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Abstract 27 

We aimed to quantify the ACE I/D and ACTN3 R577X (rs1815739) genetic variants in elite rugby 28 

athletes (rugby union and league), compare genotype frequencies to controls and between 29 

playing positions. The rugby athlete cohort consisted of 507 Caucasian men, including 431 rugby 30 

union athletes that for some analyses were divided into backs and forwards and into specific 31 

positional groups: front five, back row, half backs, centers and back three. Controls were 710 Caucasian 32 

men and women. Real-time PCR of genomic DNA was used to determine genotypes using 33 

TaqMan probes and groups were compared using Chi-square and odds ratio (OR) statistics. 34 

Correction of p-values for multiple comparisons was according to Benjamini-Hochberg.  There 35 

was no difference in ACE I/D genotype between groups. ACTN3 XX genotype tended to be 36 

underrepresented in rugby union backs (15.7%) compared to forwards (24.8%; P=0.06). 37 

Interestingly, the 69 back three players (wings and full backs) in rugby union included only six XX genotype 38 

individuals (8.7%), with the R allele more common in the back three (68.8%) than controls (58.0%; χ2=6.672, 39 

P=0.04; OR=1.60) and forwards (47.5%; χ2=11.768, P=0.01; OR=2.00).  Association of ACTN3 R577X with 40 

playing position in elite rugby union athletes suggests inherited fatigue resistance is more prevalent in 41 

forwards while inherited sprint ability is more prevalent in backs, especially wings and full backs. These 42 

results also demonstrate the advantage of focusing genetic studies on a large cohort within a single sport, 43 

especially when intra-sport positional differences exist, instead of combining several sports with varied 44 

demands and athlete characteristics. 45 

Key words: α-actinin-3, angiotensin converting enzyme, athlete genetics, RugbyGene project 46 

  47 



 
 

Introduction 48 

Rugby is an intermittent team sport comprised of two similar but differing codes, rugby league (RL) and rugby 49 

union (RU). Both codes consist of diverse playing positions, each with different physiological, anthropometric 50 

and technical attributes (8, 10, 20, 27) including two distinct sub-groups in each code: forwards and backs. 51 

Recently, global positioning system (GPS) tracking and time-motion analysis have been used to estimate the 52 

physical demands of rugby athletes and compare forwards and backs during high-level match play (8, 20, 27). 53 

In RU, backs travelled 12% greater total distance (6545 m versus 5850 m), achieved maximum speeds 16% 54 

faster (30.4 km.h-1 versus 26.3 km.h-1) and engaged in over four times (58% versus 13%) high-55 

intensity running activities (>5.0 m.s-1), as a proportion of total activity (8, 27) compared to 56 

forwards. These data suggest a more sprint-oriented metabolic demand in backs compared to 57 

forwards. Furthermore, due to the complexities of forward play, forwards performed sixfold 58 

more (9.9%) high-intensity static exertion activities (rucks, mauls, scrums and line-outs) than 59 

backs (1.6%) and spent 19.8% more time running above 80% of their maximal speed (8, 27, 60 

respectively). This implies that forwards, although often of higher body mass, (14) are more 61 

likely to benefit from fatigue-resistant physiological qualities than backs. Accordingly, Deutsch 62 

et al (10) showed that forwards had a notably higher work-to-rest ratio than backs (1:7 and 1:22, 63 

respectively). Given that the roles of backs and forwards differ significantly in terms of 64 

physiological demands, these differences may be reflected in distinct genetic characteristics (18). 65 

Elite RL athletes cover similar total distances (~7000 m versus ~5000 m; backs versus forwards, 66 

respectively) and have similar anthropometric characteristics to RU athletes (20). Players regularly transfer 67 

between RL and RU codes so investigating both codes (combined and separately) for their genetic 68 

characteristics is justified. 69 

 70 

The two most studied gene variants in exercise genomics (ACE I/D and ACTN3 R577X 71 

polymorphisms) have recently been considered in meta-analyses. Ma et al (23) reported that 72 



 
 

ACE II genotype was associated with physical performance (odds ratio (OR) 1.23), especially 73 

endurance performance (OR 1.35). Furthermore, ACTN3 RR genotype was associated with speed 74 

and power performance (OR 1.21; 23), supported elsewhere (2). More extensive information 75 

regarding ACE I/D and ACTN3 R577X polymorphisms is available (13, 26). Due to differences 76 

in physical characteristics between rugby athletes and the general population and the diverse 77 

physiological demands within rugby, these genetic markers could predispose athletes to success 78 

or specific roles at the elite level. 79 

 80 

One recent paper examined ACE I/D genotype frequency distribution in young, non-elite RU 81 

athletes. ACE I/D genotype frequencies did not differ between forwards and backs, with no 82 

control group included (5). The same group (4) also investigated ACTN3 R577X in 102 young 83 

male RU athletes and reported no association, despite some tendencies for the R allele to be 84 

more frequent in backs or subgroups of backs. Studying elite athletes would be better able to 85 

answer the question whether these genetic variants are associated with elite status and playing 86 

position in rugby. 87 

 88 

Therefore, the purpose of the present study was to investigate whether elite rugby athletes in the 89 

RugbyGene project (18) and a control group differed in terms of ACE I/D and ACTN3 R577X 90 

genotype distribution, and whether athletes in specialized playing positions similarly differed. It 91 

was hypothesized that the ACTN3 R allele and the ACE I allele would be more frequent in rugby 92 

athletes than controls. It was further hypothesized that ACTN3 XX and ACE II genotypes would 93 

be underrepresented in RU backs compared to forwards, due to differences in overall work-to-94 

rest ratio and differing requirements for high maximum speed. 95 



 
 

Methods 96 

Participants 97 

Ethical approval was granted by Manchester Metropolitan University (MMU), University of 98 

Glasgow, University of Cape Town and Northampton University ethics committees and complies 99 

with the Declaration of Helsinki. As part of the RugbyGene project, elite Caucasian male rugby 100 

athletes (n=507; mean (standard deviation) height 1.85 (0.07) m, mass 101 (14) kg, age 29 (7) 101 

years) including 71.2% British, 17.2% South African, 7.1% Irish and 4.5% of other nationalities 102 

were recruited, having given written informed consent. Caucasian controls (61% male; n=710; 103 

height 1.73 (0.10) m, mass 74 (13) kg, age 29 (16) years) included 89.6% British, 8.9% South 104 

African, 0.7% Irish and 0.8% of other nationalities. Athletes were considered elite if they had 105 

competed regularly (>5 matches) since 1995 in the highest professional league in the UK, Ireland 106 

or South Africa for RU and the highest professional league in the UK for RL. Of the RU athletes, 107 

53.4% had competed at international level for a “High Performance Union” (Regulation 16, 108 

worldrugby.org) and 38.5% of RL had competed at international level. International status was 109 

confirmed as of 1 January 2015. Athletes were taller and heavier (p<0.0005) but not older 110 

(p=0.871) than controls. 111 

Procedures 112 

Sample collection 113 
Blood (~70% of all samples), saliva (~25%) or buccal swab samples (~5%) were obtained via 114 

the following protocols. Blood was drawn from a superficial forearm vein into an EDTA tube 115 

and stored in sterile tubes at -20°C until processing. Saliva samples were collected into Oragene 116 

DNA OG-500 collection tubes (DNA Genotek Inc., Ontario, Canada) according to the 117 

manufacturer’s protocol and stored at room temperature until processing. Sterile buccal swabs 118 

(Omni swab, Whatman, Springfield Mill, UK) were rubbed against the buccal mucosa of the 119 



 
 

cheek for approximately 30 s. Tips were ejected into sterile tubes and stored at -20°C until 120 

processing. 121 

DNA isolation and genotyping 122 
DNA isolation and genotyping were performed in the MMU, University of Glasgow, University 123 

of Cape Town (DNA isolation only) and University of Northampton laboratories. There are some 124 

differences between protocols summarized below; however, there was 100% agreement among 125 

reference samples genotyped in the three genotyping centers, i.e. Glasgow, Northampton and 126 

MMU laboratories. The majority of samples were processed and genotyped in the MMU 127 

laboratory. Genotype calling was successful for both variants in all samples. 128 

 129 

At MMU and Glasgow, DNA isolation was performed using the QIAamp DNA Blood Mini kit 130 

and standard spin column protocol, following the manufacturer’s instructions (Qiagen, West 131 

Sussex, UK). Briefly, 200 µL of whole blood/saliva, or one buccal swab, was lysed, incubated, 132 

the DNA washed and the eluate containing isolated DNA stored at 4°C. In Cape Town, DNA was 133 

isolated from whole blood using a different protocol (22). Briefly, samples were lysed, 134 

centrifuged, the DNA washed and samples stored at -20ºC. Genotyping of DNA isolated in Cape 135 

Town was performed in Glasgow. At Northampton, DNA was isolated from whole blood using 136 

Flexigene kits (Qiagen). Briefly, samples were lysed, DNA precipitated and washed, with 137 

samples stored at -20ºC. 138 

Genotyping 139 
Genotyping in the Glasgow laboratory was performed on ACTN3 (rs1815739) and an ACE tag 140 

SNP (rs4341) in perfect linkage disequilibrium with ACE I/D in Caucasians (15). Briefly, 10 µL 141 

Genotyping Master Mix (Applied Biosystems, Paisley, UK), 1 µL SNP-specific TaqMan assay 142 

(Applied Biosystems), 6 µL nuclease-free H2O and 3 µL DNA solution (~9 ng DNA) were 143 



 
 

added per well. In the Northampton laboratory, genotyping was performed for ACTN3 R577X 144 

(rs1815739) by combining 10 µL of Genotyping Master Mix, 8 µL H2O, 1 µL assay mix with 1 145 

µL of purified DNA (~10 ng). In both laboratories, PCR was performed using a StepOnePlus 146 

real-time detector (Applied Biosystems). Briefly, denaturation began at 95°C for 10 min, with 40 147 

cycles of incubation at 92°C for 15 s then annealing and extension at 60°C for 1 min. Initial 148 

analysis was performed using StepOnePlus software version 2.3 (Applied Biosystems). There 149 

was 100% agreement within duplicates of all samples. 150 

 151 

At MMU, samples were genotyped for ACTN3 R577X (rs1815739) by combining 5 µL 152 

Genotyping Master Mix, 4.3 µL H2O, 0.5 µL assay mix and 0.2 µL of purified DNA (~9 ng), for 153 

samples derived from blood and saliva. For DNA derived from buccal swabs, 5 µL Genotyping 154 

Master Mix was combined with 3.5 µL H2O, 0.5 µL assay mix and 1 µL DNA solution (~9 ng 155 

DNA). Either a Chromo4 real-time system (Bio-Rad, Hertfordshire, UK) or a StepOnePlus was 156 

used. Briefly, denaturation began at 95°C for 10 min, with 40 cycles of incubation at 92°C for 15 157 

s then annealing and extension at 60°C for 1 min. Initial genotyping analysis was performed 158 

using Opticon Monitor software version 3.1 (Bio-Rad) or StepOnePlus software version 2.3. 159 

Duplicates of all samples were in 100% agreement. For ACE I/D at MMU, 5 µL of Genotyping 160 

Master Mix, 1.55 µL H2O, 0.9 µL of I and D allele-specific probes and 0.38 µL of ACE primer 161 

111, 112, 113 (sequences below) were combined with 0.5 µL DNA solution (~23 ng DNA) per 162 

well for blood and saliva. For DNA derived from buccal cells, primer and probe volumes were 163 

identical but 0.05 µL H2O and 2 µL DNA solution (~18 ng DNA) were used. Similarly, in the 164 

Northampton laboratory, ACE I/D was genotyped by combining 11 µL of Genotyping Master 165 

Mix, 2 µL of I and D probes, 2 µL of ACE primer 111, 112, 113 and 4 µL DNA solution (~40 ng 166 



 
 

DNA). Either a Chromo4 real-time system or a StepOnePlus was used. Briefly, there were 50 167 

cycles of denaturation at 92°C for 15 s then annealing and extension at 57°C for 1 min. Initial 168 

analysis was performed using Opticon Monitor 3.1 software or StepOnePlus software version 169 

2.3. Again, there was 100% agreement within duplicates of all samples. 170 

Primers and probes 171 
For rs1815739 and rs4341, the appropriate TaqMan assay was used (Applied Biosystems).  For 172 

the direct ACE I/D assay, three primers (150 nM each) and probes (VIC, 150 nM and FAM, 75 173 

nM; 21) were used; 174 

Primer ACE111: 5ˈ-CCCATCCTTTCTCCCATTTCTC-3ˈ 175 

Primer ACE112: 5ˈ -AGCTGGAATAAAATTGGCGAAAC-3ˈ 176 

Primer ACE113: 5ˈ -CCTCCCAAAGTGCTGGGATTA-3ˈ 177 

I Allele specific probe (VIC-ACE100): VIC-5ˈAGGCGTGATACAGTCA-3ˈ-MGB 178 

D Allele specific probe (FAM-ACE100): FAM-5ˈTGCTGCCTATACAGTCA-3ˈ-179 

MGB 180 

Positional groups 181 

To assess genotype and allele frequencies within the RU group, athletes were allocated to sub-182 

groups; forwards (props, hookers, locks, flankers, number eights) and backs (scrum halves, fly 183 

halves, centers, wings, full backs). Also, due to diverse physiological demands within RU (8, 184 

27), athletes were further divided into positional groups according to their similar movement 185 

patterns (8) front five (props, hookers, locks), back row (flankers, number eights), half backs 186 

(scrum halves, fly halves), centers and back three (wings and full backs). Comparisons between 187 

positions were not performed for the RL cohort due to low statistical power when it was 188 

subdivided. 189 



 
 

Data analysis 190 

SPSS for Windows version 19 (SPSS Inc., Chicago, IL) software was used to conduct Pearson’s 191 

Chi-square (χ2) tests to compare genotype and allelic frequencies between athletes and controls, 192 

and between positional subgroups. For ACTN3 and ACE, 26 and 16 tests, respectively, were 193 

subjected to Benjamini-Hochberg (BH; 6) corrections to control false discovery rate and 194 

corrected probability values are reported. Where appropriate, OR was calculated to estimate 195 

effect size. Alpha was set at 0.05. 196 

Results 197 

All genotype data for athletes and controls were in Hardy-Weinberg equilibrium. There were no 198 

differences in genotype frequencies within the athlete or control groups according to nationality. 199 

For ACE I/D, there were no differences between all athletes (RU and RL combined) and controls in genotype 200 

(χ2=1.117, P=0.83), between RU or RL and controls, nor between playing sub-groups for RU (Table 1). 201 

Furthermore, for ACTN3 R577X there were no genotype differences between controls and all athletes 202 

(χ2=1.645, P=0.44), RL (χ2=1.829, P=0.44) or RU (χ2=0.216, P=0.33). However, when considering RU playing 203 

position, the X allele was overrepresented in forwards (52.5%) compared to backs (37.8%, χ2=8.128, P=0.02; 204 

OR=1.49, 95%CI=1.13-1.96, P=0.004) and controls (42%, χ2=6.217, P=0.02; OR=1.25, 95%CI=1.02-1.54, 205 

P=0.033; Table 1 & Figure 1A). Similarly, there was a tendency (P=0.023 before BH correction) of the XX 206 

genotype to be overrepresented in forwards (24.8%) compared to backs (15.7%, χ2=5.193, P=0.08; OR=1.77, 207 

95%CI=1.09-2.89, P=0.022) and controls (18.3%, χ2=7.582, P=0.08), with no difference between backs and 208 

controls (χ2=3.043, p=0.37). 209 

 210 

Interestingly, the 69 back three athletes (wings and fullbacks) included only six individuals (8.7%) of XX 211 

genotype which differed from the forwards (24.8%; χ2=11.082, P=0.05; OR=3.46, 95%CI=1.43-8.34, P=0.006) 212 

and tended to differ from the combined half backs and centers group (19.8%; χ2=4.151, P=0.08; OR=2.59, 213 

95%CI=1.00-6.74, P=0.049). Likewise, the R allele distribution was greater in the back three (68.8%) than the 214 



 
 

controls (58.0%; χ2=6.672, P=0.02; OR=1.60, 95%CI=1.09-2.33, P=0.014), forwards (47.5%; χ2=11.768, 215 

P=0.01; OR=2.00, 95%CI=1.34-2.99, P=0.0007) and the other backs (58.2%; χ2=4.173, P=0.05; OR=1.59, 216 

95%CI=1.02-2.48, P=0.042; (Figure 1 B). 217 

Discussion 218 

The present study is the first to show a genetic association with elite athlete status in rugby 219 

union. We found associations for the ACTN3 R577X polymorphism but not for ACE I/D, thus 220 

rejecting our hypotheses regarding ACE I/D. Furthermore, no difference was observed for the 221 

ACTN3 R577X genotype or allele distribution between all athletes and controls, thus rejecting 222 

the hypothesis that differences would exist between non-athletes and all players as a single 223 

cohort. Similarly, there were no differences between the RU, RL and control groups when 224 

playing position was not considered. However, as hypothesized, in RU backs compared to 225 

forwards there was a lower proportion of XX genotype and X allele, which probably reflects the 226 

greater need for speed generation in backs and more sustained activity in forwards. The small 227 

cohort of RL athletes means that comparisons between playing positions are not feasible until the 228 

cohort increases substantially. 229 

 230 

ACTN3 R577X 231 

The most remarkable finding of the present study was the low frequency of the XX genotype 232 

among the back three RU athletes (8.7%), approaching although not as low as the frequency 233 

observed in elite sprinters (25, 31). The XX genotype is present in ~18% of Caucasians (Table 1) 234 

and indicates absence of the α-actinin-3 protein (3, 24). Absence of α-actinin-3, a protein almost 235 

exclusively expressed in fast twitch skeletal muscle fibers, could hinder back three (wing and full 236 

back) sprint ability. R allele carriers have a greater proportion of type II and IIx fibers and larger 237 



 
 

relative surface area per IIx fiber than XX carriers (1, 7, 30). Furthermore, Seto et al (29) 238 

recently showed the likely mechanism for this genotype-phenotype association is via the 239 

calcineurin muscle fiber remodeling pathway. They found greater calcineurin activity (which 240 

induces slow myogenic programming and a shift towards oxidative phenotype) in α-actinin-3 241 

knockout mice (KO) and humans (ACTN3 577XX genotype) due to preferential binding of α-242 

actinin-2 (upregulated in the absence of α-actinin-3) to the fast fiber-specific calsarcin-2 (an 243 

inhibitor of calcineurin). This could explain the advantage of R allele carriers over α-actinin-3 244 

deficient XX individuals for high velocity contractions – particularly important for back three 245 

RU players. While backs and forwards previously showed similar fiber type proportions (19), 246 

these older data are arguably not relevant to modern rugby athletes, given their changed physical 247 

characteristics in recent years (14). Skeletal muscle fiber type proportions are unknown in 248 

contemporary elite RU athletes who now compete in a more popular, fully professional sport and 249 

complete much higher training loads than previously. Recent in vivo data also show that R allele 250 

carriers exhibit greater muscle volume and maximal power output (11, 17). While RU forwards 251 

show greater maximal power, backs are able to generate greater power relative to body mass 252 

(W·kg-1; 9), which corresponds with the greater R allele frequency in the backs and especially 253 

the back three players. These data, plus evidence that type II fibers are larger and more powerful 254 

per unit volume than type I (15), suggest the R allele would benefit back three rugby athletes for 255 

muscle power and fast fiber characteristics - which supports our findings (Table 1 and Figure 1). 256 

 257 

Arguably, the higher propensity for aerobic enzyme activity (porin, COX IV, hexokinase, citrate 258 

synthase, succinate dehydrogenase and β-hydroxyacyl CoA dehydrogenase; 28, 29) and greater 259 

force recovery after fatigue observed in α-actinin-3 deficient mice (28), could indicate that XX 260 



 
 

genotype humans might have a greater capacity for recovery from fatiguing exercise - a trait 261 

which would benefit forwards with their more sustained match play intensity and necessity for 262 

quick recovery. The shorter rest periods for forwards compared with backs (work to rest ratios 263 

1:7.4 and 1:21.8, respectively; 10) indicates that greater fatigue resistance would be particularly 264 

beneficial for forwards. Moreover, the greater calcineurin activity in XX homozygote humans 265 

and approximately threefold increase in calcineurin activity and distance run after endurance 266 

training in KO mice (29), further support the notion that forwards would benefit from a greater 267 

fatigue resistance, especially with exposure to extensive training. These data are consistent with 268 

our observation that forwards exhibit higher XX genotype and lower R allele frequencies than 269 

backs and controls (Table 1). 270 

 271 

When considering many sports simultaneously, team sport athlete status showed no association 272 

with ACTN3 R577X genotype (12). However, due to a relatively small number of athletes (205) 273 

with mixed status (56.6% elite) from a range of sports (ice hockey, handball, soccer, etc.), that is 274 

perhaps not surprising. While combining cohorts from different sports can boost sample size and 275 

theoretically increase statistical power, if an association does not exist in all sports, or even in all 276 

athletes within a particular sport due to positional differences, one would be less likely to detect 277 

an association. The positional differences identified within the present study demonstrate the 278 

value of studying a large sample from a single sport and, in the absence of detailed physiological 279 

data (often difficult to obtain from large numbers of elite athletes), provides a viable alternative 280 

for future genetic research involving team sport athletes. 281 

 282 

ACE I/D 283 



 
 

The current study reports no difference between rugby athletes and controls or any positional 284 

subgroups for ACE I/D. This lack of association contrasts with a recent meta-analysis where the 285 

ACE I allele was associated with physical performance (23). However, Ma et al. also reported 286 

that specialized distance/endurance athletes showed the strongest association with the I allele 287 

(OR 1.35). Given the mixed metabolic nature of rugby, a comparable association in the present 288 

study was less likely. Furthermore, the importance of ACE I/D remains controversial in the 289 

literature, with no associations reported in other isolated team sports such as elite European 290 

soccer (16) and non-elite RU (5). These prior data, in conjunction with our current findings in a 291 

larger study that also considers playing position, suggest that ACE I/D plays little role in 292 

performance of team sport athletes. ACE I/D genotype-athlete phenotype associations are more 293 

likely to exist in specialized endurance athletes (26). 294 

 295 

Effect size and future applications 296 

Odds ratios were calculated to estimate the likelihood that individuals with the advantageous 297 

genotype/allele become an elite RU athlete in a specific position. The ACTN3 XX genotype was 298 

almost twice (OR=1.77) as common in forwards than backs, which suggests α-actinin-3 deficient 299 

individuals are more suited to forward play. Furthermore, forwards were over three times 300 

(OR=3.46) more likely to be XX genotype than the back three athletes, while the remaining 301 

backs (centers and halves) were over twice as likely to show the α-actinin-3 deficient genotype 302 

than the back three (OR=2.59). These data suggest the ACTN3 R577X polymorphism shows 303 

potential to contribute to position-specific player profiling within RU when combined with other 304 

genetic and physiological data in the future. In contrast, the ACE I/D polymorphism (OR ~1) 305 

does not show equivalent potential in rugby. 306 



 
 

 307 

While the present cohort size is large compared to previous single sport genetic analyses, when 308 

the cohort was subdivided into playing position, the numbers were reduced so enlargement of 309 

our cohort and replication would be welcome. Accordingly we continue to recruit elite RU and 310 

RL players in the RugbyGene project, so will steadily become better able to investigate genetic 311 

aspects of specific demands within rugby. To conclude, the present study revealed position-312 

specific genetic variation in elite RU athletes for ACTN3 R577X. The R allele was an advantage 313 

for backs, particularly the back three. Moreover, the current results do not support ACE I/D as a 314 

genetic marker for rugby performance, showing no differences between athletes and controls or 315 

positional subgroups. This study demonstrates the value of single sport cohorts and the need for 316 

large sample sizes when conducting gene association studies in sport. Future objectives of the 317 

RugbyGene project within the broader Athlome project include investigating whether genetic 318 

variants associated with excellence in other sports are similarly associated in the multifaceted 319 

sport of rugby. 320 
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Table 1 Genotype and allele distribution of controls and athletes divided into positional sub-groups (for RU only), presented as genotype/allele 418 
counts followed by percentage in parentheses. RL, rugby league and RU, rugby union. * Different from forwards. # Different from the Back 3. 419 

Genotype All athletes RL athletes RU athletes Controls Forwards Front 5 Back row Backs Half Backs Centers Back 3 
ACE            
      II 108 (21.4) 18 (21.7) 92 (21.5) 113 (19.8) 49 (20.0) 36 (22.1) 13 (15.9) 43 (23.6) 14 (20.3) 14 (31.1) 15 (22.1) 
      ID 251 (49.7) 39 (47.0) 214 (50.1) 286 (50.0) 129 (52.7) 86 (52.8) 43 (52.4) 85 (46.7) 33 (47.8) 17 (37.8) 35 (51.5) 
      DD 146 (28.9) 26 (31.3) 121 (28.3) 172 (30.2) 67 (27.3) 41 (25.2) 26 (31.7) 54 (29.7) 22 (31.9) 14 (31.1) 18 (26.5) 
Total 505 83 427 572 245 163 82 182 69 45 68 
      I allele 467 (46.3) 75 (45.2) 398 (46.6) 512 (44.7) 227 (46.3) 158 (48.5) 69 (42.1) 171 (47.0) 61 (44.2) 45 (50.0) 65 (47.8) 
      D allele 543 (53.7) 91 (54.8) 456 (53.4) 630 (55.3) 263 (53.7) 168 (51.5) 95 (57.9) 193 (53.0) 77 (55.8) 45 (50.0) 71 (52.2) 
ACTN3            

      XX 104 (20.5) 15 (18.1) 90 (20.9) 130 (18.3) 61 (24.8) 39 (23.8) 22 (26.8) 29 (15.7) 12 (17.4) 11 (23.4) *6 (8.7) 
      RX 234 (46.2) 45 (54.2) 194 (45.0) 337 (47.5) 112 (45.5) 71 (43.3) 41 (50.0) 82 (44.3) 29 (42.0) 22 (46.8) 31 (44.9) 
      RR 169 (33.3) 23 (27.7) 147 (34.1) #243 (34.2) #73 (29.7) 54 (32.9) 19 (23.2) 74 (40.0) 28 (40.6) 14 (29.8) 32 (46.4) 
Total 507 83 431 710 246 164 82 185 69 47 69 
      X allele 442 (43.5) 75 (45.2) 374 (43.4) *597 (42.0) 234 (47.6) 149 (45.4) 85 (51.8) *140 (37.8) 53 (38.4) 44 (46.8) 43 (31.2) 
      R allele 572 (56.5) 91 (54.8) 488 (56.6) #823 (58.0) 258 (52.4) 179 (54.6) 79 (48.2) 230 (62.2) 85 (61.6) 50 (53.2) *95 (68.8) 
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