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Abstract

Fulfilling a service request in highly dynamic service environments may require deploying a service. Therefore, the
effectiveness of service deployment systems affects initial service response times. On Infrastructure as a Service (IaaS)
cloud systems deployable services are encapsulated in virtual appliances. Services are deployed by instantiating virtual
machines with their virtual appliances. The virtual machine instantiation process is highly dependent on the size and
availability of the virtual appliance that is maintained by service developers. This article proposes an automated virtual
appliance creation service that aids the service developers to create efficiently deployable virtual appliances – in former
systems this task was carried out manually by the developer. We present an algorithm that decomposes these appliances
in order to replicate the common virtual appliance parts in IaaS systems. These parts are used to reduce the deployment
time of the service by rebuilding the virtual appliance of the service on the deployment target site. With the prototype
implementation of the proposed algorithms we demonstrate the decomposition and appliance rebuilding algorithms on
a complex web service.

Keywords: cloud computing, grid computing, virtualization, web service, deployment

1. Introduction

Services abstract system functionalities from the ap-
plied technology and they enable the access of these func-
tionalities through predefined interfaces. In service based
systems [11] these interfaces, defined by service descrip-
tions, allow the users to access the services transparently
without knowing the exact details of the used service in-
stance. The vision of these service based systems incor-
porates highly dynamic environments [10] where service
instances are deployed, utilized, and decommissioned on
demand. Service deployment [31] prepares the service code
on the infrastructure of the service provider for later us-
age. Dynamism in the service based systems require the
automation of the service deployment process.

Cloud computing [2, 6] promises simple and cost ef-
fective outsourcing of applications (Software as a Service –
SaaS), platforms (Platform as a Service – PaaS) and hard-
ware resources (Infrastructure as a Service – IaaS). PaaS
and IaaS systems can be used to extend Service Based Sys-
tems by deploying services on their resources. On PaaS
cloud systems the services are developed specially for the
given platform. In contrast, IaaS systems use hardware
virtualization to support a wider variety of applications.
These systems require the encapsulation of the services
in virtual appliances. Therefore, services are deployed by
instantiating a virtual machine in the IaaS system.
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Virtual appliances combine services and their support
environment in a form executable by virtual machines. In
current IaaS systems the users either use virtual appli-
ances already published in a virtual appliance marketplace
[21, 22] or they have to create the required virtual appli-
ance on their own. However, these newly created virtual
appliances are not specifically designed with their frequent
deployments in mind and this seemingly minor issue can
seriously hinder exploiting the dynamic features of the sys-
tem. For example some IaaS systems charge for the net-
work usage during deployment, therefore improperly cre-
ated virtual appliances entail hidden deployment costs for
their users. Hence, one of the main aspects of the work
is providing the designers an automated mechanism and
support for creating virtual appliances.

In highly dynamic service environments a service re-
quest might impose a service deployment before the re-
quest can be served. As a result, the inclusion of the
deployment increases the apparent execution time of the
request. Current deployment systems (e.g. [28]) try to re-
duce the effects of pre-execution deployment by replicating
the virtual appliances within the IaaS system. However,
IaaS systems regularly charge for the extra storage needs
of the owner of the replicated virtual appliance. The other
main aspect of our work is a means to reduce turnaround
time and keep deployments transparent to the users.

In this article we propose the automated virtual appli-
ance creation service (AVS) that supports the service de-
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Figure 1: Relations of deployment tasks

velopers in the virtual appliance creation and publication
process. The AVS creates the service’s virtual appliance
based on an already operable service installation on the
developer’s system. After the initial virtual appliance is
created the developer can request the service to prepare
and publish the appliance for execution in various IaaS
systems.

We also present active repositories as an approach for
reducing the effects of pre-execution deployment. These re-
positories automatically decompose the stored virtual ap-
pliances to smaller parts, thus they allow the partial rep-
lication of the appliances. Our approach only replicates
virtual appliance parts that are common in the stored vir-
tual appliances. As a consequence to decomposition, our
solution rebuilds the original virtual appliances on the tar-
get site of the deployment.

This article is organized as follows: Section 2 gives an
overall look on the state of the art of the service deploy-
ment. Then Section 3 discusses the Automatic Service
Deployment architecture that incorporates the automated
virtual appliance creation and active repository functional-
ities. Later sections are focusing only on publication and
distribution of virtual appliances however, Section 3 of-
fers a general overview and an outlook of the architecture.
Next, Section 4 proposes and details the AVS, active re-
pository and virtual appliance rebuilding algorithms and
their relations. The implementation and experiments on
the proposed solutions are discussed in Section 5 that is
followed by the conclusion in Section 6.

2. Service Deployment Overview

Service deployment is the process of making a service
instance available for the users. We define deployment as a
complex process that is composed of following deployment
tasks (see Figure 1): selection, installation, configuration,
activation, adaptation, deactivation, update, and decom-
mission. In the next paragraphs we detail the purpose of
these tasks.

First, the Selection task chooses the appropriate (hard-
ware and software) target system to deploy the service
on. Then the Installation task manages the addition of

the new software components to the target system. These
components include the service itself and its dependencies
that are described in [5, 26]. The installed components are
adjusted to fit the target system’s specific needs with the
Configuration task [18, 31]. During the Activation task
the deployment system makes the service available for the
users, and usually executes it.

The remaining deployment tasks are related to soft-
ware maintenance. While the target system is still run-
ning and serving requests its previously installed and con-
figured software components are fitted by the Adaptation
task to its current needs. Then the Deactivation task en-
ables those maintenance related operations that cannot
operate on an active service. The Update task replaces
previously installed software components and initiates a
reconfiguration on them. Finally, the Decommission task
removes the service’s software components from the tar-
get system, and then issues a reconfiguration task for the
remaining software systems.

We have identified three types of service deployment
systems that can accomplish all deployment tasks: (i)
manual service deployment systems, (ii) container based
deployment systems and (iii) appliance based deployment
systems. Manual deployment systems require continuous
user interaction during the deployment process, therefore
they are not suitable for automated deployment systems.
Container based systems (e.g. [7, 24]) predefine an exe-
cution platform for the services that includes the deploy-
ment system. Therefore services have to be developed for
this specific platform and they are not portable between
the different container based deployment systems. Finally,
appliance based deployment systems (e.g. [15, 19]) encap-
sulate services and their specific support environments in
virtual appliances, thus service deployment is achieved by
instantiating a virtual machine that executes the virtual
appliance with the service. The next section elaborates
the concept of virtual appliances.

2.1. The Appliance Model

During their life cycle software systems may have sev-
eral versions and subversions. The diversity of their dif-
ferent installations means their vendors have to support
an unforeseen number of software environments. These
software environments are built up from several software
components interfaced with each other. However, the fact
that they are installed on the same system means they
could also interfere with each other. In several cases the
software vendor cannot identify the cause of an irregular
situation that only occurs in exceptional conditions.

As a solution to this problem the vendor maintains a
specialized environment, and the software system is ex-
ecuted in this controlled environment only. There are two
distinct ways to offer this environment: (i) with the Soft-
ware as a Service [8] approach the vendor deploys and
maintains the software within the administrative domain
of the vendor, and the functionality is accessed through
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well defined interfaces over the network; (ii) with the Soft-
ware Appliance [1] model the vendor packages the software
system and its specialized support environment (including
the OS and the necessary libraries) and offers it with spe-
cific hardware requirements.

Virtual appliances (or VAs - [27]) are software appli-
ances prepared to run in virtualized environments. A vir-
tual appliance defines a VM state that contains the soft-
ware system and its support environment. Virtualized en-
vironments range from software to full hardware virtual-
ization. Software virtualization encapsulates the software
appliance and isolates its execution from the OS by con-
cealing its interfaces. As an opposite hardware virtualiz-
ation offers virtual machines (VM) limiting the resources
utilized (e.g. maximum processing power, network band-
width) by the software installed on them. Hardware virtu-
alization is provided by virtual machine monitors (VMM)
that offer virtual machine management functionalities, in-
cluding their creation, start up and shutdown procedures.

2.2. Requirements for Automating Service Deployment

In this section we identify the requirements an auto-
mated deployment system should comply with: (i) extern-
ally controllable deployment tasks, (ii) scales with the size
of the service based system, (iii) reduced data storage, (iv)
minimal deployment time, (v) minimal disruption of the
other services in the service based system. The next para-
graphs discuss these requirements in detail.

First of all automation of service deployment requires
that deployment tasks (see Section 2) should be exposed
with their interfaces to the outside world. As a result, the
control ling components (e.g. service brokers, orchestrat-
ors) of the service based system can influence the entire
deployment process.

Service based systems are massively distributed envir-
onments, thus the deployment system should be able to
scale to the size of the service based system. For example,
larger sized service based systems involve more frequent
deployments. However the increase in the number of de-
ployments should not affect the normal operation of the
system.

Frequent deployments intensify the amount of data trans-
ferred to the target sites that could affect the network con-
nections of already deployed services. Large-scale service
based system involve a large number of deployable services
that are stored in repositories. The deployment system
should reduce the size of the deployable service compon-
ents in order to achieve their effective storage and transfer.

Highly dynamic service environments require the de-
ployment system to frequently perform service deployments
and decommissions. Service deployment often precedes a
service call to the newly deployed service instance, because
the controlling components of the service based system
regularly instantiate deployments when the timely execu-
tion of a service call requires it. The deployment system
should minimize the deployment time in order to reduce

the total time of the service call on the newly deployed
service instance.

Finally, new service deployments should not disrupt
the service based system’s overall behavior. The newly
deployed service should not be able to obstruct the ongo-
ing tasks of the previously deployed services.

2.2.1. Taxonomy of Related Deployment Systems

To further detail our requirements we establish the fol-
lowing categorization for service deployment systems: (i)
isolation level defines the separation between services in-
stalled on the same host; (ii) repository support to store
the code of the available services for deployment; (iii) uni-
versal service support increases the number of deployable
services in the system; (iv) non invasiveness requires no
modifications on the service code in order to support de-
ployment; finally, (v) state transfer enables the newly de-
ployed system to resume from the state of a remote service.

Service deployment solutions are categorized depend-
ing on their isolation level that defines the level of service
separation during the deployment on a host already offer-
ing services. The lowest isolation level means all the other
services are stopped and their states are lost. The highest
isolation level does not decrease the turnaround time of
the other service invocations during and after deployment
or even when malicious code gets activated with a newly
deployed service. There are two main approaches to tackle
the isolation problem. The first built on the fact that ser-
vice containers offer basic isolation, however service con-
tainers do not separate the services entirely (e.g. newly
deployed services can exhaust system resources, thus de-
grading the previously deployed services). The second ap-
proach provides isolation with virtualization that offers the
highest isolation levels. Isolation ensures that improper
deployment decisions do not influence the overall system
performance therefore, virtualization based isolation is a
key requirement for an automated deployment system.

Service deployment solutions are also categorized de-
pending on their support of repositories. Repositories could
act as the primary source of trust if they enclose security
information (e.g. a signature of the service’s developer) or
enforce different registration policies – for example they
require the validation of services. Without repositories
service code has to be collected before every deployment
operation. This gets even worse when the same service
has to be collected and deployed several times, instead
of downloading it from an already prepared location – the
repository. The continuous repetition of the expensive ser-
vice code collection tasks reduce the overall performance
of the service based system even though deployments were
initiated to avoid performance drop. Therefore reposit-
ories are required for the automation of deployment by
acting as the sources of deployable services.

The next categorization is the universality of the de-
ployment solution that defines the generality of the de-
ployment solution with regards to the deployable services.
Specialized service deployment solutions are optimized for
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a specific service. They can support all the deployment
tasks from installation towards adaptation and decommis-
sion, however to simplify the deployment problem they
specialize these tasks for a given service. Container based
isolation techniques jeopardize universality by supporting
services only compatible with the chosen container. In
service based systems every service is represented with its
interface that cannot be used to differentiate between de-
ployable and non-deployable services. With specialized de-
ployment solutions only few services are deployable, there-
fore highly dynamic service environments require universal
deployment solutions that are not differentiating the ser-
vices in the service based system.

Another categorization is based on the level of invas-
iveness the deployment solution enforces on developers.
Invasive systems require the service code to be modified
to support the service’s deployment. E.g. these systems
require the service to implement an additional interface
or they require the use of special libraries and solutions
that enable further deployments. As an opposite, non-
invasive systems are more compatible with the existing
service based systems and therefore a non-invasive deploy-
ment solution is required.

Finally, there are deployment solutions with state trans-
fer capabilities. State transfer in service based systems
requires that a service suspended on a site is resumable
on a different one. In this case the whole process depends
on the state representation of the service [23]. The de-
ployment system might introduce new interfaces for state
transfer, it might require the developer to implement the
state transfer mechanisms for its own system, or finally it
can also use a standardized state representation mechan-
ism.

2.3. Related Works

Table 1 and 2 compares the existing deployment solu-
tions according to the previously defined taxonomy.

Nimbus virtual workspace service [15] was not developed
for service deployment however, it has been demonstrated
that it is also capable of deploying services packaged as
appliances [25]. It supports hardware virtualization with
Xen [4], and its generic framework lets the developers sup-
port other virtualization solutions. Virtual appliances are
not stored with metadata in repositories but on a single
file-system or a remote http server. In its latest versions
the virtual workspace service also supports the cluster on
demand concept that enables single services to reside in
multiple virtual appliances.

VMPlants [19] goes a step further with appliance based
deployment and offers faster delivery of virtual appliances
by constructing them on site with the help of directed
acyclic deployment graphs. These deployment graphs let
the deployment system to build the service from smal-
ler parts coming from a distributed repository called VM
Warehouse. Analogous to the virtual workspace service
it has two main interfaces, one for managing the virtual
machine itself (VMPlant) and one for creating a new one

(VMShop). VMPlants defines a framework that includes
techniques for representing virtual machine configurations
in a flexible manner, for efficient instantiating of virtual
machine clones, and for composition of services to support
large number of VM “plants”.

Hot Deployment Service (HDS) [29] uses an entirely
different approach for deploying services by introducing
a service for Open Grid Services Architecture [12] based
service containers called ServiceFactory. With this service
the system is capable to deploy and decommission services
while the service container is still running. With the HDS,
the service container needs to be changed (at configuration
level) to support the operations for new service registration
and class loading.

HAND (Highly Available Dynamic Deployment Infra-
structure) [24] supports several approaches for deployment
and provides two deployment solutions called HAND-C
(container level solution that requires the container to be
restarted after a service injection), and HAND-S (a ser-
vice level solution that leaves all other services unaffected
during deployment). Between HAND and HDS the only
difference that HAND supports the latest Globus Web Ser-
vices Resource Framework (WSRF - [3]) container and of-
fers container and service level deployment.

WSPeer [14] defines a message-oriented interface for
registration, deployment, discovery, and invocation. The
authors introduce two implementations; one for regular
web services based software, and another for P2P Simpli-
fied protocol. The deployment in the WSPeer system is
accomplished by passing a class file to the WSPeer service
that registers this class as a web service, or in a more com-
plicated case the WSPeer automatically generates a proxy
for a given service used by the clients. This second case is
used to interface the WSPeer environment with a workflow
environment.

Dynagrid [7] offers an all in one solution that covers the
aspects of WSRF service [3] deployment and even reaches
out of the boundaries of deployment. It offers a solution
for a unified invocation interface (called ServiceDoor), and
with the help of the ServiceDoor the system even offers ser-
vice state transfers. Deployments are done with the help
of the dynamic service launcher (DSL) components that
need to be deployed in all the WSRF containers. This
approach implies the most changes in the current service
based systems but offers scheduling, migration, and invoc-
ation support over the deployment capabilities.

Finally, [33] summarizes the development and stand-
ardization activities about Configuration Description De-
ployment and Lifecycle Management (CDDLM) that is a
collection of standards from Open Grid Forum (OGF) fo-
cusing on deployment and management. The CDDLM
API provides management and deployment interfaces mean-
while the CDL language [32] offers a generic way to con-
figure the deployed application. According to [33] there
are four available implementations. For instance the im-
plementation called SmartFrog from HP Labs provides a
framework to create deployment solutions for specific soft-
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Isolation Repository support Universality Non-Invasiveness State Transfer
Nimbus [15] Virtualised Partial

√ √
—

VMPlants [19] Virtualised
√ √ √

—
Hot Depl. srv. [29] Container —

√ √
—

HAND [24] Container —
√ √

—
WSPeers [14] Container —

√ √
—

Dynagrid [7] Container —
√

—
√

CDDLM impls. [33] N/A — — — —

Table 1: Taxonomy based classification of the different deployment solutions

Select Install Configure Activate Adapt Deactivate Update Decommission
Nimbus —

√
—

√
—

√
—

√

VMPlants —
√

—
√

—
√ √ √

Hot Depl. serv. —
√

Partial
√

—
√

—
√

HAND —
√

Partial
√

—
√

—
√

WSPeers
√ √

Partial
√

—
√

—
√

Dynagrid
√ √

Partial
√

—
√

—
√

CDDLM impls. —
√ √ √ √ √

—
√

Table 2: Classification of the different deployment solutions depending on their deployment task support
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Figure 2: Architectural connections of the Automatic Service De-
ployment system

ware components. The other implementations only imple-
ment selected standards of the CDDLM.

3. Architecture

This section discusses the Automatic Service Deploy-
ment (ASD) architecture that we proposed in [16]. This
architecture aims to provide an appliance based, universal
and non-invasive deployment system that supports all de-
ployment tasks (outlined in Figure 1) on Infrastructure as

a Service cloud systems. The proposed components of the
architecture are presented in Figure 2. This article only
covers the Automated Virtual appliance creation Service
(AVS), the Manageable Virtual Appliances and Active re-
pository that are grey colored in Figure 2. However, this
section gives a general overview and also discusses the re-
lationships between the different components.

The deployment tasks supported by the ASD architec-
ture are represented with interface lollipops in Figure 2.
Beyond supporting all deployment tasks there are two un-
solved issues of the current solutions that are targeted by
this architecture. First, it offers a solution for acquiring
and optimizing virtual appliances. Second, it also offers
support for schedulers, service compositors and other con-
trolling components making deployment related decisions
in the dynamic service ecosystem. Nevertheless, this art-
icle focuses only on the solution for acquiring and optim-
izing the delivery of virtual appliances.

Virtual appliances are acquired and managed with the
help of the Automated Virtual appliance creation Service
(AVS). The service’s main functionality acquires virtual
appliances from donor systems maintained by the service
developers. The service also supports the following virtual
appliance management tasks: (i) transformation of the ap-
pliance between various virtual machine formats, (ii) size
optimization of virtual appliances (called the optimization
facility) and (iii) uploading the virtual appliance to a re-
pository. The general properties and behavior of the AVS
are discussed in Section 4.1. In this paper we assume that
all parts of the appliances are required for deployment.
In contrast, the optimization facility reduces virtual ap-
pliances by altering them prior storage. The optimization
facility is discussed in detail in a separate paper [17].

In the ASD architecture, virtual appliances are stored
in active repositories that are defined in Section 4.2. These
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repositories are active because they optimize the delivery
of their contents by (i) decomposing the virtual appliances
to smaller parts and (ii) replicating the commonly used
portions of the stored virtual appliances to other reposit-
ories.

The last component is the manageable virtual appliance
that is a special virtual appliance designed to be embedded
into the service’s appliance in order to allow the manage-
ment of the service and its software environment. In this
paper we focus on how the manageable virtual appliance
is used for rebuilding decomposed virtual appliances. The
rebuilding algorithm is detailed in Section 4.2.2.

The Scheduler Assistance Service (SAS) is designed to
support deployment decisions made by various compon-
ents of the service based system and the target site se-
lection task. SAS offers (i) site ranking to support the
selection of the candidate sites for deployment, (ii) de-
ployment time and cost estimation on the different sites.
This article is not aimed at discussing the SAS.

4. Virtual Appliance Management

Our research identified four basic operations for virtual
appliance management: (i) extraction of the appliances
from preinstalled donor systems, (ii) publication of the
acquired appliances in order to allow their deployments,
(iii) decomposition of the published appliances to optimize
their storage and replicate their highly demanded parts,
(iv) rebuilding of the decomposed appliances to allow their
faster delivery to the target site before deployment.

Extracting the virtual appliance is the first task in
every appliance based deployment system. In the ASD
architecture, the automated virtual appliance creation ser-
vice (AVS) is designed to support the process of extraction
and publication. Compared to the frequent deployment re-
quests virtual appliance creation is a rare task, therefore
earlier systems leave it as a manual task. With the help of
the AVS the deployable virtual appliance is extracted from
the developer’s system. This operation is further discussed
in Section 4.1.

The AVS also supports the publication of the acquired
appliances in repositories as it is discussed in Section 4.1.3.
After the virtual appliance is acquired it is stored in a re-
pository to enable further deployments. Repositories ac-
cept virtual appliances using different policies, for example
they require third party validation of the uploaded content
(e.g. user rating) or repository owners manually select the
publicly available appliances. If automated deployments
occur target sites decide on allowing deployments by in-
cluding the acceptance policies of the repositories in their
decision, e.g. they only allow the deployment of highly
rated appliances.

Virtual appliances are large by nature. Thus, our ap-
proach prefers to download them from a high bandwidth
and low latency party. Higher bandwidth is achieved by
decomposing the virtual appliance to smaller portions and

Playground operations

Extraction operations
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client
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Manage 
Tests
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Figure 3: Use cases and relations of the AVS subsystem

the commonly used parts are spread widely allowing their
parallel download. This decomposition algorithm is de-
tailed in Section 4.2.

Finally, initiating a virtual machine is straightforward
only if its state – the virtual appliance – is available en-
tirely. However, due to decomposition virtual appliances
are no longer available in a single package. Therefore,
they have to be rebuilt before they are used to instantiate
a virtual machine. A repository either does this rebuilding
process internally, or alternatively with a virtual appliance
that is capable of reconstructing itself on site. Both both
options are detailed in Section 4.2.2.

4.1. Automated Virtual Appliance Creation Service

The task of the AVS service is to extract a virtual ap-
pliance from a virtualized host and package it for later
deployments. This package is stored in a virtual appliance
(VA) repository. Therefore the AVS has to interact with
the following three main actors from the outside world (see
Figure 3).

For the AVS client actor the AVS offers an interface
that exposes the VA extraction functionality. The AVS has
to be installed on the same host as the virtual machine
monitor (VMM) to ensure the AVS accesses the virtual
machine control functionality of the VMM (see Section
2.1). Therefore on client request the AVS collects the state
of a virtual machine to form a virtual appliance.

For the IaaS system actor the AVS offers two actions.
First the AVS enables the transformation of a VMM spe-
cific virtual appliance format (that can be used to create
a virtual machine on a specific VMM) to a platform inde-
pendent one. This is used when the IaaS system receives a
request to deploy a virtual appliance that is not supported
by the current VMM. The second, playground, operation
for the IaaS system is initiated by the AVS itself when
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it optimizes the virtual appliances with the optimization
facility.

Finally, the AVS uses a package repository actor. The
AVS stores the packaged VA in the user specified repos-
itory and it also replicates it to several other repositories
on user request. It is capable to search through multiple
repositories to find similarities between a VA package and
the appliances stored in the given repositories.

4.1.1. The AVS Client Interface

The AVS has two basic functionalities (see Figure 3).
First, it provides operations to extract and publish an ini-
tial virtual appliance from a running system (Extraction
operations). Second, it provides operations on an exist-
ing virtual appliance (Playground operations). The play-
ground operations either use an existing virtual appliance
or one that the extraction operation has just created.

The extract operation collects the appliance by creat-
ing a snapshot of the user specified machine (either virtual
or physical). If the user specifies a virtual machine as the
source of the virtual appliance then the extraction oper-
ation can create a snapshot of both running and stopped
virtual machines. The operation creates the virtual appli-
ances with the file-systems of the specified virtual machine
and optionally with the memory state of the running vir-
tual machines.

In dynamic service environments [10] the caller of the
service is not aware if a deployment precedes the service
call. Therefore the startup time of the virtual appliance
is critical because it is added to the time of the first ser-
vice invocation on the newly deployed service instance.
Virtual machines are started up differently depending on
the contents of the previously created virtual appliance:
(i) appliances of running VMs are resuming their previous
state by loading their system memory from the appliance,
(ii) in contrast, appliances of stopped VMs execute the en-
tire boot procedure before the activation of the embedded
service in the appliance. The last step of the extraction
algorithm temporarily creates two virtual appliances (one
with memory state and one without it). Then it meas-
ures the startup time of both virtual appliances and only
publishes the appliance with faster startup time.

At the end of the extraction process the AVS directly
publishes the extracted appliance in a repository or altern-
atively it creates a playground for further optimization of
the extracted virtual appliance. There are three main op-
erations the AVS offers on the playgrounds: (i) optimiz-
ation, (ii) decomposition and (iii) transformation. The
optimize operation minimizes the size of the virtual ap-
pliance that is functionally validated by the tests added
with the Test operation. The decompose operation splits
the appliance to smaller parts to allow the delivery optim-
ization of the virtual appliance (this operation is further
detailed in Section 4.2). Finally, the two transformation
operations (fromOVF and toOVF ) enable the AVS service
to operate on VMM specific appliance representations by

applying the Open Virtualization Format (OVF - [20]) as
an intermediary.

Finally, the AVS offers the upload operation after all
requested operations were executed on the current virtual
appliance in the playground. This operation allows the
user to upload the appliance to single or multiple repos-
itories. After uploading to a single repository the AVS
requests the replication of the uploaded content if the user
targeted multiple repositories.

4.1.2. The IaaS System Interface

The result of the extract operation (see Section 4.1.1)
is a virtual appliance in a format specific to a virtual
machine monitor. The AVS service uses the Open Vir-
tualization Format (OVF - [20]) as a generic intermedi-
ary format between the different VMM specific appliance
formats. During deployment the currently stored appli-
ances might not be supported by the target IaaS system,
therefore the active repository converts the generic form
of the appliance to a supported format with the fromOVF
operation of the AVS service.

The AVS also implements the transformation functions
of the opposite direction (from VMM Specific format to
OVF - via the toOVF operation). Thus the IaaS system
supports the recognition of the appliance in the reposit-
ory and it acts according to the appliance format. If the
appliance format is supported by the VMMs controlled
by the IaaS system, then the appliance is used in its ori-
ginal form. Otherwise the active repository initiates a VA
playground and requests an OVF transformation: the un-
supported VMM specific format is converted to the generic
OVF format by the toOVF operation, then the supported
VMM specific format is achieved by converting the generic
format with the fromOVF operation.

The optimization playground operation uses the IaaS
interface to check the service’s functionality of the par-
tially optimized virtual appliances. In order to confirm
the functionality of the appliances they are deployed on
the IaaS system. The playground of the AVS acts as a
source of the virtual appliances by either behaving as a re-
pository or temporarily uploading them to the repository
of the target IaaS system.

4.1.3. The Repository Interface

Repositories store arbitrary artifacts with their metadata
description. The AVS service stores virtual appliances in
the repository as the primary artifacts. Therefore a virtual
appliance is a storage artifact that encapsulates the disk
and the optional memory image of a virtual machine in a
VMM specific format. The appliance is stored as several
file-systems and a swap-like area containing the memory
state of the virtual machine just before the image was cre-
ated. This subsection defines the metadata the AVS ser-
vice assigns to the appliances to enable the deployment
tasks using the stored appliances.

The repository package is defined as an artifact encap-
sulated with the corresponding metadata. Different pack-
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age formats use different metadata descriptions, however
they always include the following items: (i) Dependency
description to specify other packages required for success-
fully configure and run the virtual appliance packaged to-
gether with the description, (ii) Configuration description,
used by the configuration task, specifies the series of con-
figuration and decision steps that result an executable ser-
vice, (iii) Human readable description to support search-
ing and indexing of the software packages within repos-
itories, (iv) Version information to support exchangeab-
ility tests between different repositories. The user of the
AVS service defines the metadata required for the repos-
itory package manually. However, the AVS automates the
metadata collection of dependencies and installation task
related information.

Based on the encapsulated dependency description we
define two categories of repository packages: (i) the self-
contained packages and (ii) the delta packages. A self-
contained package encapsulates deployment related metadata
with an entire virtual appliance that is usable for immedi-
ate VM creation without further modifications. The delta
package holds parts of a virtual appliance and is dependent
on either on other delta packages, or on a self-contained
package. Our decomposition algorithm automatically cre-
ates delta packages and identifies their dependencies. Vir-
tual appliances are reconstructed from delta packages with
our VA rebuilding algorithm. Both algorithms are dis-
cussed in Section 4.2.

During the virtual appliance extraction operation the
AVS service collects metadata supporting the installation
task. The collected metadata defines the VMM, the virtu-
alized hardware and network requirements for the virtual
machine hosting the virtual appliance. Later, the install-
ation task is performed by the IaaS system using the pre-
viously collected requirements available in the repository.

4.2. Extending Repositories with Virtual Appliance Deliv-
ery Optimization

In related works repositories are represented as local
file-systems or file servers (e.g. FTP, HTTP). The only
task of today’s repositories is to safely store and provide
access to their entries for authorized parties. Therefore
they act passively and only user actions change their con-
tents. To minimize the download time of repository entries
during the installation task we propose the extension of
these repositories with automated entry management al-
gorithms.

With our approach download time minimization is ac-
complished through the virtual size reduction of the ap-
pliances. This technique is called virtual because it de-
creases only the apparent appliance size during delivery.
This approach includes a virtual appliance decomposition
algorithm (detailed in Section 4.2.1) that separates and
replicates commonly used parts of the appliances. These
replicated parts can be efficiently delivered to the target
site, thus only the custom appliance parts are downloaded
from dedicated and maybe low bandwidth repositories.
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Figure 4: Ideal decomposition graph of two virtual appliances

The separately delivered parts of the appliances are re-
built with the algorithm proposed in Section 4.2.2.

4.2.1. Active Repository Functionality

Repositories capable of automatic entry management
are active entities in the service based system because they
automatically (i) create, (ii) merge, (iii) destruct and (iv)
replicate their entries (the self-contained or delta reposit-
ory packages). New entries are created with our decom-
position algorithm. Entries downloaded by the same ap-
pliance rebuilding process are merged to reduce the repos-
itory connections required during the rebuilding process.
Low usage of the automatically created or merged entit-
ies initiates their destruction. Finally, highly used entities
are replicated to other repositories. All four active reposit-
ory functionalities are executed as low priority background
processes by repositories during low demand periods. The
following paragraphs discuss the automation of these man-
agement functions.

First, the decomposition algorithm is initiated when
a new virtual appliance is added to the repository. A
virtual appliance (stored in the repository entry) is com-
posed of two parts: (i) the service that provides its main
functionality and (ii) its support system called the Just
enough Operating System (JeOS - [13]). The decompos-
ition algorithm identifies these two parts and publishes
them as a delta and a self-contained package (see Figure
4). The newly created delta package is registered with
a dependency (marked as Dep{1-5} in Figure 4) on the
self-contained package that holds the JeOS.

The decomposition algorithm identifies the two parts
of the virtual appliance in two steps. First it calculates
and stores the hash values for all the files in the newly
added virtual appliance. Identical hash values allow the
identification of those files that are already stored in other
virtual appliances. These common files (e.g. see “Service
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1&2 common VA” in Figure 4) are used to form a self-
contained package, while the rest results two delta pack-
ages (one from the newly added virtual appliance and one
from the appliance with the common files - e.g. “Service
1 JeOS delta” and “Service 2 JeOS delta” in Figure 4).

When these three new packages are added to the re-
pository the decomposition algorithm is initiated on them.
The algorithm stops creating new packages if there are no
more common files between the repository entries or if the
common files cannot form a self-contained package (they
cannot be used to initiate a virtual machine). We call
the finally created self-contained package the base virtual
appliance.

Second, we discuss the package merging and destruc-
tion management algorithms. The repository monitors
the download times and frequencies of the different pack-
ages. The algorithm uses this data (i) to project expected
download frequencies and (ii) to identify correlated down-
loads. Downloads are correlated when packages are down-
loaded in a specific order during a time period by the same
user. The algorithm assigns weight values to correlations
inversely to the length of the download time period.

Package merging shortens the virtual appliance rebuild-
ing time by offering correlated delta packages in a bundle.
The merging operation is applied to the packages with the
highest correlation weight values. The algorithm creates
the merged package by bundling together the correlated
package contents and updates the dependencies of delta
packages that were dependent on all the correlated pack-
ages. For example in Figure 4 “Service1 delta” and “Ser-
vice 1 JeOS delta” can be merged if other packages are
not dependent on them. The last tasks of the merge op-
eration enable the evaluation of the merging decision by
(i) holding the correlated packages to ensure they are still
available as individual downloads and by (ii) marking the
merged packages.

After a predefined amount of downloads the merging
decision is evaluated by checking the download frequencies
of the merged and correlated packages. To conserve disk
space on the repository hardly downloaded merged pack-
ages are destructed. As an opposite if the merged package
received all the download requests during the evaluation
phase then the correlated packages are destructed.

Finally, we explicate the package replication algorithm
among active repositories. In the algorithm we assume
that repository users download from the repository that
offers their required packages with the highest bandwidth.
Therefore, the algorithm estimates the location of the users
and remote repositories by the network latency between
the current repository and the remote hosts. These net-
work latency values are used to group (latency groups) the
different users and repositories (similar latency values are
used as a measure of distance). The algorithm determines
the replication target repository by selecting a repository
from the latency group with the highest cardinality (this
group holds the most hosts with the same distance). Then
the current repository creates the replicated entry in the
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target repository in order to place the required packages
closer to the users.

4.2.2. Virtual Appliance Rebuilding

After executing the decomposition algorithm presented
in the previous subsection virtual appliances are stored in
the repositories in multiple packages. The individual de-
composed parts of a virtual appliance are not suitable for
initiating a virtual machine. The algorithm rebuilds the
original appliance before deployment if the appliance is
offered as multiple packages. The rebuilding algorithm
constructs the original virtual appliance on the execution
site using a self-contained package and several delta pack-
ages. Therefore the algorithm first selects the repositories
where the different packages are downloaded from. Then
it reconstructs the original appliance from the downloaded
packages. Finally, it configures the rebuilt virtual appli-
ance according to the user requirements.

During the repository selection phase the rebuilding
algorithm first identifies all required packages and the re-
positories offering them. The algorithm identifies the re-
pository offering the package with maximum bandwidth
by estimating the download time for each package. Figure
5 reveals that after several merges the repositories could
contain: (i) packages representing the ideal decomposition
(discussed in Figure 4), (ii) packages resulted from previ-
ous merge operations (example merge 1-2 ) and (iii) the
original virtual appliance itself. Based on these packages
and their dependencies (represented as arrows in Figure
5) our repository selection algorithm identifies the possible
construction paths starting from the decomposed packages
and finishing at the rebuilt virtual appliance. Finally, as a
result of package merging and destruction there are several
ways to construct a decomposed virtual appliance, there-
fore the selection algorithm chooses the construction path
with the lowest cumulative download time.

The rebuilding algorithm includes two virtual appli-
ance reconstruction strategies that are applied either be-
fore (offline) or after (online) the appliance’s hosting vir-
tual machine is initiated. The algorithm decides on the
strategy based on the capabilities of the base virtual appli-
ance. If the base appliance offers management interfaces
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to install, configure and update components of a virtual
machine then our algorithm chooses the online reconstruc-
tion strategy, otherwise it uses the offline reconstruction
strategy. Both of these strategies are executed on either
the target site or on a nearby repository (if the policy of
the target site does not allow the on site appliance con-
struction).

The offline reconstruction strategy downloads, constructs
and finally configures the original virtual appliance prior it
is used for initiating a virtual machine. The strategy cre-
ates a disk image with the base virtual appliance and adds
the content of the delta packages to the image. Then the
metadata of the original virtual appliance is added to the
disk image in order to allow its local deployment. Before
the deployment takes place the configuration task is ex-
ecuted by the reconstruction strategy on the disk image.
The algorithm executes the configuration task just as it
would be executed by a virtual machine of the appliance.

The online reconstruction strategy follows an entirely
different approach that requires the base virtual appliance
to comply with the requirement of exposing management
interfaces. Therefore the base virtual appliance cannot
be decomposed to arbitrarily small packages. This base
virtual appliance is used to initiate a virtual machine that
is transformed by our reconstruction strategy to host the
original virtual appliance. The rebuilding algorithm uses
the management interfaces to install the required delta
packages on the running virtual machine, therefore most of
the installation task is executed within the virtual machine
that is going to host the deployed service by the end of
this procedure. After the installation task, configuration
is accomplished by using the management interfaces to
adjust the service in order to conform the configuration
description provided by the user.

5. Implementation

In this section we aim at providing a proof for the con-
cepts and algorithms proposed in the previous sections. To
demonstrate the capabilities of the ASD architecture, we
present a test scenario (see Figure 6) that covers all the
highlighted components in Figure 2.

For the demonstration of the architecture we have se-
lected a complex web service (GEMCLA) designed and de-
veloped by the University of Westminster. The GEMLCA
[9] service has several internal (e.g. a Globus Toolkit 4
(GT4) service container) and external dependencies (e.g.
grid sites supporting legacy code execution) in order to
support the management and submission of legacy code
applications to various grid systems. Therefore in this
demonstration the AVS creates a virtual appliance for the
GEMLCA service and publishes it in a repository.

The next major task occurs before the repository of-
fers the content to the public. As part of the decomposi-
tion process – see Section 4.2.1 – the repository looks for
parts of the virtual appliance already published. During
the experiment the repository contains a standalone Glo-
bus toolkit 4 installation published as a virtual appliance.
Thus there are portions in the newly collected virtual ap-
pliance that are identical (e.g. the service container of
Globus) to the contents of the repository. As a result the
virtual appliance of the GEMLCA is decomposed by the
repository to a self-contained package including the Glo-
bus toolkit and a delta package including the GEMLCA
service itself.

Finally, we initiate deployment on a manually selected
IaaS system. As a result the IaaS system initiates a virtual
machine using the self-contained package referred by the
delta package of GEMLCA. Then the online reconstruction
strategy (see Section 4.2.2) downloads and configures the
delta package inside the newly created virtual machine to
install the GEMLCA service. At the end of this procedure
we receive the URL of the newly created virtual machine
that we use to prove the success of the deployment by re-
questing a legacy code submission from the newly deployed
GEMLCA service.

The successful execution of the demonstration scen-
ario ensures the correctness of the proposed architecture
by using all the AVS related functionality: (i) the extrac-
ted Virtual appliance is functional, (ii) the decomposition
finds the common parts of the different appliances and (iii)
the decomposed virtual appliances are still functional after
rebuilding.

5.1. Testbed

We have evaluated several available open source IaaS
systems (Nimbus, OpenNebula, Eucalyptus) that could
use the appliance rebuilding functionality with the smal-
lest modifications. We have chosen Virtual Workspace
Service (VWS) offered by the Nimbus project, because it
was not bound to a specific repository implementation.
Therefore we have extended the VWS service to support
accessing and rebuilding appliances from the active re-
pository implementation. For the active repository func-
tionality we have extended the Virtual Appliance ACS
– [30] – that implements the Application Content Ser-
vice (ACS) a proposed recommendation of the Open Grid
Forum. This recommendation offers extensible metadata
definition (requirements defined in Section 4.1.3), various
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metadata search operations (required for the appliance re-
building and decomposition algorithms detailed in Section
4.2) and seamless integration to web service based systems
(simple Nimbus integration).

Figure 7 shows the testbed that was set up for the
execution of the demonstration scenario. The testbed cur-
rently incorporates two sites one at University of Miskolc
(UoM), and another one at the University of Westminster
(UoW). UoM runs the original GEMLCA service that is
going to be extracted and then deployed at UoW.

The AVS is installed at UoM has access to the local
VMMs to support the demonstration scenario. The cur-
rent AVS implementation supports Xen [4] virtual ma-
chines for virtual appliance extraction. AVS installs its
extractor components on the Xen host (marked “dom 0 ”
in Figure 7) to directly access the state of the executed
virtual machines (see Section 2.1 for details). One of the
hosted virtual machines (marked “Dom1 ”) already runs
the GEMLCA service. Finally, at the UoM site there is a
repository client installed to enable uploading the extrac-
ted content to a repository.

At UoW we run a more complex stack. First, the re-
pository and the extended virtual workspace service are
installed on the site’s head node accessible from UoM.
Second, the workspace service also requires a workspace
controller component (shipped with the original VWS) on
all the virtualization-enabled nodes of the cluster (marked
“WN#X ” in Figure 7). This component instantiates other
virtual machines on request. Finally, the extension of
the virtual workspace service requires a repository client
(marked “ACS Client”) installed next to the VWS service.

Test of the currently available ASD components. In Fig-
ure 7 arrows represent the execution of the demonstration
scenario on the testbed. The first step starts with the
user request for the extraction of the GEMLCA service.
Then the virtual machine (called “Dom1 ”), which holds
the GEMLCA service, is shut down. After the shutdown,
the AVS creates a GEMLCA VA (step 2 ) and uploads (step
3 ) it to the repository located on the UoW head-node. In
step 4 the repository scans the uploaded VA for possible
decomposition then stores the VA.

We store the configuration file of the virtual machine
(which held the GEMLCA service) in the metadata of the
created appliance. On user request the extended virtual
workspace service uses the stored configuration and the VA
files to install the GEMLCA at UoW on one of the virtu-
alization enabled nodes (step 5 ). Then in step 6 the VWS
activates the virtual machine that acquires an IP address
and the GEMLCA service starts up automatically dur-
ing its boot process. Finally, after the virtual workspace
service reported success we have successfully executed a
GEMLCA job on the newly deployed service.

6. Conclusions

We have elaborated the core components of the Auto-
matic Service Deployment architecture that is based on the
concept that services can be deployed with virtual appli-
ances. Our research provides a technique for acquiring ex-
isting service instances as virtual appliances; furthermore
we introduce a new method for virtual appliance storage in
repositories. We also provide solutions to decrease virtual
appliance distribution cost. The solutions are based on the
partial replication of virtual appliance contents where the
replicated parts are defined automatically by a decompos-
ition algorithm. The presented decomposition algorithm
determines which parts of the virtual appliance have to
be distributed and on which sites. Finally, we provide a
mechanism to rebuild the decomposed virtual appliances
on the target site.

Our approach supports service developers during the
creation and publication of their services in the form of vir-
tual appliances. This task is usually performed manually
that hinders dynamic service deployment and makes im-
possible to create dynamic adaptive systems. The primary
contribution in our work is a mechanism that automates
this task. Consequently, it enables faster adaptation of
new services by the various infrastructure as a service
cloud systems. As more services become deployable in
cloud systems they can increase the dynamism of the ser-
vice based system. Our virtual appliance rebuilding al-
gorithm reduces deployment time by employing the de-
composed and replicated parts of the appliances. There-
fore, this solution reduces the apparent service execution
time of service calls preceded by deployments.

The current extraction algorithm assumes that the vir-
tual appliances are extracted from virtual machines. Later,
this algorithm should be extended to support extracting
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virtual appliances from the physical machine of the service
developer. In order to speed up the appliance rebuilding
process the current implementation of the decomposition
algorithm stores the same parts of a virtual appliance mul-
tiple times. We plan to investigate and extend the de-
composition algorithm with simultaneous optimization of
the repository contents for effective disk usage and achiev-
able rebuilding speed-up. We also intend to extend the
rebuilding algorithm to give feedback on possible merging
of previously decomposed repository content based on the
evaluation of different appliance rebuilding strategies.
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