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1. Introduction 

Covert training processes such as motor imagery (MI), the cognitive rehearsal of an action 

without actual execution (Denis 1985), and action observation (AO), the process of adapting action 

through observation learning (Bandura 1986), are increasingly proposed as adjuncts to physical therapy 

during the motor rehabilitation of older individuals (Ertelt et al. 2007; Page et al. 2007). The main tenet 

supporting the use of these motor simulation processes is that overt (action execution, AE) and covert 

(MI and AO) actions recruit similar, but not identical, cortical motor areas, and the activation of these 

motor areas, via any of the three processes, enhances brain plasticity (Jeannerod 1994; Rizzolatti et al. 

1996). The use of MI and AO in clinical populations, however, has generally assumed that the motor 

simulation skills of older individuals are unaffected by age. In healthy aging, efficient movement can 

be compromised through: modifications within the musculoskeletal system (Smith et al. 1999; 

Kinoshita and Francis 1996); loss of sensorimotor and proprioceptive sensitivity (Klein et al. 2001; 

Leonard and Tremblay 2007; Skinner et al. 1984); a slowing in processing visual information (Briggs 

et al. 1999); and cognitive decline (Salthouse 1996). If, as neurophysiological studies increasingly 

demonstrate, the motor representation is shared between overt and covert conditions, then any 

detrimental age related changes associated with AE may also reduce the effectiveness and efficacy of 

the covert techniques.  

The performance of overt and covert motor tasks is frequently compared using self-report 

inventories and brain mapping techniques. Although these are useful measures, self-reports rely on an 

individual’s introspective access to conscious awareness, and measures of neural activity do not 

provide data processing in real-time or instantaneous feedback (Collet et al. 2011). An alternative 

method, the chronometry paradigm, compares the time taken to perform and imagine a motor act, with 

similar movement times taken as evidence of imagery ability (Guillot and Collet 2005). An important 

aspect of this temporal relationship between AE and MI is that if task complexity is increased then 

movement time (MT) increases in AE and MI (Decety, Jeannerod, & Prablanc, 1989). Thus both the 

physical and mental performance of actions are governed by the speed-accuracy relationship known as 

Fitts’ Law (Fitts, 1954). Researchers frequently exploit this phenomenon and use MT as a manipulation 

check to ensure task compliance in the covert tasks (Gabbard, Cacola, & Bobbio, 2011; Heremans et 

al., 2011; McCormick, Causer, & Holmes, 2012). The temporal correspondence between AE and MI is 
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suggested to develop until late adolescence, with proficiency achieved once the neural systems 

supporting internal modelling have matured (Caeyenberghs et al. 2009). Whilst older adults are 

reported to demonstrate temporal congruency (Sirigu et al. 1996), they may underestimate (Personnier, 

Kubicki, Laroche, & Papaxanthis, 2010; Skoura, Papaxanthis, Vinter, & Pozzo, 2005) and overestimate 

(Skoura, Personnier, Vinter, Pozzo, & Papaxanthis, 2008) the imagined movement time (MT). It is 

possible that the temporal inconsistency may be related to the task as younger individuals have been 

reported to over-estimate the imagined duration when more complex tasks are performed (Guillot & 

Collet, 2005). The temporal inconsistency may, however, also reflect age-related changes in the 

cognitive mechanisms mediating the relationship between physical and mental practice. Objectively 

investigating online cognitive processing during these tasks may offer a more comprehensive method 

of comparing overt and covert performance in this age group. One method of achieving this is by 

measuring eye movements (Heremans, Helsen, & Feys, 2008; McCormick, Causer, & Holmes, 2013). 

The gaze control system comprises mechanisms concerned with the acquisition of visually presented 

information, making it an excellent reflector of cognitive processes, including decision-making and 

attention (Sirevaag & Stern, 2000). Although the extent to which gaze behaviour represents the amount 

of cognitive processing has been questioned (e.g. Posner & Raichle, 1991; Viviani, 1990), recent 

research suggests that it is difficult to shift the point of gaze without shifting attention (Shinoda, 

Hayhoe, & Shrivastava, 2001). The attention shifts that precede saccadic eye movements are associated 

with their preparation and involve some of the same neuronal ‘‘machinery’’ (Corbetta et al., 1998; 

Culham et al., 1998). Corbetta et al. (1998) fMRI and surface-based representations of brain activity 

were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to 

peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. 

Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This 

anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are 

tightly integrated at the neural level. Motter and Belky (1998) and Findlay and Gilchrist (1998) have 

also argued that fixations reflect attentional distribution in visual search experiments. 

Contemporary research has compared the cognitive organization of an action in AE, AO and MI 

through the measurement of visual fixations (Heremans et al. 2012; Flanagan and Johansson 2003; 

McCormick et al. 2013).  These specific gaze parameters have been extensively used by cognitive and 
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sport psychologists to infer the focus of attention (Causer, Bennett, Holmes, Janelle, & Williams, 2010; 

Hayhoe, 2004). The number and spatial distribution of fixations is considered to reflect the visual 

information that an individual considers most important, the temporal distribution may be used to 

identify the relationship between the visual cues, and the duration is considered a measure of 

information processing demand (Zelinsky, 2013).  Using a reach and point task with high 

spatiotemporal demand, McCormick et al. (2013) reported that healthy, young adults attend the same 

visual cues in AE, AO and MI but that the visual information processing demand was congruent 

between AE and AO only. These findings highlight the sensitivity of using this method and suggest 

that there are discrete differences as well as similarities in the cognitive organization of overt and 

covert action, even in the absence of age related influences. 

At present there appears a lack of research that has used eye movements to compare the 

cognitive processes of healthy, older adults during AE, MI and AO. In studies that have examined eye 

movements in AE, older adults are reported to need more time to extract and process the visual 

information and programme the appropriate motor responses (Di Fabio, Zampieri, & Greany, 2003; 

Sekuler, Bennett, & Mamelak, 2000). These changes in gaze behaviour may, however, not always 

accompany changes in motor performance (Chapman & Hollands, 2006). Hollands and Chapman 

(2006) compared eye movements during gait in healthy older and younger adults and reported gaze 

differences even when comparable movement times were achieved. This suggests that age related 

changes in cognitive process do occur in the absence of physical decline. This potentially challenges 

the efficacy of using mental practices techniques such as AO and MI for motor relearning in older 

adults. We are aware of only two published studies (Heremans et al. in press; Heremans et al. 2012) 

that have reported the eye movements of an older adult control group (>60 years) during the AE and 

MI of a wrist flexion/extension task. In both studies, the number of fixations and inter-fixation 

amplitude was found to be congruent between the two conditions. Based on these findings Heremans et 

al. suggested that MI ability was preserved in elderly. Whilst the congruent eye movements do suggest 

cognitive organisation of the action was similar between AE and MI, the absence of a younger healthy 

control group makes it difficult to identify to what extent, if any, the performances were influenced by 

age-related changes.  
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Many consider age related changes to manifest from 65 years onwards. Supporting this 

assumption, numerous studies have demonstrated performance breakdown when extremes of the adult 

age continuum are compared e.g. young adults 20-25 years and older adults 70 years plus. While overt 

age related changes in motor tasks (for example an increase in reaction time) may not be apparent until 

over the age of 65, older adults have to invest additional cognitive effort to achieve comparable 

reaction times with young adults (Chapman & Hollands, 2006; Seidler et al., 2010). Thus, the cognitive 

techniques used to compensate for age-related changes may mask the observable onset of age related 

decline. Indeed in a recent review examining mental processes and aging, Saimpont, Malouin, 

Tousignant, and Jackson (2013) provided evidence of age-related changes in participants of 55 years 

and older. Others (Salthouse, 2009) have also suggested that cognitive processes such as working 

memory and attentional control, arguably processes that are at the core of mental practice, begin to 

decline before the age of 50. These findings suggest it may be pertinent to investigate the influence of 

aging in a slightly younger population than traditionally recruited. 

The primary aim of this study was, therefore, was to compare the AE, MI and AO of upper 

limb movement between healthy young and early aging adults. Specific eye movements provided the 

primary dependent variables and additional measures (MT and self reports) were used to triangulate the 

data and confirm participant compliance in the covert tasks. Based on the findings of others (Flanagan 

and Johansson 2003; Heremans et al. 2008) and the concept of shared neural networks in motor 

simulation (Jeannerod 1994) we hypothesized that the gaze strategy executed in AE would be 

preserved in MI and AO. Due to age related slowing, we expected the MT in AE to increase in the 

older group but, based on the conflicting findings to date, we made no predications regarding whether 

the MT in MI would increase or decrease compared to the physical MT. We hypothesized that MT, in 

MI and AE, would be influenced by target size (Decety et al. 1989; McCormick et al. 2013). 

2. Methods 

2.1 Participants 

A sample of 16 healthy participants was equally split into two age groups, old (mean age = 59 

± 7 years, 7 females) and young (mean age 30 ± 11 years, 7 females). Prior to testing it was confirmed 

that all participants: had normal or corrected to normal vision; were righted handed (old group, = 94.75 

± 4.35; young group, 95.80 ± 4.85 years (Edinburgh Handedness Inventory; Oldfield 1971)); had at 
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least average imagery ability (old group, visual imagery = 34.63 ± 6.37, kinesthetic imagery = 33.25 ± 

10.01; young group, visual imagery = 31.88 ± 10.35, kinesthetic imagery = 34.25 ± 5.23 (Movement 

Imagery Questionnaire – Revised, MIQ-RS; Gregg et al. 2010). Two participants in the older group 

were retired but still physically active, reporting cumulative walking of at least 60 minutes each day. 

The remaining participants were office workers or similar. All participants volunteered to take part in 

the study, were naive to the hypotheses being tested, and supplied written informed consent prior to 

participation. Experimental procedures were approved by the local ethics committee of the host 

university. 

2.2  Apparatus 

The tasks were performed using a calibrated (pre-experiment) tablet (ST2220T, Dell UK Inc.) 

and a hand held stylus (normal pen size and weight). The stylus movements were recorded at 50 Hz 

using DMDX (Forster and Forster 2003). The tablet had a spatial accuracy  2.5 mm, over 95 % of 

touchable area and a typical response time of 15 ms.  

Eye movements were recorded with the Applied Science Laboratories Mobile Eye system 

(ASL; Bedford, Massachusetts) at a sampling rate of 30 Hz. The system has an accuracy of 0.5 ° of 

visual angle, a resolution of 0.10 ° of visual angle, and a visual range of 50 ° horizontal and 40 ° 

vertical. The Mobile Eye was recalibrated prior to condition (AE, MI, AO and control) using a 9-point 

grid presented on the tablet. A chin rest was used to restrict head movements. In this study a fixation 

was operationally defined as a stable gaze position (i.e. within 0.67 ° visual angle) that was maintained 

for at least 120 ms. 

 To promote intra-individual congruency between conditions, participants’ AE trials were 

covertly filmed using a Sony High Definition Handycam (HDR-HC7E). The camera was positioned 

directly above the participant and 186 cm from the floor. The personalized videos were then presented 

onto the tablet during each participant’s AO trials. The filming process was explained to participants 

during the final debrief session. 

2.3 Task 

Participants held the stylus in their dominant right hand and performed the Virtual Fitts’ Task 

(VRT, based on that used by McCormick et al. 2013) in three conditions: (i) AE; (ii) MI; and (iii) AO.  
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In all conditions a HOME and FINISH button together with a TARGET square were presented on the 

tablet (see Figure 1). The HOME and FINISH buttons were positioned approximately 200 mm away 

from the participant’s torso (midline). The TARGET was vertically aligned with the HOME button and 

the amplitude between the closest edges of the HOME and TARGET was constant (185 mm). Three 

TARGET squares of different sizes were used: small (4 mm2), medium (9 mm2) and large (20 mm2). 

According to the Fitts’ Law (Fitts 1954), the three target widths and the fixed inter-target distance lead 

to three indices of difficulty [ID = log2 (2A/W)]: respectively 6.5, 5.4 and 4.2. 

In AE and MI, the HOME button was tapped to begin the task. In AE, participants physically 

moved the stylus to the TARGET, back to HOME and then to FINISH. In MI, the same action was 

imagined without any concomitant movement. The MT, the time from when the stylus left the HOME 

button until it pressed the FINISH button, was recorded in both AE and MI. In AO, the participants 

held the stylus and observed a recording of their own AE, presented onto the tablet as a video clip on 

the tablet.  

To ensure a maximally homogeneous task across all participants a series of instructions were 

issued. In AE, participants were requested ‘to move the stylus as quickly as possible but not to risk 

improving speed at the expense of accuracy’. Participants were informed that ‘two or more false starts 

or target misses during any block would result in that block being restarted’. In MI, participants were 

instructed to ‘imagine the task from a first person egocentric, visual orientation’. To control the MI, a 

brief script was recited by the experimenter which described the scenario and the imager’s inner 

response to scenario (Lang 1979): ‘see yourself accurately reach the square target, as if you were 

actually performing the movement’ and ‘feel your grip on the stylus, feel the muscles in your upper 

arm contract, feel your arm extend as you perform the movement’. Participants were requested to 

refrain from any upper limb movement in this condition. In AO, the participants were instructed to 

remain stationary and to ‘observe the action with the intention to imitate it at a later time’. 

Insert Fig. 1 

2.4  Experimental procedure 

Participants were fitted with the eye tracking system and initially performed a single 

habituation block of the VRT using a target that was a different size (15 mm2) to the experimental 
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tasks. Participants were then assigned to one of three starting series defined by target size (small, 

medium, large). Each series began with one block (11 repeated reach tasks) of AE, followed by one 

block of each of the other conditions (i.e. MI, AO, and Control, counterbalanced; see Figure 2). 

Preceding the covert conditions with AE was a necessity to maintain equivalent self-referent 

representations based on stored memories of a prescribed task (Borst and Kosslyn 2008). Each block 

consisted of eleven repetitions of the task followed by a 2-minute rest. At the end of the experiment 

each participant was debriefed fully and manipulation checks were performed to confirm participant 

compliance in the covert tasks. An in-house questionnaire, using a 7-point Likert-type scale (similar to 

the MIQ-RS), was used to rate the ease/difficulty associated with their visual and kinaesthetic 

performance in MI and their active visual engagement and kinesthesis in AO. 

Insert Figure 2 here 

2.5  Control 

To ensure that the eye movements in the simulation conditions did not reflect random 

oculomotor behavior a control condition was included. In this condition the TARGET, HOME and 

FINISH buttons were presented on the tablet and participants were instructed to count back slowly 

from 100. After 60 s (a time equivalent to the mean time spent performing a complete block of 

repeated tasks in AE) the participants were asked to rest. 

2.6  Gaze analysis 

The eye movement data was analysed using Gazetracker software (Lankford 2000). ‘Look-

zones’, areas equivalent to the target plus a tolerance: small = 8 mm2; medium = 7 mm2; large = 6 mm2, 

were determined (McCormick et al. 2013). The tolerance, determined a posteriori, accommodated for 

drift, compressions, expansions and individual gaze behavior preference (Laeng and Teodorescu 2002; 

Liman and Zangemeister 2012). The spatial and temporal parameters of fixations located within the 

look-zones and the primary eye movement amplitude, calculated as the distance of the location of the 

first fixation from the HOME button following task onset, were compared between conditions (Laeng 

and Teodorescu 2002; Richardson and Spivey 2000). The primary eye movement amplitude was 

calculated (in mm) as the distance of the location of the first fixation from the HOME button following 

task onset. The first trial in each block was discarded since pilot testing revealed MT in this trial to be 
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more variable. In total, the data reflected 1440 trials: 16 (participants) x 3 (conditions; AE, AO and MI) 

x 3 (target size; small, medium and large) x 10 (task repetitions per block). For the gaze metrics, the 

mean values per block were determined and used in the statistical analysis. The data in the control 

conditions represented performance at a block level and therefore 144 trials were analysed: 16 

(participants) x 3 (conditions; AE, AO and MI) x 3 (target sizes; small, medium and large). 

2.7  Statistical analyses 

To confirm participant compliance during imagery, the MT was compared using a 2 

(condition: AE, MI) x 3 (target size: small, medium, large) x 2 (age: young, old) repeated measures 

(RM) ANOVA. The temporal correspondence between AE and MI was further examined by 

calculating the within subject correlation coefficient (Bland and Altman 1995). The total number of 

fixations was analysed using 4 (condition: AE, MI, AO, control) by 3 (target size) by 2 (age) RM 

ANOVA. The control condition was included in this analysis to compare fixations in task related and 

task unrelated conditions. 

 The differences in fixation duration were compared using a 3 (condition: AE, MI, AO) x 3 

(target size) by 2 (age) RM ANOVA. The temporal correspondence of this metric between AE and AO, 

and AE and MI was further examined by calculating the within subject correlation coefficient (Bland 

and Altman 1995). This additional analysis would demonstrate to what extent an increase in fixation in 

AE (in the individual) was associated with an increase in fixation duration in AO and MI. To complete 

the analyses the primary inter-fixation distance was also compared using a 3 (condition: AE, MI, AO) x 

2 (size: large, small) x 2 (age) RM AVOVA. This variable is particular susceptible to task strategy and 

controlling task strategy in aiming tasks, irrespective of task instructions, can be problematic 

(Gesierich, Bruzzo, Ottoboni, & Finos, 2008). Under conditions of high ID individuals tend to adopt a 

strategy that focuses on speed, but under conditions of low ID individuals tend to adopt a strategy that 

focuses on accuracy (Lazzari, Mottet, & Vercher, 2009). As the size of the medium target was not 

vastly different to either the large or small target, the focus of the strategy could have been either speed 

or accuracy. The medium target was therefore excluded from the analysis to remove any confound 

related to task strategy. 

The Shapiro-Wilks and Levene’s tests were used to identify normal distribution and 

equivalent variance. Sphericity was assumed if Mauchly’s test of sphericity was > 0.05. Effect Sizes 
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were calculated using partial eta squared values (ηp
2) and the alpha level for significance was set at 

0.05. Pairwise comparisons were Bonferroni corrected. All data are presented as means and, where 

appropriate, Greenhouse-Geisser corrected. 

3. Results 

3.1 All participants complied with the task requirements. Task noncompliance accounted for 16 

trials (2%) being retaken for the young group and 20 trials  (3%) being retaken for the older group. 

3.3  Chronometry measures  

Main effects were found for condition (F1, 14 = 4.649, p = 0.049, ηp
2 = 0.249), target size (F2, 28 

= 4.272, p = 0.024, ηp
2 = 0.234) and age (F1,14 = 5.694, p = 0.032, ηp

2 = 0.289). There were no 

significant interactions. Pairwise comparisons revealed MT was slower in MI (2.976 ± 0.993 s) 

compared to AE (2.538 ± 0.798 s). For target size, MT was quicker for the large target (2.571 ± 0.812 

s) compared to the small target (2.887 ± 0.895 s, p = 0.035). Older participants took significantly 

longer to perform the task (3.178 ± 0.925 s) compared to younger participants (2.335 ± 0.801 s).  

The temporal correspondence between AE and MI is illustrated further in Figure 3. Based on 

the Cohen’s guidelines (Cohen 1988), a statistically significant medium correlation was found for the 

young group  (r = 0.478, p < 0.002) and a small, but significant, correlation for the old group (0.258, p 

= 0.037).  

Insert Fig. 3a and 3b 

3.4  Total number of fixations  

There was a main effect for condition (F1.872, 26.211 = 29.811, p < 0.001, ηp
2 = 0.680), but not 

size (p = 0.366) or age (p = 0.310). There was a significant condition by age interaction (F 1.872, 26.211 = 

4.342, p = 0.026, ηp
2 = 0.237) and a significant condition by size interaction (F 2.704, 37.862 = 3.427, p = 

0.030, ηp
2 = 0.197). 

Significantly more fixations were made in AE compared to all other states. Regarding the 

condition by age interaction, pairwise comparisons revealed that older individuals made more fixations 

in AE (17 ± 4) compared to AO (13 ± 3, p = 0.006) and MI (13 ± 4, p = 0.029) and control (4 ± 5, p = < 
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0.001). They also made significantly more fixations in AE compared to the younger group (13 ± 3, p = 

0.019). For younger participants there was no significant difference in the number of fixations between 

conditions: AE (13 ± 3), AO (11 ± 2) and MI (12 ± 2) but significantly fewer fixations were observed 

in control (6 ± 7, p = 0.045). The number of fixations made during AO and MI was not significantly 

different between groups.  

The condition by size interaction revealed that more fixations were made to the large target (6 

± 6) compared to the medium target (4 ± 7, p = 0.043) in the control condition only, see Figure 4. 

Insert Fig. 4 

3.5  Total fixation duration  

A main effect for size (F1.339, 18.742 = 9.734, p = 0.003, ηp
2 = 0.410) but not condition (F1.356, 

18.981 = 1.239, p = 0.305) was found. Pairwise comparisons revealed that the total fixation duration was 

significantly less at the large target (7.968 ± 3.250 s) compared to the small target (10.010 ± 3.903 s), 

Figure 5. There was a main effect of age  (F1, 14= 7.351, p = 0.017, ηp
2 = 0.344) that indicated older 

participants, compared to younger participants, fixated the target look-zone for longer (10.721 ± 3.115 

s vs 7.040 ± 1.910 s).  

Insert Fig. 5 

The fixation duration correlations between AE and AO, and AE and MI are illustrated in 

Figure 6 (Panel A and B respectively). There was a significantly medium-large correlation between AE 

and AO for the young (r = 0.447, p = 0.006) and older (r = 0.360, p = 0.01l) group. The correlations 

between AE and MI were not significant (for either group).  

Insert Fig. 6  

3.6 Primary eye movement amplitude 

The RM ANOVA revealed a significant size by age interaction (F1,14 = 5.465, p = 0.035, ηp
2 = 

0.281), Figure 7. Simple effect analyses revealed the primary eye movement amplitude was greater to 

the large target (175.323 ± 29.918 mm) compared to the small target (159.914 ± 38.311 mm, p = 0.019) 

for the younger participants only. There were no significant main effects.  
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Insert Fig. 7 

3.2 Manipulation checks 

 Manipulation checks were completed post experiment to assess participants’ covert 

performance. In the older group, the visual component of MI was rated as “somewhat easy to see” (VIS 

= 5.500 ± 1.195), and the kinesthetic component as “somewhat hard to feel” (KIN = 3.500 ± 1.773). In 

AO, the visual component was rated as “very easy to engage in” (VIS = 6.750 ± 0.707), and the 

kinesthetic component as “very hard to feel” (KIN = 1.500 ± 2.828). In the younger group, the visual 

component of MI was rated as “easy to see” (VIS = 5.625 ± 1.302), and the kinesthetic component as 

“somewhat easy to feel” (KIN = 4.625 ± 1.408). In AO, the visual component was rated as “very easy 

to engage in” (VIS = 7.000 ± 0.000, no variability in rated score), and the kinesthetic component as 

“neutral (not easy or hard)” (KIN = 4.00 ± 2.928). 

Participants preferred to perform AO compared to MI. 87.50% (7 participants) of the older 

group, and 75% (6 participants) of the younger group perferred this simulation condition. 

4.  Discussion 

Eye movements were measured in young and older adults to examine the influence of age on 

cognitive processes whilst participants physically executed, imagined and observed a goal directed 

action. The discussion is organised by dependent variable and self-reports have been included to 

supplement the findings. The chronometry data is discussed initially as this performance measure 

informs the interpretation of the data for the primary dependent variables.  

4.1 Chronometry measures  

The chronometry results indicated that all participants complied with the task. As 

hypothesized, older individuals took significantly longer to physically execute the tasks but in both age 

groups the mental and physical MT increased with target complexity. In both age groups the mental 

MT was longer than the physical MT and this may reflect the high degree of accuracy associated with 

the task (Guillot & Collet, 2005). This group-wide increase in mental MT does not necessarily indicate 

impairment but may reflect the different time constants of each condition; in MI the agent has to 
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manipulate the image consciously: generate; inspect; maintain; and transform it (Dror and Kosslyn 

1994) and this is predicted to introduce an additional time cost (Jeannerod 1997). 

 The temporal relationship between AE and MI was weaker in the older group indicating a 

potential imagery inaccuracy. MT is considered to be derived, in part, from muscular force, proposed 

to be part of the coded motor representation (Jeannerod 1997). As there was no overt movement in 

imagery there was no limb or object upon which to exert the planned force. Consequently, the level of 

force encoded in the motor command may have manifest as time in the covert states, with increases in 

felt force represented as increases in time (Decety et al. 1989). The inability of the older group to 

accurately represent MT in imagery may therefore reflect a reduced ability to accurately predict 

muscular force as a result of a decline in sensorimotor control and a modified musculoskeletal system. 

In AE, this reduced ability may be counteracted by a greater reliance on proprioceptive and on line 

visual feedback which is partially absent in the imagery condition (Klein et al. 2001; Smith et al. 1999; 

Poston et al. 2009)(Chapman & Hollands, 2006). The self-report data also appear to support these 

findings with older individuals rating the kinaesthetic component of imagery as ‘somewhat hard to 

feel’ in comparison to the younger group who rated it as ‘somewhat easy to feel’. In addition, given that 

MI is primarily a top-down process, the weaker temporal relationship could also be explained by an 

age related decline in cognitive function (Seidler et al., 2010). In support of this suggestion some, but 

not all, imagery processes, such as the generation and maintenance of an image, are reported to become 

impaired with age (Dror & Kosslyn, 1994).  

4.2 Number of fixations  

Older participants made more fixations during AE compared to the younger group. The 

increase in the number of fixations suggests that the gaze strategy was less than optimal in this 

condition (Vickers 1996). The chronometry data would support this interpretation given that the older 

group also took longer when performing the task physically. Goggin and Meeuwsen (1992) suggest 

that older individuals place a greater emphasis on the posture phase of a pointing movement in order to 

maintain task accuracy. Since no difference was observed in gross endpoint error between the younger 

and older group, it is possible that the older participants invested more effort in this component of the 

task to maintain performance. This behavior would be supported by attentional control theory (Eysenck 

et al. 2007). Given that the hands and eyes are considered to be tightly coupled (Helsen et al. 1998), we 
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suggest the additional fixations made by the older group represent the investment of this additional 

effort (Seidler et al., 2010).  

In contrast to our hypothesis, the additional fixations executed during AE in the older group 

were not represented in the covert states. In MI and AO, fixations were fewer and similar in number to 

that of the younger group. These findings suggest that all participants adopted a similar gaze strategy in 

the covert conditions and both groups were equally proficient at the task. During physical movement, a 

crude feed-forward motor plan is generated and subsequently modulated by an error signal (the 

difference between the anticipated and actual position of the limb) determined through sensory 

feedback mechanisms (Desmurget and Grafton 2000). In the covert conditions the feedback is 

significantly limited and therefore the magnitude of the error signal maybe insufficient to modulate the 

motor plan. In these conditions the simulated action appears to be based only on the initial feed-

forward motor plan; in all trials there was at least one fixation to the target location to assist in coding 

the coordinates of the movement trajectory. This explanation would support our earlier interpretation 

that the additional fixations observed during AE in the older group were related to the error correction 

phase concerned with stabilizing the hand at the target (Ghez et al. 2007). Indeed, direct evidence from 

studies of primate motor cortex suggests that the posture and movement phase of a reach action involve 

distinct processes (Kurtzer et al. 2005). A dissociation between the reach and grasp components of 

upper limb actions has been proposed (Jeannerod 1997; Grafton et al. 1996) and some authors 

(Edwards et al. 2003) report that in reach and grasp actions, the grasp component remains relatively 

robust to observational priming. The data from this study supports these claims by demonstrating the 

omission of specific gaze strategies during the sub components of the task in the covert conditions.  

Some of our findings may appear to contrast with others. For example, Heremans et al. (2012) 

reported no differences in the number and location of eye movements made by a healthy, older control 

group during overt and visually-cued MI. We propose differences in task demand may explain these 

conflicting findings. The Heremans et al. study required participants to physically and mentally 

perform a cyclic horizontal wrist flexion/extension action between two targets at two different indices 

of difficulty (4.5 and 5.3), at rate of 0.5 Hz. Arguably, this is a less demanding task compared to the 

present study and, given that the participants typically made one eye movement per wrist movement 

during physical movement, suggests that the initial feed forward motor plan was sufficient to guide the 
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task. Given the earlier interpretation of our results, a similarity in the number of fixations during overt 

and covert movement would be expected.   

For both age groups, the number of fixations within the look-zones was not influenced by 

target complexity, suggesting that task demand was compensated by other gaze behavior. Similar 

findings have been reported previously (McCormick et al. 2013; Heremans et al. 2012) 

Collectively, these data suggest that motor simulation in MI and AO may offer older 

individuals movement practice conditions that are not constrained by age-related decline. Of particular 

importance to practitioners is that covert states do not interpret the fine motor error corrections. The 

accuracy of the initial target fixation may, therefore, be critical to optimizing the mental practice 

benefits. 

4.3 Fixation duration 

Fixation duration was influenced similarly across all conditions supporting the concept of 

shared neural substrate.  Compared to younger individuals, older adults fixated for longer but displayed 

relatively similar increases in fixation duration with increases in target complexity. The longer fixation 

duration may be a result of age-related slowness associated with processing the visual information 

(Briggs et al. 1999) or a delayed arrival of the hand at the target due to functional loss (Kinoshita and 

Francis 1996; Smith et al. 1999). 

The correlational data suggest that the congruency of fixation duration was enhanced between 

AE and AO in both groups. These data imply that the factors influencing the temporal allocation of an 

individual’s attention in AE influenced attention in AO similarly. The self reports support this 

interpretation given that AO was rated as ‘very easy to engage in’ by both the older and younger 

groups where as the visual dimension of MI was given a lower rating, either ‘somewhat easy to see’ by 

the older group or ‘easy to see’ by the younger group. In addition, 88 % of older adults and 75 % of 

younger adults reported a preference for AO in comparison to MI. Collectively, the findings suggest 

that older individuals perform better at, and prefer, AO. The temporal congruency between AE and 

AO, and the preference for using AO, maybe due to the common augmented feedback in these 

conditions. During AE and AO, the eye gaze strategy has been reported to work on a ‘just in time’ 

basis, where visual information is acquired and interpreted just at the point where it is required in the 
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task (Flanagan & Johansson, 2003; Hayhoe & Ballard, 2005). This strategy is suggested to be 

employed to minimize use of the short term memory (Ballard, Hayhoe, & Pelz, 1995). In contrast, in 

MI there is no augmented feedback and the image is the interpretation (Pylyshyn, 2003). Thus the 

fixation duration (the time spent dwelling on a particular visual cue) is tightly governed by the 

evolution of the action in AO (as it is in AE), but is decoupled from the online action in MI. It is 

possible that under dynamic conditions individuals prefer using AO because it involves a more familiar 

and efficient eye motor strategy (Pylyshyn, 2000). 

It is possible that reduced congruency between AE and MI may have been due to an altered 

attentional focus. During the execution and observation of familiar well learned tasks individuals 

typically attend to the effect of an action rather than the limb movement required to achieve the action: 

they adopt a predictive, external attentional focus (Flanagan and Johansson 2003). Attending to the 

moving limb, although encouraged in acute movement rehabilitation, is reported to be detrimental to 

task performance outside of limits (McNevin et al. 2000; Hagemann et al. 2006). In accordance with 

Langian theory (Lang 1979), we facilitated MI in this study by including specific visual and 

kinaesthetic statements, referred to as stimulus and response propositions. It is possible, therefore, that 

the kinaesthetic response proposition “feel the muscles in your upper arm contract, feel your arm 

extend as you perform the movement” encouraged a more internal, specific attentional focus than the 

external, general focus adopted during overt movement. Indeed, other researchers (Calmels et al. 2006) 

have also reported that the presence of conscious kinaesthetic sensations in imagery (sensations that are 

typically absent when the movement is physically performed) cause a temporal discrepancy between 

AE and imagined movement. These findings begin to highlight the multifarious influences on MI and 

the importance of the delivery instructions. Understanding how to control but not constrain imagery for 

effective therapeutic use should be explored in future research. 

Taken together these findings demonstrate that although older adults fixate for longer, their 

visual information processing behavior is influenced in a manner similar to younger adults. There is 

some indirect evidence of neural sharedness across conditions (all conditions were influenced by target 

size), however the enhanced congruency between AO and AE suggests that dynamic, rather than static, 

visual cues activate additional shared processes in these conditions. In view of these findings, including 

dynamic visual cues in MI or performing MI simultaneously with AO, may support a more effective 
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gaze strategy may enhance the efficacy of MI as a movement practice tool (Vogt, Rienzo, Collet, 

Collins, & Guillot, 2013). A similar approach of using augmented visual feedback to correct sub 

optimal gaze during AE has been demonstrated in the sports and clinical domains (Crowdy et al., 2002; 

Hagemann, Strauss, & Canal-Bruland, 2006). 

4.4 Primary eye movement amplitude 

The amplitude of the primary eye movement is considered to reflect the unmodified motor 

representation and is one of the first movements to be executed once a motor action has been 

programmed (Abrams et al. 1990). In this study, the primary eye movement amplitude was 

differentiated by target size in the young group only. Specifically, increases in primary eye movement 

amplitude accompanied decreases in task complexity in AE, MI and AO. This suggests that the 

younger group generated a motor representation based on task constraints. In contrast, the primary 

inter-fixation distance was not differenced by target size in the older group and this suggests that these 

individuals were either unable to modulate the amplitude, perhaps through functional loss, or executed 

a more conservative amplitude as a compensation mechanism.  

In relation to the first suggestion, hypometric saccades (smaller inter-fixation distances) are 

reported to occur in senescence (Huaman and Sharpe 1993; Irving et al. 2006). In this study however, 

the mean amplitude of the primary inter-fixation distance executed by the younger adults was within 

the range reported to still be achievable by healthy older adults.  Furthermore, Heremans et al. (2012) 

reported that a healthy, older adult control group adapted their primary inter-fixation distance to 

different target distances in a horizontal aiming task. It therefore seems unlikely that the older adults in 

this study were unable to voluntary adjust the amplitude to reflect the target complexity. A more likely 

explanation is that amplitude was constrained in the large target task as a compensation mechanism. 

The hand movement amplitude of older adults is suggested to behave differently to that of younger 

adults. The relative distance travelled in the primary sub-movement is reported to be substantially less 

in older adults, with the movement highly influenced by accuracy constraints (Ketcham et al. 2002). 

Altered muscle activation patterns and deficits in force modulation have been cited as possible causes 

for these age related changes (Darling et al. 1989). Given that hand movement amplitude is suggested 

to be closely coupled with eye movement amplitude (Cotti et al. 2007), the conservative primary eye 

movement amplitude may be a compensation mechanism used to suboptimal hand movements by 
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providing greater control during the terminal phase of the movement. Chapman and Hollands (2006) 

suggested that the central nervous system of older adults requires additional time to pre-plan movement 

and, to compensate for this, older individuals adopt a less than optimal gaze strategy the prioritizes the 

planning the movement.  

The inter-fixation distance adopted by each group in AE was preserved in AO and MI. This 

pre-programmed part of the movement therefore appears embedded within the motor representation 

and, as such, may lend itself well to corrective covert practice. Cotti et al. (2007) demonstrated that the 

adaptation of voluntary saccades (inter-fixation distances) to targets generalises to hand pointing 

movements, specifically the amplitude of the hand movement increases with the amplitude of the 

saccade. If this is true then executing larger saccades (i.e. increasing the inter-fixation distance) during 

the AO and MI of reach movements may offer opportunities to improve the physical execution of these 

tasks in older individuals.  

4.5 Control 

For both groups, there were significantly fewer fixations the target look-zone during the 

control condition. In addition, the number of fixations was differentiated by target size in the control 

condition but not in AE, MI and AO.  These findings highlight the difference between random eye 

movements made in the control condition and task related eye movements made in AE, MI and AO. 

4.6  Conclusion 

There is evidence of age related changes to gaze during AE but, due to the incomplete neural 

overlap, some of these changes are associated with processes that are not represented in the MI and 

AO. In this regard the lack of neural sharedness has a facilitative effect and permits the practice of 

movement under conditions that are not influenced by functional loss. Some age related changes in 

gaze are preserved across conditions e.g. eye movements linked to movement planning. As these 

suboptimal eye movements appear part of the shared neural representation, opportunity exists to alter 

their behavior during simulated movement. For example, in sport psychology and clinical rehabilitation 

augmented visual feedback has been used to correct sub optimal gaze strategies. Given the neural 

similarities between AE, AO and MI, the effects of using visual cues to correct ineffective gaze in AO 

and MI would be predicted to be retained in AE.   Relearning movement under these conditions i.e. in 
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absence of physical execution, reduces the risk of injury in this population. Regardless of age, healthy 

adults appear to perform more accurately, and prefer, simulation conditions that are supported by 

detailed visual information. This may be because the sensory information is better matched to AE 

under these conditions (Holmes & Collins, 2001). 
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List of captions 

Fig. 1 

Top down schematic illustration of the experimental set up. 

Fig. 2 

Example experimental series to the small target. Each series began with action execution, followed by 

imagery, observation and control (counterbalanced). The series were repeated (counterbalanced) for all 

three target sizes. 

Fig. 3 

MT in MI plotted against MT in AE for the older adults (panel A) and young adults (panel B). Each 

point represents the mean MT of 10 repetitions to each target for each participant.  

Fig. 4 

The number of fixations (mean ± SD) within the target look-zone. Each condition included 3 different 

target sizes and participants performed 10 reach actions to each target size. The data have been 

collapsed for target size. 

Fig. 5.  

The total fixation duration during each block of 10 repeated reach actions. The data have been 

collapsed for condition as the ANOVA revealed no significant difference between AE, MI and AO. 

Fig. 6 

Fixation duration in AE is plotted against fixation duration in AO (Panel A) and against fixation 

duration in MI (Panel B). Each point represents the total fixation duration at the target during 10 reach 

actions for each participant.  

Fig. 7 

Primary eye movement amplitude (mean ± SD) per group for the large and small target sizes. The 

asterix indicates the significant difference in amplitude for the young group only.
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