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Abstract

C-tactile afferents (CTs) are slowly conducting nerve fibres, present only in hairy skin. They are optimally activated by slow,

gentle stroking touch, such as those experienced during a caress. CT stimulation activates affective processing brain regions,

alluding to their role in affective touch perception. We tested a theory that CT-activating touch engages the pro-social functions of

serotonin, by determining whether reducing serotonin, through acute tryptophan depletion, diminishes subjective pleasantness

and affective brain responses to gentle touch. A tryptophan depleting amino acid drink was administered to 16 healthy females,

with a further 14 receiving a control drink. After 4 h, participants underwent an fMRI scan, during which time CT-innervated fore-

arm skin and CT non-innervated finger skin was stroked with three brushes of differing texture, at CT-optimal force and velocity.

Pleasantness ratings were obtained post scanning. The control group showed a greater response in ipsilateral orbitofrontal cortex

to CT-activating forearm touch compared to touch to the finger where CTs are absent. This differential response was not present

in the tryptophan depleted group. This interaction effect was significant. In addition, control participants showed a differential pri-

mary somatosensory cortex response to brush texture applied to the finger, a purely discriminatory touch response, which was

not observed in the tryptophan depleted group. This interaction effect was also significant. Pleasantness ratings were similar

across treatment groups. These results implicate serotonin in the differentiation between CT-activating and purely discriminatory

touch responses. Such effects could contribute to some of the social abnormalities seen in psychiatric disorders associated with

abnormal serotonin function.

Introduction

Interpersonal touch promotes psychological well-being throughout

the lifetime (Weiss et al., 2000; Feldman et al., 2010; Field, 2010;

Burleson & Davis, 2013) with lack of touch in childhood a signifi-

cant predictor of adult depression (Brown et al., 2007; Takeuchi

et al., 2010). Skin-to-skin contact has demonstrable clinical benefits

for premature infants and those born full-term (Field, 2001; Bys-

trova et al., 2009; Moore et al., 2012; Feldman et al., 2014), and in

adults, social touch can increase liking of a person or place, engen-

der pro-social behaviours and increase trust (Morrison et al., 2010).

However, little is known about the neurobiological mechanisms that

transform touch stimuli to benefits on psychological development,

resilience and well-being.

Numerous studies have demonstrated serotonin (5-HT) is a key

modulator of social responses with known effects on attachment

formation and social bonding (Kiser et al., 2012; Young, 2013).

Deakin & Graeff (1991) hypothesized the interaction between social

stimuli and serotonin is important in the pathogenesis of depression,

proposing tactile interactions mediate the protective effects of close

personal relationships. They cited rodent behavioural studies show-

ing serotonergic drugs mimic group housing effects by preventing

stress-induced anxiety-like behaviour and the effects of isolation on

serotonin function. More recent literature suggests hippocampal

serotonin release mediates the long-term stress-protective effects of

maternal care on rodent offspring (Meaney & Szyf, 2005).

The recreational drug Ecstasy (3,4-methylene-dioxymethampheta-

mine (MDMA)) acutely increases central serotonin function (Mor-

ton, 2005) and is known to enhance the pleasure of touch (Klein

et al., 2009). Conversely, experimental reduction in serotonin func-

tion following acute depletion of the essential amino acid and
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serotonin precursor, tryptophan (Delgado et al., 1990; Hood et al.,

2005), has implicated serotonin in modulating tactile social cue per-

ception in healthy volunteers (Bilderbeck et al., 2011, 2013). Taken

together, these studies suggest serotonin modulates tactile encoding

in general, and responses to socially relevant interactions in

particular.

Two different classes of nerve fibre mediate cutaneous

mechanosensation; large myelinated, fast conducting Ab afferents

project to primary somatosensory cortex (SI) and encode discrimina-

tory aspects of touch, whereas slow conducting, low-threshold

mechanosensitive C-fibres (C-tactile afferents (CTs)) project to dor-

sal posterior insula and other limbic regions and are hypothesized to

encode the affective components of gentle touch (Olausson et al.,

2002, 2008b; McGlone et al., 2007, 2014). In humans, CTs are pre-

sent in hairy skin, but have never been found in glabrous skin

(Vallbo et al., 1999), and respond optimally to stroking velocities

between 1 and 10 cm/s delivered at human skin temperature (Loken

et al., 2009; Ackerley et al., 2014); sensations experienced during a

human caress. This evidence has led to the proposal that CTs are

the neurobiological substrate of human social tactile behaviour

(Morrison et al., 2010).

Deakin & Graeff (1991) proposed that social intimacy confers

resilience to stress via an influence of affiliative touch in promoting

serotonin function (Deakin, 1996). Here, we tested the prediction

that if the CT system mediates affiliative touch, then reducing cen-

tral serotonin function through acute tryptophan depletion (ATD)

should reduce Blood Oxygenation Level Dependent (BOLD)

responses specifically to CT activating touch in brain regions associ-

ated with affective processing. We also wished to determine whether

ATD modifies discriminatory touch responses in somatosensory pro-

cessing regions.

Materials and methods

Ethics statement

Ethical approval was obtained from the North Manchester Research

Ethics Committee. This experiment was undertaken with the under-

standing and written informed consent of each participant and the

study conforms with the World Medical Association Declaration of

Helsinki.

Participants

Thirty healthy female volunteers (mean � SD

age = 23.7 � 5.18 years) were recruited from the University of

Manchester. All participants attended a screening session between 1

and 18 days (mean � SD = 4.6 � 3.3 days) before the scanning

session. Only female participants were included in this study to

avoid the confound of sex on the data obtained. Females were cho-

sen as they are almost twice as likely to be affected by depression

than males (Hamet & Tremblay, 2005) and are more susceptible to

the effects of ATD (Nishizawa et al., 1997; Bell et al., 2005). In

addition, sex differences have been identified in responses to affec-

tive touch (Essick et al., 2010).

All participants had no self-reported psychiatric history and were

physically healthy. The structured clinical interview to diagnose

DSM-IV-TR Axis I disorders (SCID) (First et al., 2002) and the

Brief Symptom Inventory (BSI) (Derogatis, 1993) were conducted

during the screening session to exclude participants with a psychi-

atric history. Participants with average weekly alcohol consumption

>25 units per week were also excluded (mean � SD weekly alcohol

consumption = 11.0 � 7.6 units), as were participants who reported

taking street drugs <4 weeks before participation. All participants

were either taking the contraceptive pill, or tested during the follicu-

lar phase of their menstrual cycle. During screening, participants

were provided with details of a low-protein diet to follow the day

before the scan. In addition, Intelligence Quotient (IQ) was mea-

sured using the Quick Test (Ammons & Ammons, 1960) and touch

ratings were completed as described in the following section, to

allow comparison of ratings before and after amino acid drink con-

sumption.

Touch Ratings

All tactile stimuli were manually applied by the same female experi-

menter (PDT). Manual application of brush strokes to the forearm

has been carried out in many previously published fMRI investiga-

tions of CT activating touch (Olausson et al., 2002, 2008a; Bjorns-

dotter et al., 2009; Morrison et al., 2011; Gordon et al., 2013; Voos

et al., 2013; Kaiser et al., 2015). Apart from Morrison et al. (2011),

these studies only used a soft brush, whereas this study used three

brushes of varying degrees of coarseness. By varying stimulus tex-

ture, this enabled us to investigate whether central responses to CT-

targeted touch were specifically tuned to soft, pleasant touch sensa-

tions. Brush strokes were applied to the ventral rather than dorsal

forearm to enable access to the glabrous skin of the hand without

requiring participants to move their arm.

The brushes used in this study were selected on the basis of a

previous study where 16 participants not included in this study pro-

vided Visual Analogue Scale (VAS) hedonic ratings of touch for a

variety of brushes. The results of this study were used to identify

three brushes consistently rated as affectively pleasant (the soft

brush), neutral (the medium brush) and unpleasant (the coarse brush)

when applied to CT-innervated forearm skin. None of the brushes

were perceived as painful, nor produced any skin damage.

The three brushes selected for use in this study were all 44 mm

wide, flat brushes and were as follows: soft – Daler–Rowney,

44 mm, Goat Hair, S155, Flat; medium – Hog Bristle, Daler–Row-

ney Georgian Brush, G36, Short Flat, no.18; coarse – plastic bris-

tles with split ends mounted in the same flat handle as the soft

brush.

For this study, participants provided touch ratings of all brush

stimuli during the screening session and immediately post scanning.

The same experimenter (PDT) conducted all screening and scanning

sessions. During the screening session, touch ratings were obtained

after conducting the SCID (First et al., 2002) to determine psychi-

atric history. All tasks were completed by participants in the same

order during the screening and scanning sessions, so all participants

interacted with the experimenter a similar amount before providing

touch ratings and experiencing the touch in the scanner.

Stimuli were applied in 20 s stimulation blocks preceded by a

20 s rest. During each stimulation block, participants were either

stroked five times on their left mid ventral forearm over a distance

of 18 cm in a proximal to distal direction, or 10 times on the ventral

side of their left fingers, proximal to distal over 5 cm, ending at the

end of the fingers. The interval between strokes was 1 s. The experi-

menter maintained a CT-optimal stroking velocity of 5 cm/s (Loken

et al., 2009), by synchronizing the stroke with a moving dot on a

monitor. The force of application was guided by the degree of bend

in the brush, which was previously calibrated using a top pan bal-

ance to produce 220 mN. A touch run consisted of one stimulation

block per brush, applied to both the left forearm and fingers, in a

randomized order. Randomization of stimulus order each time the

© 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
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brush stimuli were administered removed systematic biases due to

habituation to particular stimuli.

A single touch run was used to obtain ratings during screening

and after scanning. When providing touch ratings and when in the

scanner, the left forearm of the participant was placed on a small

VacFix� cushion for comfortable positioning of the arm. To avoid

visual interference when providing touch ratings at screening and

post scanning, participants wore a blindfold during stimulus applica-

tion, which they removed to complete the VAS. Participants rated

the pleasantness of each stimulus during the 20 s rest block follow-

ing each stimulation block, on a 10 cm VAS with anchor points

�10 (extremely unpleasant), �5 (unpleasant), 0 (neutral), 5 (pleas-

ant) and 10 (extremely pleasant). One participant with aberrant rat-

ings at screening was excluded from further participation.

The same computer programme written in E-prime version 2.0

(Psychology Software Tools, 2012) was used to guide stimulus

application inside and outside the scanner, however, touch ratings

were not taken during the scanning session. When in the scanner,

the computer program was projected on to the wall on the right

hand side of the participant, so that it was visible to the experi-

menter, but not the participant.

Imaging session

Amino acid drink

ATD reduces serotonin synthesis by reducing the availability of the

essential amino acid and serotonin precursor, tryptophan. An amino

acid load devoid of tryptophan is administered, inducing hepatic

protein synthesis which depletes circulating tryptophan. Furthermore,

the increase in large neutral amino acids competes with the transport

of reduced levels of tryptophan across the blood–brain barrier via

the large neutral amino acid transporter (Hood et al., 2005; Evers

et al., 2010). The control condition is identical except the amino

acid load contains tryptophan. This increases plasma tryptophan, but

the ratio of tryptophan to other large neutral amino acids is still

reduced, the reduction being significantly greater following ATD

(Weltzin et al., 1994; Roiser et al., 2008).

Amino acids were supplied by SHS International Ltd. (Liverpool,

UK). Participants were randomly assigned to receive either the tryp-

tophan depleting (TRP-) drink or control drink (TRP+) and drinks

were administered double blind. A between rather than within sub-

ject design limited the impact of participant withdrawal on the data.

The ratio of amino acids used in the drinks were the same as that of

Benkelfat et al. (1994), but 80% quantities were used to account for

the lower average body weight of female participants (Hood et al.,

2005). The amounts used are standard for ATD studies (e.g. Evers

et al., 2006; Fusar-Poli et al., 2007; Bilderbeck et al., 2011; Daly

et al., 2012, 2014). The total protein of the TRP- drink was 82.1 g.

The amount of each amino acid contained in the TRP- drink was L-

Alanine, 4.4 g; L-Arginine 3.9 g; L-Cystine, 2.2 g; Glycine, 2.6 g;

L-Histidine, 2.6 g; L-Isoleucine, 6.4 g; L-Leucine, 10.8 g; L-Lysine

monohydrochloride, 8.8 g; L-Methionine, 2.4 g; L-Phenylalanine,

4.6 g; L-Proline, 9.8 g; L-Serine, 5.5 g; L-Threonine, 5.5 g; L-Tyro-

sine, 5.5 g; L-Valine, 7.1 g. The TRP+ drink was the same as the

TRP- drink, with the addition of 1.8 g L-Tryptophan. A few minutes

before oral administration, the amino acids were mixed with

150 mL water and ~45 mL chocolate syrup to mask the unpleasant

taste. Participants were required to consume the drink within

15 min. Immediately after drink consumption, participants com-

pleted questionnaires and cognitive tasks (not reported), then rested

until the scanning session which began 4 h after drink consumption.

Blood glucose and blood pressure were monitored throughout the

day. Blood samples for commercial assay of total plasma tryptophan

were taken before and 4 h after the amino acid drink. Mood was

monitored pre drink and 4 h post drink using the Profile Of Mood

States (POMS) (McNair & Lorr, 1971) and the Fawcett–Clark Plea-

sure Scale (FCPS) (Fawcett et al., 1983).

Scanning parameters

Scanning was conducted using a Philips Achieva 3T scanner. T2*-

weighted functional images were obtained to investigate changes in

BOLD signal throughout the scan. A single shot gradient echo-pla-

nar sequence was used. Whole-brain scans of 34 slices, each 3 mm

thick with a 0.5 mm slice gap, were obtained. The repetition time

(TR) was 2000 ms, with an echo time (TE) of 35 ms. The field of

view (FOV) was 230 mm with an acquisition matrix of 128 9 128.

Voxel size was 1.8 mm 9 1.8 mm 9 3.5 mm. A T1-weighted

structural image was obtained for each participant for use in image

pre-processing.

Scanning session

A 5-minute eyes-closed resting state scan – the results of which are

not reported here – was followed by the first touch run, as described

above. VAS ratings were not obtained during the scanning session

to avoid engaging cognitive evaluative processes. Participants were

not blindfolded and instructed to keep their eyes open, but all partic-

ipants reported they were unable to see the brushes being adminis-

tered. Participants were instructed to concentrate on how the stimuli

felt throughout each touch run. The first touch run was followed by

a 6-minute task involving self-administered touch, the results of

which are not reported here. The second touch run was then admin-

istered followed by a 6-minute structural brain scan and then the

final touch run. Each participant therefore experienced three 20 s

blocks of stroking with each stimulus on both the left ventral fore-

arm and glabrous skin of the fingers while in the scanner.

Post scanning

Following the scanning session, touch ratings were obtained as

described previously. Due to the double-blind nature of this study,

all participants were given a protein-rich meal of their choice at the

end of the experimental session to replete endogenous tryptophan

levels. This was followed by de-briefing the participant and check-

ing for any residual tryptophan depletion effects before allowing

them to return home.

Data analysis

VAS & plasma tryptophan analysis

VAS, POMS, FCPS and total plasma tryptophan data were analysed

with SPSS version 22 (IBM Corp), using the multivariate approach

to repeated-measures modelling (Rencher & Christensen, 2012). Sig-

nificant interaction effects were followed up using simple main

effects and pairwise comparisons with Sidak correction (denoted in

text as PS). Model assumptions were verified using model residual

plots combined with the Shapiro–Wilk test of normality. Homogene-

ity of the covariance matrices between groups was verified by the

use of Box’s test. F approximations to Pillai’s trace are reported.

No significant difference between treatment groups was identified

for VAS ratings obtained during screening. In addition, no

© 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
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significant effect of treatment group was identified between VAS

ratings obtained during screening and immediately post scanning.

For these reasons, data obtained immediately post scanning were

analysed alone to simplify incorporation of the between subject fac-

tor of treatment group (TRP+/TRP-) in the analysis model, as well

as the two within-subject factors of texture (soft/medium/coarse),

and location (forearm/fingers). Examination of model residuals

showed a departure from normality, so a square root transformation

was used.

POMS, FCPS and total plasma tryptophan data were analysed

separately. All models consisted of a within-subject factor of time

(baseline, +4 h after amino acid consumption) and a between subject

factor of treatment (TRP+/TRP�).

Imaging data analysis

Imaging data were analysed using MATLAB (The MathWorks,

Inc.), Statistical Parametric Mapping (SPM) version 12b and the

Sandwich Estimator (SwE) SPM toolbox. Functional images were

re-aligned to the first volume. The structural image was then coreg-

istered to the mean functional image and segmented into its con-

stituent tissue classes. The transformation to the standard Montreal

Neurological Institute (MNI) space calculated from the segmentation

procedure was then applied to the functional volumes before

smoothing using a Gaussian kernel full width half maximum

(FWHM) of 5.4 9 5.4 9 10.5. As an additional motion correction

step, the Artefact Detection Toolbox (ART, http://www.nitrc.org/

projects/artifact_detect/) was used to identify outlying volumes

based on a volume-to-volume shift of > 1 mm and a volume-to-

volume change in mean signal intensity > 3 standard deviations. If

more than 15% of volumes per touch run were identified as outliers,

this run was excluded from the analysis. Only one run for one par-

ticipant was excluded for this reason. For the remaining touch runs

a separate regressor for each outlying volume was included in the

first level design matrix to ‘censor’ the effectors of motion from the

parameter estimates (Power et al., 2012; Siegel et al., 2014). For

the subject-level analysis, the parameter estimate for the preceding

rest block was subtracted from the parameter estimate during the

stimulation block. A 128 s high pass filter was used to account for

low-frequency signal drift. The parameter estimates from each par-

ticipant for each condition were then averaged across runs to take

through to group-level modelling.

The group level model had a single between subject factor of

treatment group (TRP+/TRP-), and two within subject factors of

location (forearm/fingers) and texture (soft/medium/coarse). To

accommodate the repeated measurements at the group level we

made use of the sandwich estimator toolbox (Guillaume et al.,

2014), allowing us to fit a single marginal model with an uncon-

strained covariance structure at every voxel. Activations with False

Discovery Rate (FDR) corrected P-values ≤ 0.05 and cluster size

≥ 5 voxels are reported for all contrasts. To investigate significant

interactions, follow-up analysis involved small volume correction

using the activation map for the interaction with threshold FDR

≤ 0.05. This allowed identification of significant effects within

interactions.

From previous brain imaging studies of CT-targeted touch (Craig,

2002; Olausson et al., 2002; Lindgren et al., 2012; McGlone et al.,

2012; Gordon et al., 2013), a single a-priori region of interest mask

was used for all contrasts and interactions at the group-level. The

mask consisted of orbitofrontal cortex (OFC), defined using the

automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al.,

2002), post central gyrus, insula, anterior cingulate and amygdala,

from the WFU PickAtlas (Lancaster et al., 1997, 2000; Maldjian

et al., 2003, 2004), plus secondary somatosensory cortex (SII),

defined by parietal operculum (OP) regions 1–4 from the Anatomy

Toolbox version 1.8 (Eickhoff et al., 2005, 2006a,b).

Results

Treatment groups (TRP+/TRP-) were similar in terms of age

(t21.46 = 1.21, P = 0.24) and IQ (t28 = 0.74, P = 0.46) (Table 1).

Total plasma tryptophan levels

Analysis of total plasma tryptophan concentration at baseline and 4 h

after drink consumption between TRP+ and TRP- treatment groups

(see Table 1), revealed a significant interaction of treatment with time

(F1,28 = 353.148, P < 0.001, g2p = 0.927, power = 1.000). Analysis

of simple effects identified a significant decrease in total plasma tryp-

tophan concentrations 4 h after drink administration in the TRP-group

(F1,28 = 72.211, P < 0.001, g2p = 0.721, power = 1.000) and a signif-

icant increase in the TRP+ group (F1,28 = 316.252, P < 0.001,

g
2
p = 0.919, power = 1.000). Plasma tryptophan concentrations of the

TRP-group decreased by 74 � 1.3% (mean � SE) and increased

284 � 17.6% in the TRP+ group. Average total plasma tryptophan

concentrations reported for this study before and after consumption of

the amino acid drinks were similar to those reported in previously

published studies using ATD (Evers et al., 2006; Roiser et al., 2008;

Bilderbeck et al., 2011).

Self-reported mood

There was no significant change in mood from baseline to 4 h post

amino acid consumption (POMS total mood disturbance (TMS):

F1,28 = 3.067, P = 0.091, g2p = 0.099, power = 0.394. FCPS: F1,28

= 2.514, P = 0.124, g2p = 0.082, power = 0.334) and no significant

interaction with treatment group (TRP+/TRP-) (POMS TMS:

F1,28 = 0.016, P = 0.900, g
2
p = 0.001, power = 0.052. FCPS:

F1,28 = 0.187, P = 0.669, g
2
p = 0.007, power = 0.070). These data

are presented in Table 1.

Table 1. Age, IQ, total plasma tryptophan and mood before and after
treatment for both treatment groups

TRP+ TRP-

0 h +4 h 0 h +4 h

Age (years) 22.6 (0.78) 24.8 (1.62)
IQ 96.6 (2.19) 98.6 (1.61)
Plasma TRP

(lg/mL)

7.7 (0.33) 20.9 (0.94) 8.0 (0.53) 2.0 (0.12)

POMS TMD �10.2 (3.85) �6.21 (4.43) �12.31 (2.54) �7.69 (2.52)
FCPS 121.64 (4.67) 118.14 (5.10) 121.56 (3.01) 119.56 (2.45)

Comparison of age, total plasma tryptophan concentration (plasma TRP) and
mood (profile of mood states total mood disturbance (POMS TMD) and
Fawcett–Clark pleasure scale (FCPS) scores are shown) across treatment
groups (TRP+: control drink, TRP-: tryptophan depleting drink) and by time
[baseline (0 h) and 4 h post amino acid consumption (+ 4 h)]. Mean values
(with SE) are presented. No significant differences were identified, except for

total plasma tryptophan concentrations where plasma tryptophan increased
significantly in the TRP+ group (P < 0.001) and decreased significantly in
the TRP-group (P < 0.001) at +4 h compared to baseline. Plasma tryptophan
concentrations were similar between groups at baseline (P = 0.743), but
significantly higher in the TRP+ than the TRP- group 4 h after drink
consumption (P < 0.001).
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Touch Ratings

No effect of ATD on touch ratings was identified. A significant interac-

tion of location with texture was identified (F2,27 = 12.555, P < 0.001,

g
2
p = 0.482, power = 0.992). At both locations, the soft brush was rated

most pleasant, the coarse brush least pleasant and the medium brush

significantly less pleasant than the soft brush (forearm: t28 = 7.510,

PS < 0.001; fingers: t28 = 4.613, PS < 0.001) and significantly more

pleasant than the coarse brush (forearm: t28 = 6.223, PS < 0.001; fin-

gers: t28 = 7.674, pS < 0.001). The soft brush was significantly more

pleasant when applied to the forearm than the fingers (F1,29 = 5.854,

P = 0.022, g2p = 0.168, power = 0.648). For the medium brush, appli-

cation to the fingers was significantly more pleasant than the forearm

(F1,29 = 12.949, P = 0.001, g
2
p = 0.309, power = 0.935). For the

coarse brush, application to the forearm was significantly more unpleas-

ant than to the fingers (F1,29 = 5.838, P = 0.022, g
2
p = 0.168,

power = 0.646). The main effect of texture was also significant

(F2,27 = 44.626, P < 0.001, g
2
p = 0.768, power = 1.000). Graphical

representation of this data is presented in Fig. 1.

fMRI data analysis

Effect of treatment and touch location on BOLD response

ATD reduced the differential response of the ipsilateral Inferior

Frontal Gyrus (IFG) region of lateral OFC (Brodmann Area (BA)

47) to CT-targeted vs. non-targeted touch. As shown in Fig. 2 and

Table 2, a significant interaction of treatment (TRP+/TRP-) with

location (forearm/fingers) was identified in the ipsilateral IFG region

of lateral OFC (BA47). Follow-up contrasts revealed CT-targeted

forearm touch produced a significantly greater BOLD response than

CT non-targeted touch to the fingers in the TRP+ condition. This

differential response to CT activating vs. non-activating touch was

not present in the TRP-group, where the BOLD response to touch

to the forearm and fingers was similar. The BOLD response to touch

to the forearm and fingers did not differ significantly between treat-

ment groups.

Pearson’s correlations were used to determine whether touch

ratings significantly correlated with BOLD response of the peak

voxel (MNI �37 25 �18). No significant correlations were

identified between hedonic ratings of pleasantness and BOLD

response.

Effect of treatment, stimulus location and texture on BOLD

response

ATD altered contralateral SI response to discriminatory touch. A

significant interaction of treatment group (TRP+/TRP-) with stimu-

lus texture (soft/medium/coarse) and touch location (forearm/fingers)

was identified in contralateral SI, as shown in Fig. 3 and Table 2.

Follow-up contrasts to further investigate this interaction revealed

touch to the fingers, where Ab innervation density is high and CTs

are absent, produced a differential contralateral SI response to brush

texture in the TRP+ group, with the coarse brush producing signifi-

cantly greater activation than the soft brush. Contralateral SI

response to touch to the fingers in the TRP-group did not show this

differential response to texture, in fact, SI response to all three brush

textures was similar. This effect was not seen following touch to the

forearm where Ab innervation density is much lower. As expected,

overall SI response to touch to the fingers was significantly greater

than touch to the forearm. Pearson’s correlations of hedonic ratings

of touch with BOLD response of the peak voxel (MNI: 44 �27 53)

were not significant.

Fig. 1. Hedonic ratings for the soft, medium and coarse brushes when
applied 8to the forearm and fingers. Error bars represent 95% confidence inter-
vals. A significant interaction of brush texture with location was identified
(P < 0.001). For touch to both the forearm and fingers, the soft brush was
more pleasant than the medium brush, which was more pleasant than the
coarse brush (Ps < 0.001 for all comparisons). The soft brush was more
pleasant when applied to the forearm compared to the fingers (Ps = 0.022),

the 10medium brush was more pleasant when applied to the fingers than the
forearm (Ps = 0.001) and the coarse brush was more unpleasant when
applied to the forearm than the fingers (Ps = 0.022).

Fig. 2. 9Significant interaction of treatment with location in left OFC (MNI �37 25 �18). Error bars represent 95% confidence intervals. In the control (TRP+)
condition, touch to the forearm induced significantly greater activation than touch to the fingers. Following tryptophan depletion (TRP�), no significant differ-
ence in BOLD response was identified following touch to the fingers compared to the forearm.
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Effect of stimulus location and texture on BOLD response

A significant interaction of location (forearm/fingers) with texture

(soft/medium/coarse) was identified in ipsilateral SI and contralateral

OP4 of SII, as presented in Table 2. Follow-up contrasts to investi-

gate the effect of texture at each location separately revealed no sig-

nificant differences between textures for touch to the forearm or

fingers in SI or SII after FDR correction. In ipsilateral SI, the effect

of location for each texture revealed a significant difference between

the forearm and fingers, consistent with the main effect of location

identified in this region (see Table 3). In SII no significant differ-

ence between the forearm and fingers was identified for any of the

textures after FDR correction.

Comparison of BOLD response to CT-targeted vs. non-targeted

touch

Brain regions with significantly different BOLD responses to CT-

targeted touch to the forearm compared to touch to the fingers where

no CT innervation is present are presented in Table 3 and Fig. 4.

Consistent with previous studies, CT-targeted forearm touch

produced significantly greater BOLD response in limbic regions

(anterior cingulate and contralateral posterior insula) than CT non-

targeted touch to the fingers. Touch to the fingers produced

significantly greater BOLD response in somatosensory regions (bi-

lateral SI and contralateral SII (OP1)) and mid-insula than touch to

the forearm.

Table 2. fMRI significant interaction effects of treatment, texture and location

Cluster size (voxels) Peak P (FDR corrected) Peak v2-value Coordinates (X Y Z) Location

Treatment x Texture x Location 203 < 0.001 34.74 44 �27 53 Right SI
Treatment x Location 273 < 0.001 34.36 44 �27 49 Right SI

16 0.016 13.76 �37 27 �18 Left OFC (IFG)
Location x Texture 495 < 0.001 34.77 47 �26 53 Right SI

47 0.003 16.37 �44 �29 42 Left SI
14 0.003 16.07 �37 �24 53 Left SI
10 0.016 12.14 60 �13 11 Right SII (OP4)

IFG, inferior frontal gyrus; OFC, orbitofrontal cortex; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; OP4, parietal operculum area 4;

MNI, coordinates are stated.

Fig. 3. A significant interaction of treatment group with stimulus texture and touch location was identified in right somatosensory cortex (MNI: 44 �27 53).
Error bars represent 95% confidence intervals. In the control (TRP+) condition for touch to the fingers, texture discrimination was significant, with the coarse
texture response significantly greater than the soft texture. This effect was not present following tryptophan depletion (TRP�), where no texture discrimination
was identified following touch to the fingers. In addition, for each texture and in both treatment groups, touch to the fingers produced significantly greater
response than to the forearm. SB, soft brush; MB, medium brush; CB, coarse brush.

Table 3. Brain regions for which a significant effect of location was identified

Cluster size (voxels) Peak P (FDR corrected) Peak v2-value Coordinates (X Y Z) Location

Finger > Arm 681 < 0.001 46.51 46 �24 49 Right SI
285 < 0.001 21.82 �44 �29 42 Left SI
65 0.003 15.15 49 �17 14 SII (OP1)
18 0.017 10.87 42 �4 0 Right Mid-Insula

Arm > Finger 40 0.003 14.95 �37 �24 53 Left SI (arm less deactivation than fingers)
8 0.013 11.5 8 10 25 Anterior Cingulate
5 0.024 10.1 31 �20 18 Right Posterior Insula (Ig2)

SI, primary somatosensory cortex; SII, secondary somatosensory cortex; OP1, parietal operculum area 1; Ig2, granular insula area 2; MNI, coordinates are

stated.
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Fig. 4. Effect of touch location. Error bars represent 95% confidence intervals. CT-targeted forearm touch induced significantly greater BOLD response than
CT non-targeted touch to the fingers in the anterior cingulate (MNI 8 10 25) (A) and right posterior insula (Ig2) (MNI 31 �20 18) (B). A significantly greater
BOLD response was seen in secondary somatosensory cortex (SII), parietal operculum area 1 (OP1) (MNI 49 �17 14) (C) and right mid-insula (MNI 42 �4 0)
(D) following touch to the fingers compared to the forearm.
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Effect of touch to the forearm and fingers compared to rest

Contrast of forearm touch compared to rest identified significant

activation of the ipsilateral IFG region of lateral OFC (BA47), bilat-

eral SII and contralateral posterior insula and SI. Touch to the fin-

gers compared to rest resulted in significant activation of bilateral SI

and the IFG region of lateral OFC (BA47) and ipsilateral mid-insula

and SII (Table 4).

Discussion

Overview of results

This study replicated previous findings that CT-targeted touch (fore-

arm - finger) preferentially activates affective processing regions;

OFC, anterior cingulate and posterior insula (Olausson et al., 2002,

2008b; Hua et al., 2008; Lindgren et al., 2012; McGlone et al.,

2012; Gordon et al., 2013; Voos et al., 2013; Kaiser et al., 2015),

whereas Ab-mediated touch (finger - forearm) primarily activated

somatosensory processing regions; SI and SII. Tryptophan depletion

reduced circulating tryptophan concentrations by 74% and modu-

lated central responses to CT-targeted and purely discriminatory

touch without modifying hedonic ratings of pleasantness. In keeping

with previous studies in non-vulnerable healthy volunteers, trypto-

phan depletion did not affect self-rated mood (Roiser et al., 2008;

Bilderbeck et al., 2011).

Serotonin modulates the differential OFC response to CT

activating vs. non-activating touch

Irrespective of brush texture, stroking of the forearm evoked greater

subjective responses than when applied to the finger as previously

reported and in keeping with the CT-affective touch hypothesis

(Vallbo et al., 1999; Olausson et al., 2008b; Morrison et al., 2010;

McGlone et al., 2014). However, stimulus texture did not affect the

central responses to CT activating touch to the forearm. This agrees

with Morrison et al. (2011), who also found no significant differ-

ence in brain regions associated with CT encoding when comparing

responses between a soft and stiff brush. In contrast to this study,

Morrison et al. (2011), reported a significant differential SI response

for soft compared to stiff brush application to the forearm, but both

studies support the hypothesis that CTs do not specifically encode

pleasant touch per se, rather, they encode the stimulus velocity

(Loken et al., 2009) and temperature (Ackerley et al., 2014)

associated with interpersonal social interactions. Thus, the main role

of CTs may be to signal that a potentially affiliative gesture (strok-

ing) has occurred which is independent of other dimensions such as

the condition of the skin or texture of the stimulus.

A key region of the brain in which this signalling is modulated

by serotonin was identified in the IFG region of lateral OFC (BA47)

where touch to the forearm elicited BOLD responses regardless of

stimulus texture, with no responses to non-CT directed stimulation

of the finger. This selectivity of response to CT activating touch

replicates a previously reported positron emission tomography (PET)

investigation of healthy individuals where the IFG region of lateral

OFC (BA47) was significantly more activated by CT-targeted touch

to the forearm compared to CT non-targeted touch to the palm

(McGlone et al., 2012). After tryptophan depletion both forearm

and finger stimuli elicited BOLD responses suggesting both classes

of stimuli can engage the IFG region of lateral OFC (BA47), as

shown by activation of this region by finger and forearm stimulation

(Table 4). Serotonin may thus play an important role in tuning the

IFG region of lateral OFC (BA47) responses to CT touch by inhibit-

ing non-CT input. That the modulation occurs centrally and possibly

locally, is suggested by the absence of tryptophan depletion effects

in other regions that respond to CT-targeted stimulation such as pos-

terior insula and anterior cingulate. In keeping with Deakin & Gra-

eff (1991), it is possible that CT stimulation may activate serotonin

projections which suppress the non-CT input into lateral OFC

revealed by tryptophan depletion.

A number of studies suggest that the IFG region of lateral OFC

(BA47) is an important region for processing socially relevant and

affective stimuli such as images of face emotions (Goulden et al.,

2012) or social inclusion/exclusion (Elliott et al., 2012), and affec-

tive speech prosody (Wildgruber et al., 2004). Furthermore, four

studies report tryptophan depletion modulation of fMRI activations

by affective faces, images or words in the IFG region of lateral

OFC (BA47) in healthy volunteers (Fusar-Poli et al., 2007; Wil-

liams et al., 2007; Wang et al., 2009; Daly et al., 2010). Recent

evidence suggests neuronal populations in medial and lateral OFC

represent a supramodal continuum of valence of stimuli from

unpleasant to pleasant, irrespective of stimulus modality (Chikazoe

et al., 2014). One possibility is that the IFG region of lateral OFC

(BA47) contributes to a social valence or affiliative system based on

the integration of a variety of sensory modalities that influence

social decision-making (Bzdok et al., 2012) such as visual (e.g. face

emotion) (Goulden et al., 2012), auditory (emotional prosody)

(Wildgruber et al., 2004) and, as our results suggest, tactile

Table 4. main effect of touch to the forearm and fingers compared to rest

Cluster size (voxels) Peak P (FDR corrected) Peak z-value Coordinates (X Y Z) Location

Forearm > rest 251 0.007 4.63 �39 39 �11 Left OFC (IFG)
190 0.007 4.61 �61 �24 39 Left SII
52 0.007 4.51 37 �15 18 Right Posterior Insula
47 0.008 3.90 58 �17 25 Right SII

9 0.027 3.19 24 �40 70 Right SI
Finger > rest 1257 < 0.001 7.39 46 �26 53 Right SI

733 < 0.001 5.78 �62 �20 35 Left SI
247 < 0.001 4.19 �44 46 �4 Left OFC (IFG)
64 0.001 3.81 �35 �6 11 Left mid-insula
40 0.003 3.55 46 34 �11 Right OFC (IFG)
5 0.012 3.01 �46 5 14 Left SII

7 0.016 2.87 �26 30 �14 Left OFC (IFG)
9 0.017 2.87 �53 27 �4 Left OFC (IFG)

IFG, nferior frontal gyrus; OFC, orbitofrontal cortex; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; MNI, coordinates are stated.
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information. This study indicates serotonin maintains a bias for the

IFG region of lateral OFC (BA47) to respond to socially relevant

CTs. This could be one component mediating the prosocial func-

tions of serotonin seen in the subjective effects of MDMA (Bedi

et al., 2009; Wardle et al., 2014) and in the effects of citalopram

and tryptophan depletion in experimental studies of social co-opera-

tion and moral behaviour (Wood et al., 2006; Crockett et al., 2010;

Bilderbeck et al., 2011, 2013; Siegel & Crockett, 2013).

Preferential somatosensory responses to finger stroking;

modulation by tryptophan depletion

For control participants, stroking stimulation of the finger evoked

greater responses for all textures (coarse > medium > soft) in con-

tralateral SI than CT directed forearm stimuli which evoked no mea-

surable responses in this region. The fingers are adapted for fine

discriminatory touch perception with a dense innervation of Ab

afferents, a large representation in SI and much finer two-point dis-

crimination compared to the forearm (v. Békésy, 1957; Verrillo &

Chamberlain, 1972; Johansson & Vallbo, 1979). The results of this

study confirm this, with significantly greater SI activation following

finger compared to forearm stimulation.

The graded BOLD response to coarseness was absent in the tryp-

tophan depleted group implicating a possible role for serotonin in

texture discrimination. Centrally, previous investigations in the rat

have found serotonin to modulate the spontaneous compared to

stimulus specific responses of Ab mechanosensitive neuronal path-

ways at the level of both the thalamus (Starr et al., 2008) and SI

(Waterhouse et al., 1986). Serotonin has been found to predomi-

nantly depolarize interneurons in layers II and III of rat SI, depolar-

ize the majority of layer I neurons projecting to layers II and III and

hyperpolarize the majority of layer I neurons whose axons remain in

layer I (Foehring et al., 2002). Serotonin therefore alters neuronal

firing patterns in SI and has been suggested to alter the temporal

components of sensory neuron responses which allow the encoding

of different surface texture properties (Hurley et al., 2004). By

reducing central serotonin through ATD, SI neuronal responses,

including their temporal components, may be altered to the extent

that responses to different surface textures becomes less specific, as

seen in the SI response reported in this study.

The differential SI response seen in the non-depleted group could

additionally reflect a peripheral mechanism altered by tryptophan

depletion. The coarse features of a texture, such as braille dots and

gratings, are encoded peripherally by the spatially modulated neural

signal of slowly adapting type 1 (SA1) afferents, which densely

innervate the fingers (Yoshioka et al., 2001). Weber et al. (2013)

demonstrated rapidly adapting (RA) and Pacinian (PC) afferents are

required to encode texture-specific vibrations propagated by the

stimulus moving over the skin, allowing finer surface properties to

be encoded. SA1 afferents form Merkel cell-neurite complexes in

the basal layer of the epidermis (Haeberle & Lumpkin, 2008), which

mediate SA1 responses (Nakatani et al., 2014). Immunohistochem-

istry has identified serotonin, 5-HT1A and 5-HT1B receptors and the

5-HT transporter in Merkel cell-neurite complexes (English et al.,

1992; Tachibana et al., 2005). 5-HT2 and 5-HT3 antagonists alter

SA1 response to mechanical stimulation (He et al., 2003). In addi-

tion, 5-HT2A receptors have been identified on Pacinian Corpuscles

(Carlton & Coggeshall, 1997). Further investigation into the modula-

tory role of serotonin in Ab mediated mechanosensation is required,

including whether this is a purely central process, or whether

peripheral mechanisms are also involved.

Wider implications and conclusions

Deakin & Graeff (1991) hypothesized that touch-induced activation

of serotonin pathways might contribute to the protective effects of

social support against depression. The discovery of the CT system

and its potential role in affective touch raised the possibility that CT

simulation may activate serotonin pathways which in turn could

mediate the pleasantness of affective touch. However, in this study,

we did not find that tryptophan depletion reduced subjective pleas-

antness ratings to CT-targeted touch but that serotonin promotes a

bias to CT responsiveness in the IFG region of lateral OFC (BA47),

but in no other brain regions previously implicated in CT touch

responses, indicating a modulatory rather than a mediating role of

serotonin in processing CT-targeted touch. Nevertheless, it remains

possible that CT afferent activity itself evokes the tonic serotonin

release which supresses responses to non-CT stimuli in OFC and

which could modulate other systems to promote resilience to stress

and depression. Studies of the CT system in patients with depression

and the modulatory influence of serotonin, especially in the IFG

region of lateral OFC (BA47), would seem worthwhile.

A lack of response to CT stimulation in the IFG region of lateral

OFC (BA47) has been reported in autism spectrum disorder (ASD)

(Kaiser et al., 2015). ASD involves impaired social communication

(Pelphrey et al., 2011) and is associated with abnormal serotonin

function (Chugani et al., 1999; Azmitia et al., 2011; Oblak et al.,

2013) and with hyper- and hypo-reactivity to sensory input specified

in the Diagnostic and Statistical Manual of Mental Disorders (DSM-

5) of the American Psychiatric Association (2013). Kaiser et al.

(2015) found that the IFG region of lateral OFC responses (BA47)

to CT-targeted compared to non-targeted touch seen in control par-

ticipants, were absent in an ASD group. While this is similar to the

effect of tryptophan depletion in our study, it is not clear whether

the ASD effect is due to disinhibition of non-CT targeted touch as

in our tryptophan depletion finding rather than an absence of CT

responses. It is clearly important to determine whether the peripheral

CT system is functionally intact in ASD and whether abnormal

CNS representation could be modulated by serotonin.

Limitations in this study include the small sample size, between

subject design and female-only participants. It is also worth noting

that other neurotransmitters have been implicated in CT-targeted

touch and social behaviour such as oxytocin (Ellingsen et al., 2014;

Scheele et al., 2014) and opioids (Case et al., 2016). Nevertheless,

the results provide preliminary evidence of a modulatory role of

serotonin in the differentiation between socially relevant CT activat-

ing touch and purely discriminatory touch responses. This provides

one mechanism by which social deficits and altered touch responses

may be observed in psychiatric disorders, such as depression and

autism, in which dysfunction of the serotonin system has been

implicated. Further investigation into the role of social touch in a

range of psychiatric disorders will allow us to expand our knowl-

edge of the neurobiological mechanisms underlying these disorders.
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Graphical Abstract
The contents of this page will be used as part of the graphical abstract of html only. It will not be published as part

of main article.

C-tactile afferents (CTs) are present in hairy skin, responding to caress-like touch and hypothesized to provide the neural substrate for affec-

tive touch. Acute tryptophan depletion (TRP-) and fMRI were used to investigate the role of serotonin in central responses to CT vs. non-CT

touch. Findings implicate a role for serotonin in differentiating between CT/non-CT touch, providing a potential mechanism underlying altered

touch responses in psychiatric disorders such as depression and autism.


