibre growth, to maintain equal diffusion distances in the enlarged fibres. The 

lack of change in number of capillaries per fibre in the current study might be explained by 

the fact that the 6wk RT intervention did not lead to significant muscle fibre hypertrophy in 

the sampled muscle (as shown by no change in muscle fibre cross-sectional area, Table 2). 

The lack of significant change in muscle fibre cross sectional area is probably due to the 

relatively short duration of our RT intervention in comparison to previous studies (10 to 24 

weeks) which have demonstrated muscle fibre hypertrophy (2, 7, 13, 17, 27, 29). Further 

confirmation of the lack of change in capillary density is offered by the absence of an 

increase in microvascular Kf, a functional measure of capillary surface area available for 

diffusion of plasma water, known to correlate with capillary density (6). The results regarding 

Kf support previous findings from a cross-sectional comparison of strength trained athletes, 



showing no elevation in Kf in this population compared to sedentary individuals (5). This is 

the first study to measure capillary fibre perimeter exchange (CPFE) index in young males 

(17, 29, 40). Again RT did not alter CFPE index.  CFPE index is regarded to be a valuable 

measure of microvascular density as it may provide more information regarding the capacity 

for oxygen flux, and the transport of substances that rely on receptor or transporter-mediated 

processes (i.e., glucose and insulin) than traditional measures such as CD (20). 

 

The current RT intervention did not increase skeletal muscle endothelial specific eNOS 

content. This contrasts with the effects of both ET and SIT which were both effective at 

increasing skeletal muscle endothelial specific eNOS content (9). An increase in eNOS 

content may potentially lead to increases in NO production upon stimulation by insulin, 

exercise induced shear stress and exercise induced VEGF production (23, 38, 41, 42). As 

such, combined ET and RT may prove to be the most effective training approach to achieve a 

favourable adaptation to the skeletal muscle microvasculature, while the addition of RT will 

increase muscle mass and strength, adaptations that are particularly relevant to maintain an 

independent lifestyle in the rapidly growing ageing population. However, future studies 

making parallel measurements of eNOS content, eNOS ser1177 phosphorylation and muscle 

microvascular blood volume and flow will be required to confirm that RT does not result in 

favourable functional adaptations for muscle microvascular blood flow regulation via 

independent mechanisms that have not been investigated in the current study. 

 

RT did not change basal eNOS ser1177 phosphorylation, although there was a trend towards a 

decrease (P = 0.075). As there is no change in capillary density following RT, the absence of 

an effect on eNOS ser1177 phosphorylation is as expected.  Cocks et al. (8) have previously 

observed a reduction in eNOS ser1177 phosphorylation in sedentary individuals following 6wk 



ET and SIT. This decrease was seen both in the resting state and following 1 h of exercise at 

65% VO2max.  The decrease was attributed to a reduction in shear stress resulting from the 

training-induced increase in capillary density after the ET and SIT training.  

 

The study was designed to detect a large effect size (11) difference in muscle microvascular 

eNOS content. The sample size was based on previously observed responses following 6wk 

of ET and SIT in sedentary individuals (9). It should therefore be noted that it is not possible 

to exclude differences which are smaller than the study was powered to detect. Indeed both 

eNOS content and eNOS ser1177 phosphorylation display trends to significance, which given a 

larger sample size may have resulted in significant differences. 

 

NOX2 

No change was seen in the protein content of the membrane bound subunit of the 

NAD(P)Hox complex NOX2, in either the skeletal muscle membrane or in the muscle 

microvascular endothelium. This finding is in support of previous work from our lab 

following ET and SIT (9), where again, no change in NOX2 content was seen following 

6wks of training in young lean sedentary males. As the subjects in this study were young 

sedentary but healthy lean individuals, the assumption is that the protein expression was low 

before RT and did not change following RT. However, much more research is needed into 

how oxidative enzymes (including NAD(P)oxidase) respond to training. As such, the findings 

of the present study provide a building block for future research, which should focus on how 

oxidative enzymes respond to training in pathology and aging. 

 

Arterial stiffness 



In contrast to a recent meta-analysis which suggested that high intensity RT is associated with 

increased central artery stiffness (31) the current study showed no change in aortic or 

peripheral artery stiffness following 6wk of high intensity RT. The discrepancy between 

studies is likely the result of different RT protocols performed (concentric lifting protocols, 

high volume and high intensity RT versus eccentric lifting protocols). Studies using similar 

high intensity RT protocols to the current study have also observed no change in arterial 

stiffness (5, 32, 34). This suggests that when the guidelines for high intensity RT are followed 

arterial stiffness is not adversely affected; however, unlike exercise modes such as ET and 

SIT (9), RT does not have a beneficial effect on arterial stiffness. 

 

Unlike local artery stiffness (aorta and brachial artery), AIx was reduced following training. 

AIx is a measure of the contribution wave reflections make to the arterial pressure waveform 

(44). As such, AIx is a measure of systemic stiffness, as the amplitude and timing of wave 

reflections depend on small and large arteries. Systemic stiffness is an important measure as 

it partly determines left ventricular workload, and is therefore of significant clinical 

importance (44). The current finding however is in contrast with two previous studies 

investigating RT in young healthy participants, which both suggested that RT has no effect 

on systemic stiffness (5, 19). An explanation for these differences is unclear as the current 

study uses the same protocol to measure AIx and a similar RT protocol (5, 19). Because of 

the potential clinical implications more detailed future studies are required in young healthy 

adults, elderly individuals and patient populations.  

 

Perspective  

This study generates novel information that 6wk RT in previously sedentary young males 

does not increase microvascular density or eNOS content and eNOS ser1177 phosphorylation 



state. Together with previous reports investigating the effect of ET (8) and RT (22, 26, 45), 

we suggest that the combination of both training modes may lead to optimal metabolic and 

health benefits.  ET in addition will be a powerful means to increase muscle oxidative 

capacity, capillary density and microvascular responsiveness to insulin, VEGF and shear 

stress, while RT has unique effects on muscle mass and strength.  
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Tables 

Table 1. Subject characteristics, insulin sensitivity and hemodynamics pre and post 6 

weeks of resistance training. 

Values are means ± S.E.M. * P < 0.05. 1RM, 1 repetition maximum 

 

 

Table 2. Capillarization pre and post resistance training.Values are means ± S.E.M. FA, 

fiber cross sectional area; CD, capillary density; CC, capillary contacts; CFPE, capillary-

fibre-perimeter exchange. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure legends 

Figure 1. Effect of resistance training (RT) on eNOS content. 

A. Widefield microscopy images of skeletal muscle pre- (left) and post-RT (right). Skeletal 

muscle eNOS expression was revealed using Alexa-Fluor 594 conjugated secondary antibody 

(red). Bar = 50μm. B Mean fluorescence intensity of eNOS is indicated. The mean level of 

eNOS pre-training was assigned a value of 1, and the relative intensity of eNOS post-training 

was calculated. 

 

Figure 2. Effect of resistance training (RT) on basal eNOS serine1177 phosphorylation. 

A. Widefield microscopy images of skeletal muscle pre- (left) and post-RT (right). Skeletal 

muscle eNOS serine1177 phosphorylation was revealed using Alexa-Fluor 594 conjugated 

secondary antibody (red). Bar = 5μm. B Mean fluorescence intensity of eNOS serine1177 is 

indicated. The mean level of eNOS serine1177 pre-training was assigned a value of 1, and the 

relative intensity of eNOS serine1177 post training was calculated. 

 

Figure 3. Effects of resistance training (RT) on NOX2 content. 

A. Widefield microscopy images of skeletal muscle pre- (left) and post-RT (right). Skeletal 

muscle NOX2 content was revealed using Alexa-Fluor 594 conjugated secondary antibody 

(red). Bar = 50μm. B Mean fluorescence intensity of NOX2 within the muscle membrane is 

summarized. C Mean fluorescence intensity of NOX2 within the endothelium is indicated. 

The mean level of NOX2 pre-training was assigned a value of 1, and the relative intensity of 

NOX2 post-training was calculated. 

 

Figure 4. Effect of resistance training (RT) on augmentation index and central and 

peripheral artery stiffness. 



A. systemic stiffness measured through augmentation index normalized to 75 bpm following 

RT. B. Central artery (aortic) stiffness measured using pulse wave velocity (PWV) following 

RT. C. Peripheral artery (brachial artery) stiffness measured using pulse wave velocity 

following RT. * P < 0.05. 
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