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Abstract

Aims: Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell
source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to
track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the
infarcted rat heart.

Methods and Results: CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells
expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/
4 and Klf-4. CDCs (26106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles
of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection
immediately following reperfusion, then by systemic infusion (46106) 2 days later. A control group (n = 7) was administered
cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles
were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6
weeks, ejection fractions in control hearts had significantly decreased (4762%), but this was not evident in CDC-treated
hearts (5663%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks.
In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct
sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their
differentiation along the cardiomyocyte lineage and the formation of new blood vessels.

Conclusions: CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function.
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Introduction

The optimum stem cell for treatment of the infarcted heart has

yet to be established. Despite promising studies using bone marrow

cells in animal models, the results from the clinical trials have not

been conclusive [1], causing a shift in interest to endogenous

cardiac stem cells, which were first identified in 2003 [2,3].

Isolation and culture of these cells from biopsy samples, via the

production of cardiospheres, was reported by Messina et al in 2004

[4]. Further expansion of cardiosphere-derived cells (CDCs) as an

adherent monolayer [5] generated a mixed population, comprising

c-kit+ cardiac progenitor cells and CD90+ cardiac mesenchymal

cells, and provided a sufficient number of cells for therapy within

1–2 months. Promising data from animal studies [5,6] lead to a

clinical trial (CADUCEUS; see ClinicalTrials.gov for details).

However, the characteristics and efficacy of explant-derived cells

(EDCs) has been questioned [7,8,9], with the suggestion that

outgrowth cells from explants were haematological cells [7,9] and

that EDCs were not retained in the heart following administration

[8]. In response, the clonogenicity, multipotency and capacity for

self-renewal of EDCs and CDCs were demonstrated [10,11,12].

Furthermore, improved ejection fraction has been reported in the

infarcted rat heart at 6 weeks after administration of CDCs or

EDCs [12]. As with other stem cell types [13], the observed

improvement in cardiac function with stem cell therapy utilising

cardiac-derived cells has been ascribed both to differentiation of

donor cells, providing new myocytes and blood vessels, and to the

release of paracrine factors, improving cardiomyocyte survival,

activating endogenous cardiac stem cells and angiogenesis [11].

Here CDCs cultured from neonatal rat heart, and characterised

using immunocytochemistry, flow cytometry and quantitative RT-

PCR, were labelled with fluorescent MPIOs and with DiI cell

tracker dye and administered to the infarcted rat heart following

reperfusion. The limited retention of administered cells has beset
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stem cell studies for the heart, irrespective of the cell type used.

Furthermore, the best mode and timings of injection have yet to be

established. Therefore CDCs were administered twice, by direct

injection at the time of coronary artery ligation and by systemic

infusion after 2 days, thereby maximising the potential of the

CDCs to improve function in the infarcted heart. High resolution

MRI was used to track MPIO-labelled cells and to measure in vivo

cardiac function at baseline and at regular intervals over a long-

term follow up of 4 months following cell administration. Use of a

cardiac progenitor cell, a model of infarction/reperfusion and high

resolution non-invasive MRI, has allowed us to further validate the

potential of CDCs by showing that CDCs are retained in the heart

for at least 16 weeks and we show for the first time that CDC

therapy provides long-term improvement in cardiac function.

Materials and Methods

Animals
Sprague Dawley rats (Harlan, UK) and Sprague Dawley SD-

Tg(GFP)2BalRrrc rats (SD-GFP; Rat Resource and Research

Centre, Missouri) were allowed free access to standard rodent

chow and water throughout the study. All investigations

conformed to the Guide for the Care and Use of Laboratory

Animals published by the US National Institutes of Health (NIH

Publication No. 85-23, revised 1996), the Home Office Guidance

on the Operation of the Animals (Scientific Procedures) Act, 1986

(HMSO), and to institutional guidelines. Approval was granted by

the University of Oxford Animal Ethics Review Committees

and the Home Office (Project Licence numbers 30/2278 and

30/2755).

Rat CDC isolation and culture
Rat CDCs were cultured according to the method of Smith et al

[5]. SD-GFP neonatal rats were sacrificed by cervical dislocation.

Hearts were isolated, washed with Dulbecco’s phosphate buffered

saline (DPBS; Invitrogen) and minced into small explant pieces in

0.05% trypsin-EDTA (Invitrogen). Explants were plated on

fibronectin-coated petri dishes with 1.5 ml of complete explant

medium (CEM) comprising Iscove’s modified Dulbecco’s medium

(IMDM; Invitrogen) supplemented with 20% foetal bovine serum

(FBS; Invitrogen), 1 U/ml penicillin, 1 ug/ml streptomycin and

0.2 mM L-glutamine (Gibco). After 3–4 days in 5% CO2 at 37uC,

small, round, phase bright cells grew out from the explants over a

bed of stromal-like cells. Once they reached 80–90% confluency,

these explant-derived cells (EDCs) were isolated using trypsin and

re-plated on poly-d-lysine coated 24 well plates in cardiosphere

growth medium (CGM) comprising 65% Dulbecco’s modified

eagle medium (DMEM/F12), 35% IMDM, 7% FBS, 2% B27

(Invitrogen), 25 ng/ml cardiotrophin (Peprotech EC), 10 ng/ml

epidermal growth factor (EGF; Peprotech EC), 20 ng/ml basic

fibroblast growth factor (FGF; Promega) and 5 units thrombin

(Sigma). EDCs could be harvested every 7 days, for up to 4 weeks.

Cardiospheres formed after 2–3 days, when they were harvested

by mechanical trituration and plated in CEM in fibronectin-

coated flasks. Cardiosphere-derived cells (CDCs) were passaged

every 5–7 days to passage 2. Secondary cardiospheres could be

formed by replating CDCs in CGM in poly-lysine coated 24 well

plates.

CDC labelling
CDCs were incubated overnight with micron-sized particles of

iron oxide (MPIO; 2 ml/cm2, encapsulated magnetic micro-

spheres, Bangs Laboratories Inc.), on the day prior to transplan-

tation. Viability and proliferation of MPIO-labelled CDCs was

measured over 3 days using the LIVE/DEAD cell cytotoxicity kit

(Molecular Probes). For the in vivo study, MPIO-labelled CDCs

were washed twice with PBS and stained with DiI (Molecular

Probes) in PBS for 30 minutes before trypsinization. Approxi-

mately 26106 cells were suspended in 50 ml CEM for direct

injection to the myocardium and 46106 cells were suspended in

500 ml CEM for systemic infusion. For MR microscopy, MPIO-

labelled CDCs were suspended in 1% agarose doped with

gadolinium DTPA (4 ml/ml).

CDC differentiation into cardiomyocytes
CDCs were plated in 6 well plates coated with 0.1% gelatin at a

density of 10,000 cells/cm2 and incubated overnight in CEM.

Medium was changed to differentiation medium (45% IMDM,

45% DMEM, 10% ESQ FBS (Invitrogen), Insulin-transferrin-

selenium (16; Invitrogen) and 300 mM ascorbic acid) for 6–

8 hours, followed by incubation with differentiation medium

containing 1 mM dimethyl sulphoxide (DMSO) for 10 days, with

fresh medium added every 2 days.

Characterisation of CDCs using qRT-PCR
Primers were designed using Primer3 software based on

interpretation of GenBank or Ensembl Genome Browser search

results and are listed in File S1. Total RNA was extracted using

Trizol (Sigma) and treated with Turbo DNA-free (Ambion).

Complementary DNA (cDNA) was synthesized from the treated

RNA template using AB high capacity transcriptase kit (Applied

Biosystem). Real time PCR amplification was performed (AB

StepOnePlus Real-Time, CA) and all data were analyzed using the

published 22DDCt method [14] with the StepOne modification

where the amplification efficiencies of the target and reference

genes were not equal. Relative mRNA levels were normalized to

GAPDH and expressed relative to neonatal whole heart total

RNA. Further details are provided in File S1.

Characterisation of CDCs using immunocytochemistry
Cells (86104/80 ml) cultured on chamber slides were fixed with

4% PFA on ice for 20 minutes. For intracellular staining, cells

were permeabilized with 0.1% triton X in PBS for 10 minutes.

This step was omitted for cytoplasmic staining. Then cells were

blocked with 10% donkey serum for 30 minutes and stained with

primary antibody (see File S1) overnight at 4uC. After rinsing, cells

were labelled with secondary antibody for one hour at 37uC,

counterstained with 49,6-diamidino-2-phenylindole (DAPI, Sigma)

and mounted with VECTASHIELDH mounting medium. Nega-

tive control staining was performed whereby the primary antibody

was omitted. Immunostaining was visualized and analyzed using

laser scanning confocal microscopy (Zeiss LSM510 and LSM710

Meta laser confocal microscope). For quantification of cardiac

troponin I (cTnI) staining, the percentage of positively stained cells

was counted in 18 representative fields from 3 experiments (at

4006magnification).

Rat myocardial infarction and CDC administration
The left anterior descending (LAD) coronary artery of female

SD rats (200–250 g, n = 14) was occluded using the method of

Michael et al [15]. In brief, following anaesthesia, using 2%

isoflurane in O2, and thoracotamy, the pericardium was removed

and a 5-0 prolene suture placed under the LAD, about 2 mm from

the origin. The suture was tied around a small piece of PE tubing,

occluding the LAD, and the chest closed. After 50 minutes, the

chest was re-opened and the tubing removed to allow reperfusion.

Ten minutes after ischaemia/reperfusion, CDCs (26106 in 50 ml

Cardiosphere Cell Therapy for the Infarcted Heart
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CEM; n = 7; CDC-treated group) or medium (50 ml CEM; n = 7;

Control group) were injected over four sites in the peri-infarct

region. Two days after MI, a bolus of CDCs (46106 in 500 ml

CEM) or medium (500 ml CEM) was administered via the tail vein

to the CDC-treated and control group, respectively. In sham

animals (n = 3), the thoracotamy was performed but no stitch

placed in the heart.

Cardiac cine MRI
Cardiac cine MRI was performed as previously described [16].

Briefly, rats were anaesthetised with 2.5% isoflurane in O2,

positioned supine in a purpose built cradle and lowered into a

60 mm birdcage coil in a vertical bore 500 MHz, 11.7 T MR

system with a Bruker console running Paravision 2.1.1. A stack of

7–8 contiguous 1.5 mm true short axis ECG-gated cine images

were acquired to cover the entire left ventricle. The epicardial and

endocardial borders were outlined in end diastolic and systolic

frames using the freehand drawing tool in Image J [17]. Cardiac

mass and left ventricular volumes were summed over the whole

heart. Further details are provided in File S1. Animals were

sacrificed by overdose of pentobarbitone after the final MR images

were acquired.

High resolution 3D MR microscopy
Hearts (n = 4; 2 hearts from each group) were isolated and fixed

in 4% (w/v) paraformaldehyde (Sigma, UK) in phosphate buffered

saline (pH 7.2) and embedded in 1% (w/v) agarose doped with

gadolinium DTPA in a 20 mm NMR-tube. High-resolution MRI

was performed in a 20 mm quadrature-driven birdcage coil

(Rapid Biomedical, Würzburg, Germany) using a fast gradient

echo sequence (see File S1 for details).

Histological analysis
Infarcted hearts (n = 10; 5 hearts from each group) were

isolated, cut into basal and apical halves and frozen in OCT

(Tissue-Tek) over dry ice. Frozen sections were cut into serial

10 mm slices and stained with or picro-Sirius Red. The amount of

positive staining was quantified using ImagePro Plus 5.0

(MediaCybernetics Inc, Bethesda, Md) image analysis software.

Infarct volume was calculated by multiplying the area of infarcted

tissue in each tissue slice by the distance between those slices in the

heart (1.5 mm).

Immunohistochemistry
Capillary density. In a humidity chamber, tissue sections

were fixed in 4% paraformaldehyde for 10 minutes at room

temperature, washed and permeabilized with 0.5% Triton for

10 minutes at room temperature. Sections were incubated for

20 minutes with diluted normal mouse blocking serum and then

with PECAM-1/CD31 mouse anti-rat (AbD Serotec,

MCA1334G; 1:100 dilution), for 1 hour at room temperature.

The sections were washed and incubated with biotinylated anti

mouse secondary antibody (Vectastain ABC kit; Vector

Laboratories, PK-4002) for 30 minutes at room temperature,

followed by incubation with DAB Perosidase Substrate kit (Vector

Laboratories, SK-4100) for 10 minutes and mounting. Images

were acquired on 610 magnification with a GETI light

microscope connected to Cannon Digital camera. CD31 was

quantified using ImageJ.

Cell characterization. Frozen tissue sections were fixed

using ethanol-glycine fixative for 20 minutes at room temperature

and blocked with 10% donkey serum in PBS for 30 minutes.

Tissue sections were incubated with primary antibody (see File S1)

at 4uC overnight. After rinsing, tissue was labelled with secondary

antibody for 1 hour, counterstained with DAPI and mounted with

VECTASHIELDH mounting medium. Negative control staining

was performed whereby the primary antibody was omitted.

Immunostaining was visualized and analyzed using laser

scanning confocal microscopy (Zeiss LSM510 and LSM710

Meta laser confocal microscope). The proportion of cells labelled

with MPIO that also stained for cTnI, SMA or vWF was

quantified in the infarct/peri-infarct region of the heart from at

least 10 representative fields from 3 hearts (at 636magnification).

A capillary was defined as 1 or 2 endothelial cells spanning the

vWF-positive vessel circumference. An arteriole was defined as 2

or more SMA positive cells spanning the vessel circumference.

Statistical analysis
Results are presented as means 6 standard errors. Differences

were considered significant at p,0.05, determined using analysis

of variance with a post hoc t-test with Tukey correction or a

Student’s t-test (SPSS).

Results

CDC culture and characterisation
Explant-derived cells (EDCs) were harvested and cultured to

form cardiospheres, which were then expanded as a monolayer

culture to passage 2 (p2) as CDCs within 3–4 weeks of biopsy.

Flow cytometry revealed that 3.060.1% of p2 CDCs expressed

the stem cell marker c-kit, 7167% expressed CD90 and 1062%

expressed the fibroblast marker, DDR2 (Figure 1A & 1B),

indicating a largely mesenchymal cell population (figure S1). Less

than 1% of CDCs expressed CD45 (data not shown). Gene

expression was analysed using quantitative RT-PCR and ex-

pressed relative to expression in neonatal rat heart (Figure 1C).

CDCs expressed c-kit, the cardiac transcription factor GATA-4

and the glycoprotein CD105 (4.160.3%, 10.260.7% and

42617% of that in neonatal heart, respectively) with high levels

of CD90 (1461 fold higher than in neonatal heart.

Using immunocytochemistry, cells were found to express the

pluripotency markers, Oct3/4, Sox2, and Klf-4, with little or no

expression of Nanog (Figure 1D). In line with the flow cytometry

data, immunocytochemistry showed that approximately 2% of

CDCs expressed c-kit (Figure 1D). Cardiosphere-derived cells

expressed the cardiac transcription factors, GATA-4 and Nkx2.5

indicative of their origin and also showed multipotency through

spontaneous differentiation into the three main cardiac lineages;

endothelial (positive for von Willibrand factor (vWF)), smooth

muscle (positive for a-smooth muscle actin (SMA)) and cardiomy-

ocyte (positive for a-sarcomeric actin) (Figure 1D). Cycling cells

were detected by staining for Ki67 (Figure 1D). CDCs cultured to

full confluency showed increased expression of a-sarcomeric actin

and began to express cardiac troponin T (figure S2). Culture in

differentiation medium containing DMSO for 10 days promoted

CDC differentiation further along the cardiomyocyte lineage,

detected by immunostaining for cardiac troponin T and increased

mRNA expression of Nkx2.5, cardiac troponin T and myosin

heavy chain. (Figure 1E and Figure S2). Cells treated with DMSO

began to adopt an elongated morphology more indicative of a

cardiomyocyte and to show striations not evident in the cells

cultured beyond confluency (figure S2).

Although the CD90+ population may include cardiac fibro-

blasts [7], only 10% of CDCs expressed the fibroblast marker

DDR2 [18] and the detection of Oct 3/4, Sox2 and Klf-4

confirmed the presence of pluripotent stem cells within the CDC

population. Furthermore, treatment with DMSO induced differ-

Cardiosphere Cell Therapy for the Infarcted Heart
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Figure 1. Characterisation of CDCs. Surface marker expression and mRNA in passage 2 CDCs was measured using (A, B) flow cytometry for c-kit,
CD90 and DDR2, representative plots are shown in (A) and quantication in (B); (C) qRT-PCR for c-kit, GATA-4, CD105 and CD90, expressed relative to
100% expression in neonatal heart and normalised to GAPDH; and (D) immunocytochemistry for Oct3/4, Sox2, Nanog, KLF-4, c-kit, GATA-4, Nkx2.5,
von Willibrand factor (vWF), a–smooth muscle actin (a–SMA), a–sarcomeric actin and Ki67. (E & F) Incubation with DMSO for 10 days promoted
differentiation along the cardiac lineage as shown by increased protein expression of cTroponin I (E: green) and mRNA expression of Nkx2.5, Troponin
T and myosin heavy chain (MyHC) (F).
doi:10.1371/journal.pone.0025669.g001
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entiation and expression of cTnT in a higher percentage of cells

(1966%) than the proportion of c-kit+ cells present (3.060.1%)

suggesting that the CDC population contains a c-kit negative

population of cells capable of differentiation into cardiomyocytes.

MPIO labelling
The viability of the CDCs was not altered after labelling with

fluorescent microparticles of iron oxide (MPIO; Figure 2A).

MPIO-labelled cells formed secondary cardiospheres (Figure 2B)

and proliferated at a rate comparable with unlabelled CDCs

(Figure 2C). MPIO-labelled CDCs were imaged using MR with a

46106 voxels/ml resolution. It was found that 105 labelled cells,

suspended in 0.6 ml agarose, caused a large signal void

(Figure 2D). When only 1% of the 105 CDCs were MPIO-

labelled, small regions of signal void were detected throughout the

phantom, indicating that the labelled cells could be detected with

single cell resolution.

Cardiac function
Cine-MRI was used to measure cardiac morphology and

function at baseline (2 days post MI) and at 2, 6, 10 and 16 weeks

after MI and the administration of CDCs (Figure 3). At baseline,

there were no significant differences between control and CDC-

treated hearts in ejection fraction (EF), end diastolic volume

(EDV), end systolic volume (ESV), stroke volume (SV) or cardiac

output (CO) (see Figure 3 and table S1). In control hearts, cardiac

remodelling resulted in a significant decrease in EF between

baseline and 2 weeks and again between 2 and 6 weeks, such that,

by 6 weeks, control heart EF had decreased by 13% (EF 4762%,

p,0.05 vs. baseline) and was significantly lower than that of CDC-

treated hearts (EF 5663%, p,0.05 vs. control). This 9%

difference in ejection fraction was maintained to 16 weeks post

MI such that the ejection fractions of CDC-treated hearts were not

significantly different from shams (EF sham 6762%; control

4763% p,0.05 vs sham; CDC 5763%, p,0.05 vs control, ns vs

sham; Figure 3). Although both control and CDC-treated hearts

showed significant dilation by two weeks, the end systolic volume

of the CDC-treated hearts was significantly smaller at 2 weeks

than that of the control hearts (ESV sham 7669 mm3, control

247627 mm3, p,0.05 vs sham; CDC 177613 mm3, p,0.05 vs

sham and control). Further remodelling was attenuated in CDC-

treated hearts, compared with control hearts, such that at later

time points end systolic volumes of control hearts, but not of CDC-

treated hearts, were significantly larger than those of shams

(Figure 3). Relative infarct size (measured as the area of the

myocardial wall that was akinetic) was the same in all infarcted

hearts at 2 days (control 2464 mm2, 961% of LV wall, CDC-

treated 2464 mm2, 962%), and by 10 weeks had increased

significantly in control hearts but not in CDC-treated hearts

(control 5664 mm2, 1562%, p,0.05 vs baseline; CDC-treated

3864 mm2, 1262%, ns vs baseline; Figure 3). At 16 weeks, the

infarct size in CDC-treated hearts was significantly lower than that

in control infarcted hearts (control 6169 mm2, 1662%, CDC-

treated 3667 mm2, 1061%, p,0.05 vs control; Figure 3). End

systolic posterior wall thickness was comparable between the three

groups. At 2 and 6 weeks, the peri-infarct wall at end-systole was

significantly thinner than at baseline in both infarct groups,

however by 10 weeks CDC treatment had restored the wall

thickness such that the peri-infarct region in the CDC-treated

group was significantly thicker at end systole than that in the

control group (control 2.160.04 mm, CDC 2.560.1 mm, p,0.05

vs control; Figure 3).

CDC Retention and cardiac morphology
Hypointensities caused by the MPIO particles were detected at

all times in the infarct region of CDC-treated hearts using in vivo

Figure 2. CDCs were not adversely affected by labelling with MPIOs and could be detected using MR microscopy. (A) CDCs
endocytosed fluorescent MPIOs during overnight incubation; (B) MPIO-labelled CDCs retained the ability to form cardiospheres; (C) live (blue) and
dead (red) cell numbers were comparable between unlabelled and MPIO-labelled CDCs; (D) MPIO-labelled CDCs could be detected at the single cell
level (103 cells / 0.5 ml, arrows) using MR microscopy.
doi:10.1371/journal.pone.0025669.g002
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MRI (Figure 4A) and could be measured with high resolution

using ex vivo microscopy (Figure 4A). The dragon green

fluorescence of the MPIOs was clearly detected in tissue slices

(Figures 4B–D, 5A–D). Donor cells expressing GFP were detected

using antibody labelling, which co-localised with detection of

fluorescence from the MPIOs (Figure 4B and Figure S3).

Furthermore, although macrophages were detected in tissue slices,

by antibody labelling for CD68, they were not labelled with the

MPIOs (Figure 4C), showing that MPIO-labelled CDCs survived

in the myocardium at 16 weeks and neither they nor the iron

particles had been taken up by the infiltrating macrophages. Cells

labelled both with MPIOs and with DiI were located in

abundance in the fibrotic region of the scar, in the epicardium

and, more rarely, in remote myocardium. MPIO-labelled CDCs

were not positive for vimentin and therefore the cells did not

appear to be myofibroblasts (Figure 4D). Regenerating myocardial

cells were detected by co-localisation of immuno-staining for cTnI,

vWF, and SMA with MPIO and DiI labelling (Figure 5A–D).

4963% of MPIO-labelled cells in the infarct/peri-infarct region

also expressed cTnI (Figure 5A & D), 1263% in vWF-positive

capillaries (Figure 5B) and 862% were detected in SMA-positive

arterioles (Figure 5C). The MPIO/cTnI double positive cells

remained small in size, indicative of a not fully matured CDC-

derived cardiomyocyte. Although these immature cardiomyocytes

expressed a small amount of connexin 43, these were not in

connection with neighbouring and survived myocytes and

therefore no gap junctions were formed (Figure 5D). Infarct size

was measured using MR and by histological staining of tissue slices

taken to corresponded with the position of the MR imaging slices

(Figure 6A). Collagen density, measured using picro-Sirius Red

staining, correlated with the size of the akinetic region of the

myocardial wall measured in the in vivo MR images (Figure 6B).

Collagen density was reduced by 40% (p,0.05) in CDC-treated

hearts compared with untreated control hearts (Figure 6C).

Capillary density, measured using immuno-staining for CD31

(Figure 6D), was increased by 44% (p,0.05) in the peri-infarct

region of CDC-treated hearts compared with control hearts

(Figure 6E). In summary, CDCs were retained in the infarcted rat

heart for at least 16 weeks, increased ejection fraction and capillary

density, and ameliorated the increase in end systolic volume and

relative infarct size compared with untreated infarcted rat hearts.

Discussion

Here, we have used MRI to show for the first time that cardiac

function was improved and maintained over long-term follow-up

in the rat heart following ischaemia/reperfusion and cardiosphere-

derived cell therapy.

Figure 3. CDC administration improved cardiac function. Cardiac ejection fraction, end systolic volume, end diastolic volume, stroke volume,
relative infarct size and end-systolic peri-infarct thickness, measured over 16 weeks using MRI, showed that cardiac function in the infarcted hearts
was improved by administration of CDCs. * p,0.05 vs sham ; # p,0.05 vs control; { p,0.05 vs 2 days (shown only for infarct size and peri-infarct
thickness for clarity).
doi:10.1371/journal.pone.0025669.g003
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CDCs are an heterogeneous mixture of cells reported to include

c-kit+/CD105+ cardiac progenitor cells, CD90+/CD105+ cardiac

mesenchymal cells and CD31+/CD34+ endothelial cells [10].

Andersen et al [7] suggested that cells cultured using the explant

protocol comprise a mixture of fibroblasts and blood-borne cells,

however we found that less than 10% of cells expressed the

fibroblast marker DDR2 [18] and less than 1% were CD45+
haematopoietic cells. CDCs from neonatal rat heart were cultured

to p2 within one month of biopsy. The percentage of c-kit+ cells at

p2 was lower than reported by Smith et al [5], with mRNA

expression comparable with that shown by Andersen et al [7].

Nevertheless, cells expressing the pluripotent markers Oct3/4 and

Sox-2 were detected within the CDC population. Li et al reported

that cardiosphere culture increased expression of Sox-2 and

Nanog in human CDCs but that this expression was lower after 3

days of monolayer culture [19]. Furthermore, GATA-4 high c-kit+
cardiac stem progenitor cells (CSCs), which are committed to the

cardiomyocyte lineage and show enhanced cardiomyocyte differ-

entiation, have decreased cardiosphere generation capability,

compared to GATA-4 low c-kit+ CSCs, which consist of more

primitive (Oct-4 and Sox-2 positive) stem cells [20] . The

expression of the pluripotent markers, Oct-4 and Sox-2, and the

cardiac transcription factors, GATA-4 and Nkx2.5, in CDCs was

heterogeneous, but evident in the majority of the cells (Figure 1).

Down-regulation of the pluripotent markers is required for the

cells to commit to the cardiac lineage, when there is an up-

Figure 4. MPIO-labelled CDCs were tracked in vivo and identified in tissue sections. A: Regions of hypointensity due to MPIOs (arrows)
were detected in CDC-treated hearts using in vivo MRI for 16 weeks after administration, and confirmed using ex vivo MR microscopy (example
images from the same heart at 2 days, 2 weeks and 16 weeks are shown, in vivo top, left & right, bottom left, ex vivo bottom right). B: In tissue slices,
MPIOs (green) were shown to co-localise with expression of GFP (magenta). C: Macrophages were detected in tissue slices, by antibody labelling for
CD68 (magenta, yellow arrowheads), but were not labelled with DiI (red) or MPIOs (green, white arrows). D: No vimentin positive/MPIO/DiI positive
cells were observed and therefore the cells did not appear to be myofibroblasts.
doi:10.1371/journal.pone.0025669.g004
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regulation of the cardiac transcription factors, such as Nkx2.5 and

GATA-4 [21].

Treatment of CDCs with DMSO for 10 days promoted

expression of cTnT, Nkx2.5 and myosin heavy chain, demon-

strating their ability to differentiate into more mature myocyte

precursors. Finally, the detection of a-smooth muscle actin, von

Willibrand factor and a-sarcomeric actin suggested that CDCs

contained cells capable of forming all three cardiac lineages. MRI,

the gold standard for clinical measurement of cardiac function

[22], produces accurate, reproducible measurements of cardiac

function in rodents [23] and, in concert with iron oxide labelling of

cells, can be used to demonstrate the success of donor cell

administration and cell retention [24]. The validity of cell tracking

using iron oxide has been questioned, as in vivo studies identified

iron oxide nanoparticles in macrophages and not in the

administered cells [25]. However, larger MPIOs were retained

in administrated cells in vivo for 3 weeks in CDCs [26] and for 16

weeks in bone marrow cells [24,27]. Here, MPIOs were found to

co-localise with DiI labelling, and expression of GFP confirmed

that the majority of the MPIOs were retained within the donor

cells 16 weeks after administration. Furthermore, although

macrophages were detected in tissue slices, they did not co-localise

with the MPIO particles. The MPIOs used here were encapsu-

lated in a polymer which made the surface of the particle free of

iron oxide. It may be that these larger, encapsulated particles are

retained within the cell more successfully than iron oxide

nanoparticles.

The reperfused heart is more appropriate and applicable for

pre-clinical studies where cells are administered shortly after

infarction. Although human myocardial infarction is followed by

reperfusion of the occluded vessel using thrombolytics and/or

percutaneous coronary intervention [28,29], most studies of stem

cell therapy in rodents still use total occlusion of the coronary

artery [5]. The infarct region following reperfusion differs

substantially from that following total occlusion [30]. Reperfusion

results in decreased infarct size and reduced remodelling [31], but

Figure 5. Differentiating CDCs were detected in tissue sections. Regenerating myocardial cells were detected by co-localisation of MPIO
(green) and DiI (red) labelling with (A) immuno-staining for cTnI (magenta); (B) vWF-positive capillaries (magenta) and (C) SMA-positive arterioles
(magenta, inset is at 62 zoom), indicating de-novo cardiomyocyte and vessel formation from administered CDCs. (D) MPIO/cTnI positive small
immature cells within the border zone expressed a small amount of connexin 43 (arrow), but these cells did not form gap junctions with mature
cardiomyocytes.
doi:10.1371/journal.pone.0025669.g005
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also in an influx of reactive oxygen species and neutrophils, which

cause myocyte necrosis [32]. As a result, the peri-infarct

environment differs substantially between the two infarct models.

The increased inflammatory reaction immediately following

reperfusion may result in clearance of administered donor cells

from the peri-infarct region. Therefore, CDCs were also delivered

by systemic infusion after two days, when the initial inflammatory

influx would have subsided [32].

Here in vivo cine MRI provided extensive characterisation of

cardiac function in the rat heart immediately after ischaemia/

reperfusion and at four time points over the subsequent 16 weeks.

Conflicting reports of the efficacy of endogenous cardiac cells

cultured from tissue explants may be ascribed to differences in

techniques and species. Intracoronary administration of 36106

porcine CDCs reduced infarct size and improved haemodynamic

function in the pig heart 8 weeks after balloon occlusion and

reperfusion [6], yet there was no improvement in ejection fraction.

After injection of EDCs, expanded without forming cardiospheres,

Li et al [8] observed no difference in cardiac function,

haemodynamics or infarct size at 8 weeks between untreated

mouse hearts and those injected with 56105 cells. In vivo

bioluminescent imaging showed poor donor cell survival by 8

weeks. In contrast, also in the mouse, Davis et al [12] reported a

9% improvement in ejection fraction, measured using MRI, at 3

and 6 weeks after administration of 16106 EDCs and Chimenti

et al [11] reported a 16% increase in ejection fraction, measured

using 2D echocardiography, at three weeks after administration of

16105 CDCs. The significant progressive decline in cardiac

function we observed in untreated infarcted rat hearts, shown by

significantly decreased ejection fraction and increased end systolic

volume, was prevented by CDC administration. Accurate

measurement of cardiac morphology showed that the systolic wall

thickness of the peri-infarct region was comparable in both groups

at 2 weeks, but by 10 weeks CDC treatment had restored wall

thickness in this region. This may have resulted from the CDC-

derived cardiomyocytes, increased capillary density and reduced

fibrosis in treated hearts, as also reported by others [11].

The administered CDCs were predominantly localised within

the fibrotic regions of the infarct. MPIO- and DiI-labelled cells

expressing cTnI, vWF and SMA were detected in the infarct and,

more rarely, in the remote myocardium, indicating differentiation

of CDCs along the cardiomyocyte lineage and, less frequently, the

formation of new blood vessels. However, less than half of the

labelled cells within the infarct/peri-infarct region expressed cTnI

and these cells were also small in size, suggesting an immature,

fetal phenotype. Therefore, the major contribution to the observed

long-term improvement in cardiac function most likely resulted

from increased paracrine factors that reduced fibrosis and

increased capillary density in CDC-treated hearts. Human CDCs

secrete vascular endothelial growth factor, hepatocyte growth

factor (HGF) and insulin-like growth factor 1 (IGF-1) leading to

increased capillary density in the mouse heart 3 weeks after CDC

administration [11]. Moreover, administration of HGF and IGF-1

to the infarcted pig heart resulted in activation and differentiation

of endogenous c-kit+ cardiac stem cells as well as improved

cardiomyocyte survival, and reduced fibrosis and cardiomyocyte

hypertrophy [33]. Further investigation is warranted to identify

factors and conditions that promote the maturation of the CDC-

derived cardiomyocytes to a mature and functional phenotype

within the infarcted region.

Despite producing a CDC population containing about 30%

more CD90+ cardiac mesenchymal cells and 12% fewer c-kit+
cardiac progenitor cells than others [5], we found that a single

injection of 26106 CDCs 10 minutes post ischaemia/reperfusion

MI and a further bolus of 46106 CDCs administered systemically

2 days later, homed to the infarcted myocardium and were

retained at 16 weeks follow-up. A significant proportion of CDCs

differentiated towards the cardiomyocyte lineage. We also found

lower fibrosis and increased capillary density at 16 weeks,

suggesting the release of paracrine factors by the transplanted

CDCs. Importantly, these changes resulted in improved cardiac

function at 4 months, which was not evident in the control group

that did not receive CDC treatment. Thus, cardiosphere-derived

cells may be expanded from biopsy samples to provide a cell

Figure 6. CDC administration reduced infarct size and increased capillary density. Infarct size measurements obtained using picro-Sirius
red staining (A: top) and MRI (A: bottom) were found to correlate (B) and showed that CDC-treated hearts were less fibrotic than control hearts (C).
Immuno-staining for CD31 showed increased capillary density in the peri-infarct region of CDC-treated hearts compared with controls; representative
images are shown in (D) and quantified in (E).
doi:10.1371/journal.pone.0025669.g006
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population capable of preserving long-term function in the

infarcted heart.

Supporting Information

File S1 Materials and Methods.

(PDF)

Figure S1 Confluent CDCs (top) and cardiospheres
(bottom) contained high levels of CD90+ cardiac mes-
enchymal cells. Cardiospheres also contained low levels of

spontaneously differentiating cells, detected by staining for cTnI.

(PDF)

Figure S2 CDCs cultured to confluency (middle panels)
showed spontaneous differentiation with expression of
cTroponin T and a-sarcomeric actin, which were not
seen in non-confuent CDCs (top panels). Culture in

differentiation medium containing DMSO (bottom panels)

resulted in cells adopting an elongated morphology more

indicative of a cardiomyocyte and beginning to show striations.

(PDF)

Figure S3 Detection of GFP-expressing cells labelled
with DiI and MPIOs confirmed that administered cells
were retained in the hearts after 16 weeks; the white
arrows identify double stained GFP+ MPIO+ CDCs,
whilst the yellow arrowheads identify GFP+ CDCs alone.
(PDF)

Table S1 Cardiac function and morphology measured
over 16 weeks using MRI.
(PDF)
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