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ABSTRACT 27 

Aims: The current study was conducted to investigate the application of 2, 2’-28 

dipyridyl as a new approach to isolating siderophore producing actinomycetes. 29 

Methods and Results: Isolation of actinomycetes from soil was conducted by a soil 30 

dilution plate technique using starch-casein agar. Iron starvation was fostered by the 31 

incorporation of the iron chelator 2, 2’-dipyridyl in the isolation medium. Pre-32 

treatment of the samples at an elevated temperature (40
0
 C) ensured that the majority 33 

of non-sporulating bacteria were excluded. The survivors of this treatment were 34 

largely actinomycetes. Of the viable cultures grown in the presence of 2, 2’-dipyridyl, 35 

more than 78-88 % (average of three separate studies) were reported to produce 36 

siderophore like compounds compared to 13- 18% (average of three separate 37 

studies)when grown on the basic media in the absence of the chelating agent. The 38 

most prolific producers as assessed by the Chromo Azuerol Sulphate (CAS) assay 39 

were further characterised and found to belong to the genus Streptomyces. 40 

Conclusions: Selective pressure using 2, 2’-dipyridyl as an iron chelating agent in 41 

starch-casein media increased the isolation of siderophore producing actinomycetes 42 

compared to the unamended medium.   43 

Significance and Impact of the Study: The study described represents a new 44 

approach to the isolation of siderophore producing actinomycetes using a novel 45 

procedure that places a selection on cell population based upon the incorporation of a 46 

chelating agent in the medium.  47 

KEYWORDS: Actinomycetes, 2, 2’-dipyridyl, iron chelation, siderophores, soil, 48 

Streptomyces. 49 
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INTRODUCTION 54 

Iron is an essential element for microbial growth. However, due to the di-oxygen 55 

evolution of the atmosphere, iron, at physiological pH, forms insoluble polymeric 56 

oxyhydroxide complexes, bio-unavailable to microorganisms (Wandersman and 57 

Delepelaire, 2004). Bacterial iron metabolism involves the transcription of specific 58 

genes, which are responsible for siderophore production (Gunter et al. 1993). The 59 

latter (from the Greek word ‘iron carriers’) are low molecular weight compounds 60 

(600-1500 Daltons) that chelate iron from ferric complexes (Neilands, 1995). They 61 

are synthesised under iron-limited conditions and are responsible for the uptake and 62 

transport of iron and other metals to the cell (Kalinowski et al. 2000; John et al. 2001; 63 

Rodriguez and Smith, 2003).   64 

Siderophores are divided into two main chemical groupings, hydroxamates and 65 

catechols, and they are classified on the basis of the chemical functional groups that 66 

they use to chelate iron (Hofte, 1993; Payne, 1994; Crosa and Walsh, 2002). 67 

Members of streptomycetes are well acknowledged for their ability to produce 68 

multiple siderophores, which are independently regulated and act contingently in 69 

order to compete more efficiently in their environment (Challis and Hopwood, 2003). 70 

Streptomyces coelicolor, the model streptomycete, is known to have the capacity to 71 

produce desferrioxamine E and G1 as well as coelichelin and coelibactin (Challis and 72 

Ravel, 2000). The complex biosynthetic and uptake pathway for iron-siderophore 73 

sequestration has been previously investigated in this organism (Baroma-Gomez et al. 74 

2006). 75 

Siderophores are highly valuable molecules with environmental, agricultural and 76 

clinical applications (Arceneux et al. 1984; Kalinowski et al. 2000; John et al. 2001; 77 

Rodriguez and Smith, 2003; Kalinowski and Richardson, 2005). 78 

Desferrioxamine B (trade name Desferal), a hydroxamate produced by Streptomyces 79 

pilosus , is marketed as the mesylate salt and it is administrated as a drug to patients 80 
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suffering iron intoxication (Cramer, 1984; Neilands, 1995).  However the drug has to 81 

be administered subcutaneously for a long period due to its hydrophilic nature leading 82 

to poor patience compliance (Kalinowski and Richardson, 2005).  83 

There is an increasing need for the application of siderophores in chelation therapies 84 

and phlebotomy as part of new treatment or in a combination with ‘traditional’ 85 

approaches (Ratledge and Dover, 2000; Meyer, 2006). 86 

In order to fully understand the potential value of siderophores, the search for new 87 

candidates must continue. Here we report the incorporation of 2, 2’-dipyridyl in 88 

starch-casein media in order to apply selective pressure for siderophore producing 89 

actinomycetes.  90 

MATERIALS AND METHODS 91 

Isolation of actinomycetes from soil: 92 

Isolation of actinomycetes from soil was conducted by a soil dilution plate technique 93 

using starch-casein agar (0.4g casein, 1.0 starch, 0.5 g KNO3, 0.2 g K2HPO4, 0.1 g 94 

MgPO4, 0.1 g CaCO3, 15 g agar l
-1
dH2O).  Supplementation of the culture media with 95 

150 µmol l
-1
 of 2, 2’-dipyridyl (DIP) was also investigated. One gram of each soil 96 

sample was suspended in 100 ml of sterile distilled water and incubated overnight at 97 

40
0
 C. Serial aqueous dilutions (50 µl of 10

0
 – 10

-9
) of the soil suspension were 98 

applied onto the agar plates and incubated at 27
0 
C for up to four weeks. Selective 99 

colonies, chosen on the basis of their hairy appearance, self limited colonies and 100 

penetration into the agar matrix, were further sub-cultured and pure actinomycetes 101 

were isolated (Kieser et al. 2000). 102 

Siderophore production: 103 

Siderophore production was confirmed using the Chromo Azuerol Sulphate (CAS) 104 

assay (Renshaw et al. 2003). The presence of a catecholic compound was further 105 
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verified by Arnow’s assay (Arnow, 1937); Hydroxamate producers were identified 106 

using the colorimetric assay of Atkin, 1970. 107 

Ferrioxamine E was identified using an authentic standard by HPLC using a 108 

SphereClone 5µ ODS (2) [150 x 4.60 mm] column. The mobile phase included 0.1 % 109 

phosphoric acid (A) and 100  % acetonitrile (B) delivering the solvent A to the HPLC 110 

system (Biorad, Model 2700) at a concentration of 95  % - 75 % at a flow rate of 1.5 111 

ml/min. The sample volume was 20 µl of the filtered ferric culture supernatant (5 µl 112 

of FeCl3 ml
-1
 of supernatant) and the effluent was monitored at 435 nm using a 113 

Biorad-Bio-dimension
TM 
UV/VIS detector 114 

 Strain characterisation: 115 

Actinomycete colonies were characterised following directions given by Bergey’s 116 

Manual of Systematic Bacteriology (Locci, 1989); cultural and morphological 117 

characteristics were observed by light and scanning electron microscopy.  118 

16S rRNA amplification: 119 

Extraction of genomic DNA was performed using the ‘Kirby mix procedure’ (Kieser 120 

et al. 2000). Amplification of the 16S sequences were performed with a Perkin-Elmer 121 

Cetus GeneAmp  Thermal Cycler, 9600, using 35 cycles of 95
0
 C for 1 minute, 52

0
 C 122 

for 1 minute and 72
0
 C for 2 minutes. Reaction mixtures contained 45 µl of 1.1 x PCR 123 

MasterMix (1.5 mm l
-1
  MgCl2) [ABgene], 2 µl of DMSO, 1 µl of genomic DNA, 1 µl 124 

of sterile dH2O and 0.5 µl of each primer (forward and reverse).  In order to achieve 125 

maximum sequencing of the 16S rRNA genes two sets of streptomycete-specific 126 

primers were used: Strep B- StrepE and StrepB- StrepF with the sizes of the PCR 127 

amplification products expected to be of 519bp and 1074bp respectively (Weisburg et 128 

al. 1991; Rintala et al. 2001). The amplified products were visualised on an ethidium-129 

bromide-stained 2 % agarose gel prior to purification with the QIAquick
R
 PCR 130 

purification kit (50) [Qiagen]. PCR products were sent to LarkTM Technologies, Inc 131 
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(United Kingdom) according to their requirements. The sequences obtained were 132 

individually checked for errors and manually aligned. Retrieval of homologous 133 

sequences and pairwise sequence comparisons and were conducted by the NCBI 134 

BLAST database (available online- http://www.ncbi.nih.gov/).  135 

RESULTS 136 

Isolation of actinomycetes 137 

In an attempt to investigate a new approach to isolating siderophore producing 138 

actinomycetes we have isolated and purified cultures from soil samples collected in 139 

Thailand (Tak province). Isolation of actinomycetes from soil was conducted by a soil 140 

dilution plate technique using starch-casein agar as regular medium and starch casein 141 

agar supplemented with 150 µmol l
-1
 DIP (higher levels of DIP resulted in very few 142 

survivors) as the selective medium. DIP is a powerful chelating agent, which 143 

scavenges any ferric complexes from the environment and it is intended to apply 144 

selective pressure for organisms adapted to iron deficiency. The majority of colonies 145 

recovered from the soils were considered to belong to actinomycetes on the evidence 146 

of the specific media applied for their isolation with a further verification by 147 

phenotypic examination under the dissecting microscope (self-limited colonies, hairy 148 

appearance and substrate-aerial mycelia).  149 

In total 196 actinomycetes were purified and 87 of these gave a positive result on the 150 

CAS assay plates indicating the presence of catecholic or hydroxamate moieties 151 

(Figure 1). Out of 87 siderophore producers 70 strains were isolated on the selective 152 

starch-casein media supplemented with DIP. Addition of the chelating agent reduced 153 

the number of surviving actinomycete colonies compared to the regular media and 154 

was thought to be likely to have physiological attributes that enabled them to survive 155 

iron limitation.  156 

Three different soil samples were investigated. Each soil sample, following treatment 157 

at 40
0
 C in sterile distilled water overnight, was plated onto both isolation medium 158 
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without DIP and also onto isolation medium containing DIP. The isolates were then 159 

grown on media in the absence of DIP and assessed for the production of siderophores 160 

by their ability to produce a decolourisation of the CAS containing agar Fig 1. In soil 161 

sample 1 the number of siderophore producing isolates detected from isolation 162 

medium unamended with DIP was 37 of which 4 screened positive for siderophore 163 

production (representing 11% of the total). The same sample plated on isolation media 164 

containing DIP resulted in 27 isolates of which 21 screened positive for siderophore 165 

production (representing 78% of the total). The presence of DIP had a deleterious 166 

effect on the total number of actinomycetes isolated however it did significantly 167 

increase the percentage of those isolates that were screened as positive for siderophore 168 

production. A similar pattern was seen with the other soil samples with sample 2 in 169 

the absence of DIP during isolation yielding 12.5% siderophore producers while 170 

isolation in the presence of DIP produced 83% siderophore producers and sample 3 171 

giving 15% in the absence of DIP and 87.5% in the presence of DIP. 172 

 Of the isolates 5 strains exhibited prolific siderophore production and 16S rRNA 173 

gene analysis confirmed that the isolates were streptomycetes (GenBank accession 174 

number EF585403- EF585407). Liquid based assays were conducted on culture 175 

supernatants in order to categorise the siderophore producers. The results classified 176 

the strains EF585404- EF585407 as catechol producers, whereas EF585403 was 177 

categorised as a hydroxamate synthesiser. Following HPLC analysis this chelating 178 

agent produced by EF585403 was further classified as desferrioxamine E with 179 

reference to an authentic standard.  180 

DISCUSSION 181 

It is anticipated that the isolation and characterisation of new actinomycetes might 182 

lead to novel siderophores of significant commercial interest. The actinomycetes are 183 

notorious environmental scavengers and have evolved well-developed processes to 184 

capture ions in conditions depleted of elements; they are therefore an ideal target 185 
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group for exploitation in ion binding technology (Meiwes et al. 1990; Challis and 186 

Ravel, 2000; Bentley et al. 2002).  The method described significantly increased the 187 

proportion of siderophore producers. Whether the nature of the selective chelating 188 

agent dictates the type of siderophore produced remains to be determined. The 189 

prohibitive cost of many of the natural siderophore currently available renders such a 190 

systematic approach non-viable at present. Apart from the pharmaceutical values of 191 

siderophores these compounds are recognised as important mediators of metal ion 192 

remediation in the environment (John et al. 2001) and also plant growth promoters 193 

(Katyar and Goel 2004). Exploitation of these compounds requires cost effective 194 

production methods. It is hoped that the methodology described will move us towards 195 

a greater range of siderophores and also realise the opportunity to use this technology 196 

where bulk production is required. 197 

 198 
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