
FISHER NETWORKS: A PRINCIPLED APPROACH TO

RETRIEVAL-BASED CLASSIFICATION

Héctor Ruiz

A thesis submitted in partial fulfilment of the requirements of Liverpool

John Moores University for the degree of Doctor of Philosophy

Liverpool – April 2013

Abstract

Due to the technological advances in the acquisition and processing of information, current data

mining applications involve databases of sizes that would be unthinkable just two decades ago.

However, real-word datasets are often riddled with irrelevant variables that not only do not

generate any meaningful information about the process of interest, but may also obstruct the

contribution of the truly informative data features. Taking into consideration the relevance of

the different measures available can make the difference between reaching an accurate reflection

of the underlying truth and obtaining misleading results that cause the drawing of erroneous

conclusions.

Another important consideration in data analysis is the interpretability of the models used to fit

the data. It is clear that performance must be a key aspect in deciding which methodology to

use, but it should not be the only one. Models with an obscure internal operation see their prac-

tical usefulness effectively diminished by the difficulty to understand the reasoning behind their

inferences, which makes them less appealing to users that are not familiar with their theoretical

basis.

This thesis proposes a novel framework for the visualisation and categorisation of data in classifi-

cation contexts that tackles the two issues discussed above and provides an informative output of

intuitive interpretation. The system is based on a Fisher information metric that automatically

filters the contribution of variables depending on their relevance with respect to the classification

problem at hand, measured by their influence on the posterior class probabilities.

Fisher distances can then be used to calculate rigorous problem-specific similarity measures, which

can be grouped into a pairwise adjacency matrix, thus defining a network. Following this novel

construction process results in a principled visualisation of the data organised in communities

that highlights the structure of the underlying class membership probabilities. Furthermore, the

relational nature of the network can be used to reproduce the probabilistic predictions of the

original estimates in a case-based approach, making them explainable by means of known cases

in the dataset.

The potential applications and usefulness of the framework are illustrated using several real-world

datasets, giving examples of the typical output that the end user receives and how they can use

it to learn more about the cases of interest as well as about the dataset as a whole.

Acknowledgments

First of all, I would like to thank the School of Computing and Mathematical Sciences at LJMU

for these three years of financial support. The opportunity they gave me has not only substantially

enriched my academic life, but has also allowed me to experience a different country and culture,

which I consider just as valuable as a university degree.

Of course, a huge thank you goes to my supervisory team. It is the biggest cliché of acknowledg-

ments, but I truly believe I would not have been able to get to this point without your support

and encouragement. I am lucky to have enjoyed so many interesting discussions with Professor

Paulo Lisboa; I was impressed by his brightness and natural talent for science when I first met

him, and I am even more so after these years. It was also great having Dr. Ian Jarman on board;

he combines a strong statistical background with a useful pragmatic character that research often

lacks. And, of course, Dr. José Mart́ın, whose sound advise brought me into this project. Despite

living in a different country, he was always keen to help and contribute, and his regular visits

were very appreciated. It has not been an easy journey, but it is safe to say that without the

three of you it would have been much tougher.

And last, but certainly not least, a mention to my friends and family in Spain, in particular to

my parents. It is not always easy when you are far from home, but I have always felt your love

and support.

Contents

1 Introduction 1

1.1 Statistical models . 2

1.2 Rule extraction . 6

1.3 Graphical models . 12

1.4 Aims and objectives . 15

1.5 Structure of the thesis . 16

2 Literature review 18

2.1 Distance metric learning . 18

2.1.1 Unsupervised metric learning . 19

Principal component analysis (PCA) . 19

Multidimensional scaling (MDS) . 22

Isomap . 22

Locally linear embedding (LLE) . 24

2.1.2 Supervised metric learning . 26

Nearest neighbour classification and distance metric learning 26

Metric learning using similarity-based optimisation 28

Metric learning based on relevance measures 31

Metric learning with kernels . 37

Fisher information metric in the input space 41

2.2 Analysis of community structure in networks . 42

2.2.1 Traditional community extraction . 44

The graph partitioning problem . 44

Hierarchical clustering . 48

2.2.2 Modern community extraction . 50

Edge removal algorithms . 50

Modularity optimisation algorithms . 53

2.3 Methodology selection . 55

2.3.1 Selection of the distance metric . 56

i

2.3.2 Selection of the probability estimation method 56

Generative models . 56

Discriminative models . 57

2.3.3 Selection of the community detection algorithm 58

2.4 Novel contributions . 59

Fisher network framework for data visualisation and classification 59

FI metric derivation using discriminative models 59

Closed-form distance measure for linear models and iterative geodesic finder 59

FI metric and blind signal separation . 60

Reference case identification and informative backgrounds 60

Related work . 60

2.5 Chapter summary . 61

3 Methodology description 63

3.1 Probability estimation . 63

3.1.1 Binary classification . 64

Linear estimators: Linear logistic regression 65

Non-linear estimators: Multilayer perceptron 66

3.1.2 Multiclass classification . 69

3.2 Fisher information matrix . 69

3.2.1 FI matrix for two classes . 70

3.2.2 FI matrix for multiple classes . 71

3.3 Fisher information metric . 71

3.3.1 The Fisher metric and the KL divergence 71

3.3.2 Global distances for linear estimators . 72

3.3.3 Global distances for non-linear estimators: finding geodesic distances 73

Straight path approximation . 73

Graph-based approximation . 74

The free point approach . 74

3.4 Fisher networks . 76

3.4.1 Selection of the network locality parameter 77

Faithfulness of the network predictions . 77

Cramer’s V statistic . 78

McNemar’s test . 78

3.5 Community detection . 79

3.6 Practical uses of Fisher networks . 81

3.6.1 Dataset visualisation . 81

Informative backgrounds . 82

ii

3.6.2 Identification of reference cases . 83

3.6.3 Case-based classification . 84

3.7 Chapter summary . 85

4 Experimental results 86

4.1 The effect of the Fisher metric . 86

4.2 Fisher metric and KNN classification . 88

4.3 Comparison of geodesic calculation methods . 92

4.3.1 Performance comparison on real-world data 92

4.3.2 The effect of the sample size . 94

4.4 Fisher networks for real-world data . 96

4.4.1 MLP classification benchmark . 97

4.4.2 Construction of Fisher networks . 100

Empirical selection of the network locality parameter 100

Fisher network examples . 106

Fisher networks with informative backgrounds 115

Reference cases in Fisher networks . 122

4.5 Supervised blind signal separation using FI metrics 127

Convex non-negative matrix factorisation 127

Description of the MRS data . 128

Results . 129

4.6 Chapter summary . 132

5 Review, conclusions and future work 133

5.1 Review . 133

5.2 Conclusions . 135

5.3 Future work . 135

A Derivation of the FI matrix 138

A.1 FI matrix derivation for two classes . 138

A.2 FI matrix derivation for multiple classes . 139

B Interpretation of the FI metric in the context of information and divergence 141

B.1 Information . 141

B.2 Divergence . 142

B.3 Regularity conditions . 143

B.4 Connection with the Fisher information . 144

C Derivation of the distance expression for linear estimators 145

iii

References 147

Publications 155

iv

Chapter 1

Introduction

Machine learning methods are designed to discover the underlying processes and rela-

tionships that may exist in data. With this purpose in mind, users often find themselves

trying to fit models to the data as closely as possible, in an effort for them not to miss

any of the patterns present in the available information. However, as desirable as a good

model-to-data fit is, it should not overshadow the importance of interpretability. There is

always a gap between data modelling and knowledge extraction [1], and only by reducing

it can we improve the understanding of the hidden mechanisms that generated the data.

In this context, as well as throughout this thesis, a model is deemed interpretable if the

results that it provides can be explained in the language of the domain of the problem

at hand in a way that is intuitive to the human cognition of the users. In practical

applications, the success of inference models depends as much on the ability to interpret

their internal operation as it does on the accuracy of their predictions. From a pragmatic

point of view, a model is only useful if the user accepts the answers that it produces, and

that is unlikely to happen unless it is clear to them which are the factors that explain

the conclusions obtained.

Interpretability is particularly important in fields where the potential impact of the de-

cisions taken is large, as is the case, for example, of medical decision support systems. In

that area, the factors that determine the recommendations produced and the relationship

between them must be well understood by the clinicians, otherwise they will ignore the

system and use the corresponding default protocol. A similar need for interpretability

can also be found in other scenarios, e.g., retail and industry.

This means we need to open up the black boxes and provide intuitive ways to under-

stand how our methods do what they do. This chapter summarises some of the existing

approaches to bridge this gap in different areas of data mining, either by suggesting new

ways to look at known models or by creating systems that are naturally interpretable.

1

1.1. Statistical models

1.1 Statistical models

The issue of interpretability arises even in the simplest statistical models, such as lin-

ear regression, where a variable y is approximated by a linear combination of a set of

explanatory variables xi:

y ≈ ỹ = β0 + β1x1 + β2x2 + · · ·+ βNxN . (1.1)

The approximation ỹ, given by Eq. (1.1), represents a hyperplane in the N -dimensional

space of the covariates. This plane is fitted to the true surface that y defines, and

therefore interpreting the model comes down to interpreting the regression coefficients

βi. The immediate meaning of a coefficient βi is the change in ỹ when xi is increased

by 1, while the rest of the variables are kept constant. However, because variables are

normally measured in different units, the significance of a unit increase may vary greatly

from one variable to another, making the comparison of coefficients meaningless. To

prevent this, regression coefficients can be standardised by using normalised variables

[2], resulting in directly comparable coefficients that measure change in the output when

the corresponding input increases by one standard deviation and the rest of variables

remain constant.

Another important detail is that if variables are added or removed from the set of inputs,

like in
ỹ = β1x1 + β2x2 + β3x3,

ỹ = γ1x1 + γ2x2,

ỹ = δ1x1 + δ4x4,

(1.2)

the coefficient corresponding to a particular variable usually changes from one model to

another [3] (i.e., in Eq. (1.2), β1, γ1 and δ1 are different in general). In other words, the

meaning of a coefficient also depends on which other variables are available in the model.

Of course, this interpretation of the coefficients assumes that it is possible to change

each xi without affecting the rest of variables, which is seldom true in practice due to

correlations usually existing between variables. This shows that interpreting models,

even simple ones, is not always straightforward.

There also exist graphical approaches to interpret linear models, such as the use of

nomograms. Originally, nomograms [5] were devised as a graphical aid for engineers

to be able to quickly calculate complex formulas. More recently, they have been used

as visual representations of regression models, allowing the user to see the impact that

the different variables have on the outcome. Fig. 1.1 shows the use of a nomogram to

visualise the result of a Cox proportional hazards regression analysis, a type of regression

2

1.1. Statistical models

Figure 1.1: Preoperative nomogram based on 983 patients treated at Baylor College of Medicine,
Houston, TX, for predicting freedom from recurrence after radical prostatectomy [4]. The authors
provided the following instructions of use for physicians:
“Locate the patient’s PSA on the PSA axis. Draw a line straight upwards to the Points axis
to determine how many points towards recurrence the patient receives for his PSA. Repeat this
process for the Clinical Stage and Biopsy Gleason Sum axes, each time drawing straight upward
to the Points axis. Sum the points achieved for each predictor and locate this sum on the Total
Points axis. Draw a line straight down to find the patient’s probability of remaining recurrence-
free for 60 months assuming he does not die of another cause first”.
Image from [4]. Reprinted with kind permission from Oxford University Press.

used to predict the probability of some event taking place past a certain time. In this

example [4], the model predicts the probability of treatment failure before the actual

treatment (a surgical procedure) is carried out. The nomogram combines the three

available preoperative factors to assist the physician and patient in deciding whether or

not to proceed with the treatment.

Interpretability in non-linear models is just as important, if not more so, than it is in

linear cases. The internal operation of these models is usually complex, resulting in an

intricate input/output relationship. For this reason, it is usually difficult for the user

to identify the factors that have a bigger impact on the results obtained. One way of

approaching this is through the use of variable selection [6], normally as a preprocessing

step preceding the main algorithm. The idea is to reduce the initial set of available

variables to a subset that contains a selection of those that are most relevant according

to some criteria previously specified. Similarly, feature selection derives a compact set of

features by transforming and combining the original variables. By discarding irrelevant

variables, data visualisation and interpretation becomes simpler, and the use of more

informative data during the training phases of the models improves their prediction

capabilities.

3

1.1. Statistical models

Figure 1.2: Scatterplots are simple sensitivity analysis tools that allow to visualise the dependence
between two variables. In this case, y =

√
x, with some added noise.

The most common criterion to guide variable selection is the sensitivity of the covariates.

Sensitivity analysis observes the variation in the output of a system and studies to what

extent it is explained by changes in each of its inputs. There is a plethora of sensitivity

analysis methods [7], but all of them share the aim of finding out the contribution of

the inputs to the output variance, thus determining the relative importance of each of

them. This helps in understanding the relationship between the variables involved in

the process under study as well as their interactions, while providing a measure of the

influence of the different factors. A simple example of the analysis of the sensitivity of

one variable with respect to another is given by scatterplots (see Fig. 1.2).

A variation of the score-based approach that the nomogram follows also exists for non-

linear models. The interval coded scoring (ICS) system [8] also assigns points to each

of the variables included in the model and then uses the aggregated score to determine

the outcome. The method is based on a non-linear support vector machine (SVM) [9],

with some differences: Here, the non-linear transformation of the variables is performed

using a step function, dividing their range into a number of consecutive intervals, within

which the response of the estimated variable is assumed to be constant. Each of these

intervals then receives a score depending on the effect they have on the output, hence

the name interval coded score. At the same time, the sparsity of the model is enhanced

by favouring the use of a small number of variables and intervals in order to produce a

simpler interpretation of the system.

An example of the use of the ICS system is displayed in Fig. 1.3, where the risk of a

non-viable pregnancy is predicted based on a set of six variables. The non-linear trans-

formation of the variables is applied separately to each of them, meaning any interactions

4

1.1. Statistical models

Figure 1.3: Application of the ICS approach to the prediction of non-viable pregnancies [8].
“Picture-based representation by means of colour bars, representing the intervals in which the
variable effect is estimated to be constant. For each of the represented bars, the points corre-
sponding to the value of the patient’s covariates are obtained. The total score is obtained by
adding all points. The colour bar at the bottom represents the predicted risk associated with the
final score”.
Image from [8]. Reprinted with kind permission from the authors.

between them must be manually built into the model by including additional covariates.

In this case, the author has prior knowledge that the diameter of the gestation sac has a

different effect for fetuses with or without a visualised heart rate, and takes that into ac-

count in the construction of the model. Although the fact that variables are transformed

individually simplifies the interpretation of the system, it also represents a limitation,

and it would be desirable for the method to automatically detect relevant interactions

between the different factors.

This framework inherently offers the interesting possibility of converting the resulting

model into a questionnaire, which in this particular example could be used by the clin-

icians to easily obtain predictions. This idea resembles the approach followed by the

techniques in Section 1.2, where the objective is to obtain a set of simple rules that can

accurately replace a given statistical model.

5

1.2. Rule extraction

1.2 Rule extraction

Rule extraction methods address the problem of interpretability in a different fashion:

The starting point is also a black box model, but instead of trying to directly give a

meaning to its internal structure, the size of its coefficients, etc., the aim is to produce an

equivalent rule-based system that mimics its behaviour but that is significantly simpler

and easier to understand. The reason to derive these rules from an intermediate model

instead of starting directly from the data is that a model with an appropriate training

and a good generalisation ability is usually a better representation of the data than the

data itself, because it filters out the noise while retaining the knowledge present in the

samples [10].

The interest in rule extraction spans nearly three decades [11]. During that time, many

algorithms have been developed in this field (see [12, 10] for comprehensive overviews).

The main differences between them have to do with the task they are designed to per-

form (regression, classification or both), the models they can be applied to (some rule

extractors require models with a specific structure) and the type of rules they produce.

Regarding the latter aspect, two main formats are used: Boolean and fuzzy rules. Boolean

rules are expressions of the type if-then-else where the conditions under evaluation are

Boolean expressions that involve the inputs to the model. Rules are designed so that

they cover the whole of the input space and, in the Boolean case, also so that only one

rule can be triggered by a given set of inputs. Fuzzy rules, on the other hand, allow the

simultaneous activation of more than one rule by replacing the two-valued Boolean logic

by conditions that can be fulfilled partially by means of membership functions.

Fig. 1.4 shows an example of Boolean rules extracted from a simple classifier. The

three different sets of rules illustrate the characteristic tradeoff faced by these type of

algorithms, that is, the balance between interpretability of the rules and fidelity to the

model they approximate. The simplest of the three sets in Fig. 1.4, given by the solid

blue line, can be expressed as:

if (x1 < 2.2) ∧ (x2 < 3.9) then

class = ∗
else

class = �

end if

This approximates the original boundary reasonably well, and it is very simple to apply

and understand in terms of the values of the variables. The dotted blue line can be

expressed as:

if (x1 < 2.4) ∧ (x2 < 2) then

class = ∗

6

1.2. Rule extraction

Figure 1.4: Example of different sets of rules extracted from a classifier. Each marker type
represents one class, both of them Gaussian distributions with µ = [0, 0], Σ = 1.5I (∗) and µ =
[4, 2], Σ = 2.5I (�). The black solid line defines the border between the classes, calculated using
Bayes’ theorem to find out the posterior probabilities, p(ci|x) = p(x|ci)p(ci)/

∑
j p(x|cj)p(cj), and

then finding the discriminant surface p(c1|x) = p(c2|x), which is quadratic in x. The solid blue
line represents a simple approximation to the optimal boundary that can be represented with a
single Boolean condition. The dotted blue line approximates the boundary more accurately due
to a more complex propositional structure. Finally, the dashed red line also provides a close
approximation, but at the cost of less intuitive Boolean expressions.

else if (x1 < 0.8) ∧ (x2 < 3.7) then

class = ∗
else if (x1 < −1.7) ∧ (x2 < 5.5) then

class = ∗
else

class = �

end if

This set represents a better approximation, but at the expense of using a more com-

plicated structure, going from one to three Boolean conditions. Note that this is only

a 2-dimensional problem; the additional complexity of the rule set required to obtain

7

1.2. Rule extraction

an improvement in fidelity will grow exponentially with the dimensionality of the space.

This stresses the importance of simplicity in the rule structure, especially when the num-

ber of variables in the model is large. The last set, represented by the dashed red line,

can also be translated into basic Boolean expressions as:

if (x1 < 1.9) ∧ (x1 + x2 < 2.8) then

class = ∗
else if (8.7x1 + x2 < 17.8) then

class = ∗
else

class = �

end if

In this case, the price to pay for an improvement in fidelity with respect to the original

model is the evaluation of more complex conditions, which now involve a linear combina-

tion of the two variables. The consequence is the deterioration of the interpretability of

the rules. The error that the approximation makes can be reduced as much as desired,

regardless of the complexity of the model, by increasing the number of conditions and

by including non-linear effects and variable interactions. However, this would defeat the

purpose of rule extraction, as the resulting rules would be as obscure as the original

model itself, hence why the aforementioned tradeoff between interpretability and fidelity

is crucial for the usefulness of these methods.

Classification and regression trees (CART) algorithms [11], also known as decision trees,

are a very popular example of binary rule extractors. Trees can be derived directly from

labelled data or, from a rule extraction perspective, using the predictions of a model

trained on the data to benefit from its generalisation ability. Both classification and

regression trees work under the same principle: iteratively split the data into subsets of

smaller size. Each data subset corresponds to a node in the tree, starting from the root

node on top, which contains the whole data space, and going down towards the leaves.

The splitting process continues until a node is determined to be terminal (i.e., a leaf

node), meaning that branch of the tree is not divided any further, and data points that

fall into this leaf will be assigned a specific class (classification) or ỹ value (regression).

Fig. 1.5 shows an example of a classification tree that replicates the Boolean rule set

represented by the dotted blue line in Fig. 1.4.

The CART construction process is determined by three factors [11]:

1. Selection of the splitting criterion: The splits that take place in the nodes of the

tree are designed so that the data subsets in the level below are purer than the set

they come from. It therefore becomes a requirement to have a way of measuring

the purity of the subset of data contained in a node, e.g., a measure of the type

8

1.2. Rule extraction

Figure 1.5: The classification tree shown here represents a set of rules equivalent to the dotted
blue line in Fig. 1.4. Each of the round nodes splits the data in two groups according to the
result of evaluating the corresponding Boolean condition. To classify a data point, start from the
root node (the topmost node in the figure) and follow the path given by the binary splits until a
terminal node is reached, then assign the class indicated inside.

I = −
∑

i p(ci)log(p(ci)) for classification, where p(ci) is the proportion of points

from class i ; or I = (1/L)
∑L

l (yl− ȳ)2 for regression, where yl are the output values

of the points within the node and ȳ is their average [10]. The goodness of the split

is then defined as the difference in the impurity measure, G = I(t)− (I(t1)+I(t2)),

where t1 and t2 are the nodes resulting from splitting node t.

2. Deciding when a node is declared terminal: In principle, the splitting process can

continue until each node of the tree contains only one training sample. However,

this would lead to a large and overfitted model, so the growth of the tree must be

controlled in some way. A simple option is to define a threshold on the goodness

of each split, so that if the division of a subset does not provide a large enough

improvement, it is rejected. More generally, pruning methods take a fully grown

tree and recursively merge its leaves until some optimal point is reached. This is

what minimal cost complexity pruning [11] does in CART by defining an objective

function that involves both the prediction error and the number of nodes of the

tree.

3. Assignment of predictions to terminal nodes. Finally, when the set of terminal

9

1.2. Rule extraction

nodes is defined, each of them must be assigned a class or a ỹ value prediction. In

the case of classification, a majority vote can be taken to decide the class, while a

regression tree can simply use the average of the y value of the training points that

fall into the node.

Although it is the most common approach, not all rule extraction methods produce rules

that are mutually exclusive. In [13], for instance, a decision surface is approximated using

as many rules as there are training data points available, where each rule is the largest

multivariate hypercube that, while centered in a data point, stays on one side of the

class boundary without crossing it. This preliminary set is then refined by eliminating

redundant and low-performing rules, with performance measured using the sensitivity

and specificity of the binary classification associated with each rule. The fact that rules

are defined directly in the data space, rather than sequentially looking at each of the

covariates, and not forcing them to be mutually exclusive, means that the set of rules

can generally be of low order while retaining a good classification performance, making

the interpretability of the rules easier [14].

Figure 1.6: Membership functions for two variables, x1 and x2. In this example, there are three
fuzzy groups for x1 and two for x2.

Fuzzy inference methods [15] also use rules to approximate the behaviour of models but,

in contrast to Boolean rule extractors, they use fuzzy conditional statements to determine

the trigger of the rules. Examples of fuzzy rules are:

if (x1 is HIGH)∧(x2 is SMALL) then y is LOW

if (x1 is MEDIUM)∧(x2 is LARGE) then y is HIGH,

where LOW, MEDIUM and HIGH are fuzzy sets associated to the variable x1, and

10

1.2. Rule extraction

SMALL and LARGE to x2. In fuzzy logic, the result of evaluating a condition like x1 is

HIGH is not restricted to a yes/no answer, instead it returns values within a continuous

interval (generally from 0 to 1). Given a particular observation of a variable, these

continuous values are interpreted as the membership of that sample to each of the sets

defined for that variable. Each fuzzy set is therefore characterised by its corresponding

membership function. Fig. 1.6 shows examples of fuzzy sets for two variables, x1 and x2.

Fuzzy sets are interesting from the point of view of interpretability because they resemble

the linguistic labels commonly used to capture human knowledge in imprecise situations

(e.g., when someone says it is cold). Using this type of logic, fuzzy rules imitate the

quantitative decision making process typical of human reasoning (e.g., it is cold, so turn

up the heating), which is inherently very intuitive.

Figure 1.7: Mamdani fuzzy logic inference system with two rules, two inputs and one output.
The memberships µ of the fuzzy sets involved in the premise part of the rules are combined to
produce the weights w1 and w2, which then determine the contribution of the output functions of
the rules. These weighted contributions are aggregated to produce a fuzzy output, from which a
crisp value of the output variable y is obtained.

The reasoning process of a method based on fuzzy rules is detailed in [15] and illustrated

in Fig. 1.7. The first step is the fuzzification of the inputs, where the membership

functions are used to determine the degree of membership of the inputs to the fuzzy

sets involved in the antecedent of the rules. The membership values are then combined

to calculate the firing strength of each rule (this is usually done using the product or

11

1.3. Graphical models

minimum operators, but others may be more suitable depending on the rule structure).

The appropriate consequence of each rule is then generated depending on the firing

strengths. Depending on whether the outcome of the rules is fuzzy or crisp (a scalar),

two types of fuzzy models can be distinguished: Mamdani [16] (pictured in Fig. 1.7)

and TSK (Takagi-Sugeno-Kang) [17]. In Mamdani models, the consequent part of rules

is a fuzzy membership function, needing an additional step to calculate a crisp output

from it (normally referred to as defuzzification). In the example, the output y is selected

to be the mean of the values for which the function is at its maximum. In the case of

TSK models, the consequence of each rule is an analytical function of the inputs, so that

each rule directly generates a crisp value which is then combined with the rest, usually

through a weighted sum of the form y = (w1y1 +w2y2)/(w1 +w2), where yi = f(x1, x2).

Although Mamdani models produce more interpretable rule consequences by keeping the

concept of fuzziness throughout the process, the lack of a time-consuming defuzzification

step and the higher-precision output make the TSK model the most popular in practical

applications.

It arises from the description of fuzzy models that a key step in the design of the system

is the definition of the membership functions and the set of fuzzy if-then rules. To do

so, the designer uses any available information about the target system, which normally

consists on their own knowledge about the model or information provided by human

experts. In the absence of prior information, membership functions can be obtained

by evenly dividing the input space or by performing clustering in the inputs to obtain

meaningful partitions of the data (see input space partitioning in [15]). Once these

elements are defined, the parameters that determine the membership functions (both

in the premise and consequent parts of the rules) are tuned to minimise the output

error using regression and optimisation techniques. On that note, ANFIS (Adaptive-

network-based fuzzy inference system) [18] proposes an automated way to refine those

parameters by creating a class of neural networks that are functionally equivalent to fuzzy

systems. Under this framework, membership functions are represented by adaptive nodes

in a neural network. The parameters of the premise functions are tuned using a back-

propagation gradient descent learning rule, while the optimal consequent parameters

are identified with the least squares estimate (provided the output function is linear).

Applications of this method, as well as of fuzzy systems in general, can be found in areas

like classification [19], control [20] and prediction [21].

1.3 Graphical models

The third and last group of models discussed in this introductory section on interpretabil-

ity are graphical models [22, 23], also known as independence networks. The way these

12

1.3. Graphical models

methods achieve interpretability is completely different from the approaches described in

the previous sections. Graphical models are probabilistic models that produce a repre-

sentation of the dependencies present in a set of random variables as edges in a graph.

In particular, Bayesian networks, the most common type of graphical model, factorise

the joint distribution of the whole variable set into a product of conditional dependen-

cies, identifying interactions between the variables involved in each of these conditional

distributions:

p(x1, x2, · · · , xN) =
N∏
i=1

p(xi|Ai), (1.3)

where Ai is the subset of variables upon which the variable xi depends. The variables in

Ai are normally referred to as parents of xi in this conditional dependence relationship,

and this is indicated visually in the network with a directed edge from the elements in

Ai to xi. Fig. 1.8 represents a simple Bayesian network example.

Figure 1.8: Example of a Bayesian network with five nodes and five edges. In
this case, the factorisation of the joint probability p(x1, x2, x3, x4, x5) is given by
p(x1|x3, x5)p(x2|x5)p(x3|x5)p(x4)p(x5|x4).

The process of learning the structure of a Bayesian network comprises two phases: First,

an undirected network known as the skeleton is constructed that contains the edges that

should appear in the final graph. Then, the edges are oriented to produce the final

model. The presence of an edge between nodes xi and xj in the skeleton of the network

means that at least one combination A of the remaining variables exist for which the

test of conditional independence I(xi, xj |A) is false. Computationally, this means the

independence test (e.g., likelihood ratio test, conditional mutual information, etc.) must

be carried out for all those combinations, so it is important to use an efficient calculation

algorithm when the size of the dataset increases. This and other practical considerations

are addressed in [24].

Graphical models are useful because they provide a visual insight into the process of in-

terest by identifying the relationships between the different factors present in the dataset.

For instance, Fig. 1.9 shows an example of graphical models in a real-world scenario. In

this application, the data consisted on the answers to a mental wellbeing survey taken

13

1.3. Graphical models

by 18,500 people in the North West of England in 2009 [25].

Figure 1.9: The influence of financial worries on wellbeing, as part of the 2009 North West
Mental Wellbeing Survey.
Image from [25]. Reprinted with kind permission from the authors.

The purpose of this questionnaire was to provide a measure of the wellbeing of the

population in that region of the country, for which 44 questions were included that covered

a series of relevant factors (e.g., employment, area of residence, health, income, etc.). The

answers to these questions contained valuable information about the factors that influence

wellbeing, so an exploratory analysis was carried out to study the relationships between

them.

Four variables were identified as the primary influencing factors: life satisfaction, seden-

tary time, money worries and the possibility of borrowing a small amount of money in a

financial emergency. Fig. 1.9 illustrates the factors that affect one of this primary vari-

ables, money worries. This variable measures how often the participants were worried

about money in the weeks prior to taking the survey. The graph indicates that financial

worries are influenced primarily by the person’s perceived income sufficiency and their

household economic type (employed, unemployed, retired or in education), with the lat-

ter being related to five other factors. A detailed analysis of the different variables and

their connections can be found in the original report, this small example only intends

to give an idea of how graphical models can be used to extract knowledge from data

in an intuitive way. This type of output is useful not only from an explanatory point

of view, but also from an interactive perspective. If the interest is to modify a target

variable (e.g., improve mental wellbeing), independence networks are a good way to find

out which variables should be actuated on to obtain the desired effect.

14

1.4. Aims and objectives

1.4 Aims and objectives

The aim of this thesis is to develop a novel mathematical framework for semi-super-

vised visualisation and classification of data that provides a balance between prediction

accuracy and interpretability of the output. In order to achieve that, several specific

objectives must be met:

1. Accurate estimation of class membership probabilities from a dataset with auxiliary

information in the form of true class labels.

2. Derivation of a metric that is informed about the posterior class probabilities using

the corresponding estimates. Such metric should consider only those features of

the data space that have an impact on the classification problem, combining ideas

from feature selection techniques and sensitivity analysis.

3. Definition of similarity measures from pairwise distances calculated using the met-

ric. This determines the structure of a similarity network, where the strength of

the connections between pairs of points is quantified by these measures.

4. Analysis of the structure of similarity networks using a community detection algo-

rithm. This will allow the identification of network clusters that reflect the structure

of the data in the input space with regard to the underlying posterior probability

surfaces.

5. Replication of the classification capability of the original probabilistic model using

case-based inference, relating class predictions to known instances in the dataset.

6. Visualisation of similarity networks, making data structure, community member-

ship and class prediction immediately apparent to the user.

7. Illustration of the practical use, potential applications and usefulness of the frame-

work using real-world datasets.

Several interesting benefits arise from the use of this framework:

• By using a distance metric that knows about the relevance of the different areas of

the data space, the resulting affinity measure will produce network structures that

accurately reflect the similarity between nodes. As a consequence, similar nodes will

be grouped together and connected by strong links, resulting in networks with local

neighbourhoods that are homogeneous in terms of the classification probabilities.

• A common obstacle found in data mining applications is the difficulty in visual-

ising high-dimensional data directly, obscuring the data structure as well as the

15

1.5. Structure of the thesis

interpretation of the derived models. The use of networks for data representation

is a natural way of overcoming this hurdle, making the visualisation of a dataset as

simple as displaying the nodes that form the network and the connections between

them. Thanks to the use of the FI metric, the underlying structure of the network

will reflect the statistical geometry of the original data space as determined by the

density function estimates. The representation of the network will therefore provide

an informative picture of the data, even in high-dimensional problems.

• Because connection weights contain accurate information about the similarity be-

tween data points, the usefulness of the framework goes beyond the visualisation

of data, and can also be used as an interpretable retrieval-based classifier. By def-

inition, each node in the network is connected to other similar nodes. This set of

adjacent nodes make an ideal cohort from which to extract a prediction based on

their posterior probabilities. Furthermore, the result of this classification is directly

interpretable as a contribution from the most similar nodes within the network, that

is, cases in the dataset. This makes it easy to understand where each class predic-

tion comes from, which is especially useful when the end user is not familiar with

how the model estimates the class membership probabilities.

• The derivation of the FI metric is a supervised process that requires labelled data.

However, once this process is complete, the metric can be applied to out of sam-

ple data. This approach can be very useful in practical applications as a semi-

supervised classifier/visualisation tool, using the labelled portion of the data to

train the probability estimator and derive the FI metric in order to later build a

relational network containing both labelled and unlabelled samples. In a practical

application, this would provide the end-user with not only the basic information

about class membership prediction of unlabelled cases, but also their location within

the network, the network subgroup that they belong to, the set of known training

cases that explain their class prediction, etc.

In summary, this thesis is about relevance and interpretability. Relevance because a

framework is sought that focuses only on the information that is important for the topic

of interest, and interpretability because it ought to provide an intuitive understanding of

the structure and patterns present in the data.

1.5 Structure of the thesis

This thesis is divided into five chapters. Chapter 1 discusses the importance of inter-

pretability in data mining models, with examples of how this is achieved in existing

16

1.5. Structure of the thesis

methods. A qualitative description of the expected characteristics of the framework is

included.

Chapter 2 reviews the existing work on the two main areas that this framework relates

to: metric learning and similarity networks, in particular the identification of network

structure. This is followed by a description of the novel contributions of this work, and

how they fit into the existing literature.

The methods included in the framework are described individually in Chapter 3, detailing

their role within the system. This includes the estimation of the posterior probability

surfaces, the derivation of the distance metric, calculation of geodesic distances and the

construction and analysis of the networks.

Chapter 4 studies the empirical results obtained from the different experiments in which

the framework has been tested, discussing their implications and comparing them with

other methods in the literature when appropriate.

Finally, Chapter 5 concludes the thesis by revisiting the initial project objectives and

discussing the methodology developed to meet them. To finish off, some interesting

possible lines of future work are suggested.

17

Chapter 2

Literature review

This chapter reviews the most significant published work in the two areas of knowledge

that the framework presented in this thesis aims to combine: the derivation of a distance

metric that informs about the relevance of the input space in classification scenarios and

the analysis of a network based on the pairwise similarities of its elements.

2.1 Distance metric learning

Many widely-used data analysis algorithms involve in their operation measures of simi-

larity between examples given by the distance between them in the input space. Using a

distance function to measure similarity between pairs of elements of a space is an intuitive

way to understand their relationship in the context of a particular problem domain, but

it is crucial to appreciate that the specifics of the chosen metric play a central role in the

performance of such methods. That is the case, for instance, in K-nearest neighbours

classification, where the definition of the neighbourhood for a given test instance depends

heavily on the distance metric, which in turn determines the resulting class prediction

[26]. Or in k-means clustering, where points are assigned to clusters depending on the

distance that separates them from their centroids. When explicit metrics are used in

practice, the Euclidean distance is a common choice because of its simplicity and low

computational cost, often overlooking the equal weighting of dimensions that it implies.

However, this may be very misleading, especially in high-dimensional applications, where

the issue of variable relevance becomes an essential consideration.

It is only recently that this topic has been addressed and work has been directed towards

measures of distance that stress those features of the space that have discriminative

properties, whether it is according to classification, regression or any other criterion.

In terms of notation, a distance function is a mapping d : X × X → R from pairs of

elements in the vector space RN to the set of positive real numbers, R+. Such mapping

18

2.1. Distance metric learning

is called a metric if, given xi,xj ,xk ∈ X, it satisfies the following four conditions:

1. non-negativity: d(xi,xj) ≥ 0

2. symmetry: d(xi,xj) = d(xj ,xi)

3. triangle inequality: d(xi,xk) ≤ d(xi,xj) + d(xj ,xk)

4. discernibility: d(xi,xj) = 0⇐⇒ xi = xj

A metric that does not satisfy the fourth condition is known as a pseudometric. Because

that is often the case in distance metric learning, this chapter uses the term metric for

both cases, specifying when appropriate.

2.1.1 Unsupervised metric learning

Unsupervised approaches to distance metric learning use only the geometric properties of

the data in the input space (distances, variable correlations, etc.), without any additional

source of information. There is a strong connection between unsupervised metric learning

algorithms and dimensionality reduction in that they learn a low-dimensional manifold

that preserves the geometric relationships between the samples in the original input space

under some standard (e.g., Euclidean) metric. Although the goal of these methods is to

map data into a lower-dimensional space rather than learning a metric, an immediate

consequence of the mapping is that distances between examples in the new space become

more meaningful than they were in the original one, which implicitly defines a metric in

the original space.

Principal component analysis (PCA)

Principal component analysis (PCA) [27] is probably the best-known data projection

algorithm for its simplicity and efficiency. PCA finds the orthogonal linear transformation

that best preserves the variance of the input data. The transformed data is expressed

as a linear combination of independent variables, known as principal components, which

are used as coordinates of the new space.

For a given dataset X of size N ×L (features × samples, observations as columns), PCA

starts by calculating the covariance matrix,

S = X̄X̄T /(L− 1), (2.1)

19

2.1. Distance metric learning

where X̄ is the original dataset with rows centered in the origin by subtracting their

mean. The principal components of the data are given by the eigendecomposition of the

covariance matrix,

S = UΛU−1, (2.2)

where U = (u1,u2, · · · ,uN) is the N × N matrix that contains the eigenvectors ui

as columns and Λ is a diagonal matrix with elements Λii = λi corresponding to the

eigenvalues of ui. Eigenvalues obtained from a symmetric positive semidefinite matrix, as

is the case of S, are always non-negative. The first principal component is the eigenvector

with the largest eigenvalue, and corresponds to the direction of the space along which the

data spreads most, or equivalently, the line that minimises the sum of squared distances

between itself and the data points. The second principal component is the direction of

maximum variance if deviations of the data along the first component are suppressed,

and so on.

Figure 2.1: Two-dimensional Gaussian (200 points) with mean µ = [0, 0] and covariance matrix
Σ = (1 3

3 1) embedded in the plane −v1 − v2 + 2v3 = 0 with noise added to the v3 component. The
solid black lines represent the direction of the three eigenvectors, with length proportional to their
corresponding eigenvalue.

Fig. 2.1 shows an example application of PCA to a three-dimensional dataset in which

data approximately lie on a two-dimensional manifold (a subspace of the original input

20

2.1. Distance metric learning

space). The plot shows how the eigenvalues are proportional to the variance of the data

along the direction of their associated eigenvectors.

Figure 2.2: Projection of the original data using the first (PCA1) and second (PCA2) principal
components.

After calculating the eigendecomposition in Eq. (2.2), the transformation of the data can

be obtained as

Y = UT
MX, (2.3)

where UM is a matrix that contains the M eigenvectors included in the transformation as

columns. In order to preserve the variance of the data, these should be the eigenvectors

with the largest eigenvalues. In this particular example, the transformation involved

the two principal components, and because the deviations of the data along the third

component were small, a mapping into a two-dimensional space was possible without

losing much information, as shown in Fig. 2.2.

The metric defined by PCA is obtained by measuring Euclidean distances between trans-

formed points:

dPCA(xi,xj) = dE(UT
Mxi,U

T
Mxj) = ‖UT

M (xi − xj)‖2 =

=
√

(xi − xj)TUMUT
M (xi − xj),

(2.4)

where ‖ · ‖2 denotes the Euclidean norm from here on. Eq. (2.4) is the expression of

the metric associated with any linear transformation of the form described in Eq. (2.3),

of which PCA is an example. This type of metric is known in the distance metric

literature as a Mahalanobis metric, and constitutes a metric when UM is full rank and

21

2.1. Distance metric learning

a pseudometric when it is not, as in the example above.

As noted in [28], the traditional use of the term Mahalanobis refers to metrics of the form

d(xi,xj) =
√

(xi − xj)TS−1(xi − xj), (2.5)

where S represents the covariance matrix of the data sample. In this chapter, however,

as well as in the bulk of the metric learning literature, the term is applied to metrics

where S is any positive semidefinite matrix.

Multidimensional scaling (MDS)

The term multidimensional scaling (MDS) [29] applies to a variety of algorithms that,

starting from a matrix of pairwise dissimilarities between instances, produce a represen-

tation of those entities as points in a space in such a way that the distances between

them approximate as closely as possible the dissimilarities between the corresponding

instances in the original matrix.

Specifically, classical MDS [30, 31] techniques take an L × L pairwise distance matrix

with elements dij and find a configuration of L points xi in a Euclidean M -dimensional

space that minimises some cost function, for instance

ε =
L∑
i

L∑
j

(dij − dE(xi,xj))
2. (2.6)

It can be shown that, when the distances dij are Euclidean, Eq. (2.6) can be rearranged

into a matrix expression and solved using eigenvectors, producing identical results as

PCA [29]. However, variations of the classical MDS algorithms exist that, using different

cost functions and optimisation methods, can overcome the linearity-related limitations of

PCA and perform nonlinear data projections (e.g., Sammon mapping [32]). Alternative

optimisation techniques used in MDS include gradient descent and iterative majorisation

[33].

Isomap

Isomap [34] is a nonlinear dimensionality reduction algorithm that can deal with very

nonlinear data structures that MDS methods or PCA would struggle with. To do so,

Isomap assumes that the data in the original space lies on a manifold of lower dimen-

sionality, like the two-dimensional Swiss roll in the dataset in Fig. 2.3.

22

2.1. Distance metric learning

Figure 2.3: The Swiss roll dataset (1000 points). Similarly to the data in Fig. 2.1, points in this
dataset lie on a manifold of lower dimensionality than that of the input space. However, in this
case the structure of the manifold is highly nonlinear, and a linear projection method like PCA
would fail to learn it. Euclidean distances between points that are distant within the manifold
are a poor approximation of their geodesic distance (A). Isomap builds a network weighted using
Euclidean distances between nearby points (B), then approximates geodesics by finding the shortest
path between nodes (red line), and learns a low-dimensional embedding that preserves them (C).
Image from [34]. Reprinted with kind permission from AAAS.

The difficulty in cases like this is that points that are close in the original high-dimensional

space may be far from each other within the manifold (see Fig. 2.3(A)), which means that

Euclidean distances do not always adequately reflect the intrinsic similarities between

examples. Isomap addresses this problem by generating a matrix of pairwise geodesic

distances with values that correspond to the shortest path between each pair of points

within the manifold (Fig. 2.3(B)), rather than using the straight-line Euclidean distances.

A standard MDS algorithm is then applied to this matrix to obtain a low-dimensional

representation with coordinates that capture the inherent degrees of freedom of the data

(Fig. 2.3(C)).

The key part of the algorithm is the way geodesic distances are approximated. For each

point xi, a set of neighbours is identified as the closest K points according to Euclidean

distance dE(xi,xj) in the original space. The assumption made is that these K points are

also close to xi on the manifold. The next step is to define a network where each point

is connected to its K neighbours. The connection between points xi and xj receives a

weight wij = dE(xi,xj) if they are neighbours and wij =∞ otherwise. Fig. 2.3(B) shows

the network connections for the Swiss roll example for K = 7 as grey edges. Finally,

the geodesic distance between points on the manifold is estimated as the length of the

shortest path from xi to xj in the network, dG(xi,xj), which can be calculated using

graph search algorithms like Dijkstra’s or the Floyd-Warshall algorithm. Based on the

fact that the local geometry of the data is approximately the same in the input space

as it is on the manifold, Isomap uses information about local structure to build a global

estimate of the manifold via geodesic distances.

The main limitation of the Isomap algorithm has to do with the neighbour selection. If

the size of the neighbourhood is too small, it may result in groups of points becoming

23

2.1. Distance metric learning

isolated from the rest, dividing the manifold into disconnected pieces. On the other hand,

a large size may cause short-circuits between distant points that are close in the input

space due to the curvature of the manifold. This would affect not only those two points,

but also the region surrounding them, producing a deformation in the learnt embedding.

In practice, especially when dealing with noisy data, there may be cases where it is not

possible to select a neighbourhood size that prevents both of these effects. The number

of data samples available is also an important factor, as it conditions how well dG(xi,xj)

approximates the true geodesic.

Locally linear embedding (LLE)

The locally linear embedding (LLE) [35] also aims to find a low-dimensional embedding

that preserves the data relationships present in the original space. The difference in LLE

is that the mapping is determined entirely using local geometry, which means global

structure is characterised through the collective analysis of the local neighbourhoods.

The starting point in LLE is a set X of L points in an N -dimensional space that are

assumed to lie in a nonlinear manifold of dimensionality M , M < N . The first step in

LLE is to express each sample xi as a linear combination of its neighbours (again defined

as the K closest points under the Euclidean metric). The reconstruction of a point from

its neighbours will not be perfect in general, and therefore a cost function can be defined

as

εrec(W) =
L∑
i

‖xi −
L∑
j

wijxj‖22, (2.7)

where x̂i =
∑L

j wijxj is the reconstruction of xi and the weight wij represents the

contribution of xj to it. The weight matrix W characterises the local structure of the

L neighbourhoods, and its components are found by minimising Eq. (2.7) subject to

two constraints, i) a point xj will only be used in the reconstruction (i.e. wij 6= 0) if

it is a neighbour of xi and ii) the contributions for each sample must add up to one

(
∑L

j wij = 1). An additional constraint may be imposed such that iii) the weights are

non-negative (wij ≥ 0), which implies that the reconstruction lies in the convex envelope

of the neighbour set.

The local relationships contained in W are invariant to rotations, rescalings and tran-

lations of the data X. This is important because, going back to the assumption that

the data is approximately embedded in a smooth M -dimensional manifold, there is a

local linear transformation associated to each neighbourhood that takes the points in it

from the original space to the coordinates of the manifold. And precisely because W is

invariant to such transformation, the linear reconstruction of the samples defined by the

weights is also valid in the manifold coordinates. Consequently, the last step in the LLE

24

2.1. Distance metric learning

algorithm is to find a set of points Y in the manifold for which the relationships in W

are preserved as closely as possible. This is achieved by minimising the embedding cost

function

εemb(Y) =

L∑
i

‖yi −
L∑
j

wijyj‖22, (2.8)

which, in contrast to Eq. (2.7), is minimised with respect to the location of the points

instead of the value of the weights. The complete LLE embedding process is captured in

Fig. 2.4.

Figure 2.4: LLE involves three different stages. First, a set of K neighbours is identified
for sample xi. Then, the weights W are calculated that minimise the linear reconstruction error
‖xi−

∑L
j wijxj‖22. Finally, the same linear combination is carried over to the manifold, producing

the corresponding image yi.
Image from [35]. Reprinted with kind permission from AAAS.

LLE shares with Isomap the requirement of a uniform and dense enough sampling of the

underlying manifold in order to produce an embedding that approximates it accurately.

Other limitations of the algorithm include the amount of parameters involved in the

optimisations (L × (L − 1) weights in Eq. (2.7) and L ×M coordinates in Eq. (2.8)),

which can become a problem in applications with large datasets; and the fact that it

does not produce an explicit expression of the mapping that can be applied to new data

without having to repeat the process.

25

2.1. Distance metric learning

2.1.2 Supervised metric learning

As mentioned in the beginning of Section 2.1, distance functions are often used to measure

similarity between elements in a dataset. In such context, an ideal distance metric should

focus only on those features of the covariate space that are taken into account when it

comes to assessing similarity. A pair of examples that differ only by a small amount in an

attribute that is known to be critical in some situation should not be considered similar,

the same way that a large divergence in an irrelevant property should not be given much

importance.

It is therefore obvious that the definition of similarity must be a central factor in the

derivation of a distance metric. For instance, if a dataset contains information about the

characteristics of different car models, similarity between individuals could be defined

with respect to driving style, comfort, maintenance costs, etc., giving rise to different

metrics that would measure distances in the space of the car characteristics differently.

For that reason, the distance metric used in a particular situation should be tailored to

the problem at hand.

In practice, the specification of the meaning of similar is materialised in the form of

side-information, generally as an auxiliary variable that accompanies the data and helps

determine which points are similar and which are not depending on their values. This

gives supervised methods the ability to focus on the features that determine similarity

and provides them with an informative criterion that the learning process of the metric

can optimise for.

Nearest neighbour classification and distance metric learning

A large proportion of the existing research on supervised metric learning is focused on

improving the performance of nearest neighbour (NN) classifiers, but the principles in-

volved are also valid for other classification methods. For this reason, this section starts

by briefly discussing the influence of the distance metric in K-nearest neighbours (KNN)

classification [26]. NN methods [36, 37] provide a nonparametric prediction of a target

function f(x) at a given point x0 in the input space based on known values of the function

in the surrounding area:

f(x0) =
1

|C(x0)|
∑

xi∈C(x0)

f(xi), (2.9)

where C(x0) denotes the set of neighbours of x0 used for the prediction. The assumption

is that f(x) is a smooth function that is approximately constant within the neighbour-

hood, i.e. f(x0 + dx) ≈ f(x0) for a small dx.

26

2.1. Distance metric learning

Let us now consider a classification setting with a set of data points X = {x1, · · · ,xL},
xi ∈ RN , with known class labels Y = {y1, · · · , yL}, yi ∈ {1, · · · , J}. An intuitive

choice for the target function in this context is the conditional probability of the classes,

fj(x) = p(cj(x) = 1|x), where cj(x) = 1 implies that x belongs to class j. If the

probabilities p(cj(x) = 1|x) are known, the optimal classification is given by the Bayes’

rule, which assigns x to the class with the highest posterior probability (provided that the

cost of misclassification is equal for all classes). These probabilites are, however, rarely

known in practice, so the estimation has to come from its samples, the pairs {xi, yi}.
Using the same principle of Eq. (2.9), p(cj(x) = 1|x0) can be estimated as

p̂(cj |x0) =
1

K

∑
xi∈C(x0)

cj(xi), (2.10)

where the compact notation p(cj |x) replaces p(cj(x) = 1|x) and K = |C(x)|, the number

of neighbours, is used from here on throughout this section.

The accuracy of the predictions given by Eq. (2.10) increases asymptotically,

lim
L→∞

p̂(cj |x0) = p(cj |x0), (2.11)

provided that the number of neighbours K increases with the number of samples but

represents a vanishing fraction of it [37]. In other words, for a large enough training

set, the KNN classification error approximates the minimum value possible, given by the

Bayes’ rule.

Although Eq. (2.11) represents a desirable convergence property for NN methods, it

also carries a crucial implication. The accuracy of KNN classification is based on the K

neighbours being close to the query point, and therefore having similar values of the class

membership probabilities. This, as seen above, will be true as long as L is sufficiently

large, which is to say, as long as the true underlying probabilities are densely sampled.

That immediately brings the problem of high-dimensionality into the discussion. An

illustrative example of this is given in [26], where the expected diameter of the K = 1

neighbourhood (effectively the distance to the closest point) is measured for a uniform

distribution of increasing dimensionality. The result is a neighbourhood that increases

exponentially with the number of dimensions, breaking the condition that the target

function be constant within it. The sample size required to compensate this effect is also

exponential and quickly becomes unfeasible in practice.

KNN classification can still perform well in some cases even if the probability estimates

are not accurate. This is because the classification of a sample depends only on which

class has a maximum p̂(cj |x0), so if this matches the true label, the deviation in the

27

2.1. Distance metric learning

estimation will not produce an error. This gives the method some level of robustness

against the dimensionality issue, but additional action must be taken to further reduce

the effect of the problem. The following subsections review some interesting possibilities.

Metric learning using similarity-based optimisation

It has already been discussed how different directions of the space have different degrees

of importance. In general, the probabilities p(cj |x) will not change equally along all

directions, and the analysis of these differences can help attenuate the effects of high

dimensionality. The objective is to obtain a metric that weights important directions

(those where the probabilities change fast) strongly, so that they have more influence

over the calculation of distances. Using a metric like that in NN methods elongates

neighbourhoods along the less relevant directions and compresses them along the most

important ones, resulting in areas with a lesser variation of the class probabilities. This

means enforcing the assumption on which KNN relies, compensating the adverse effect

of dimensionality by appropriately filtering the influence of each covariate.

The large margin nearest neighbour (LMNN) classification algorithm [38] learns a

Mahalanobis metric

d(xi,xj) = ‖AT (xi − xj)‖2 =

√
(xi − xj)TAAT (xi − xj) (2.12)

from pairs {xi, yi} that tries to rearrange the data space so that the K nearest neighbours

of each point always belong to the same class, while keeping points from other classes

further apart. To find a transformation matrix A that achieves that, the following cost

function must be minimised:

εLMNN (A) =
L∑
i,j

ηijd(xi,xj)
2+

+α
L∑
i,j,l

ηij(1−mil)[1 + d(xi,xj)
2 − d(xi,xl)

2]+,

(2.13)

where ηij = 1 if xj ∈ C(xi) and 0 otherwise, mil = 1 if xi and xl belong to the same

class, [z]+ = max(z, 0) and α is a positive constant. The first term in the cost function

is responsible for pulling neighbours together, while the second pushes points away from

neighbourhoods of points with a different label. A contribution to the second term

appears when 1 + d(xi,xj)
2 > d(xi,xl)

2, that is, when the distance between a pair of

points xi and xl from different classes is smaller than the distance between xi and any of

its neighbours. The unit constant defines the minimum width of the margin or minimum

28

2.1. Distance metric learning

distance from the neighbourhood of xi that xl must clear in order to avoid a penalty in

the cost function. The effect of the metric is illustrated in Fig. 2.5.

!xi!xi

margin

!xj

target neighbors

impostors
!xl

local neighborhood

Class 1

Class 3

Class 2

εpush

εpull

!xi!xi

margin

!xj

target neighbors

BEFORE AFTER

impostors

!xl

Figure 2.5: Transformation of the neighbourhood of point xi when the LMNN algorithm is
applied. The minimisation of Eq. (2.13) pulls the neighbours together and pushes the impostors
away from them, so they are further from xi than (at least) the distance to its most distant
neighbour plus a security margin.
Image from [28]. Reprinted with kind permission from the authors.

The optimisation of the cost function is posed as a semidefinite programming problem,

ensuring that the obtained matrix AAT is positive semidefinite. Because this is a convex

optimisation problem, a global minimum is guaranteed.

The LMNN algorithm is partly inspired by a previous method, neighbourhood com-

ponent analysis (NCA) [39]. NCA designs a Mahalanobis metric to improve the

performance of KNN classifiers by minimising a stochastic variant of the leave-one-out

NN misclassification rate. The difference here is that, instead of selecting a fixed num-

ber of neighbours, the algorithm assigns fuzzy neighbourhood relationships between the

examples: given a pair of points xi and xj in the training set, the probability that xi

selects xj as its neighbour is

pij =
exp(−d(xi,xj)

2)∑L
k exp(−d(xi,xk)2)

, (2.14)

where d(xi,xj) = ‖AT (xi − xj)‖2 is the distance function learnt. If xi picks xj as its

neighbour, it automatically receives its class, yj . In this setting, the probability that xi

is classified correctly is

hi =
∑

j|yj=yi

pij , (2.15)

determined by the probability of selecting a point from the same class as a neighbour,

29

2.1. Distance metric learning

which depends on the metric. From Eq. (2.15), the objective function is defined as the

expected accuracy rate over all samples,

εNCA(A) =

L∑
i

hi. (2.16)

An important contribution of this method is the removal of the neighbour selection stage.

In most NN methods (e.g., LMNN, discussed above) a fixed number of neighbours are

selected as the K closest examples to the query point (or, alternatively, those within a

certain distance), and then their membership probabilities are averaged. The probabilis-

tic approach in Eq. (2.14) integrates the selection process in the optimisation, giving the

algorithm the ability to automatically adjust the size of the neighbourhood considered

by modifying the matrix A accordingly. Effectively, all training points are used as neigh-

bours and contribute to the class assignment, but the contribution of each of them is

weighted by pij so that the closest points are the most influential.

Another consequence of the stochastic selection of neighbours is that the objective func-

tion in Eq. (2.16) is continuous and differentiable with respect to A, as opposed to the

leave-one-out error rate using standard KNN classification, where a differential change

in A may cause a finite variation of the accuracy. This allows a simple maximisation of

the cost function using gradient descent, which would not be possible in the standard

formulation. The downsides of this optimisation method are its susceptibility to local

minima and the computational cost associated.

The distance metrics generated by LMNN and NCA are optimised so that nearby points

that are similar according to the auxiliary information get closer together while sur-

rounding points that are marked as dissimilar are pushed away. An alternative to this

is to enforce such displacements on a global basis rather than at a neighbourhood level.

That is the goal in [40], to learn a metric (we will refer to it as global similarity dis-

tance metric (GSDM)) that respects the given similarity information globally. This

is reflected in the cost function,

εGSDM (A) =
∑

i,j|yi=yj

d(xi,xj)
2

s.t.
∑

i,j|yi 6=yj

d(xi,xj) ≥ 1
(2.17)

where d(xi,xj) = ‖AT (xi−xj)‖2 is the desired Mahalanobis distance and the constraint

on dissimilar pairs is introduced to avoid the trivial solution A = 0. Note that, unlike

in Eq. (2.13), here there is no restriction on xi and xj being neighbours or close to each

other, and all pairs are considered. As in LMNN, this optimisation problem is convex,

30

2.1. Distance metric learning

so a global minimum can be found. The authors propose two ways of minimising it, i)

applying the Newton-Raphson method for a diagonal A and ii) using gradient descent

+ iterative projections for a full A (in this case the Newton method is computationally

too expensive).

The main limitation of the algorithms discussed (and of Mahalanobis metrics in general)

comes from the fact that the matrix A that defines the metric is constant in the whole

input space. That means the weight assigned to each direction is the same everywhere,

which is equivalent to assuming that the relative importance of each variable is the same

regardless of the location in the space. While that is partially true in problems where the

boundaries between classes are linear, the assumption is not valid for complex nonlinear

decision boundaries. And even in the simpler linear case, the relevance of the variables

in areas close to the boundary is different than in areas far away, where the target

functions p(cj |x) are constant and all variables are equally relevant (or irrelevant) for the

calculation of distances. For a metric to be able to capture these relevance changes, it

must be able to adapt to the different regions of the space by modifying the weight of

each direction appropriately.

Metric learning based on relevance measures

The previous subsection showed how a distance metric can be designed to respect simi-

larity relationships by optimising a cost function that includes explicit instructions (pull

similar points together, move different points away). The algorithms in this section take

a different path to the derivation of the metric: based on statistical reason, they first

define a measure of relevance of the data variability which is then used to determine the

parameters of the metric.

For categorised data, a measure with such properties is naturally given by Fisher’s

linear discriminant analysis (LDA) [41]. For the set of examples X and the corre-

sponding set of class labels Y defined above, LDA finds the linear transformation that

produces the maximum separation between the classes (provided they are normally dis-

tributed), which is equivalent to maximising the between- to within-class variance ratio,

s =

M∑
i

vTi Sbvi

vTi Swvi
, (2.18)

where the vectors vi form the transformation matrix, VM = (v1, · · · ,vM); Sb and Sw

31

2.1. Distance metric learning

are the between-class and within-class covariance matrices,

Sb =
1

J

J∑
j

(µj − µ̄)(µj − µ̄)T

Sw =
1

L

J∑
j

∑
i|yi=j

(xi − µj)(xi − µj)
T ,

(2.19)

whose sum gives the overall variance S = Sb + Sw; µj is the mean of class j and µ̄ is

the mean of the class means. Similarly to the PCA case, the transformation VM that

minimises Eq. (2.18) is given by the leading eigenvectors of, in this case, S−1
w Sb. In fact,

this method can be seen as a supervised version of PCA where the additional information

available is used to differentiate between-class from within-class variance.

Inspired by LDA, the discriminant adaptive nearest neighbour (DANN) classifi-

cation algorithm [42] defines an adaptive metric

d(x,x0) =
√

(x− x0)TA(x0)(x− x0),

with A(x0) = S−1
w (x0)Sb(x0)S−1

w (x0),
(2.20)

similar to the LDA metric but where the between and within covariance matrices are

calculated using only points located within the neighbourhood of x0. The effect of the

metric is that distances along directions of the space where the local class centroids

coincide (those parallel to the class boundary) are ignored due to the absence of between-

class variance. On the other hand, distances along directions where the class centroids are

separated are indicators of relevant variance and are weighted as important by A(x0).

The result is a neighbourhood that stretches along the less important directions and

shrinks along the relevant ones to avoid including points from other classes.

Because Sb(x0) and Sw(x0), and consequently A(x0), depend on the location of interest

and on the selected neighbours, in practice DANN is applied as an iterative algorithm:

1. Initialise A(x0) = I (Euclidean metric).

2. Select the set of neighbours of x0 as the closest K points according to Eq. (2.20).

3. Calculate Sb(x0) and Sw(x0) from the set of neighbours (see [42] for details).

4. Calculate A(x0) = S
−1/2
w

(
S
−1/2
w SbS

−1/2
w + εI

)
S
−1/2
w , where the regularisation term

εI is added so that the neighbourhood does not expand indefinitely in any direction.

5. Repeat steps 2 to 4 until convergence.

32

2.1. Distance metric learning

6. Use A(x0) it to perform KNN classification on the query point x0.

A related method, relevant component analysis (RCA) [43, 44], calculates a metric

based on the same principle for data that, although unlabelled, is divided into groups

of points, called chunklets, that are known to belong to the same class. RCA treats

each of these chunklets as a separate class, calculates the associated covariance matrices

and obtains a Mahalanobis metric from them. This method is designed for specific

unsupervised applications, such as video segmentation or speech recognition, where data

naturally arrives as chunks of similar points, and these partial labels can be assigned to

the data without much effort.

Back to DANN, the authors also provide an interesting connection between the metric

in Eq. (2.20) and the chi-squared distance,

dχ(x,x0) =
J∑
j

[p(cj |x)− p(cj |x0)]2

p(cj |x0)
, (2.21)

provided that the p(x|cj) are normally distributed in the neighbourhood of x0. This

distance function is useful from a KNN classification perspective because it separates

examples x from the query point x0 when they belong to a class j for which p(cj |x0) is

small. At the same time, points with similar class probabilities receive small distances,

making it easier for them to stay in the neighbourhood.

The adaptive metric for nearest neighbour (ADAMENN) classification approach

[45] makes use of the local discriminative properties of the chi-square distance in Eq. (2.21)

to derive a measure of relevance:

ri(z) =

J∑
j

[p(cj |z)− p̄(cj |xi = zi)]
2

p̄(cj |xi = zi)
. (2.22)

where xi is the value of the i-th component of x and p̄(cj |xi = zi) is the expected value of

p(cj |x) conditional to xi = zi. Eq. (2.22) measures, at a particular location z in the input

space, how much the probabilities p(cj |z) are expected to change if we move from that

point while keeping the i-th coordinate fixed. If the expected variation (and therefore

ri(z)) is small, it means that as long as xi = zi, the class probabilities will not change

much with respect to their value at x = z, so knowing the value of the i-th feature is very

informative to predict p(cj |x) in the vicinities of z. On the other hand, if the variation

is large, then knowing the value of that variable is not decisive in the prediction.

The measure ri(z) can be generalised to a test point x0 by averaging its value over the

33

2.1. Distance metric learning

neighbourhood,

r̄i(x0) =
1

K

∑
z∈C(x0)

ri(z), (2.23)

indicating the local relevance of the i-th coordinate of the data space around x0. This is

then used to define the weights of the metric, described by a diagonal matrix:

wi(x0) =
exp(βRi(x0))∑N
j exp(βRj(x0))

(2.24)

d(x,x0) =

√√√√ N∑
i

wi(xi − x0i), (2.25)

where Ri(x0) = maxk(r̄k(x0)) − r̄i(x0) inverts the range of r̄i(x0) so that large values

correspond to relevant features. The metric weights wi are then calculated as an expo-

nential function of those values. The parameter β controls the effect of the metric, and

can go from 0 (equal weights, Euclidean distance) towards larger values, exponentially

increasing the effect of the dominant feature (the one with the largest Ri(x0) score) over

the rest. This also introduces a regularisation effect like the term εI in DANN, preventing

zero-weighted directions.

The effect of the metric can be explained in terms of the relevance scores: a large Ri(x0)

implies that if the value of the i-th covariate is kept close to x0i, the class probability will

be similar to that of x0. This is encouraged with a large wi that makes displacements

from x0i expensive. However, if Ri(x0) is small the points with xi close to x0i are less

likely to be similar to x0 in terms of class-membership, and therefore moving along that

direction is favoured by a small wi.

As in DANN, the metric obtained by ADAMENN also depends on the neighbours of x0

selected, so it can also be applied iteratively following the six steps of DANN (calculating

the relevance measures r̄i(x0) in step 3 and the weights wi(x0) in step 4). In practice, only

the labels of the samples are known, so p(cj |z) and p̄(cj |xi = zi) must be estimated. This

is done by considering the class prevalences in the neighbourhood of z (see [45] for details).

Also note that, because the scores are calculated for each covariate independently, the

method is limited to individual effects and it has no way of measuring the relevance of

variable interactions.

Other ways of defining the local relevance of the inputs have been studied. For instance,

the local flexible metric based on support vector machnes (LFM-SVM) algo-

rithm [46] uses the class boundary learnt by an SVM to determine the importance of

the variables. An SVM [47] is a supervised classifier that learns a nonlinear discriminant

function g(x) from binary labelled data and then uses it to classify unknown examples

34

2.1. Distance metric learning

according to sign(g(x0)). The idea in LFM-SVM is to use the class boundary g(x) = 0

to define the direction of maximum relevance. For a point b on the decision boundary,

the direction that best separates the two classes is given by n(b) = ∇xg(x)|x=b, the

gradient of the function at b. In areas close to the boundary, n(b) gives the direction

perpendicular to the decision surface, and therefore the one where the class probability

changes most. The local importance of any given direction, e.g., the i-th coordinate of

the space ui, at b can be measured by comparing it to the gradient, and the immediate

way to do it is using the dot product:

Ri(b) = n(b) · ui = n(b)Tui. (2.26)

These relevance scores can then be used to weight the displacement along the different

coordinates and construct a distance metric using the expressions in Eq. (2.24) and

Eq. (2.25).

In general, the query point x0 may not lie on the boundary, in which case g(x0) 6= 0.

Because it is at the boundary that the gradient is considered most informative, the

algorithm estimates the closest point to x0 on the boundary, b0 = arg minb d(b,x0),

and calculates the gradient there.

The effect of the metric should be emphasised in the boundary regions, where the class

probabilities are less homogeneous and change differently depending on the direction of

movement, therefore needing supervision more than in flatter areas of the surface. With

that idea in mind, LFM-SVM determines the value of the β parameter in Eq. (2.24)

based on the distance from the query point to the boundary. Specifically, β = max(d̄−
d(b0,x0), 0), where d̄ is a constant, for example the average distance between the training

points and the boundary. That way, points near the boundary receive a large β and vice

versa, automatically adjusting the metric to the local characteristics of the region of

the query point. This is an improvement over ADAMENN, where this parameter is set

manually. Another advantage is the fact that the calculation of the relevance scores

is not based on a set of neighbours, which removes yet another parameter and makes

the algorithm non-iterative. On the downside, LFM-SVM obviously requires training an

SVM and, in multiclass problems, adapting the model from binary classification, which

is not as simple as in NN methods.

Before the ADAMENN algorithm was proposed, the idea of a relevance measure based

on the predictive power of an input had been used in the Machete [26], a KNN clas-

sification algorithm in which the neighbourhood of the query point x0 is determined by

recursively partitioning the input space. The Machete implements a CART algorithm

(see Section 1.2) that iteratively divides the input space into subregions increasingly

homogeneous in terms of class membership. The process follows these steps:

35

2.1. Distance metric learning

1. Initialise the neighbourhood of the query point as the whole dataset, Cn(x0) = X.

2. Calculate the relevance of the coordinates of the input space at x0, Ri(x0), using

the points in Cn(x0).

3. Partition Cn(x0) into two regions along the most relevant covariate, i′ = arg maxiRi(x0).

The resulting subregion Cn+1(x0) is centered in x0 and includes the Kn+1 = αKn

closest points to x0 along the i′-th direction, where Kn in the number of points

contained in the previous partition Cn(x0), and 0 < α < 1.

4. Assign Cn(x0) ← Cn+1(x0), Kn ← Kn+1 and repeat steps 2 and 3. Do this until

Kn+1 has the desired value.

5. Take C(x0) = Cn+1(x0) as the neighbourhood of x0 and perform KNN classification

(Eq. (2.10)).

In each iteration, the algorithm partitions the current neighbourhood along the direction

that presents more variation of the class probabilities, keeping the most similar points

to x0 in that respect. When the process ends, the resulting C(x0) is an axis-oriented

hyperrectangle centered in x0 with edges of length li(x0). This is equivalent to applying

standard KNN classification using a diagonal metric with components wi = 1/li(x0)

and a ∞-norm. The result is, again, a smaller neighbourhood along directions of rapid

variation of p(cj |x) and longer along those where the probability changes more slowly,

producing an area with a smooth class probability surface.

The parameter α controls the number of iterations, and represents a tradeoff between

the number of features considered and the computational cost. A small value will require

fewer iterations to obtain the final neighbourhood, but because of the finite sample size

L, there may be relevant variables that do not get involved. Similarly, a large number

will consider all relevant directions, but at a higher computational cost.

To make sure all relevant variables affect the final neighbourhood, the Scythe [26]

changes the way the regions are partitioned in step 3 of the Machete algorithm so that

every variable affects the shape of the new subregion proportionally to their relevance.

Each time step 3 is run, Cn+1(x0) is obtained as a hyperrectangle that expands, centered

in x0, along every direction i with a speed of growth different for each of them, and

inversely proportional to Ri(x0). The expansion stops when the number of test points

contained within Cn+1(x0) is equal to Kn+1, then the algorithm goes back to step 2 and

updates the relevance scores. This ensures that all the local relevances are taken into

account, regardless of the value of α.

Like ADAMENN and LFM-SVM, the Machete and the Scythe consider variables indi-

vidually, so they do not measure the relevance of directions other that the input axis.

36

2.1. Distance metric learning

A possibility is to manually include in the process features derived from custom combi-

nations of the input variables to capture otherwise ignored interactions, which could be

identified for example using linear or quadratic discriminant analysis [26].

Metric learning with kernels

A kernel method is an algorithm that maps data points from the input space to a higher

dimensional space, x→ φ(x), and then applies a linear procedure there. The motivation

is that, because the mapping φ(x) can be arbitrarily complex, a simple linear method

(e.g., a linear discriminant) in the feature space can have a very nonlinear effect in the

original space. The main advantage of kernel methods is that they operate in the feature

space without having to calculate the coordinates of the mapped points explicitly. In

fact, not even defining the mapping is required. Instead, only inner products between

mapped points are needed, and they are obtained from the kernel function that defines

them, K(xi,xj) = φ(xi) · φ(xj). This is known as the kernel trick, and increases the

power of algorithms that depend only on dot products, also making them applicable to

inputs of any format, as long as a dot product can be defined between the examples.

Kernel functions represent measures of similarity between pairs of points in the feature

space, and can be designed in many different ways: polynomial, K(xi,xj) = (axTi xj+b)
c;

Gaussian, K(xi,xj) = exp(−‖xi−xj‖22/2σ2); sigmoid, K(xi,xj) = tanh(axTi xj +b); etc.

As measures of similarity, kernels are closely related to distances. The consequence of

the map x ∈ RN → φ(x) ∈ RF , F >> N , is that the whole input space is embedded

into a region M in the high-dimensional feature space. The geometric structure of M
is completely determined by the mapping function but, as long as φ(x) satisfies some

smoothness assumptions (namely having fixed rank Nφ, usually Nφ = N , and having

all derivatives defined and continuous everywhere in RN), M will be an N -dimensional

differentiable manifold in the feature space containing the image of RN [48].

Another consequence of the mapping is that, by defining this embedding, φ(x) is also

inducing a metric in the input space. This metric corresponds to measuring distances

between pairs of images φ(xi) and φ(xj) in the feature space along the surface M:

dφ(xi,xj) = dM(φ(xi),φ(xj)). (2.27)

Although for particular cases the manifold generated by the mapping function may be

flat (a hyperplane), in general M will be a curved surface. In such case, M is called

a Riemannian manifold. Distances in these manifolds are calculated locally using a

37

2.1. Distance metric learning

Riemannian metric tensor G(x) [49]:

dφ(x,x + dx)2 = dxTG(x)dx. (2.28)

G(x) is a symmetric positive definite matrix that determines the metric, and it is possible

to express it in terms of the kernel function by considering the length of an infinitely short

segment dz in M. Let us take z = φ(x) and z + dz = φ(x + dx), the mapped segment

and its length are

dz = φ(x + dx)− φ(x) ≈ ∇xφ(x)dx

dφ(x,x + dx)2 = ‖dz‖22 = dxT∇xφ(x)T∇xφ(x)dx,
(2.29)

using the first order Taylor approximation of φ(x + dx). Finally, using the definition of

the kernel function, K(x,y) = φ(x) · φ(y),

dφ(x,x + dx)2 = dxT ∇x∇yK(x,y)|y=x dx, (2.30)

which gives the expression of the Riemannian metric in terms of the kernel function used.

To calculate distances between non-adjacent points inM, Eq. (2.28) must be transformed

into a path integral:

dφ(xi,xj) =

∣∣∣∣∫ tj

ti

√
ẋ(t)TG(x(t))ẋ(t)dt

∣∣∣∣ , (2.31)

where t ∈ [ti, tj], x(t) is the path that goes from xi = x(ti) to xj = x(tj) and ẋ(t) =

d/dt x(t). The reason why Eq. (2.28) cannot be used for points distant inM is that the

straight line connecting them will, in general, leave the manifold and therefore the result

will not represent a distance in the original space. Only when the embedding defined

by the kernel function is flat, i.e., when G(x) is constant, can dφ(xi,xj) be calculated

directly using the Euclidean metric in the feature space. An example of this situation

is the kernel function K(xi,xj) = xTi AATxj . For this kernel, the metric induced in the

input space is

dφ(xi,xj)
2 = dE(φ(xi), φ(xj))

2 =

= φ(xi) · φ(xi) + φ(xj) · φ(xj)− 2φ(xi) · φ(xj) =

= K(xi,xi) +K(xj ,xj)− 2K(xi,xj) =

= (xi − xj)
TAAT (xi − xj),

(2.32)

the Mahalanobis distance metric in Eq. (2.12).

The strong relationship between kernel functions and metrics suggests that if a kernel is

38

2.1. Distance metric learning

selected that is informed about the problem of interest, so will the associated distance

metric. In classification tasks, the ideal kernel function is [50]:

K̊(xi,xj) =

{
1 if yi = yj

0 if yi 6= yj
(2.33)

Based on that concept, [51] proposes a method for kernel idealisation using distance

metric learning. Given a kernel K(xi,xj), idealising it means making it more similar

(according to the alignment measure [50]) to the ideal kernel K̊(xi,xj), and this can be

done easily as follows:

K̃(xi,xj) = K(xi,xj) +
γ

2
K̊(xi,xj), (2.34)

where γ > 0 is a control parameter (see [51] for proof and details). The problem is that,

in practice, the analytic expression of K̊(xi,xj) will not be available, and only values

for training data xi,xj ∈ X will be known. To be able to apply the idealisation to test

examples, the authors take advantage of the kernel/distance connection and combine

Eqs. (2.32), (2.33) and (2.34), obtaining the idealised distance

K̃(xi,xi) + K̃(xj ,xj)− 2K̃(xi,xj) = d̃2
ij =

{
d2
ij if yi = yj

d2
ij + γ if yi 6= yj

, (2.35)

where dij is the distance measure that corresponds to the original kernel. The algorithm

then assumes K̃(xi,xj) = xTi AATxj and optimises the value of AAT so that the idealised

distances are as close as possible to the desired values in Eq. (2.35). Once the optimal

value of AAT is determined, the kernel function (and therefore the corresponding metric)

can be applied to test and training examples alike.

In [49], the authors take a more general approach to the problem of transforming a

kernel to improve classification, in this case for SVM models. The modification of the

function pursues the traditional goal discussed above: to increase the weight of directions

of significant variation and reduce the rest. The transformation they propose is

K̃(xi,xj) = h(xi)h(xj)K(xi,xj), (2.36)

known as a conformal transformation of the kernel and where h(x) is a scalar function.

This also transforms the metric, G̃(x) = ∇x∇yK̃(x,y)
∣∣∣
y=x

, and for the Gaussian kernel

39

2.1. Distance metric learning

selected in their experiments the result is:

G̃(x) = ∇xh(x)∇xh(x)T + h(x)2G(x). (2.37)

Now let h(x) = exp(−d(x,b(x))2/2τ2), where b(x) is, as in LFM-SVM, the closest point

to x in the decision boundary of the SVM. The result of the transformation is that the

weights g̃ij(x) increase in relative importance with respect to gij(x) when i) h(x) changes

along the corresponding direction and/or ii) x is close to the boundary, providing the

effect intended.

The Fisher kernel [52] is another noteworthy example of a kernel function. It was

developed with the motivation to combine the power of generative and discriminative

models in classification. The idea is for a probabilistic generative model to estimate the

distribution of the input data, and use this information to define a mapping function,

and by extension a kernel, that will then be introduced into a discriminative classifier.

By doing so, the resulting framework takes advantage of the ability of generative models

to deal with difficult data types of variable length (speech and text recognition, biose-

quences, etc.) and the superior classification performance of discriminative approaches,

which generally struggle with data formats where it is difficult to define measures of

similarity between samples.

The Fisher kernel considers the generative model formed by a set of probability density

functions p(x|θ), parameterised by θ. This model constitutes a manifold in the space

of all the density functions p(x), which it is characterised by the following Riemannian

metric [53],

d(θ,θ + dθ)2 = dθTG(θ)dθ,

with G(θ) = Ex(∇θ log p(x|θ)∇θ log p(x|θ)T),
(2.38)

where Ex denotes the expectation with respect to p(x|θ), and G(θ) is known as the Fisher

information [54]. The distance between two points θ and θ+dθ in this metric corresponds

to the distance between the two corresponding densities p(x|θ) and p(x|θ+dθ) along the

manifold, and measures how different they are in terms of the expected variation in the

log-likelihood of x. The consequence of the metric being Riemannian and not Euclidean

is that the expected variation of log p(x) caused by a distortion in θ is different depending

on the location of the space in which it is measured.

In the problem of learning the underlying distribution of x, it is interesting to find the

direction in the parameter space that moves θ closer to the optimal parameter vector

θ̊ for a small displacement dθ. If the optimal vector θ̊ is taken as the one that gives a

40

2.1. Distance metric learning

maximum value of the log-likelihood, this direction is given by the natural gradient [55],

n(θ,x) = G(θ)−1∇θ log p(x|θ), (2.39)

which gives the direction of steepest ascent of the log-likelihood at a point p(x|θ) within

the manifold.

The Fisher kernel is based on the idea that, given a realisation p(x|θ) of the generative

model, two examples xi and xj that are similar will have similar values of the gradient,

and a kernel function is defined accordingly:

K(xi,xj) = n(θ,xi)
TG(θ)n(θ,xj) =

= ∇θ log p(xi|θ)TG(θ)−1∇θ log p(xj |θ).
(2.40)

A large value of the inner product of the gradients implies similarity from the point

of view of the underlying generative model in the sense that both examples require a

similar adaptation of the parameters to improve the fit. To apply the kernel in practice,

the training data is used to obtain an estimated density function p(x|θ̂), which enables

the calculation of pairwise similarities K(xi,xj). The kernel can then be applied to test

points for classification. For example, with an SVM, the prediction for a new point x0

would be

y0 = sign

(
L∑
i

αiyiK(xi,x0)

)
, (2.41)

where αi are parameters that determine the influence of each training point and, in this

case, yi = {−1,+1} represents a binary classification.

Fisher information metric in the input space

It has been discussed above how a family of probability densities p(x|θ) defines a manifold

where each point represents the function for a particular θ. Distances between functions

within the manifold are calculated using the Fisher information (FI) metric in Eq. (2.38)

and provide a measure of the local relevance of small variations of θ. The metric is

informed about the generative properties of the data, and it is thus able to assess the

importance of directions in the space of the parameters. Furthermore, there exists a

connection between the FI metric and the Kullback-Leibler (KL) divergence [56]:

IKL(p(x|θ), p(x|θ + dθ)) = dθTG(θ)dθ,

where IKL(p(x|θ), p(x|θ + dθ)) = −
∫

log

(
p(x|θ + dθ)

p(x|θ)

)
p(x|θ)dx,

(2.42)

41

2.2. Analysis of community structure in networks

which reinforces the role of the FI metric as a measure of the difference between adjacent

probability distributions on the manifold.

In the literature, the majority of the work done involving the FI metric has used the

classical formulation in Eq. (2.38), that is, defining the metric in the space of the param-

eters and using it to measure relevance of displacements there [55, 49, 57, 52, 56, 54].

However, it is possible to exchange the roles of x and θ so that the metric is defined in

the input space, now measuring the effect that moving x has on the probability of some

parameter. This is the idea proposed in [58, 59], where the authors change p(x|θ) by

p(y|x) in the definition of the metric:

d(x,x + dx)2 = dxTG(x)dx,

with G(x) = Ey
(
∇x log p(y|x)∇x log p(y|x)T

)
.

(2.43)

In this new setting, the probability function p(y|x) represents the discrete probability

distribution, or probability mass function, of the class y ∈ {1, · · · , J} conditional on x.

The expectation Ey is now over p(y|x), thus giving the FI matrix as a summation over

the classes:

G(x) =
J∑
j=1

∇x log p(cj |x)∇x log p(cj |x)T p(cj |x). (2.44)

The interpretation of the metric in the input space is analogous to the traditional case.

The distance between two points x and x + dx now reflects the variation that the dis-

placement dx from one to the other produces on the class probabilities. When that

translation does not change the posteriors, the distance given by the metric will be zero,

indicating that, locally, movement along dx is irrelevant in terms of the auxiliary infor-

mation. Similarly, large variations produce longer distances and imply relevance. This

extends to global distances through the solution of Eq. (2.31), where the shortest distance

is the one calculated along the geodesic path between xi and xj . To approximate the

geodesic, the authors [60] adopt a graphical approach similar to that suggested in the

Isomap algorithm, discussed earlier in this chapter.

2.2 Analysis of community structure in networks

A network is a representation of a set of elements and the pairwise relations between them

using nodes and edges (in this document, as well as in most of the related literature, the

terms network/graph, community/group/cluster, edge/link/connection and node/vertex

are considered equivalent). This type of representation arises naturally in fields where

connections between pairs of elements are clearly defined, as is the case with information

42

2.2. Analysis of community structure in networks

networks (e.g., the Internet) and social networks [61]. In those two examples, links are

determined by data transfers and social interaction, and it is simple to identify them and

build them into a network by placing edges between the corresponding nodes.

In data mining scenarios, the subject of interest of this thesis, the elements that form

the dataset are normally independent from each other and it is not straightforward to

establish connections between them. For example, in a medical database of patients

there is not an immediate way of linking related patients together, as they do not in-

teract between each other like members of a social network do. Nevertheless, network

representations can still be used in these situations by focusing on similarity between the

examples, understanding the presence of an edge as an indicator of similarity between the

nodes that it connects. Moreover, edges may have associated weights that determine the

strength of the links so, in this context, networks can accurately reflect different degrees

of similarity between pairs of nodes. We will refer to graphs built based on this idea as

similarity networks.

Networks provide a simple an intuitive visual representation of the arrangement of node

connections, which in turn reveals information about the data structure. In practice,

edges will not spread homogeneously across the network. Instead, it is common to find

areas in the graph with a high concentration of connections and others where the amount

of edges is low, suggesting the presence of network substructures. In particular, it is

frequent to look for communities within the graph in order to identify groups of nodes

that have similar characteristics or that play similar roles in some underlying process.

Fig. 2.6 illustrates this with a simple example.

Figure 2.6: Example of a graph with a strong community structure, as reflected by the large
number of connections within each of the three groups compared to the amount of edges between
them.
Image from [62]. Reprinted with kind permission from Springer Science and Business Media.

43

2.2. Analysis of community structure in networks

Although the concept of a network community is not clearly defined and each detection

algorithm uses its own criteria, most methods agree on the intuition that a community

is formed by a group of nodes densely connected between each other which, at the same

time, have few links with vertices from other groups [63, 64, 62].

Due to the wide variety of applicable areas for network analysis, the problem of detecting

communities has been studied from various perspectives in different disciplines. Next

subsection briefly reviews the most important traditional methods and then introduces

modern algorithms and the advances they bring. Here, the focus is on the simplest

(and most common) type of network: unipartite, i.e., all vertices are equal and can be

connected to any other vertex; and undirected, so there is no orientation associated to

the edges.

2.2.1 Traditional community extraction

The graph partitioning problem

The problem of optimal graph partitioning arises in important practical situations such

as parallel computation and electronic circuit layout. In the former, processes must be

grouped and allocated to the CPU’s in a way that minimises the communication required

between the different units to avoid slowing down the global execution. In the latter,

the position of the electronic components in a circuit board is normally arranged so that

the total length of the conducting tracks is minimised, reducing fabrication costs and the

intensity of parasitic effects. These two scenarios can be expressed in network terms by

allowing nodes to represent processes and components, and edges to symbolise process

interactions and electrical connections. Based on this situation, graph partition algo-

rithms try to find the division of a network into two groups that produces the minimum

number of edges between them. The process can be repeated to obtain further subdivi-

sions; this is known as iterative bisection. There are two main bisection methods: the

Kernighan-Lin algorithm and spectral partitioning.

The objective of the Kernighan-Lin algorithm [65] is to divide a given graph G of size

2L vertices into two disjoint partitions A and B of size L. The connections existing in G
are contained in the adjacency matrix A. Elements of A satisfy Aij ≥ 0, Aij = Aji and

Aii = 0, and represent the weight of the connection between a pair of nodes xi, xj ∈ G,

where a value of 0 implies no connection and a large value corresponds to a strong link.

Edge weights can be thought of as the number of edges connecting a pair of nodes given

by a real number instead of an integer; unweighted networks are a particular case where A

has only binary values. The algorithm defines the ideal partitions as those that minimise

44

2.2. Analysis of community structure in networks

the number of edges that go from A to B:

A,B = arg min
A,B

∑
xi∈A

∑
xj∈B

Aij . (2.45)

A guaranteed way to obtain the optimal solution is to try all possible partitions and select

those that produce the minimum cost as given by Eq. (2.45), but that is computationally

unfeasible in most applications. The Kernighan-Lin algorithm proposes an heuristic

approximation to the true minimum that can be realistically used in practice. The

method takes two initial partitions A and B and tries to move them closer to the ideal

partitions Å and B̊ by swapping nodes between them. The fundamental idea is that,

for any given partitions, two subsets X ⊂ A and Y ⊂ B exist such that swapping them

results in the ideal bisection, i.e. Å = A − X + Y and B̊ = B − Y + X . The question

addressed by the algorithm is how to approximate these subsets as closely as possible in

a reasonable time.

To aid the selection of the nodes that will be exchanged, the external and internal costs

of a vertex xi ∈ A are defined as

Ei =
∑
xj∈B

Aij

Ii =
∑
xj∈A

Aij ,
(2.46)

and conversely for a point in B. Further to that, Di = Ei − Ii is the difference between

the external and internal connections of xi. It is easy to show that swapping a pair of

nodes xi ∈ A and xj ∈ B reduces the cost of the partition in Eq. (2.45) by an amount

g = Di + Dj − 2Aij , so g represents the cost improvement provided by the swap. The

cost decrease associated to a node exchange is used to sequentially determine the swap

subsets X and Y, resulting in the following algorithm:

1. Given some initial partitions A and B, find all Di values.

2. Select the pair of nodes xA0 ∈ A and xB0 ∈ B whose swap produces the maximal

cost decrease, g0.

3. Assume xA0 and xB0 have been swapped and calculate the new Di values, D′i, so

they know about the swap. Then select the pair xA1 ∈ A − {xA0} and xB1 ∈
B−{xB0} that produces the maximal cost decrease, g1. Note that points swapped

before are not eligible to swap again. Repeat this process until every point has

been exchanged once, and therefore the partitions are A and B again.

This step yields a series of L cost gains gk that, added together, sum up to 0. The

45

2.2. Analysis of community structure in networks

algorithm then chooses k so that
∑k

1 gk is maximised. The value of k determines

the subsets X = {xA0, · · · , xAk} and Y = {xB0, · · · , xBk} and the decrease in the

partition cost that swapping them produces, g0 + · · ·+ gk.

4. Exchange X and Y and return to step 2 with the new partitions. The process

continues until a partition is reached with a minimum cost, that is, one for which

no swap is possible that improves the split. At this point, the algorithm could be

executed again using different initial partitions to see whether a better solution is

reached.

The algorithm is an efficient bisection method and it is reported to perform well in

practice, but it has some limitations. First, it requires knowing the size of the partitions

beforehand; the algorithm can be adapted to produce partitions of different sizes, but

they still need to be specified. Note that, for the cost function in Eq. (2.45), a free choice

of the sizes of A and B would result in the trivial solution of putting all nodes in one

partition and none in the other. Also, the method is designed to find optimal bisections,

and although the authors suggest ways to divide graphs into more than two partitions,

they are based on finding pairwise optimal solutions between the subsets, and not a

global one. The dependence of the result on the initialisation of the partitions is also

an undesirable feature. The first two points are not an issue in the problem for which

the algorithm was devised, but they do represent an obstacle for general community

detection, where in general neither the number of partitions nor their size will be known

in advance.

Spectral partitioning [66] avoids some of those drawbacks by relying on the spectral

properties of the Laplacian matrix to perform the bisection. The Laplacian of a graph

is a matrix calculated as L = D − A, where D is a diagonal matrix that contains the

degrees of the vertices (the number of edges adjacent to each node).

The Laplacian contains information about many properties of the network. In particular,

the eigenvectors and eigenvalues of the matrix can be used to identify communities in the

network. Fig. 2.7 illustrates this with an example of a network with a clear structure.

Because there are three disconnected communities, the graph Laplacian is block diago-

nal, each block the same size as the corresponding community. As a consequence, the

Laplacian has as many null eigenvalues as there are disconnected groups in the graph,

three in this case. By observing which components of those eigenvectors are different

than zero, it is simple to identify the node-community memberships.

Fig. 2.7 is obviously a special case where the communities are perfectly defined. Fig. 2.8

is a variation of that example where edges have been added between the communities,

producing a connected graph. In this case, there is only a null eigenvalue, which corre-

sponds to the eigenvector of all ones; this is now of little use to identify communities

46

2.2. Analysis of community structure in networks

Figure 2.7: Example network with three separate communities. The decomposition of the Lapla-
cian matrix returns three null eigenvalues, one for each module.

because it would lead to putting all vertices into the same group. There is, however,

useful information in the eigenvector with the second smallest eigenvalue. This vector

is known as Fiedler vector in honour of the mathematician who observed that its com-

ponents can be used to find good bisections of connected graphs [67]. The eigenvalue of

the Fiedler vector, λ2, receives the name of algebraic connectivity and gives an idea of

the modularity of the network, with small values indicating that a good bisection of the

graph (with few edges between the communities) is possible.

Figure 2.8: Modified version of the network in Fig. 2.7. In connected graphs there can only be a
single null eigenvalue, λ1, and the algebraic connectivity λ2 is always greater than zero. Spectral
bisection uses the signs of u2 to split the network. The vertical dotted line indicates the resulting
partition.

The reason (and the way) to use the Fiedler vector u2 to divide the graph arises from the

aforementioned definition of the cost of a bisection as the number of edges running from

one partition to the other. If a vector s is defined such that si = {+1,−1} determines

the partition into which node i falls, the cost of the bisection is given by ε = sTLs times

an irrelevant constant. The vector s can be expressed in terms of the eigenvectors of L

47

2.2. Analysis of community structure in networks

as s =
∑

i aiui, with ai = uTi s. Using that, the cost of the partition is

ε = sTLs =
∑
i

a2
iu

T
i Lui =

∑
i

a2
iλi =

∑
i

(uTi s)2λi. (2.47)

Minimising Eq. (2.47) is a difficult task, but a good approximation to the minimum can

be obtained if λ2 is small by taking s parallel to u2 [64]. This would reduce the cost of

the partition to λ2. Notice that the minimum (zero cost) corresponds to using u1, but

that is not useful, as discussed above. Because the values of the components of s are

restricted, the vector cannot be made exactly parallel to u2; the best approximation is

to set s according to the signs of the Fiedler vector, si = +1 if u2i > 0 and si = −1 if

u2i < 0. Fig. 2.8 shows an example of the application of this method.

Also note that, since the Fiedler vector u2 is perpendicular to u1, it must have positive

and negative values and will normally produce partitions of balanced sizes. This is a

desirable property, as it prevents the method from returning close to trivial partitions,

e.g., separating the node with the lowest degree from the rest.

Spectral bisection is a fast algorithm and finds good divisions (provided there is one)

[64, 62]. Additionally, it is possible to refine the communities obtained by using them as

the initialisation of the Kernighan-Lin algorithm. This not only improves the cost of the

split, but also removes the need to specify the size of the clusters, which is automatically

determined by the signs of the Fiedler vector. Despite the various alluring features of the

method, it still has flaws from the point of view of community detection. Firstly, spectral

partitioning is, like the Kernighan-Lin algorithm, a bisection method, and even though

it can be applied recursively to obtain more than two partitions, it is not clear which

order to follow nor how many communities the algorithm should look for. Secondly, and

most importantly, the algorithm will always divide the network, even in cases where no

good partitions exist. A community detection algorithm should only divide a graph into

subgroups if there is a community structure that justifies doing it, otherwise leaving the

network as it is. In that sense, spectral bisection, as well as the Kernighan-Lin algorith,

lacks a way of assessing whether a network should be partitioned or not depending on

its structure.

Hierarchical clustering

Hierarchical clustering [68] is, along with graph bisection, one of the most popular ap-

proaches to community detection, especially when dealing with data that, by nature, is

structurally hierarchical. In the context of networks, this is characterised by a structure

consisting of a few large communities that divide into smaller nested groups and so on,

as is the case, for example, in social networks. To model this type of structure, hierar-

48

2.2. Analysis of community structure in networks

chical clustering takes the set of graph vertices and iteratively merges them, one by one,

until the initial L communities (one per vertex) eventually reduces to a single one that

contains all nodes. This is known as the agglomerative approach. Alternatively, divisive

algorithms start with all vertices together in one group and repeatedly split it until the L

nodes are separated. In both cases, the result is a set of L different solutions that range

from one extreme to the other, and which are normally represented using a dendrogram

like the one in Fig. 2.9.

The key aspect of hierarchical clustering methods is the criterion used to choose which

communities should be merged (or split) and in which order. These decisions are deter-

mined by a similarity measure that quantifies the affinity between two vertices, which

then extends to communities by taking the minimum, maximum, or average value be-

tween the nodes involved. In each iteration, the algorithm merges the two most similar

communities according to the measure (or, in the divisive case, the community division is

carried out that produces the most dissimilar subgroups). Several vertex similarity mea-

sures have been suggested in the literature [64, 62], such as structural similarity, which

looks at how many neighbours the two vertices share; independent path counts (two paths

are vertex/edge-independent if they have no vertices/edges in common); random walks,

which measure dissimilarity as the number of steps needed by a random walker to go

from one node to the other; etc.

Figure 2.9: Dendrogram representing an example of hierarchical clustering of a network with 12
nodes. Agglomerative methods start from the bottom of the tree and group nodes together until
reaching the top, whereas divisive algorithms start from the top and split the communities until
getting to the bottom. A horizontal cut of the tree returns the set of communities into which the
graph is divided at the point where the cut is taken.
Image from [69]. Reprinted with kind permission from the National Academy of Sciences.

An advantage of hierarchical clustering methods is that they do not require knowing the

number or size of communities in advance, only the pairwise similarities between nodes are

needed. Also, the tree representation of the different partitions provided by dendrograms

is an intuitive visualisation of the nested community structure of the network. On the

downside, these algorithms do not specify which of the different found partitions better

represents the actual graph structure, and it is the user who must decide where to cut the

49

2.2. Analysis of community structure in networks

tree. Another characteristic inconvenience of hierarchical clustering is that, although it is

good at identifying the central parts of communities, it usually leaves peripheral vertices

(i.e., nodes that are connected to a cluster by very few and/or weak edges) unassigned,

forming communities on their own [69, 70].

2.2.2 Modern community extraction

Traditional techniques for graph partitioning and clustering have proven useful for de-

tecting communities in specific situations. Inspired by the strengths and limitations of

those methods, researchers have more recently worked towards methods that focus on the

general case of identifying communities in networks whose structure is unknown. That

implies that algorithms must be capable of determining the number and configuration

of communities that best describe the internal structure of the network. This subsection

discusses the most relevant advances that have appeared in this field in the last decade.

Edge removal algorithms

One of the most popular recent contributions to community detection is the Girvan-

Newman algorithm [69]. It is based on the principle of divisive hierarchical methods,

but it differs from them in a fundamental aspect: instead of eliminating edges between

nodes with low similarity, the Girvan-Newman algorithm removes the edges that connect

the different modules together. In the classic hierarchical approach the first edges to go

are those that connect the most distinct nodes, but that does not necessarily mean they

belong to different communities. The Girvan-Newman method focuses on finding the

edges that lie between the communities and removes them even if they connect two very

similar nodes (according to traditional similarity measures).

It is clear that if such edges are identified and removed, the communities will appear as

disconnected groups of vertices. So the question arises of how to define a measure that

highlights the edges between the different communities. The authors found the answer in

vertex betweenness, a measure introduced in [71] to give an idea of the influence of a node

within a network. The betweenness of a node is calculated as the number of shortest paths

connecting pairs of other vertices that run through it. They then generalised this measure

for edges, defining edge betweenness as the number of geodesic paths in a network that

include that particular edge. The intuition is that, if indeed there are communities in the

network under study, they will be, recalling the properties mentioned above, connected

with each other by only a few edges. Consequently, shortest paths running between

communities will likely include these edges, resulting in a high value of betweenness that

increases their chances of being removed from the graph. Other betweenness measures

50

2.2. Analysis of community structure in networks

exist, such as random-walk betweenness and current-flow betweenness [70], based on the

same idea as the shortest-path betweenness just explained.

Once the betweenness measure is defined, the algorithm is ready to run. It involves four

steps:

1. Calculate the betweenness of every edge in the network.

2. Identify the edge with the highest betweenness and remove it from the graph.

3. Recalculate the betweennesses for the remaining edges.

4. If any edges remain, return to step 2 and repeat.

The recalculation of the betweenness measures in step 3 is the other main improvement

over hierarchical clustering that the Girvan-Newman algorithm brings. Instead of cal-

culating all the pairwise measures at the beginning of the process and then using them

to define the order of edge removal, now they are updated in each iteration. This is

important in situations where there are communities connected to each other by a small

number of edges; it usually happens that most of the inter-community shortest paths

run through one of those edges only, giving it a high betweenness while the rest receive

a low value. When this edge is removed, the shortest paths will have to run through

the remaining inter-community edges, increasing their betweenness. The recalculation

step updates these values and prevents the potentially wrong removal of other edges that

should have taken place at a later stage. Experiments show that this step is crucial for

the performance of the algorithm [70].

The introduction of betweenness measures overcame the unwelcome typical behaviour

of traditional hierarchical methods discussed in Section 2.2.1, but the Girvan-Newman

algorithm was still unable to decide which of the partitions contained in the resulting

dendrogram was the best. The solution to that problem came two years later, when the

same authors introduced the concept of modularity [70], a measure of the quality of the

division of a network. To derive this score, the first step is to consider the division of a

network into K communities. A matrix e is then defined whose elements eij contain the

proportion of edges that connect communities i and j in the original network (without

removing any edges). With this formulation, an intuitive quality measure of the partition

could be defined as the total proportion of intra-community connections, Tr(e) =
∑

i eii,

since a good division should be characterised by a high value of this sum. However, a

partition with a maximum value of this measure could be easily obtained by assigning

all nodes to any of the K communities.

To prevent this, the modularity measure takes into account the structure of an analogous

network which has the same number of edges as the original, but placed randomly between

51

2.2. Analysis of community structure in networks

the vertices, ignoring the community they belong to. The probability that an edge in

the network involves at least one node from community i is ai =
∑

j eij , the proportion

of edges that connect to that community. Therefore, the probability of a randomly

located edge to connect communities i and j is e′ij = aiaj . The modularity of a network

partition is defined as the difference between the proportion of intra-community edges in

the original network minus the proportion of such edges that one could expect to find in

an analogous network with the same node memberships but where edges are placed at

random:

Q =
K∑
i

eii − e′ii = eii − aiai = Tr(e)− ‖e2‖ (2.48)

The reason for evaluating the community structure of a network by comparing its edge

allocation with that of a network constructed randomly is that in the latter one does not

expect to find a group structure, but rather a homogeneous mesh of edges connecting

the different communities. Thus, a particular assignment of vertices to communities

is considered to reflect an underlying community structure if it results in more intra-

community edges than it would be expected by chance. In practice, the Girvan-Newman

algorithm calculates the modularity for each of the solutions found, i.e., for each of the

possible cuts of the dendrogram, and selects the partition with a highest value. Note

that, whenever Q is computed, the original topology of the graph is used. Naturally,

one should look for partitions with a positive value of Q. Experiments suggest that a

modularity score larger than around 0.3 indicates the presence of significant structure

[72]. Although its maximum is 1, values of Q over 0.7 are rare in practice [70].

The main limitation of the Girvan-Newman algorithm is that it is computationally expen-

sive due to the constant recalculation of the betweenness measures. Several modifications

of the algorithm have been proposed to make it faster: In [73], the calculation of the edge

betweenness was approximated using only the shortest paths between some pairs of ver-

tices chosen randomly, rather than considering all of them. This implies a loss in the

accuracy of the measures, but results show that a substantial speed-up can be obtained

without much performance deterioration (note that the algorithm only needs to know

which edge has the highest betweenness). A different approximation of the betweenness

measure is suggested in [74]. Other algorithms simply replace shortest-path betweenness

with a different measure. For example, [75] uses the number of short loops, e.g., trian-

gles, that include a particular edge, based on the fact that edges between communities

will normally not belong to many such loops, as opposed to edges located deep within a

cluster.

52

2.2. Analysis of community structure in networks

Modularity optimisation algorithms

Ever since its introduction, Newman and Girvan’s modularity has been the most used

quality measure in community detection algorithms [64]. As discussed above, modularity

helps evaluate how good the partition of a network is, enabling an objective comparison

between different solutions. But that is not the only way it can be beneficial to the

process of finding communities. Because modularity is independent of the method used,

it is also possible to design algorithms that try to find the best graph partition by

explicitly optimising the measure. As in the case of the Kernighan-Lin algorithm, the

simplest solution is to calculate the modularity for all possible partitions and select

the one that yields the maximal value, but again, that would be too costly. Viable

algorithms must therefore approximate the optimal division of the network; some of the

most representative approaches are briefly described below.

The first algorithm to directly maximise Q was a greedy optimisation method based

on agglomerative hierarchical clustering [72]. As such, it starts with each vertex forming

a separate community and iteratively merges them until they are all in the same group.

In each iteration, the algorithm calculates which merger results in the largest increase

in modularity ∆Q and carries it out. The modularity score of the different partitions is

stored, and when the fusion process is finished, the division corresponding to the maximal

Q value is selected. There are many variations of the algorithm [64], aimed at improving

its computational cost and accuracy, such as [76], which speeds up the update of the

matrix e; [77], which favors the formation of balanced communities; [78], which studies

the benefits of using predefined communities as an initial stage for the agglomerative

process; and [79], a version of the algorithm that starts by forming small communities

restricted to neighbouring nodes that are then used as supervertices of a new network on

which the algorithm is applied again, resulting in a very fast recursive method.

If the accuracy of the approximation to the modularity maximum takes priority over

execution time, the best results are given by using simulated annealing [80]. Sim-

ulated annealing [81] is a probabilistic algorithm for global optimisation that performs

a stochastic exploration of the state space. The system transitions from one state to

another are affected by a noise component that helps avoid local minima. The method

allows the exploration of states even when they result in a decrease in modularity, with

the hope that they may lead to posterior configurations that are closer to the global min-

imum. As the algorithm progresses, the probability of accepting transitions that decrease

modularity is reduced, and the system eventually converges to a partition. Simulated

annealing outperforms all popular community detection algorithms [63], but it does so

at the cost of complexity; it is a computationally very demanding method, and can be

applied to networks with at most a few thousand vertices.

A less expensive yet competitive alternative consists on the maximisation of modularity

53

2.2. Analysis of community structure in networks

using extremal optimisation [82]. This method, reminiscent of the Kernighan-Lin al-

gorithm, starts with an initial division of the network in two random sets of nodes and

repeatedly moves the vertex whose fitness (a measure of its contribution to the modu-

larity score) is minimal from one community to the other. When no vertex movement is

possible that increases Q, the bisection is considered optimal. The process then continues

recursively on each of the two resulting communities independently.

Spectral optimisation of the modularity is yet another possibility of addressing the

problem, as suggested in [83]. This approach is inspired by the spectral bisection algo-

rithm discussed in Section 2.2.1, but in this case the objective function used to determine

the best partition is the modularity. For a particular bisection of a network, the original

expression of Q in Eq. (2.48) can be reformulated and expressed in terms of individual

node contributions:

Q =
1

4m

L∑
i

L∑
j

(
Aij −

kikj
2m

)
sisj =

1

4m
sTBs, (2.49)

where ki is the degree of vertex i, m is the total number of edges in the network (or

the sum of all edge weights in weighted networks), and the vector s contains the node

memberships, si ∈ {+1,−1}. Eq. (2.49) considers, for each pair of vertices, the difference

between the weight of the edge connecting them and the expected weight if edges were

placed randomly, given by kikj/2m. The matrix B is called modularity matrix and,

following the reasoning that led to Eq. (2.47), its eigenvectors and eigenvalues can be

used to rewrite Q by taking s =
∑

i aiui:

Q = sTBs =
∑
i

a2
iu

T
i Bui =

∑
i

a2
iλi =

∑
i

(uTi s)2λi, (2.50)

where ui and λi are the eigenvectors and eigenvalues of B. In this case, the interest

lies in maximising the function, so analogously to the approximation taken to minimise

Eq. (2.47), s is chosen as close as possible to the eigenvector with the largest eigenvalue.

Again, due to the binary restriction of the components of the vector, the values are

assigned according to the signs of the eigenvector.

To put the algorithm into practice, the user simply calculates the matrix B and obtains its

eigendecomposition. Then, the signs of the eigenvector with the most positive eigenvalue

are used to bisect the graph. It may happen that the largest eigenvalue is zero, the rest of

them being negative (note that, as with the Laplacian, the vector (1, 1, · · · , 1) is always

an eigenvector with null eigenvalue, since the rows and columns of B add up to 0), which

means that no partition exists that results in a positive modularity. In that situation, the

elements of the leading eigenvector are all equal, and therefore no partition is performed.

54

2.3. Methodology selection

This is a significant advantage over spectral partitioning, where the bisection was always

carried out, regardless of whether it produced meaningful communities or not.

The magnitude of the eigenvector components is also informative. Large absolute values

in the elements of the leading eigenvector imply large contributions of the corresponding

nodes towards the modularity score, and vice versa. Moving those vertices from one

community to the other would result in an important deterioration of the modularity,

which suggests they are central to the community they belong. Similarly, elements of the

eigenvector close to zero correspond to nodes that are not influential on the modularity,

meaning they are not so closely related to their community.

Like other bisection methods, this algorithm approaches the problem of identifying mul-

tiple communities by iteratively splitting clusters. However, in contrast to other algo-

rithms, it appreciates that divisions following the initial one must not treat subcommuni-

ties as independent groups of nodes because they are still connected to vertices outside of

them in the original network, and therefore splitting them while ignoring those outbound

connections would not be maximising the global modularity. Instead, if a subgroup of

size L′ is to be divided, an L′ × L′ modularity matrix B′ is calculated that is informed

about the structure of the rest of the initial network. B′ is then decomposed and its

leading eigenvector is used to divide the subgroup. The bisection of this subgroup will

produce a change in the global modularity, ∆Q. If this value is positive, it means that

partitioning the subcommunity improves the global score, and therefore the split is ac-

cepted. If, on the other hand, it is negative, the division worsens the measure and it is

rejected, leaving the subcluster as it was. The iterative bisection process stops when no

subdivision is possible that improves the global modularity.

2.3 Methodology selection

As discussed in previous sections, the main objective of this work is to develop a frame-

work for the construction and analysis of informative networks that generate interpretable

insights of classification datasets, both in terms of visualisation of data structure and pre-

diction of class labels. Accordingly, the skeleton of this methodology comprises two well

differentiated parts: the distance metric, responsible for producing pairwise measures of

similarity between points in the dataset; and the community detection algorithm, which

performs the analysis of the network that those similarities define. After a review of

the most representative methodologies in both of those fields, this section specifies which

methods are used to achieve the objectives listed in Section 1.4, making way to Sec-

tion 2.4 for a discussion on how this work contributes to the existing knowledge on which

it finds support.

55

2.3. Methodology selection

2.3.1 Selection of the distance metric

Probably the most influential factor within the framework, the distance metric is solely

responsible for capturing the (dis)similarity between the elements of the database, and

it is imperative that it does so in a way that adjusts to the classification task at hand,

weighting displacements according to their influence on the classification probability sur-

faces. It is also desirable that the behaviour of the metric adapts to the characteristics

of the surroundings of the location of the input space where it is applied, taking the

focus off flat areas and putting it on the fast-changing boundary regions. Several of the

reviewed supervised metrics satisfy these properties (DANN, ADAMENN, LFM-SVM,

etc.), but only the Fisher information metric provides an elegant, clearly defined and

statistically rigorous solution. Furthermore, because it depends explicitly on the vari-

ation of the class-membership probabilities, it leaves the user the freedom to estimate

those surfaces with their method of choice.

Based on those features, we follow a similar approach as that suggested in [58, 59] and

opt to derive a variation of their FI metric based on discriminative probability estimators.

2.3.2 Selection of the probability estimation method

The Fisher information metric is determined by the FI matrix in Eq. (2.44), which, in

turn, depends on the posterior probabilities p(cj |x). In most applications, these functions

are not known a priori, so they need to be estimated before the metric can be applied.

Probability density estimation can be carried out using any of the various methods found

in the machine learning literature, which can be divided in two categories: generative

and discriminative.

Generative models

Generative probability estimators approximate the joint distributions p(x|cj) of the ob-

served variable set from the available data, resulting in a full model of the data that

allows sampling any of the input variables. Once the generative densities have been

estimated, Bayes’ theorem can be used to obtain conditional probabilities as

p̂(cj |x) =
p̂(x|cj)p̂(cj)∑
j p̂(x|cj)p̂(cj)

. (2.51)

Most generative models assume the data has been generated by a distribution whose

parameters are estimated using maximum likelihood. A very simple and common exam-

ple is to assume that a given variable is normally distributed, estimating the Gaussian

56

2.3. Methodology selection

parameters as the mean and variance of the samples available,

Mixture models add an additional level of complexity by assuming that each sample is

generated by a weighted contribution of individual probability distributions [84],

p̂(x|cj) =
∑
i

wijfi(x). (2.52)

The densities fi(x) represent different populations within the whole data space. In prin-

ciple, fi(x) can be any probability function; common choices are Gaussian and Bernoulli

distributions for continuous and discrete data respectively. In this case, an optimisation

algorithm like Expectation Maximisation is required to calculate the parameters of each

function as well as the weights mixing weights wij .

Discriminative models

Discriminative estimators model the probability distribution of a target variable con-

ditional on the values of the observed covariates. In contrast to generative methods,

discriminative models estimate the posterior distributions p(cj |x) directly, without first

modelling the density function in the input space. This is usually all that is needed, since

in many applications (e.g., classification and regression) the full probabilistic model of

the data is not required.

Nearest-neighbours methods constitute one of the most widely used discriminative esti-

mators. As seen earlier in the chapter, NN techniques follow a non-parametric approach

that estimates the value of the target function p(cj |x) based on its value at nearby loca-

tions where it is known (see Eq. (2.10)).

Another representative example of discriminative model is Fisher’s linear discriminant,

also discussed earlier in the chapter. For the binary case, this model classifies samples

according to the sign of y = wTx, where w defines a discriminative hyperplane between

the two classes, and whose values are obtained by maximising the between- to within-

class variance ratio. However, the projection y does not represent a probability estimate;

the correct calibration is given by the family of generalised linear models,

y = Φ(wTx + w0), (2.53)

where Φ(·) is known as the activation function. A widely used Φ(·) is the sigmoid function,

which gives rise to linear logistic regression, a well calibrated model even when the classes

are imbalanced. The main alternative to discriminative linear estimators is the multilayer

perceptron (MLP), where a layered structure of artificial neurons with sigmoid outputs

57

2.3. Methodology selection

turns the linear approach into a flexible non-linear model capable of fitting any probability

surface [85].

Other examples of flexible discriminants include radial basis function (RBF) networks

[86], another type of neural network that uses non-linear activation functions based on

the distance between the inputs and the functions’ centres; and relevance vector ma-

chines (RVMs) [87], a variation of the non-probabilistic SVM classifier that generates

probabilistic predictions.

For the particular application that concerns this work, only the posterior class-membership

probabilities are required, and therefore discriminative estimation methods seem more

appropriate given their purpose. Moreover, they do not make any assumptions on the

generative distributions of the data, avoiding any practical limitations in that respect.

Specifically, sigmoid-output estimators are the methods selected for this framework be-

cause of their flexibility, simple implementation and differentiability of the surfaces they

produce. Furthermore, by choosing these models, the differential expression of the Fisher

information metric can be calculated generally in terms of the sigmoidal formula of

the posterior probabilities, p̂(cj |x) = Φ(a(x)), and then adapted to the corresponding

linear/non-linear case by specifying the argument a(x).

2.3.3 Selection of the community detection algorithm

Although there is not as much variety in this field as there is in distance metric learning,

there are still some interesting differences between the existing methods that can help

decide on which to rely. Firstly, it is clear that only algorithms based on modularity

should be considered unless there is a good reason to use others, given the acceptance and

proven usefulness of the measure. From the different alternatives available, we decided

to maximise modularity using spectral optimisation, as suggested in [83]. The choice

of this method over the rest is justified for the simplicity of its implementation and,

especially, for the repeatability of the partitions it finds, which do not depend on a

stochastic procedure, as in simulated annealing, or in any kind of initialisation, as in the

extremal optimisation algorithm.

There are several other methodologies involved at different stages of the framework; they

will be introduced as they appear throughout the next chapter.

58

2.4. Novel contributions

2.4 Novel contributions

Fisher network framework for data visualisation and classification

The main contribution of this thesis is the combination of a Fisher information metric

and a network community extraction algorithm into a semi-supervised framework for in-

terpretable data visualisation and classification [88]. Successful applications of FI metrics

in classification scenarios are not new [59, 60], but to our knowledge such a metric has

never been used in the construction of affinity networks before.

FI metric derivation using discriminative models

The derivation of the FI metric is inspired by that of Kaski et al. [58], but it differs from

it in one crucial aspect: the estimation of the posterior probabilities. Their approach

uses generative models such as Gaussian mixtures or Parzen estimators in conjunction

with Bayes’ theorem to obtain the posterior class probabilities p(cj |x). In this work, the

probability estimation is carried out by a linear logistic regressor (LLR) or a multilayer

perceptron (MLP), both discriminative methods that, as such, avoid density estimation

as an intermediate step, resulting in a more direct metric learning process. This work does

not intend to contribute to the debate of whether generative of discriminative models are

to be preferred in machine learning applications, as there is plenty of literature available

on that topic [89, 90]. In this context, our contribution is an original derivation of the

metric for LLR and MLP. A connection between the interpretations of the FI metric in

the data and parameter spaces is provided in Section 3.3.1 that relates to the traditional

relationship between the metric and the KL divergence [56].

Closed-form distance measure for linear models and iterative geodesic finder

For the linear case of the LLR, we show that the path integral in Eq. (2.31) can be

solved analytically, resulting in a closed-form expression that enables the calculation of

global distances without having to approximate the integral. For the MLP, and non-

linear methods in general, the issue of geodesic paths comes into play; we propose an

iterative greedy algorithm based on gradient descent optimisation to find shortest paths

in the input space, and compare it with the alternatives used in the literature [60].

59

2.4. Novel contributions

FI metric and blind signal separation

Before building the first similarity networks [88, 91], studies of the benefits of the FI

metric in KNN classification [92] and in a blind signal separation problem are carried

out. In the latter, the categorisation of brain tumour spectroscopy data is performed

using an original combination of the Fisher metric and non-negative matrix factorisation

[93]. This includes prior knowledge extracted from known class labels in an otherwise

unsupervised method through the use of the metric, improving the performance of the

original algorithm.

Reference case identification and informative backgrounds

When it comes to the representation of networks, the proposed framework automatically

arranges the nodes in a 2 or 3-dimensional Euclidean space using MDS techniques so

that the distances between them approximate those in the Riemannian space, making

the data structure immediately apparent. After the community detection stage, one or

more reference cases may be identified for each cluster using centrality measures; this

allows a simplified representation where only intra-community edges that connect to a

reference node are visible, highlighting the cluster structure. Node classification can also

be performed accepting only contributions from reference nodes or using the full network.

Additionally, informative backgrounds provide an even richer visualisation of Fisher in-

formation networks by colouring the background of network plots according to the pre-

dicted values of the class membership probabilities, graphically signaling the different

class regions and borders, and so defining a visual classification map for enhanced inter-

pretability.

Related work

Going back to the framework as a whole, there is a recent methodology called CaseRea-

soner [94] that is similar to our work in several respects. CaseReasoner is part of a

project to develop a healthcare platform for a grid of clinical centres, and it is aimed at

providing clinicians with a flexible way to access and analyse the clinical records of all

centres simultaneously. To visualise the data, CaseReasoner uses three different repre-

sentations: treemaps, heatmaps and similarity networks; it is the latter that is related

to our framework, as it also produces affinity networks based on the pairwise similarities

of the samples in the database. There are, however, two important differences in the

process:

• CaseReasoner often works with categorised data, so it uses similarity measures

60

2.5. Chapter summary

that exploit the available auxiliary labels, as advised in the literature. It offers

two measures, one calculates similarity as the inverse of the divergence between the

posterior class probabilities of the two points of interest, and the other trains an

ensemble of classification trees and looks at how many of them put the two points

in the same class. Both are non-metric global measures, since they only consider

the predictions of a pair of examples to determine how similar they are, ignoring

their location in the input space and what lies between them there. In effect, this

overrides the topology of the data space, and therefore the resulting similarities

miss the structural information of the data. In contrast, the FI metric looks at

local divergences between points and extends them to distant examples through a

path integral. This is a geometrically rigorous distance measure that preserves the

topology of the input space, producing affinity measures that reflect the data struc-

ture, which is later infused into the similarity network. This is important because

it helps to distinguish class substructure in multimodal distributions, something

impossible to detect using global divergences. A simple example of this effect is

discussed in [60].

• To construct the network from the affinity measures, CaseReasoner uses one of three

neighbourhood methods: relative neighbourhood, ε-neighbourhood or K-nearest

neighbours. The first method connects two points only if there is no other point

that is more similar to both of them than they are between each other, the second

connects points whose similarity is above a certain threshold, and the third connects

each point to its K most similar neighbours. These methods generally produce

sparse networks, which is good for a tidy representation. However, the placement

of vertex connections also affects the clusters found by the community detection

algorithm. Our framework builds fully connected networks, so none of the similarity

measures are ignored. By doing so, we make sure that the communities found in the

subsequent stage are the result of a perfectly informed process. This is likely to be

irrelevant for points with a high class membership, as they will probably fall in the

same community even if only a few of their strongest connections are considered.

For borderline points, though, snapping any potentially informative connections

may affect their assignment and make them fall in the wrong cluster.

2.5 Chapter summary

This chapter takes a detailed look at the most relevant methods in the different areas

of machine learning that concern this framework. After exploring the various techniques

that the distance metric learning literature has to offer, the chosen metric is based on

the Fisher information matrix calculated in the input space, as it brings together all the

61

2.5. Chapter summary

properties desired for the underlying similarity measure. As for the posterior probability

estimates required to derive the metric, these will be calculated using sigmoid functions

with linear and non-linear arguments. Regarding network community extraction, the

existing research clearly suggests the choice of a modularity-based algorithm, from which

a spectral optimisation method is selected.

The combination of these techniques results in a novel similarity network construction

methodology. The structure of the generated graphs reflect that of the data in the original

space, using only the information that is objectively relevant to the class membership

probabilities.

62

Chapter 3

Methodology description

From a practical point of view, the framework proposed in this thesis takes a dataset

with samples divided into classes and generates a network representation that can then

be used to gain insight into the data structure and extract class predictions for new

unknown points. The production of these Fisher information networks entails several

internal subtasks; the purpose of this chapter is to describe each of the different steps

in the process and connect them together to present the complete methodology of the

framework.

The diagram in Fig. 3.1 summarises the steps required to go from a dataset to the

corresponding FI network. The first stage consists on estimating the class-membership

probabilities p(cj |x) from the data with the supervision of auxiliary variables in the form

of class labels (Section 3.1). The probabilities are then introduced in the definition of

the FI matrix (Section 3.2). With this, it is possible to calculate infinitesimal distances

directly using the differential metric expression, which can be extended to global distances

by approximating geodesic paths and calculating a path integral along them (Section 3.3).

Using a Gaussian kernel, pairwise distances are transformed into connectivity weights

(Section 3.4), giving rise to the adjacency matrix that determines the structure of the

Fisher network. A community detection algorithm then analyses this matrix and extracts

the clusters present in the network (Section 3.5). Once the community structure of

the network is known, it can be used to visualise the original dataset, find the most

relevant nodes in each cluster and perform interpretable classification based on known

cases (Section 3.6).

3.1 Probability estimation

Because the Fisher information focuses on the variation of the conditional class probabil-

ities, having a good estimation of the true functions is essential in order for the FI metric

63

3.1. Probability estimation

Figure 3.1: The diagram illustrates the Fisher network constructing procedure. Each section in
this chapter describes one of the different steps involved in the process.

to accurately reflect those changes, which in turn results in a sound similarity measure.

This section describes the methods implemented in the framework to obtain such esti-

mates. For the sake of convenience, the binary and multiclass problems are considered

separately, since the former leads to a simpler expression of the FI matrix. Further-

more, binary classification problems are very frequent in practice, so having a specific

formulation of the metric is useful.

3.1.1 Binary classification

For the binary case, the probability estimators considered have an output characterised

by a sigmoid function,

p̂(c1|x) =
1

1 + exp(−a(x))
, (3.1)

where, following the notation used in Section 2.1.2, p̂(c1|x) = p̂(y = 1|x) is the estimated

probability that x belongs to class 1. Since the probabilities must add up to one, the

conditional probability of class 0 can be calculated from Eq. (3.1) as p̂(c0|x) = 1−p̂(c1|x).

The scalar function a(x) represents a map of the input space into real values, and it

64

3.1. Probability estimation

is the gateway through which the input variable information enters the model. The

characteristics of a(x) determine how the different variables are combined to produce the

posterior probabilities, thus defining the estimation. The process of training the model

consists on adjusting the parameters in the function so the predictions are as close as

possible to the true labels. Depending on the complexity of this function, the resulting

estimators can be divided in two categories: linear and non-linear.

Linear estimators: Linear logistic regression

Linear estimators use, as their name indicates, a function a(x) that is a linear combination

of the input variables,

a(x) = β0 + β1x1 + β2x2 + · · ·+ βNxN = β0 + βTx, (3.2)

which, in combination with the sigmoid function in Eq. (3.1), gives a binary linear logistic

regressor (LLR). In this case, a(x) is usually known as generalised linear estimator, and

its parameters β and β0 can be determined by optimising the sum of squared errors,

εSSE =
L∑
i=1

(yi − p̂(c1|xi))2. (3.3)

The sum of squares error is, however, an objective function better suited for linear re-

gression. A more appropriate function for classification is the log-likelihood,

εLL = −
L∑
i=1

(yi log(p̂(c1|xi)) + (1− yi) log(1− p̂(c1|xi)), (3.4)

which, when optimised, maximises the likelihood of the estimator making the correct

predictions.

Linear probability estimation is simple and efficient, but it is limited by the complexity

of the problems it can tackle. Because a(x) is linear in x, the boundary between classes,

p̂(c1|x) = p̂(c0|x) = 0.5⇐⇒ a(x) = 0, is a hyperplane in the input space, with equation

βTx = 0. Such a boundary can only solve linearly separable classification problems; for

more complicated cases a non-linear method is required.

65

3.1. Probability estimation

Non-linear estimators: Multilayer perceptron

The model chosen to provide the non-linear version of a(x) is a multilayer perceptron

(MLP). The MLP is a type of neural network and, as such, its computational power

is based on the combined operation of a number of smaller units called neurons (see

Fig. 3.2). These neurons were introduced in 1943 by McCulloch and Pitts [95] as a

simplified representation of brain neurons, with the idea that circuits made of these basic

units properly interconnected could implement logical functions of arbitrary complexity.

Furthermore, these units can learn by adapting the weights of their synaptic connections,

so they can be used for regression and classification through the appropriate modification

of those parameters.

Figure 3.2: Representation of the McCulloch-Pitts neuron. When the weighted sum of the inputs
is positive, the neuron is fired and the output is active. Negative weights correspond to inhibitory
inputs, whereas positive ones are associated with excitatory signals. One of the inputs is normally
a constant that determines the value of the activation threshold, also known as bias.

Fig. 3.3 shows the structure of the MLP implemented in the framework for binary classi-

fication problems, which contains two layers. First, a hidden layer with S neurons takes

the components of x as inputs and generates as many non-linear intermediate signals.

These are then combined in the output layer by another neuron, resulting in a non-linear

expression of a(x),

a(x) = WOΦ(WHx + BH) +BO, (3.5)

where x is the N × 1 input vector, WH is the S ×N hidden layer weight matrix, BH is

the S × 1 hidden layer bias weight vector, WO is the 1 × S output layer weight vector,

BO is the output layer bias weight and Φ(z) = 1/(1 + exp(−z)) is the sigmoid function

(applied element by element for vectors).

As with the LLR, training the MLP consists on minimising the log-likelihood error

66

3.1. Probability estimation

Figure 3.3: An MLP with S nodes in the hidden layer and a single-neuron output layer. If the
hidden neurons are equipped with exponential non-linear activation functions (normally sigmoid
or hyperbolic tangent functions), and provided there is a large enough number of these units, an
MLP can approximate arbitrarily complex functions to the desired accuracy [84].

function, this time with respect to the synaptic weights. The simplest method to do

this is gradient descent, which iteratively updates a parameter w with an increment

∆w = −α∇wεLL, where α is the step size or learning rate. Interestingly, when gradient

descent is applied to these models, their layer structure causes the propagation of the

estimation error from the output back through the network, controlling the update of the

weights inside. This is widely known as error backpropagation training [96, 97, 98].

For instance, in the MLP in Fig. 3.3, the variation of the objective function with respect

67

3.1. Probability estimation

to the output of the network is

δ =
dεLL
da(x)

= −
L∑
i=1

(yi(1− p̂(c1|xi))− (1− yi)p̂(c1|xi)), (3.6)

which, at the same time, is an aggregate measure of the individual estimation errors

made. Using the chain rule, the weight updates can be expressed in terms of δ, which

represents an error signal that propagates backwards to guide the update process:

∆WO = −α dεLL
dWO

= −αδda(x)

dWO

∆WH = −α dεLL
dWH

= −αδ da(x)

dh(x)

dh(x)

dWH
,

(3.7)

where h(x) = Φ(WHx + BH) is the S × 1 vector of hidden layer outputs.

Regarding the structure design of the implementation of the MLP, the number of free

coefficients must be large enough to generate accurate posterior probability surfaces that

provide the desired performance. However, an excess of the number of neurons results

in a too complex output response that overfits the training data as well as the noise

that it may include. Consequently, the network makes very small prediction errors on

the training examples but its estimation power does not generalise well to new data.

To mitigate overfitting, regularisation techniques modify the objective function by

including a term εreg that penalises overly complex networks,

εtotal = εLL + γεreg, (3.8)

where the parameter γ controls the influence of the regularisation term. This framework

uses a weight decay regulariser [85], which defines εreg as the sum of all the weights in

the network squared,

εreg =
1

2

∑
w∈WH , BH

WO, BO

w2. (3.9)

The update of a generic weight using this regulariser is given by

∆w = −α∇wεtotal = −α(∇wεLL + γ∇wεreg) = −α(∇wεLL + γw). (3.10)

In the absence of the first term, the second term of the update equation induces a decay of

all weights to zero, hence the name of the regulariser. This effect means that for a weight

to have a value different than zero, it must provide a contribution to the reduction of

68

3.2. Fisher information matrix

the prediction error εLL. In other words, complex neural networks with very non-linear

output surfaces, which are given by large weights, must be justified by a significant

improvement of the model performance over simpler structures. Otherwise, the output

function is smoothed to provide a better balance between simplicity and accuracy.

3.1.2 Multiclass classification

In multiclass problems, data points belong to one of J classes, yi ∈ {1, · · · , J}, so a(x)

is replaced by J functions aj(x). To ensure that the J estimated probabilities add up to

one,
∑

j p̂(cj |x)) = 1, the sigmoid output of the binary estimator in Eq. (3.1) is replaced

by a softmax activation function,

p̂(cj |x)) =
exp(aj(x))∑J
k=1 exp(ak(x))

. (3.11)

To obtain the functions aj(x), the framework implements an MLP like the one in Fig. 3.3

but with J neurons in the output layer. Therefore, the functions a(x) = (a1(x), · · · , aJ(x))T

are

a(x) = WOΦ(WHx + BH) + BO, (3.12)

where WO is now a J × S matrix and BO is a J × 1 vector. The training process is the

same as in the binary classification case, adapting the log-likelihood objective function

to multiclass prediction,

εLLm = −
L∑
i=1

J∑
j=1

(cj(xi) log(p̂(cj |xi)) + (1− cj(xi)) log(1− p̂(cj |xi)), (3.13)

and updating the weights using regularised backpropagation.

3.2 Fisher information matrix

Obtaining the closed-form probability estimates in Section 3.1 enables the next step in the

process: calculating the Fisher information matrix. In this context of conditional class

69

3.2. Fisher information matrix

probabilities, the FI matrix is given by any of the following two equivalent definitions:

1) FI(x) =
J∑
j

(∇x log(p̂(cj |x)))(∇x log(p̂(cj |x)))T p̂(cj |x)

2) FI(x) = −
J∑
j

(∇2
x log(p̂(cj |x)))p̂(cj |x)

(3.14)

Combining these definitions with Eqs. (3.1) and (3.11), this section is devoted to the

expression of the FI matrix in terms of the parameters of the estimators considered

above.

In the binary classification problem, the summation involved in the definitions reduces to

a simple closed-form expression, so it is convenient to calculate the FI matrix expressions

separately for the binary and multiclass cases.

3.2.1 FI matrix for two classes

The binary class problem only requires the estimation of one of the two posterior probabil-

ity functions, since the other can be calculated from it. Consequently, the FI matrix can

be written in terms of that probability. For estimators with a sigmoid output function,

the matrix is

FI(x) = (∇xa(x))(∇xa(x))T p̂(c1|x)(1− p̂(c1|x)). (3.15)

The calculations leading to this expression have been omitted here for brevity; they can

be found in Appendix A.1. As discussed in Section 3.1, a(x) is the mapping of the input

that determines the estimation, and is given by

a(x) = β0 + βTx (LLR)

a(x) = WOΦ(WHx + BH) +BO (MLP)
(3.16)

for the linear and non-linear methods considered, respectively. Eq. (3.15) implies a(x)

must be a continuous function defined and differentiable everywhere in the input space.

That is the case; its derivatives are

∇xa(x) = β (LLR)

∇xa(x) = (WO(WH ◦ ((h(x) ◦ (1S×1 − h(x)))11×N)))T (MLP),
(3.17)

where 1a×b is an a × b matrix with unit components and the ‘◦’ operator denotes the

element-wise Hadamard product.

70

3.3. Fisher information metric

3.2.2 FI matrix for multiple classes

For multiple classes, the class-membership probabilities are given by Eq. (3.11) and,

when inserted in Eq. (3.14), the expression of the FI matrix is

FI(x) =

J∑
j

J∑
k

J∑
l

(∇x(aj(x)− ak(x)))(∇x(aj(x)− al(x)))T ·

·p̂(cj |x)p̂(ck|x)p̂(cl|x).

(3.18)

Again, the steps to obtain this expression are detailed in Appendix A.2. As in the

binary case, the functions aj(x) must be continuous and differentiable. Their derivatives,

∇xa(x) = (∇xa1(x), · · · ,∇xaJ(x)) are given by the binary MLP formula in Eq. (3.17),

but with a J ×N output weight matrix WO.

3.3 Fisher information metric

As Kaski et al. propose in [58, 59], the FI matrix in Eq. (3.14) can be used to define a

metric in the input space, analogously to the traditional application of this idea in the

parameter space. To do so, a differential distance is defined as

d(x,x + dx)2 = dxTFI(x)dx, (3.19)

which gives the distance between adjacent points in the input space.

3.3.1 The Fisher metric and the KL divergence

There is a widely known link between the traditional FI metric in the parameter space

and the Kullback-Leibler (KL) divergence of generative distributions (see Eq. (2.42)).

That connection is described in detail in [56] where, starting from the definition of the

KL divergence and applying a Taylor expansion, it is shown that the measure is related

locally to a differential metric determined by the FI matrix.

An analogous derivation of that relationship can be carried out in the input space for the

classification context on which this work focuses. Given two neighbouring points x and

x + dx and a set of conditional class probabilities p̂(cj |x), the KL divergence is given by

IKL(x : x + dx) = −
∑
j

log

(
p̂(cj |x + dx)

p̂(cj |x)

)
p̂(cj |x). (3.20)

71

3.3. Fisher information metric

Appendix B shows that this divergence is related to the distance between the points

under the FI metric,

IKL(x : x + dx) =
1

2
d(x,x + dx)2 =

1

2
dxTFI(x)dx. (3.21)

The interpretation of the divergence measure and its derivation are described in detail

in Appendix B. As a summary, Eq. (3.21) shows that the distance between two nearby

points under the Fisher metric is connected to the divergence between the correspond-

ing probabilities p̂(cj |x) and p̂(cj |x + dx). Therefore, infinitesimal displacements along

directions of the space that produce large divergences in the posterior probabilities will

result in long differential Fisher distances, indicating high relevance with respect to the

external class labels, and vice versa.

3.3.2 Global distances for linear estimators

Given the FI matrix, Eq. (3.19) calculates the distance between infinitely close points.

In order to extend this local metric to any two points in the input space, the differential

distance must be integrated along the corresponding path,

d(xA,xB) =

∣∣∣∣∫ tB

tA

√
ẋ(t)TFI(x(t))ẋ(t)dt

∣∣∣∣ , (3.22)

where x(t) represents a path in the input space that goes from xA = x(tA) to xB = x(tB)

and ẋ(t) = d/dt x(t); x(t) is the path along which the distance is measured.

Interestingly, when the FI matrix is calculated using a linear estimator like that in

Eq. (3.2), the path integral can be solved analytically (see Appendix C for detail on

the solution) resulting in the following closed-form expression,

d(xA,xB) =

∣∣∣∣∣2
[
arctan

(
exp

(
−a(x(t))

2

))]xB

xA

∣∣∣∣∣ , (3.23)

which does not depend on the particular path from xA to xB. That is, any path connect-

ing xA and xB has the same length under the Riemannian metric defined by the Fisher

information.

Although this may seem counter-intuitive, it becomes clear when the detail of the method

is scrutinised more closely. When the class probability is estimated using a binary model

from the exponential family with a linear score function a(x), the whole data space

in effect collapses into a straight line. This is because a(x) only takes into account

72

3.3. Fisher information metric

displacements along a single direction in the space. For the particular case of the LLR,

this direction is given by the vector of regression coefficients β due to the dot product

βTx present in Eq. (3.2), which results in the estimated probability changing only along

the vector β. The Fisher metric focuses on variations of the probability, so for any given

pair of points it is only the distance between their projections onto β what determines

the distance between them in the Riemannian space. In summary, because only one

direction of the space is relevant, every path that connects the two points of interest will

have the same length regardless of its shape.

3.3.3 Global distances for non-linear estimators: finding geodesic dis-

tances

In the case of the MLP estimators discussed in Section 3.1, the score a(x) is a non-linear

function of x, and consequently its first derivative, included in the FI matrix expression,

depends on x. This complicates the integral in Eq. (3.22), making an analytical solution

impossible to find. The same happens in the multiclass problem, this time due to the FI

matrix having a more complex formulation. Distances in these cases depend on the path

considered, and a method is required to find the length of the shortest path or geodesic

distance.

This subsection describes several methods to approximate the minimum distance between

a pair of points. First, the straight path and graph-based algorithms suggested in [60]

are described, which are then followed by an alternative proposal developed specifically

for this framework.

Straight path approximation

The simplest approximation to the true geodesic distance between two points xA and

xB is to apply the differential expression in Eq. (3.19) directly, even if the points are not

close to each other,

d1(xA,xB)2 = (xA − xB)TFI(xA)(xA − xB). (3.24)

This considers the shortest path to be the straight line between the two points, and

approximates the integral along that path by assuming that the FI matrix is constant

throughout, with value FI(x(t)) = FI(xA). The FI matrix may be evaluated at the

midpoint (xA + xB)/2 to make the distance symmetric.

To improve the accuracy of this approach, the path integral can be approximated nu-

73

3.3. Fisher information metric

merically using interpolation methods (e.g., the rectangle or trapezoid rules). By doing

this, the FI matrix is evaluated at T points along the straight path,

dT (xA,xB) =

T∑
t=1

d1

(
xA +

t− 1

T
(xB − xA),xA +

t

T
(xB − xA)

)
, (3.25)

which can approximate the true length of the straight line as closely as desired by choosing

a large enough T . The authors suggest T = 10 as a rule of thumb based on empirical

classification performance.

Graph-based approximation

The immediate way to improve on the T -point approximation is to allow non-straight

geodesic paths. The authors do this by using a graph-based geodesic estimation similar to

the solution implemented in the Isomap algorithm [34]. The method starts by calculating

all pairwise distances between the points in the dataset using the T -point algorithm.

These distances are then used to define a fully connected graph where the weight of

the edge between points xA and xB is given by dT (xA,xB). Finally, a graph search

method such as the Floyd-Warshall algorithm is used to find the shortest path between

the selected pair of points, which in the general case will consist of a series of hops

between nodes in the graph. The length of the resulting path, dG(xA,xB), is calculated

as the sum of the weights that it contains, and is taken as the geodesic distance.

The free point approach

By definition, the result of the graph-based geodesic calculation above depends on the

particular set of data points available to use as vertices. This results in a restricted

set of candidate paths from which the algorithm chooses the shortest. To remove that

limitation, we propose an iterative approach to build an unconstrained approximation to

the true geodesic.

The method starts by dividing the straight path connecting the points at hand, xA and

xB, into T+1 segments. A hyperplane is then defined in the point between each pair

of consecutive segments. The resulting T hyperplanes are parallel to each other and

orthogonal to the straight line path.

A point is defined within each of the hyperplanes, with the idea of establishing a path

from xA to xB by connecting it to the points in the previous and next hyperplanes, as

depicted in Fig. 3.4. The T points can move freely within their respective hyperplanes,

and therefore any direct path between the two points can be formed provided T is large

74

3.3. Fisher information metric

enough.

Figure 3.4: The free point approach defines the path between xA and xB as the consecutive
connection of a set of points. The location of these points within their hyperplane containers is
iteratively adjusted to minimise the total length of the path.

In order for the composed path to have minimum length, it is expressed in terms of the

free points by adding the length of all segments,

dFP (xA,xB) =
T∑
i=0

d(xiF ,x
i+1
F), (3.26)

where xiF are the free points, with x0
F = xA and xT+1

F = xB. The length of the seg-

ments can be calculated using the straight line methods discussed above and, for binary

classifiers, also with Eq. (3.23) applied locally. The total distance is used as objective

function, and it is minimised using gradient descent with respect to the position of the

points,

∆xiF = −α∇xi
F
dFP (xA,xB). (3.27)

This optimisation setting raises the question of how to parameterise the point to hyper-

plane membership so the free points move within their corresponding hyperplane without

leaving it during the updates. A solution to this problem is the use of the Gram-Schmidt

orthonormalisation. This method takes a finite set of vectors as input and generates an

orthogonal set Z = (z1, · · · , zN), which in this case will be used as alternative axes for

the representation of the free points. If the normalisation is applied so that one of those

axes, for instance z1, has the same direction as the vector xB −xA, the rest of them will,

by definition, be perpendicular to it and therefore be contained in a hyperplane orthog-

onal to the straight path connecting the two points (Fig. 3.5). In such a scenario, all

points within each hyperplane will have the same value of the first coordinate, so the only

condition for a point to lie within a particular hyperplane is to have the corresponding

coordinate value.

The vectors zi can be normalised to have unit length, forming a transformation matrix

75

3.4. Fisher networks

Figure 3.5: Gram-Schmidt orthonormalisation applied in the context of the method. The axis
z1 is perpendicular to the T hyperplanes, providing each of them with a unique coordinate value.

U = (u1, · · · ,uN) that allows the transition from the coordinates of the free points in

the original axes to the new ones and vice versa,

xiF = UziF ⇐⇒ ziF = UTxiF . (3.28)

In this new representation, the objective function can be written as

dFP (xA,xB) = dFP (UzA,UzB) =
T∑
i=0

d(UziF ,Uzi+1
F). (3.29)

Similarly, the gradient descent formulation is now

∆ziF = −α∇ziF
dFP (UzA,UzB). (3.30)

The update of the free points is carried out normally except for their first coordinate,

which is kept constant so they stay within the hyperplanes.

3.4 Fisher networks

After selecting a distance calculation method, the next step is the construction of simi-

larity networks based on the Fisher metric. Distances are, however, inversely correlated

to similarity, i.e., points separated by a small distance are considered very similar, and

conversely for large distances. A further step is therefore required to transform a distance

value into a measure of the similarity between a pair of points, which may then be used

76

3.4. Fisher networks

to weight the edge connecting the corresponding pair of nodes in the network.

Assuming that zero distance maps to maximum similarity and recognising that the

anisotropy of the projective space of covariates has been captured by the Fisher met-

ric, it is natural to transform distances into similarity indicators using a Gaussian radial

kernel,

Aij = exp

(
−d(xi,xj)

2

σ2
G

)
, (3.31)

where d(xi,xj) is the distance between xi and xj under the Fisher metric and σG is

the network locality parameter, which determines the width of the Gaussian kernel. The

distances d(xi,xj) define the meaning of the similarities Aij with respect to the estimate

of the conditional class probabilities. These measures, which lie in the range Aij ∈ (0, 1],

form the adjacency matrix A that contains the structure of the Fisher network. Note

that, although the diagonal elements Aii should be equal to 1 given that d(xi,xi) = 0,

they are explicitly set to zero to avoid self-connections in the network.

The parameter σG controls the width of the kernel and, by extension, how local the

resulting similarities are: a small value of σG will result in only very close points hav-

ing significant connection weights, while larger values will reduce this effect and produce

meaningful values also for points that are further away. Notice that the weights Aij char-

acterise the network and determine the communities extracted from it and the predictions

drawn, so it is important to establish some criteria to choose σG.

3.4.1 Selection of the network locality parameter

The suggested method to select σG is the empirical study of its effect on different measures

used as indicators of the goodness of a particular value of the parameter. The idea is

to calculate the adjacency matrix using the Gaussial kernel for a range of values of σG,

evaluating the indicators for each of the resulting networks. Based on the measures, a

recommended value of the parameter (or range thereof) is provided. When selecting σG

in the experiments shown in Chapter 4, the following three measures are used.

Faithfulness of the network predictions

The first measure has to do with the accuracy with which the Fisher network is capable

of replicating the class-membership probabilities given by the original estimator, p̂(cj |x).

The way predictions are drawn from the network in this framework is by approximating

the score ak(x) given by the estimator for a point xi as a weighted sum of the rest of the

77

3.4. Fisher networks

nodes’ scores,

a′k(xi) =
1∑
j Aij

∑
j

Aijak(xj), (3.32)

which is then inserted into the output function of the estimator to calculate the prob-

ability p̂′(ck|xi). These network estimates are computed for all points in the dataset,

and their quality is measured using the KL divergence between them and the original

estimates, used as reference,

ϕKL = − 1

L

L∑
i

J∑
k

p̂(ck|xi) log

(
p̂′(ck|xi)
p̂(ck|xi)

)
. (3.33)

The measure gives an idea of how well the network predictions replicate those of the

original estimator, with the minimum value ϕKL = 0 representing identical estimates.

The term 1/L is used to normalise the measure and make it comparable across datasets.

Cramer’s V statistic

The second measure is Cramer’s V [99], an association score included here to provide

an evaluation of how coherent the communities found in the network are with respect to

the class labels of the data. It is calculated from the contingency table of the vector of

community memberships and the vector of true labels as

ϕCV =

√
χ2

Lmin(C1 − 1, C2 − 1)
, (3.34)

where χ2 is the chi-squared statistic obtained from the table, C1 is the number of com-

munities and C2 is the number of classes in the dataset. This measure ranges from 0

to 1, indicating the concordance between the community allocation of the nodes and

their original class membership, with ϕCV = 0 meaning no association and ϕCV = 1

corresponding to complete concordance.

McNemar’s test

The third measure has to do with the classification accuracy associated with the network

predictions, p̂′(ck|xi), and the primary ones, p̂(ck|xi), used as reference. Because the two

classifiers are applied to the same data, the extent to which the differences between the

78

3.5. Community detection

errors they make can be attributed to chance is quantified with McNemar’s test [86],

ϕMN =
|nA − nB| − 1√

nA + nB
, (3.35)

where nA denotes the number of errors made by the network predictions and not by the

original ones and vice versa for nB. Under the null hypothesis that the classifiers are not

significantly different, ϕMN is given by a normal distribution N(0, 1), so it is possible

to obtain a p-value from the test and therefore define a threshold for significance. This

is of interest for the evaluation, since the selected value of σG is expected to produce a

network that retains the classification power of the initial estimator.

Section 4.4.2 shows examples of the parameter selection process using these criteria. Note

that the three measures described above are suggestions adequate for classification and

community detection purposes; other measures can be incorporated to this analysis to

suit the user’s interests.

3.5 Community detection

Eq. (3.31) represents the transition from the space of the covariates to the network sphere.

The adjacency matrix A represents a fully connected graph, the Fisher network, whose

structure contains the geometrical relationships between the points in the original dataset

under the FI metric. The next stage of the process is the study of that structure in order

to find meaningful communities with respect to the classification problem. This func-

tionality is implemented by Newman’s spectral algorithm for community detection [83],

whose theoretical basis is described in Section 2.2.2. This section covers the application

of the method in practice with a small example.

Fig. 3.6 shows a simple network whose community structure is desired. The algorithm

obtains it by iteratively splitting the network in a way that maximises a measure of

modularity. For the initial split, the resulting modularity score is given by

Q =
1

4m

L∑
i

L∑
j

(
Aij −

kikj
2m

)
sisj =

1

4m
sTBs, (3.36)

where s contains the node memberships si ∈ {+1,−1} after the partition. The modularity

matrix B is calculated from Aij , the weight of the edge connecting nodes xi and xj ; ki

and kj , the degree or total weight of the edges adjacent to these two nodes, and m, the

aggregate weight of all edges in the network. The optimum split is given by the signs of

v1, the eigenvector of B with the highest eigenvalue. Fig. 3.6 contains the values of A,

79

3.5. Community detection

B and v1 for the example, as well as the resulting division.

Figure 3.6: Example network with 8 nodes and 9 edges with unit weights. The community detec-
tion algorithm starts by splitting the network according to the signs of the leading eigenvector of
the modularity matrix B. The resulting node assignment, highlighted with a dashed line, increases
the modularity from the initial Q = 0 (no division) to Q = 0.36.

After the first division, the algorithm continues the splitting process with each of the

resulting partitions. To do it, a reduced modularity matrix is defined for each of them,

B
(g)
ij = Aij −

kikj
2m
− δij

(
k

(g)
i − ki

dg
2m

)
, (3.37)

where k
(g)
i is the degree of node xi within subgraph g and dg is the sum of the degrees of

the nodes that form the subgraph, dg =
∑

l∈g kl. That expression reduces the initial B to

a Lg×Lg matrix and adjusts the diagonal elements so that its rows and columns add up

to zero. Then, like in the initial stage, the leading eigenvector of B(g) is calculated and

the subgraph is split according to its signs. This produces a change in the modularity of

the network given by

∆Q =
1

4m
s(g)TB(g)s(g). (3.38)

Fig. 3.7 illustrates how the splitting procedure continues after Fig. 3.6. The smaller of

the two partitions is indivisible, i.e., there is no way to split so that ∆Q > 0, but the

other one can still produce a slight increase in modularity if appropriately divided.

The algorithm continues the recursive division of the network for as long as there are

80

3.6. Practical uses of Fisher networks

Figure 3.7: Further partitioning of the network in Fig. 3.6. The largest eigenvalue of the left
hand side subgraph is zero, and consequently no subdivision is possible that increases modularity.
In contrast, the larger subgraph is divisible, producing an improvement ∆Q = 0.04, for a total
Q = 0.40.

splits that increase the global modularity. At some point, all remaining communities will

be indivisible, and the execution of the algorithm will conclude. This is the case after

carrying out the partition in Fig. 3.7: none of the three remaining communities have

positive eigenvalues, and so the process is over and the final communities are defined.

3.6 Practical uses of Fisher networks

The final section of this chapter discusses the functionality that Fisher networks bring

into the framework in practical classification problems, namely data representation, iden-

tification of central nodes within the communities and case-based class prediction.

3.6.1 Dataset visualisation

One of the motivations for this work is to produce a dataset representation method

that highlights the structure of the data in a way that is meaningful with respect to

the classification problem at hand. After building the Fisher network and analysing its

structure, this task is as simple as plotting the nodes and the edges connecting them.

Since the network, as defined by the adjacency matrix A, is fully connected, some form of

edge filtering must be carried out prior to the representation. Possible approaches include

pruning edges with weights below a certain threshold, keeping only the K strongest

connections, displaying only the spanning tree of the network, etc. The experiments in

this work display two different types of edges: connections between nodes from the same

community and connections between the most central node in each cluster and the rest

of the members.

81

3.6. Practical uses of Fisher networks

The other visualisation factor is the location of the nodes in the representation of the net-

work, which directly affects the clarity with which the structure of the graph is perceived

by the user. This is especially important for large networks, where careless positioning

of the nodes will likely result in a confusing mesh of edges. To avoid this, nodes should

be arranged in a way that places points that are close under the Fisher metric also close

in the graph, and vice versa. A good method to obtain such placement is to make use

of the MDS techniques described in Section 2.1.1. In particular, this framework uses the

Sammon mapping [32], a non-linear projection algorithm that takes the L × L matrix

of pairwise Fisher distances dF (xi,xj) of the points in the N -dimensional space and re-

turns the coordinates of a new set of L points in a low-dimensional space (2 or 3-D in

this context) for which the Euclidean distances dE(x′i,x
′
j) approximate the original ones

as closely as possible, minimising the objective function

ε =

L∑
i,j=1

(dF (xi,xj)− dE(x′i,x
′
j))

2

dF (xi,xj)
. (3.39)

This is a simple way of automatically locating the nodes that helps make the data struc-

ture apparent (when there is any).

Informative backgrounds

The Fisher network framework offers an optional visualisation setting that enhances

interpretability of the data by colouring the background of the plot of the graph according

to the predicted local class probabilities . To do so, a colour is assigned to each of the J

classes present in the dataset as an RGB triplet. The colour of a point in the background

is then calculated as a sum of the J colours, where the contribution of each class’ colour

is weighted by the corresponding posterior probability,

C(x′b) =

J∑
j

p̂′(cj |x′b)Cj , (3.40)

where C(x′b) contains the red, green and blue components of the colour at point x′b in

the 2-D background and Cj is the colour assigned to class j, also in RGB format. This

expression effectively modulates the colour of the background using the local probabilities

in the area. The class membership probabilities at x′b are calculated by applying the

softmax output function (sigmoid function for binary classification) to the estimated

82

3.6. Practical uses of Fisher networks

scores

a′j(x
′
b) =

1∑
iA
′
bi

∑
i

A′biaj(xi),

where A′bi = exp

(
−

(dE(x′b,x
′
i))

2

σ2
G

)
.

(3.41)

Eq. (3.41) estimates the class membership probability of points in the background using

a weighted average similar to that in Eq. (3.32), with the difference that here the Fisher

distances required to calculate the contribution of each point in that expression are

approximated using Euclidean distances obtained from the 2-D projection. This is a

sensible solution, given that the objective of the Sammon mapping is to preserve Fisher

distances in the Euclidean space, and it provides probability figures for background pixels

x′b that, due to the nature of the projection, do not have an explicit counterpart in the

original input space.

To apply this to the whole background, it is first divided into as many pixels as desired,

which are then coloured using the RGB vector corresponding to the centre point of the

square, as given by Eq. (3.40). The result is a very intuitive representation that gives

the user an immediate idea of the most probable class memberships for a node or group

of nodes upon observation of the relevant plot area.

For problems with many different classes, or where a simpler representation is preferred,

there is also the possibility of colouring the background in greyscale. In this case, the

particular tone of the pixels does not depend on individual class probabilities. Instead,

the two classes j and k with the highest posterior probabilities at x′b are selected and

the difference between those values is calculated, d = p̂′(cj |x′b) − p̂′(ck|x′b). That value

determines the colour applied, from white when d = 0 to black when d = 1. Therefore,

boundary regions will be easily recognisable by their light grey and white tones, while

areas with a strong class membership will be characterised by a dark grey, close to black

colour. Section 4.4.2 contains examples of both types of informative backgrounds applied

in practice.

3.6.2 Identification of reference cases

The partition of the network into communities provides information about the way nodes

are grouped, which at the same time, given the construction process of the graph, de-

scribes the data structure in the original space. However, the study of the network does

not have to stop there; it may also be interesting in certain applications to identify the

most important nodes of each community so they can be used as representatives of the

whole cluster. Locating such elements in the graph can be useful, for instance, to perform

case-based classification considering only a reduced set of instances instead of the whole

83

3.6. Practical uses of Fisher networks

dataset, or to give an idea of the membership strength of a node to its community using

the distance that separates it from the corresponding reference cases.

To identify such nodes, a centrality score is calculated that gives a measure of the im-

portance of each node or, equivalently, how central it is within its community. In this

framework, the centrality of a node xi within a community g is calculated as the sum of

the weights that connect it with members of the same group,

k
(g)
i =

∑
j∈g

Aij , (3.42)

which is normally known as the degree of xi within g. For that reason, this measure is

known as degree centrality. There are more complex centrality measures in the litera-

ture [61], such as eigenvector centrality, Katz centrality, PageRank, etc. However, it is

precisely its simplicity that makes degree centrality a good choice for this framework.

It requires very little computational effort and, more importantly, it is based on a very

intuitive concept, which makes the choice of the resulting reference cases easy to explain.

3.6.3 Case-based classification

An important functionality of the framework is to produce interpretable semi-supervised

class predictions for new data that replace the less intuitive class assignments given by the

original estimator. Fisher networks tackle this problem by expressing their predictions for

a new point in terms of the estimates of the nodes present in the network. Specifically,

an uncategorised test point xt is incorporated to the Fisher network of training data

following these steps:

1. Calculate the L pairwise Fisher distances between xt and the points xi already in

the network, dF (xt,xi), using the geodesic calculation method of choice.

2. Obtain the associated weights Ati using Eq. (3.31).

3. Attach the weights to the initial adjacency matrix and apply Newman’s algorithm

to extract communities.

4. Identify reference cases in the communities using degree centrality.

5. Denoting by g the community containing node xt and by R the set of reference

cases, estimate the scores a′j(xt) from i) all nodes in the network, ii) community

neighbours or iii) reference cases using the corresponding expression in Eq. (3.43).

Use the softmax function (sigmoid function in the binary case) to calculate the

class-membership probabilities p̂′(cj |xt).

84

3.7. Chapter summary

a′j(xt) =
1∑L

i=1Ati

L∑
i=1

Atiaj(xi) (network),

a′j(xt) =
1∑

xi∈g Ati

∑
xi∈g

Atiaj(xi) (community),

a′j(xt) =
1∑

xi∈RAti

∑
xi∈R

Atiaj(xi) (reference cases).

(3.43)

At the end of the process, the user has information about the new point xt regard-

ing location within the network representation, community membership, similar nodes

and reference cases and estimated class probabilities calculated from known cases in the

database, with individual contributions indicated by the weights Ati. All this information

is available for the user to analyse and decide whether they accept the class assignment

recommended by the system.

3.7 Chapter summary

In this chapter, a descriptive explanation is provided of the construction process of Fisher

information networks. Implementation details are given for each of the stages involved,

from the estimation of the posterior class probabilities p(cj |x) to the identification of

network communities and reference cases, covering important topics such as the approx-

imation of geodesic distances and the selection of the network locality parameter σG.

The different functionalities and potential practical usefulness of the framework are then

discussed, explaining how to visualise the networks and obtain interpretable class pre-

dictions from them.

85

Chapter 4

Experimental results

Following the description of the theoretical basis that supports the Fisher network frame-

work, this chapter presents a series of empirical tests designed to put the system into

practice. The experiments involve synthetic and real-world classification data coming

from binary and multiclass problems, and their objective is to show examples of Fisher

networks and discuss practical issues related to the methodology and the graph construc-

tion process.

The first two sections study the effect of the Fisher information metric on the data

geometry (Section 4.1) and high-dimensional KNN classification (Section 4.2). After

that, Section 4.3 provides a detailed comparison between the free point approach and the

graph-based approximation; both geodesic calculation methods described in Section 3.3.3.

Then follows Section 4.4, which contains examples of Fisher networks built from different

real-world datasets. Finally, Section 4.5 introduces a related application where the FI

metric is used to improve the performance of an unsupervised blind signal separation

method through the use of auxiliary data.

4.1 The effect of the Fisher metric

The aim of the first application of this chapter is to show how the FI metric affects

the original arrangement of the data in the Euclidean space. To do it, the metric is

derived for a simple 2-D classification problem, the Cushing’s syndrome dataset [86]. It

comprises 27 examples corresponding to patients with one of three types of this syndrome,

each of which defines a class. The dataset contains measurements of urinary excretion

rates of two steroid metabolites, tetrahydrocortisone and pregnanetriol, both measured

in mg/24h. The fact that there are only two variables for each patient allows the direct

visualisation of the data, as shown in Fig. 4.1.

Fig. 4.1 also displays the posterior probabilities p̂(cj |x) estimated from the data with

86

4.1. The effect of the Fisher metric

Figure 4.1: Cushing’s syndrome dataset and the estimated class membership probabilities. The
dataset (C) contains three classes, plus two samples with unknown label, represented by black
circles. The other three figures are colour plots of the conditional probabilities of the classes
formed by ‘×’ (A), ‘♦’ (B) and ‘+’ (D) symbols, where red corresponds to values close to 1 and
blue to values close to 0.

an MLP, and used in Eq. (3.18) to obtain the FI matrix required to calculate distances

with the metric. The free point approach introduced in Section 3.3.3 is then used to

obtain the 27× 27 pairwise Fisher distance matrix, and from it a 2-D Sammon mapping

is produced, as explained in Section 3.6.1. In this case there are no edges involved, since

the interest is to get an idea of the geometric structure of the data under the FI metric.

Fig. 4.2 compares the original dataset with the representation of the Sammon mapping.

The effect of the metric on the arrangement of the data points is immediately apparent:

points belonging to the same class are pulled together while pairs from different classes are

pushed apart, which is exactly the objective of metrics learnt for classification problems,

as seen in Chapter 2. The probability surfaces in Fig. 4.1 give an intuitive explanation as

to how this is achieved: a path joining a pair of points in different classes must necessarily

go through the slope of at least two of the three surfaces. Eq. (3.14) implies that the

FI matrix will have relatively large components in locations of the data space where

87

4.2. Fisher metric and KNN classification

Figure 4.2: Original Cushing’s syndrome dataset (A) and Sammon mapping using Fisher dis-
tances (B). Axes in Sammon mappings are unlabelled, as they do not represent any function
of the input variables (only distances between points in the map are relevant, and not individual
coordinates).
The FI metric collapses the flat areas of the space and expands the relevant ones, where the con-
ditional class probability changes. This results in compact communities that are well separated
from each other.

the conditional class probabilities change, as is the case in the aforesaid slopes. The

consequence is that the differential distances corresponding to the components of the

global path that cross those high-variation areas will produce significant contributions to

the final distance between the two points. On the other hand, paths connecting points

from the same class will, in general, not have to leave the areas of the space where

the surfaces are flat, resulting in small components of the matrix and therefore small

distances.

This classification problem is simple, and it was possible for the MLP to attain a 100%

accuracy. In cases where the class borders are less well-defined, as will be seen later

in the chapter, the separation between the classes under the metric will not be as clear

as in this example. However, even in difficult problems, the metric produces a better

representation of the data where clear-cut and borderline cases are easy to identify and

the bulk of each class is well separated from the rest of the groups.

4.2 Fisher metric and KNN classification

In this section, the Fisher metric is applied to a classification problem using synthetic

data. Two versions of the standard K-nearest neighbour (KNN) classifier are compared:

one that computes distances using the Euclidean metric (E-KNN) and another that uses

the Fisher metric (F-KNN) derived from the class probabilities estimated with an MLP.

The idea is to compare the two metrics in a simple classification context to study how

88

4.2. Fisher metric and KNN classification

they perform for data of high dimensionality.

The dataset used consists of two classes generated by two Gaussian distributions centered

in the origin with standard deviations σ0 = 0.9I and σ1 = 2I. One distribution contains

the other, giving rise to a non-linear border. This is a large dataset with 104 samples

per class, which provide the MLP with enough training episodes to accurately estimate

p(c0|x) and p(c1|x). After training, a validation dataset is produced using the original

generating functions of the data. This smaller dataset (250 samples per class) contains

the points to be classified by E-KNN and F-KNN.

Table 4.1: KNN accuracy results for different values of the number of data dimensions, N , and
the number of neighbours used, K.

Dimensionality
Metric

Classification accuracy (%)

(N) K = 3 K = 5 K = 7 K = 11 K = 15 K = 21

2
Euclidean 69.4 72.4 74 73.6 75.4 75

Fisher 72 74.8 74 75.6 76.8 76.6

5
Euclidean 87.4 88.2 88.2 88.8 88.2 88.6

Fisher 73.6 72.8 74.4 76.6 79 79.4

10
Euclidean 88.8 89 88.8 87.2 86 85.8

Fisher 92.2 92.2 92.2 93.2 93.4 93.8

15
Euclidean 81.6 80 77.6 74.8 73 71.4

Fisher 93.2 93.4 93 93.2 93.8 93.2

25
Euclidean 66.4 64.4 61.8 57 56.2 54.4

Fisher 94.6 95 95.2 95.2 95.2 95.2

40
Euclidean 51.6 50.6 50.4 50.2 50.2 50

Fisher 94.2 94 94 94 94.2 94.4

Table 4.1 and Fig. 4.3 show the results of the simulations for Euclidean and Fisher metrics.

In low dimensions, the two methods perform similarly. However, the accuracy of the

Euclidean classifier increases until N = 10 and decreases from then on. To understand

this behaviour, a histogram of the pairwise distances is plotted in Fig. 4.4 for different

values of N , analysing the distribution of distances between pairs of points from the same

class (intraclass distances) and from different classes (interclass distances).

Naturally, the performance of KNN is best when intraclass distances are small compared

to interclass distances. In such case, the K nearest neighbours of a given validation

point are likely to belong to the same class and therefore result in a correct classifica-

tion. Fig. 4.4(A) shows all three distributions (intraclass 0, intraclass 1 and interclass)

overlapping. Individual histograms show that intraclass distances have their peak more

to the left than interclass distances, that is, they are generally smaller. In the next

plot, Fig. 4.4(B), the shape shifts right and starts splitting into two humps, the left one

corresponding to intraclass 0 distances and the other to intraclass 1 and interclass dis-

tances. The increase of the magnitude of distances with N is caused by the nature of the

high-dimensional space.

89

4.2. Fisher metric and KNN classification

Figure 4.3: Graphical representation of the classification accuracies in Table 4.1 for K = 3 (©),
K = 7 (�) and K = 15 (4) neighbours. Dashed blue lines and solid black lines correspond to
Euclidean and Fisher metric results, respectively.

Figure 4.4: Histograms of the pairwise Euclidean distances for different values of the number of
dimensions. As N increases, the intraclass 1 and interclass distances grow faster than intraclass
0 distances, which results in an increase of the prediction accuracy of samples from class 0.
However, intraclass 1 distances eventually become larger than interclass distances, which makes
class 1 samples impossible to classify correctly.

90

4.2. Fisher metric and KNN classification

The reason why intraclass 0 distances shift more slowly is the smaller standard deviation

of their generative function. At this point, where N is between 5 and 10, the classifica-

tion of class 0 members becomes easier because their intraclass distances becomes even

smaller with respect to interclass distances. For class 1, the situation is similar to the

2-dimensional case, so the overall result is an increase of the accuracy.

For larger values of N , distances keep growing. It is crucial to note that intraclass 1

distances increase faster than interclass ones. This results in a clear division of the three

types of distances: intraclass 0 distances are the smallest ones, followed by interclass

and then intraclass 1 distances. As a consequence, all points are classified as class 0

members: In the case of an actual class 0 sample, intraclass distances are much smaller

than interclass ones, so the K chosen neighbours always belong to class 0. Conversely

for class 1 members, the choice of neighbours inevitably causes a bad prediction.

The FI metric avoids this problem by relying on the variations of the probability surfaces,

taking advantage of the fact that the MLP estimates p(cj |x) better in high dimensional

spaces provided enough data is available. Fig. 4.5 shows histograms of Fisher distances

for N = 2 and N = 300.

Figure 4.5: Histograms of the pairwise Fisher distances for N = 2 and N = 300. Plots (A) and
(D) correspond to intraclass distances, (B) and (E) to interclass distances and (C) and (F) to
the combination of both. In contrast to the Euclidean case, the relative magnitude of intraclass
distances with respect to the interclass ones is similar for any value of N , as depicted by their
distributions for the extremes of the range of N considered.

None of the variation seen in Fig. 4.4 appears in the Fisher case. Although there are also

changes in the magnitude of the Fisher distances, intraclass distances remain in general

smaller than interclass ones for both classes, regardless of the number of dimensions.

91

4.3. Comparison of geodesic calculation methods

Interestingly, when N increases, Fisher distances decrease in magnitude. This is because

Fisher distances can only be large when there is a lot of variation of the class-membership

probabilities in the input space, and as the dimensionality of the space grows higher, steep

boundaries become flatter and therefore distances become smaller. This also explains

why the distribution of the interclass distances shifts left when going from Fig. 4.5(B) to

Fig. 4.5(E).

The results indicate that the inclusion of the FI metric in the KNN classification process

produces a clear outperformance of the Euclidean version for high-dimensional problems,

even though they are both supervised methods. Furthermore, the choice of the parameter

K for such problems seems unimportant, as shown by the stable accuracy plots in Fig. 4.3.

4.3 Comparison of geodesic calculation methods

This section includes two experiments: First, a collection of real-world datasets are used

to compare the geodesic distance calculation methods described in Section 3.3.3, namely

the free point approach, the straight path and the graph-based approximations. The

second part of this section also compares these methods, this time studying their per-

formance on synthetic datasets of different sample size. In both cases, performance is

measured as the magnitude of the distances found (shorter distances are closer to the

true geodesic) and the computational cost incurred in the process.

4.3.1 Performance comparison on real-world data

Five different datasets are used in the first experiment: 4 binary class datasets from the

UCI Machine Learning Repository [100] and the Cushing’s syndrome dataset introduced

in Section 4.1; their main features are listed in Table 4.2.

Table 4.2: Summary of the datasets used in Section 4.3.1.

Dataset Ionosphere
Liver

Sonar
Wisconsin Cushing’s

Disorders Breast Cancer syndrome

Samples (L) 351 345 208 569 27

Variables (N) 32 6 60 30 2

Classes (J) 2 2 2 2 3

The same process is repeated for each of the datasets: an MLP is trained on the class

labels, and the resulting synaptic weights are used to calculate the values of the FI

matrix. Then, the matrix is used to compute local distances with Eq. (3.23) in the

binary case or Eq. (3.19) directly in the multiclass problem. At this point, three methods

92

4.3. Comparison of geodesic calculation methods

are used to obtain global distances: i) the straight-path or T -point approximation with

T = 100 intervals in the numeric calculation of the path integral, ii) the graph-based

approximation using the Floyd-Warshall algorithm and iii) the free point approach with

10 hyperplanes.

Regarding the free point approach, an initial path between the two points of interest

must be defined in order to then apply the method and iteratively reduce its length. Two

options are considered: The simplest possibility is to use the straight path connecting

the points. Alternatively, one can use the path found by the graph-based approximation,

which is by definition at least as short as the straight line between the points.

With the two initialisation possibilities, four different geodesic calculation methods result:

the straight path approximation (TP), the graph-based approximation (G) and the free

point approach with straight line (FPA) and graph-based (FPG) initialisations.

For each of the methods, a pairwise distance matrix is produced that contains every point-

to-point Fisher distance. The values of these matrices are compared and the performance

of a given method is evaluated in relation to another by calculating the relative distance

reduction that the first algorithm brings over the second. Given two points xA and xB,

this reduction is computed as

∆d1−2 =
d1(xA,xB)− d2(xA,xB)

d2(xA,xB)
, (4.1)

where d1(xA,xB) is the distance between the points computed using the first method

and d2(xA,xB) is the reference distance, given by the second algorithm. This measure is

averaged over the L(L− 1)/2 possible pairs, and it is used to measure the improvement

that method 1 brings over method 2.

The computational performance of the different approaches is evaluated simply by mea-

suring the time needed by each of them to calculate the pairwise distances. All the

experiments in this section were run on an Intel Xeon X5355 2.66 GHz processor.

The left hand side of Table 4.3 evaluates the proposed geodesic estimation methods in

terms of the distance reduction they achieve relative to the distances obtained by the

alternatives, TP and G. The first two methods compared are FPA and TP. Since FPA

initialises gradient descent using straight paths, this comparison is, in effect, assessing

the magnitude of the reduction that the optimisation method obtains over the initial

straight lines. This figure varies substantially across datasets, going from insignificant

values of less than 0.5% to improvements of over 10%.

The next step is to compare the free point approach, again using initially straight lines,

with the graph approximation. Although for the Sonar and Wisconsin datasets FPA

manages to obtain a very slim improvement, in the other three cases G produces smaller

93

4.3. Comparison of geodesic calculation methods

Table 4.3: Performance results for the four methods tested: straight path approximation (TP);
graph-based approximation (G), which performs TP first and then Floyd’s algorithm; free point
approach with straight line initialisation (FPA); and free point approach with Floyd’s shortest path
initialisation (FPG), which uses the shortest paths found by G to initialise the gradient descent
optimisation (gd).

Dataset
Distance variation (%) Time elapsed (s)

FPA/TP FPA/G FPG/G TP
G

FPA
FPG

(TP+Floyd) (G+gd)

Ionosphere -6.01 1.98 -1.18 426 426+0.72 5372 427+8439

Liver -12.04 20.61 -2.68 366 366+0.75 5855 367+8364

Sonar -3.16 -0.43 -1.10 132 132+0.15 3029 132+4330

Wisconsin -0.33 -0.14 -0.18 1012 1012+3.07 8869 1015+14191

Cushing’s -4.33 2.38 -3.18 10 10+0.002 158 10+339

distances, especially for the Liver Disorders dataset.

The third column of this part of the table compares FPG and G. Similarly to the com-

parison FPA/TP, this evaluates how much distances are reduced by applying gradient

descent on the paths found by G. As expected, there is a decrease in the distances for all

datasets. It is, however, small in magnitude.

These last two comparisons, FPA/G and FPG/G, show how the free point approach

benefits from the use of a better initialisation, in this case given by the Floyd-Warshall

algorithm included in G. This highlights the well known limitation that characterises

gradient descent methods, that is, the dependency of the solution obtained on the initial

conditions.

The amount of time required to run each of the algorithms is shown in the right half

of the table. The results are very clear: the use of the iterative approach adds a large

computational load to the TP and G methods. FPA is slower than TP by a factor that

ranges from around 9 to 23 in the Wisconsin and Sonar datasets respectively. For the

graph methods, the difference is even bigger: FPG is 15 to 35 times slower than G in

the Wisconsin and Cushing’s datasets. This represents an important drawback of the

algorithm and, given the marginal accuracy improvement that it provides, restricts its

practical use to small datasets or cases where the computational cost is not a concern.

4.3.2 The effect of the sample size

The second experiment studies the effect of the number of data samples on the perfor-

mance of the geodesic calculation methods. The data used in this example are 2-D syn-

thetic datasets generated with the Gaussian distributions used in Section 4.2. Fig. 4.6

shows the conditional probability p̂(c0|x) used to derive the Fisher metric. Different

94

4.3. Comparison of geodesic calculation methods

sample sizes are tested to benchmark the performance of the different algorithms as the

number of available points reduces.

Figure 4.6: Membership probability of class 0, the narrowest of the two Gaussians. In the plot,
red corresponds to values of the probability close to 1 and blue to values close to 0. This surface
is estimated using a large dataset containing 5000 samples per class to ensure a good estimation
and, in turn, a metric that reflects similarity with respect to the true distributions accurately.

Table 4.4: Performance results for different sample sizes. For the smallest datasets, the process is
repeated a number of times indicated by the second column and results are averaged to compensate
for the higher dependency on the arrangement of the data points.

Samples Iterations
Distance variation (%)

FPA/TP FPA/G FPG/FPA FPG/G

4 500 -11.3 -9.99 ≈0 -10.13
10 50 -10.94 -6.94 -0.30 -7.90
20 20 -11.44 -4.07 -1.30 -6.51
50 5 -11.40 3.21 -4.64 -3.84
100 1 -11.06 9.45 -7.80 -2.71
200 1 -12.52 19.67 -12.24 -2.08
500 1 -11.73 24.49 -13.27 -1.40

Samples Iterations
Time elapsed (s)

TP
G

FPA
FPG

(TP+Floyd) (G+gd)

4 500 0.03 0.03+0.001 0.44 0.03+0.55
10 50 0.45 0.45+0.001 3.43 0.45+3.86
20 20 1.10 1.10+0.002 14.4 1.10+16.90
50 5 6.60 6.60+0.004 91.4 6.60+129.50
100 1 27.90 27.90+0.019 403.2 27.9+669.4
200 1 118.90 118.9+0.162 1616 119+3396
500 1 607.80 607.8+2.095 9121 610+24780

For each sample size, a dataset is generated of size ranging from 4 to 500 samples and

the corresponding pairwise distance matrix is obtained using the different geodesic ap-

95

4.4. Fisher networks for real-world data

proximation methods. The length of the resulting paths is calculated using an accurate

FI metric derived from a large sample of the distributions to ensure that the metric is

faithful to the true distribution of the classes. The performance of the algorithms is

evaluated in Table 4.4 with the same measures used in Table 4.3.

The first column, FPA/TP, shows how the methods based on straight line paths are not

affected by the number of samples of the dataset. FPA improves consistently on TP

reducing distances by an average of around 11 percent.

When FPA is compared to G, the influence of the sample size appears. For small datasets,

FPA improves on G due to the small number of possible paths from which Floyd’s

algorithm can choose, resulting in a path quite different from the real geodesic. For that

reason, gradient descent is able to reduce the length of that path even when using a far

from optimal initialisation. As the sample size increases, the number of possible paths

in the graph associated to the dataset increases, and before reaching a large number of

samples G already obtains better distances than FPA.

This also explains the third column, FPG/FPA. With a small sample size, FPG and

FPA are basically equivalent because most of the time FPG will be using straight lines

as initial paths, but as the size of the dataset increases, the quality of the initialisations

improve and so do the distances that FPG calculates.

The tendency in FPG/G confirms that, for small datasets, FPG behaves like FPA and

therefore produces a significant improvement on G. However, as the number of samples

increases, the path that Floyd’s algorithm finds approaches a local minimum, reducing

the room for FPG to improve on.

Regarding computational costs, the result is similar to what was seen in Section 4.3.1:

the free point methods are much more expensive than TP or G, especially for the larger

dataset, where using them is only slightly beneficial.

In short, the results in this section indicate that the free point approach is useful to fine

tune the calculation of geodesic distances when accuracy is a priority. The additional

precision of the distance approximation is achieved at the expense of a substantial increase

of the computational cost of the method, which makes it prohibitive for large datasets.

4.4 Fisher networks for real-world data

This is the main section of the chapter, and it illustrates two crucial aspects in the

process of constructing Fisher networks. First, Section 4.4.1 details the empirical training

procedure of the MLP followed in the framework, describing the parameter selection

criteria used and comparing the classification accuracies obtained with other methods

96

4.4. Fisher networks for real-world data

in the literature. The second part, Section 4.4.2, covers the practical details of the

graph construction and shows examples of Fisher networks as well as their different

representation possibilities.

4.4.1 MLP classification benchmark

The applications in this section focus on real-world datasets, again obtained from the

UCI Machine Learning Repository. The six datasets included are listed in Table 4.5.

Table 4.5: Summary of the datasets used in Section 4.4.

Dataset Ionosphere
Liver Pima Indians

Sonar
Glass

Wine
Disorders Diabetes Identification

Samples (L) 351 345 768 208 214 178

Variables (N) 32 6 8 60 9 13

Classes (J) 2 2 2 2 6 3

As discussed earlier, the first step in the Fisher network framework is to estimate the

conditional class probabilities. From the two methods suggested to carry out that task,

the LLR is straigthforward to obtain and does not require selection of any parameters

to obtain the optimal model. However, in the case of the MLP, the default method of

choice from the two due to its versatility, there are several parameters that must be fixed

in order to produce the final estimator.

There are four parameters involved in the training of the MLP implemented in this

framework: the number of nodes in the hidden layer, S; the learning rate of the back-

propagation training, α; the number of iterations that the training algorithm runs, niter;

and the control parameter of the weight decay regulariser, γ. To determine their values,

the following steps are followed:

1. The dataset (L samples × N dimensions) is normalised so that the N variables all

have mean zero and standard deviation one.

2. From the L labelled samples, 80% are used for the training of the MLP and 20%

for validation.

3. Fixing S = 10 and γ = 0.01, α and niter are tuned to ensure full convergence of the

training algorithm, i.e., classification rates in the training and test sets level out.

4. With those values of α and niter, a grid search is carried out for S and γ. In these

experiments, the values tested are S = {2, 5, 10, 15, 20} and γ = {0.001, 0.005,

0.01, 0.05, 0.1}. For each of the 25 possible combinations, the MLP is trained 100

times, each of which uses a different weight initialisation and assignment of the

97

4.4. Fisher networks for real-world data

dataset samples to training or validation; both of these factors are determined at

random.

5. When the 2500 runs of the training algorithm have finished, the pair [S,γ] is selected

that provides the highest validation accuracy average over the 100 runs.

6. Finally, the MLP instance is chosen from the 100 runs corresponding to the best

[S,γ] combination. This can be done, for example, according to validation or global

accuracy, this time in terms of individual runs instead of average values.

The parameter selection process favours estimators that generalise well, reducing the

presence of overfitting as much as possible. Table 4.6 contains the results of the applica-

tion of the selection procedure for the datasets considered.

Table 4.6: Best performing parameters for the MLP estimator from the sets S = {2, 5, 10, 15, 20}
and γ = {0.001, 0.005, 0.01, 0.05, 0.1}. Validation and training accuracies are presented as mean
values (µ) over the 100 runs of the backpropagation algorithm for the optimal set, along with their
standard deviation (σ). The two rightmost columns show the best validation accuracy from those
100 runs and the corresponding total accuracy for that run (using the whole dataset).

Dataset
Optimal Validation Training Best

parameters accuracy (%) accuracy (%) validation Total
S γ (µ± σ) (µ± σ) accuracy (%) accuracy (%)

Ionosphere 5 0.1 89.5±3.8 99.1±0.4 97.1 98.3

Liver 15 0.1 72.6±5.0 82.7±1.6 82.6 79.1

Diabetes 2 0.001 77.5±2.9 78.4±0.8 84.4 77.7

Sonar 20 0.01 80.5±5.4 100±0 95.2 99.0

Glass 20 0.01 71.1±6.8 90.6±1.9 88.4 89.7

Wine 10 0.1 98.3±2.0 100±0 100 100

The generalisation power of the MLP predictions is compared to other methods in the

literature that use the same data. The results are shown in Table 4.7, and a brief

description of the methods involved is provided in Table 4.8. Most of the references used

in this comparison give validation accuracies from cross validation, providing a mean

and a standard deviation that can be compared directly with the results in Table 4.6.

However, some of the references in the benchmark use leave-one-out, others give only

a single number or, in some cases, they do not specify whether the accuracies reported

are training or validation figures. Ideally, this comparison would include full receiver

operating characteristic (ROC) curves instead of a single figure, but they are seldom

available in the literature. In any case, Table 4.7 serves as a rough reference of the

performance of other published methods when applied to the same data.

The results show that the MLP classifiers used to derive the FI metric are competitive

with other methods in the literature. That said, it is important to bear in mind that

the Fisher network framework is not locked to this classifier. As long as it provides a

98

4.4. Fisher networks for real-world data

Table 4.7: Comparison of validation accuracies obtained with the MLP used in the framework
and other methods in the literature. Results are given in terms of mean (µ) and standard devia-
tion (σ) when available. Trivial accuracies, provided for reference, are obtained by assigning all
samples to the most prevalent class in the dataset.

MLP

Dataset
accuracy (%) Trivial Literature accuracies (%)

(µ± σ) accuracy (%) (µ± σ)

Ionosphere 89.5±3.8 64.1
87.2 [101] 91.1±5.0 [102] 94.0±3.3 [103]
94.2 [104] 94.7 [105]

Liver 72.6±5.0 58.0
65.5±7.8 [106] 70.5±4.2 [102] 70.9 [105]

72.5 [107] 76.5±13.4 [103]

Diabetes 77.5±2.9 65.1
74.4 [105] 75.3±3.9 [108] 75.6 [104]
76.9 [101] 78.6±4.5 [102]

Sonar 80.5±5.4 53.4
76.0±9.2 [106] 79.0 [101] 81.2±5.1 [102]
90.4±1.8 [109] 90.8±9.1 [103] 92.3 [107]

Glass 71.1±6.8 35.5
70.1±9.2 [108] 70.5±8.5 [103] 73.3 [110]

75.2 [107]

Wine 98.3±2.0 39.9
93.6±5.7 [106] 94.4±5.9 [108] 97.7±2.0 [102]

99.4 [110]

Table 4.8: Description of the methods included in the comparison in Table 4.7.

Ref. Description

[101] Semi-supervised clustering with genetic algorithm for the optimisation of the
objective function.

[102] NeC4.5: variant of C4.5 which combines traditional decision trees with an
ensemble of neural networks used to preprocess the training data.

[103] Multiobjective learning systems (MOLS) based on genetic algorithms (MOLS-
GA) and evolution strategies (MOLS-ES).

[104] Genetic programming applied to classification trees.

[105] A-KFD: variant of the kernel Fisher discriminant classifier (KFD) where the
kernel used is automatically selected as a linear combination of the elements
of a predefined family of heterogeneous kernels.

[106] Multivariate (oblique) classification trees inferred using the minimum message
length (MML) principle.

[107] WeightedIso: combination of Isomap and KNN classification (the latter is re-
placed by ADAMENN to produce the second proposed algorithm, Iso+Ada).
However, the accuracy result displayed in Table 4.7 comes from the com-
parison of the presented algorithms with other existing methods; the best
performing of them is DANN [42].

[108] Classification using confidence-based association rule mining.

[109] Feed-forward neural networks trained with a backpropagation learning algo-
rithm.

[110] Regularised variation of a K-class support vector classification-regression ma-
chine (K-SVCR), an adaptation of the SVM for multiclass assignment.

differentiable expression of the posterior probabilities p̂(ci|x), any estimator can be used

as the basis for the metric.

99

4.4. Fisher networks for real-world data

4.4.2 Construction of Fisher networks

Empirical selection of the network locality parameter

After checking that the MLP produces estimates comparable to those in the literature,

the models are used to build Fisher networks. First, pairwise distances are calculated

using the graph approximation, producing an L×L Fisher distance matrix. The Gaussian

kernel of Eq. (3.31) is then applied to its elements, resulting in the adjacency matrix that

defines the structure of the network.

Section 3.4.1 describes the three measures included in the framework to guide the selection

of the width of the Gaussian kernel, σG. In this subsection, the measures are analysed

for each of the six datasets considered.

Figure 4.7: Measures to aid the selection of σG, Sonar dataset. (A) KL divergence. (B)
Classification accuracy (dashed line: MLP accuracy). (C) Cramer’s V index (dashed line: number
of communities). (D) McNemar’s test p-value (dashed line: p=0.05).

Fig. 4.7 shows the three measures for the Sonar dataset and values of σG between 0

and 5. Additionally, Fig. 4.7(B) includes the accuracy of the classifications used to

calculate McNemar’s test (network and MLP predictions), and Fig. 4.7(C) also displays

the number of communities found using Newman’s algorithm. The first plot shows the

KL divergence increasing with σG. This is a general tendency for all datasets: small

values of σG produce networks that predict p̂(ci|x) better, which is an expected result

since a small σG means the Gaussian kernel is narrow and therefore only the closest (and

100

4.4. Fisher networks for real-world data

most similar) references will have a significant weight in Eq. (3.32).

The second measure, Cramer’s V index, indicates a high level of concordance between

the communities and the classes for the whole range of σG, with the lowest values of

the parameter producing the best results again. Finally, the third measure indicates

that there is no statistically significant difference between the performances of the two

classifiers, so the p-value by itself does not restrict the range of values of σG considered.

This is supported by Fig. 4.7(B), which shows that the classification accuracy of the

network is very stable and there are only a few minor deviations from that of the MLP.

For this dataset, it is the KL divergence and Cramer’s V that determine the best range

of σG values, suggesting σG < 1.5.

Figure 4.8: Measures to aid the selection of σG, Glass dataset. (A) KL divergence. (B)
Classification accuracy (dashed line: MLP accuracy). (C) Cramer’s V index (dashed line: number
of communities). (D) McNemar’s test p-value (dashed line: p=0.05).

Fig. 4.8 illustrates the same measures as Fig. 4.7, this time for the Glass dataset. This is

a more difficult classification task, as seen in Fig. 4.8(B). The plots of the KL divergence

and Cramer’s V index are similar to those of the Sonar dataset, with the difference that,

whereas in Fig. 4.7(C) the variations of the CV were relatively small, in Fig. 4.8(C) there

is a larger difference between its maximum and minimum values. The reason for this is

that the Sonar dataset is binary and its classes are relatively easy to separate, thus being

well represented with large and small numbers of communities. The Glass dataset, on

the other hand, contains six different classes with more mixing, and therefore suffers a

bigger CV drop when the number of communities is small, that is, when σG is large.

101

4.4. Fisher networks for real-world data

In contrast to the results in Fig. 4.7(D), the p-value in Fig. 4.8(D) drops below the

0.05 threshold at around σG = 1.5, the point at which the classification accuracy of the

network starts falling. All three performance measures appear to weaken as σG reaches

1.5 so, in practice, this would recommend σG < 1.5.

Figs. 4.9–4.12 contain the plots of the ancillary measures for the remaining datasets. The

Ionosphere dataset figures are similar to the Sonar case, with the McNemar test also not

providing any discriminating information. The KL divergence and Cramer’s V suggest

σG < 1, although, like before, the variations of Cramer’s V are very small and large

values of σG would not be detrimental in terms of classification accuracy.

The Liver dataset plots are not too far from the Sonar case either. Although Figs. 4.10(B)

and 4.10(D) show some decrease in performance for large values of σG, it is a mild effect,

and it is again the left hand side plots that help choose the threshold, σG < 1.

Fig. 4.11, corresponding to the Diabetes dataset, displays a considerable performance

deterioration, with Figs. 4.11(B) and 4.11(D) indicating an irregular behaviour for σG >

1, where the classification rates of the network start to diverge from the MLP figure. This,

along with the decrease of Cramer’s V index also around that point, suggests selecting

a value of the parameter below that threshold. Finally, for the Wine dataset, the most

useful plots to determine σG are Figs. 4.12(B) and 4.12(D), which indicate that σG < 2

is to be preferred in order for the network to maintain the prediction power of the MLP.

These plots provide the information required to find suitable values of σG depending on

the user preferences. For instance, in the experiments in the next subsection, an upper

threshold is determined as the smallest σG for which the p-value is less than or equal to

0.05. Then, σG is simply selected as the smallest value in that range, since that will in

general produce the best predictions (the smallest KL divergence) and a good CV value,

if not the maximum available. This can serve as a sensible default selection procedure

when there is not a given preference.

However, depending on the application, the user may prefer to focus solely on the co-

herence of the communities and select the top CV value regardless of the rest of the

measures. Or maybe the interest is not to obtain too many (or too few) communities

because large (or small) clusters are desired. Then, only values of σG that produce such

result are considered. Furthermore, because any measure can be incorporated to the

analysis, the selection process can be tailored to suit the needs of the user.

Table 4.9: Upper thresholds and selected values of the parameter σG for the six datasets.

Dataset Ionosphere
Liver Pima Indians

Sonar
Glass

Wine
Disorders Diabetes Identification

Threshold σG < 1 σG < 1 σG < 1 σG < 1.5 σG < 1.5 σG < 2

Selected value 0.10 0.15 0.05 0.05 0.20 0.10

102

4.4. Fisher networks for real-world data

Table 4.9 summarises the upper bounds of the range of accepted values of σG. In this

case, σG is selected as the smallest value in the interval that does not cause numerical

instabilities in Newman’s community detection algorithm. Although this method always

provides the same result by definition, when applied in practice issues can appear during

the eigendecomposition calculation if the adjacency matrix contains weights that are very

small compared to the largest values in the matrix (stability problems appear for compo-

nents of the matrix > 10100 times smaller than the largest ones). This happens when σG

is very small, and it results in inaccurate eigenvectors and slightly different communities

being found in repeated runs of the algorithm. To prevent this computational artifact,

σG is selected large enough so that such extreme differences in the magnitude of the

weights do not appear. This lower threshold value depends on the particular case, but it

is easy to find a value of σG that approximates it by doing a quick line search.

103

4.4. Fisher networks for real-world data

Figure 4.9: Measures to aid the selection of σG, Ionosphere dataset. (A) KL divergence. (B)
Classification accuracy (dashed line: MLP accuracy). (C) Cramer’s V index (dashed line: number
of communities). (D) McNemar’s test p-value (dashed line: p=0.05).

Figure 4.10: Measures to aid the selection of σG, Liver dataset. (A) KL divergence. (B)
Classification accuracy (dashed line: MLP accuracy). (C) Cramer’s V index (dashed line: number
of communities). (D) McNemar’s test p-value (dashed line: p=0.05).

104

4.4. Fisher networks for real-world data

Figure 4.11: Measures to aid the selection of σG, Diabetes dataset. (A) KL divergence. (B)
Classification accuracy (dashed line: MLP accuracy). (C) Cramer’s V index (dashed line: number
of communities). (D) McNemar’s test p-value (dashed line: p=0.05).

Figure 4.12: Measures to aid the selection of σG, Wine dataset. (A) KL divergence. (B)
Classification accuracy (dashed line: MLP accuracy). (C) Cramer’s V index (dashed line: number
of communities). (D) McNemar’s test p-value (dashed line: p=0.05).

105

4.4. Fisher networks for real-world data

Fisher network examples

This subsection presents a collection of Fisher networks built from the six datasets us-

ing the values of σG in Table 4.9. Additionally, these networks are compared to their

Euclidean counterparts, which are graphs built following the same process, with the

exception that the distances used to calculate the adjacency matrix of the graph are

Euclidean. For all networks in this chapter, the arrangement of the nodes is given by a

Sammon projection of the original dataset using Fisher or Euclidean distances, as dis-

cussed in Section 3.6.1. Axis values are not displayed in any of the Sammon mappings

in Figs. 4.13–4.41 for the sake of clarity, since only the relative position of the points

with respect to each other is relevant. In the representations, edges are displayed only

between members of the same community to highlight cluster membership.

For each of the networks in Figs. 4.13–4.25, the set of communities found by Newman’s

algorithm is compared against the most widely-used clustering algorithm: k-means. After

finding the communities for a particular case, k-means clustering is performed on the same

dataset with k equal to the number of communities found by Newman’s method. Then,

both partitions of the data are compared against the true class labels using Cramer’s

V index with the same purpose as in the previous subsection: finding the degree of

concordance between the partitions and the classes. This process is repeated 100 times

for k-means and the maximum and mean values of the index are reported.

For those cases where the network is built using Fisher distances, the corresponding

k-means is applied on the 2-D Sammon projection of the data. If, on the other hand,

the construction of the network uses Euclidean distances, k-means is applied on the

original dataset. This is to make the comparison fair in terms of the use of the class label

information.

Fig. 4.13 is an example of a set of communities using the default σG selection procedure

of the framework and the Sonar dataset. By design, the default criterion chooses a value

of σG as small as possible, which in this case results in 12 communities that are quite

compact, with little class mixing within the groups, as reflected by the high value of

Cramer’s V.

From a practical point of view, the first contribution of the Fisher network is that it

provides a global view of the data which, thanks to the use of the Fisher metric, displays

a meaningful structure that implicitly informs about the underlying class probability

functions. The arrangement of the nodes makes it very easy to identify which areas of

the network are clear in terms of class membership, located in both ends of the C shape;

and which correspond to borderline cases, in the middle section of the curve. For the end

user, this means that they can quickly get an idea of where their points of interest stand

within the dataset in terms of the classification problem just by locating them in the plot,

106

4.4. Fisher networks for real-world data

without having to inspect the, in this case, 60 covariate values. Secondly, the division of

the network into communities produces a stratification of the data, again according to

the classification task at hand. This is interesting from the end user perspective because,

given a case of interest, it provides a set of similar instances that can then be analysed

in order to better understand the initial node.

Figure 4.13: Fisher network representation of the Sonar dataset, σG = 0.05.
Twelve communities, 0 singletons, KL divergence: ϕKL = 0.0005.
Cramer’s V indices: Network communities: ϕCV = 0.8830.
k-means clusters: ϕCV = 0.8747 (mean), 0.8829 (max).

Fig. 4.14 replicates Fig. 4.13 with σG = 0.20. As one would expect, the outcome is the

identification of fewer communities of larger size. Consequently, there are now only two

communities covering the border area, with more class mixing within them than there

was in the previous case, therefore producing a smaller concordance index. The coarser

network granularity that this value of the locality parameter produces also means that

the user receives more similar cases for each node. This exemplifies the kind of variation

that can be obtained by tuning σG, which can help the user decide which value to choose

from the suggested range.

The next graph, Fig. 4.15, contains a network built from the same dataset using Euclidean

distances. The value of σG is selected, like in the Fisher case, as the smallest that provides

stability of the eigenvector calculations. The reason why this value is bigger in general

for Euclidean networks has to do with Euclidean distances reaching much larger values

than Fisher ones (see Figs. 4.4 and 4.5 for an example), which means smaller weights and

a stronger tendency for numerical issues to appear, as the previous subsection explained.

107

4.4. Fisher networks for real-world data

Going back to the figure, the communities found in this network are nowhere near their

Fisher counterparts in terms of clarity of their structure. This is reflected not only in

the visualisation of the clusters, but also in the KL divergence of the p̂(ci|x) estimates,

several orders of magnitude higher than the values obtained using the Fisher metric; and

in Cramer’s V index, which also deteriorates substantially.

Regarding the comparison between Newman’s algorithm and k-means clustering, the

ϕCV values indicate that they produce very similar partitions of the data in terms of

coherence with the original class labels. For the six datasets studied, the values of this

measure produced by the Fisher networks are very close to the mean ϕCV obtained by

k-means, with the maximum value usually less than 0.01 above (with the exception of the

Liver dataset, where the difference is slightly bigger). However, there are two significant

advantages in the use of the network approach over k-means: the number of partitions

is selected automatically and there are not any initialisation issues.

When using Euclidean distances, there is a clearly noticeable difference in performance

regarding ϕCV in favour of k-means, as well as a larger divergence between the maximal

and mean values. While the latter could be suggesting that the concordance of clusters

and classes is more sensible to the initialisation of the centroids now that the metric does

not draw similar points together, it is not clear why the two methods should differ from

each other anymore than they do when using Fisher distances. This does not represent

a concern, though, since the usefulness of the framework, as well a clearly improved

performance, comes from the use of the FI metric.

Figs. 4.16–4.25 correspond to Fisher and Euclidean networks constructed from the re-

maining datasets. The results are consistent with the discussion above for the Sonar

dataset: Fisher networks provide a clear visualisation of the data, with a tidier commu-

nity structure and better probability predictions than in the Euclidean case, and they do

so through an intuitive case-based approach.

108

4.4. Fisher networks for real-world data

Figure 4.14: Fisher network representation of the Sonar dataset, σG = 0.20.
Six communities, 0 singletons, KL divergence: ϕKL = 0.001.
Cramer’s V indices: Network communities: ϕCV = 0.8627.
k-means clusters: ϕCV = 0.8617 (mean), 0.8730 (max).

Figure 4.15: Euclidean network representation of the Sonar dataset, σG = 2.30.
Twenty-two communities, 7 singletons, KL divergence: ϕKL = 0.0922.
Cramer’s V indices: Network communities: ϕCV = 0.6235.
k-means clusters: ϕCV = 0.7581 (mean), 0.8261 (max).

109

4.4. Fisher networks for real-world data

Figure 4.16: Fisher network representation of the Ionosphere dataset, σG = 0.10.
Seven communities, 0 singletons, KL divergence: ϕKL = 0.0015.
Cramer’s V indices: Network communities: ϕCV = 0.9538.
k-means clusters: ϕCV = 0.9565 (mean), 0.9579 (max).

Figure 4.17: Euclidean network representation of the Ionosphere dataset, σG = 1.80.
Ten communities, 2 singletons, KL divergence: ϕKL = 0.2282.
Cramer’s V indices: Network communities: ϕCV = 0.7591.
k-means clusters: ϕCV = 0.7659 (mean), 0.8287 (max).

110

4.4. Fisher networks for real-world data

Figure 4.18: Fisher network representation of the Liver dataset, σG = 0.15.
Eleven communities, 1 singletons, KL divergence: ϕKL = 0.0008.
Cramer’s V indices: Network communities: ϕCV = 0.6033.
k-means clusters: ϕCV = 0.6113 (mean), 0.6404 (max).

Figure 4.19: Euclidean network representation of the Liver dataset, σG = 0.75.
Twelve communities, 0 singletons, KL divergence: ϕKL = 0.1300.
Cramer’s V indices: Network communities: ϕCV = 0.2292.
k-means clusters: ϕCV = 0.2626 (mean), 0.3091 (max).

111

4.4. Fisher networks for real-world data

Figure 4.20: Fisher network representation of the Diabetes dataset, σG = 0.05.
Eleven communities, 0 singletons, KL divergence: ϕKL = 0.00004.
Cramer’s V indices: Network communities: ϕCV = 0.5981.
k-means clusters: ϕCV = 0.5924 (mean), 0.6027 (max).

Figure 4.21: Euclidean network representation of the Diabetes dataset, σG = 0.75.
Twenty-three, 4 singletons, KL divergence: ϕKL = 0.016.
Cramer’s V indices: Network communities: ϕCV = 0.4464.
k-means clusters: ϕCV = 0.5157 (mean), 0.5417 (max).

112

4.4. Fisher networks for real-world data

Figure 4.22: Fisher network representation of the Glass dataset, σG = 0.20.
Fifteen communities, 3 singletons, KL divergence: ϕKL = 0.0281.
Cramer’s V indices: Network communities: ϕCV = 0.8712.
k-means clusters: ϕCV = 0.8529 (mean), 0.8795 (max).

Figure 4.23: Euclidean network representation of the Glass dataset, σG = 1.40.
Seven communities, 2 singletons, KL divergence: ϕKL = 0.5311.
Cramer’s V indices: Network communities: ϕCV = 0.4915.
k-means clusters: ϕCV = 0.6217 (mean), 0.5574 (max).

113

4.4. Fisher networks for real-world data

Figure 4.24: Fisher network representation of the Wine dataset, σG = 0.10.
Ten communities, 0 singletons, KL divergence: ϕKL = 0.0031.
Cramer’s V indices: Network communities: ϕCV = 1.
k-means clusters: ϕCV = 0.9940 (mean), 1 (max).

Figure 4.25: Euclidean network representation of the Wine dataset, σG = 0.70.
Twenty communities, 9 singletons, KL divergence: ϕKL = 0.0670.
Cramer’s V indices: Network communities: ϕCV = 0.9493.
k-means clusters: ϕCV = 0.9624 (mean), 0.9840 (max).

114

4.4. Fisher networks for real-world data

Fisher networks with informative backgrounds

Figs. 4.13–4.25 show examples of Fisher network representations of the six datasets stud-

ied. Those are, however, only basic versions of the networks that the framework can

produce. In this subsection, the informative backgrounds introduced in Section 3.6.1 are

put into practice, replacing the plain white background of the standard graphs with a

coloured image that graphically informs of the class membership probabilities of nodes

and regions of the network.

Fig. 4.26 contains the same network in Fig. 4.13 with a coloured background. The

first class (+) is represented by black, and white corresponds to the second (4). The

distance-weighted contributions of the nodes combined produce the different tones of the

background, visually encoding their class membership probabilities. This provides the

user with an intuitive colour-coded measure of the class profile of the 2-D space, which

they can use to quickly infer which class is predominant in the different areas of the

representation, as well as how this predominance shifts when moving around the plot.

In this case, the colour of the pixels goes from black in the top right corner to white in

the bottom left along the C shape formed by the data, reflecting the local proportion of

members from each class.

Regarding the colour transition in this figure, it is noticeable how sharp the changes

in the tone are. This is caused by the small value of σG used: for low values of the

parameter, the Gaussian kernel in Eq. (3.41) produces weights that focus mostly on the

closest node, almost ignoring the rest. Let us look at a simple example to illustrate this:

suppose the algorithm is going to calculate the colour of a certain pixel, and that the two

closest nodes to that pixel in the network lie at a small distance. Let us define this small

distance as, for example, the first decile of all pairwise distances, which for this particular

dataset is 0.15. Back to the pixel, suppose the closest node is 0.15 apart and the second

closest is slightly further away, say 0.165 (a 10% longer distance). For σG = 0.05, the

weight corresponding to the first node is 0.12·10−3, while the second node gets 0.02·10−3,

a contribution six times smaller, even though the distance difference is relatively small.

This effect is stressed even more for longer distances, i.e., for pixels that are more distant

from their closest node. The consequence is that, except for areas that are very close to

a group of nodes, pixel colour is determined only by the closest node, hence the sharp

variations.

It is not difficult, however, to obtain smoother backgrounds. Simply by selecting a bigger

σG, the effect described above is alleviated. For example, if σG = 0.20, well below the

threshold given by Table 4.9, the weights obtained in the example are 0.57 and 0.51.

Slightly further away points are now taken more into consideration, which results in a

more fluid change of the variation of the background colour. Fig. 4.27 represents the

Fisher network of the Sonar dataset using this larger value of σG. The smoother colour

115

4.4. Fisher networks for real-world data

transition gives a sense of continuity in the 2-D representation and is also aesthetically

more pleasing to the eye.

Figs. 4.28 and 4.29 display coloured Fisher networks for the Wine data. This is a three-

class dataset, so more than two colours are needed to represent all classes. Red, green

and blue are selected for this example. Like with the Sonar dataset, the default σG is

small, and there are abrupt changes in the colours. Again, choosing a larger value of

σG produces a softer and less distracting background texture that gives an overall nicer

representation. The smoothness of the background is therefore another factor that can be

taken into account when selecting the parameter from the range of values recommended

by the framework. Figs. 4.30–4.33 contain examples for the rest of the datasets.

As discussed in Section 3.6.1, there is an alternative for the way the background displays

the class memberhip probability information. For problems with many classes, where

assigning a different colour to each of them could be confusing, or simply where a greyscale

representation is desired, pixels can be coloured from white through black depending on

the difference between the two largest p̂(ci|x) values at that point. Although there are

not any class-specific colours in the background, it still provides a useful visual indicator

of the uncertainty of class predictions for the different regions of the network. Figs. 4.34–

4.35 are examples of this colouring method for the two multiclass datasets studied in this

section.

116

4.4. Fisher networks for real-world data

Figure 4.26: Fisher network representation of the Sonar dataset with informative background,
σG = 0.05. Black pixels represent high class + probabilities; white pixels correspond to large class
4 values.

Figure 4.27: Fisher network representation of the Sonar dataset with informative background,
σG = 0.20. Black pixels represent high class + probabilities; white pixels correspond to large class
4 values.

117

4.4. Fisher networks for real-world data

Figure 4.28: Fisher network representation of the Wine dataset with informative background,
σG = 0.10. Class 4 is represented by red, class + by blue and class � by green.

Figure 4.29: Fisher network representation of the Wine dataset with informative background,
σG = 0.50. Class 4 is represented by red, class + by blue and class � by green.

118

4.4. Fisher networks for real-world data

Figure 4.30: Fisher network representation of the Ionosphere dataset with informative back-
ground, σG = 0.20. Black pixels represent high class + probabilities; white pixels correspond to
large class 4 values.

Figure 4.31: Fisher network representation of the Liver dataset with informative background,
σG = 0.20. Black pixels represent high class + probabilities; white pixels correspond to large class
4 values.

119

4.4. Fisher networks for real-world data

Figure 4.32: Fisher network representation of the Diabetes dataset with informative background,
σG = 0.10. Black pixels represent high class + probabilities; white pixels correspond to large class
4 values.

Figure 4.33: Fisher network representation of the Glass dataset with informative background,
σG = 0.50. Class 4 is represented by red, class + by blue, class � by green, class ♦ by black,
class © by pink and class 5 by yellow.

120

4.4. Fisher networks for real-world data

Figure 4.34: Fisher network representation of the Wine dataset with informative background,
σG = 0.50. Black pixels indicate a dominant class membership probability; white pixels indicate
two equally likely classes.

Figure 4.35: Fisher network representation of the Glass dataset with informative background,
σG = 0.50. Black pixels indicate a dominant class membership probability; white pixels indicate
two equally likely classes.

121

4.4. Fisher networks for real-world data

Reference cases in Fisher networks

The last part of this section studies the usefulness of reference cases in Fisher networks.

As discussed in Section 3.6.2, the idea is to find the most central nodes in each community

and use them as representatives of the clusters. For instance, in Fig. 4.39 a reference

case is obtained for each of the six communities found in Fig. 4.27. These cases give the

user a set of characteristic points that they can associate with each of the communities,

making it easier to identify prototypical profiles for each of the clusters.

To assess how well the information contained in the structure of the network is represented

by these central cases, the classification power of the network is compared to that of the

base MLP for different numbers of references. First, a samples-to-reference ratio r is

defined that gives the number of references used to represent each community as dng/re,
where d·e denotes the ceiling function and ng is the number of nodes in community g.

The ratio r goes from 1 (taking every node as a reference case) to ∞ (using only one

reference per community, regardless of how large the group is).

Once the set of reference cases R is identified, class membership probabilities for every

node in the network are calculated using a weighted combination of the scores ak(x),

a′k(xi) =
1∑

xj∈RAij

∑
xj∈R

Aijak(xj), (4.2)

which goes into a sigmoid or softmax function to give the estimated probabilities p̂′(ck|xi).
Then, class predictions are drawn from these estimates; Table 4.10 collects the results

for different values of r. The values of σG used are taken from the previous subsection.

Table 4.10: Reference case-based classification accuracies for different values of the samples-to-
reference ratio. The accuracy of the MLP used to derive the Fisher metric for each dataset is
provided for comparison.

Dataset σG
MLP Network accuracy (%)

accuracy (%) r=1 r=5 r=10 r=25 r=50 r=∞

Ionosphere 0.20 97.72 97.44 97.72 97.72 97.72 97.44 97.44

Liver 0.20 77.97 78.26 78.26 78.55 77.97 77.97 77.97

Diabetes 0.10 79.17 79.04 79.17 79.17 79.17 79.17 79.04

Sonar 0.20 91.35 91.35 90.87 90.38 90.38 89.90 89.42

Glass 0.50 80.37 80.37 79.44 78.50 77.57 76.64 76.64

Wine 0.50 100 100 100 100 100 99.44 98.31

The first three rows of the table, corresponding to the Ionosphere, Liver and Diabetes

datasets, do not suffer any significant performance variation when reducing the number of

references used, even when using only one for each community. The Sonar dataset shows

an accuracy loss when r increases, although it is very small in magnitude. Regarding

122

4.4. Fisher networks for real-world data

the multiclass problems, the Glass data suffers a slightly more noticeable deterioration

when fewer references are considered, but even in the worst case, the resulting accuracy

is not very far away from the base figure. The easiest classification task of the six, given

by the Wine dataset, also experiences a small decrease in accuracy for the largest values

of r. Figs. 4.36–4.41 represent the Fisher networks leading to the classification rates in

the rightmost column of the table (one reference case per cluster), with central nodes

highlighted by oversized markers. In these representations, edges are shown only between

reference cases and their community neighbours.

Earlier in this chapter, Figs. 4.7–4.12 illustrate how Fisher networks can produce leave-

one-out class predictions that result in classification accuracies as high as those obtained

with the original MLP estimator. Further to that, the results in Table 4.10 suggest that

a similar level of accuracy can be achieved using only a few central nodes. This is very

interesting from the point of view of interpretability because it allows the explanation of

the predictions made by the framework in terms of known data examples. This is also

possible for the leave-one-out predictions, but by using reference cases the number of

samples required to explain the assignments is reduced drastically. For these datasets,

the predicted score in Eq. (4.2) is a simple linear combination with a number of terms

that goes from 3 (Wine dataset) to 10 (Glass dataset). It is therefore possible to ex-

press compactly the exact individual contribution of each reference case xj towards the

classification of a sample xi in terms of the weights Aij .

123

4.4. Fisher networks for real-world data

Figure 4.36: Fisher network representation of the Ionosphere dataset with informative back-
ground and highlighted reference cases, σG = 0.20.

Figure 4.37: Fisher network representation of the Liver dataset with informative background
and highlighted reference cases, σG = 0.20.

124

4.4. Fisher networks for real-world data

Figure 4.38: Fisher network representation of the Diabetes dataset with informative background
and highlighted reference cases, σG = 0.10.

Figure 4.39: Fisher network representation of the Sonar dataset with informative background
and highlighted reference cases, σG = 0.20.

125

4.4. Fisher networks for real-world data

Figure 4.40: Fisher network representation of the Glass dataset with informative background
and highlighted reference cases, σG = 0.50.

Figure 4.41: Fisher network representation of the Wine dataset with informative background
and highlighted reference cases, σG = 0.50.

126

4.5. Supervised blind signal separation using FI metrics

4.5 Supervised blind signal separation using FI metrics

The final section of the chapter presents another original application of the Fisher infor-

mation metric [93]. In this case, the FI metric is combined with a blind signal separation

(BSS) algorithm. BSS methods express complex signals as linear combinations of sources

whose joint distribution is close to factorised into a product of independent univariate

density functions. This approach is even more interpretable when it is applied in the

convex space of positive semi-definite mixing and unmixing matrices [111], because then

the sources and their partial contributions can be evaluated against prior knowledge.

In this application, synthetic data models are built from single-voxel magnetic resonance

spectroscopy (MRS) signals corresponding to a neuro-oncology problem. The objective

is that the sources obtained approximate prototypes for each brain tissue class and the

maximal values in each row of the mixing matrix indicate the correct binary classification

of the observations. In this context, the correct prototypes of the classes are taken to be

the means of their generating distributions.

In a previous work [112], Ortega et al. investigate the use of non-negative matrix factori-

sation (NMF) methods [113, 114] for the extraction of tissue type-specific MRS signal

sources in a fully unsupervised mode. This was applied to a multi-centre database that

incorporates MRS data of several types of human brain tumours. The accuracies of the

labels inferred for each patient case where comparable to those obtained by traditional

supervised classifiers.

To try to improve the performance of the method, class label information is incorporated

by deriving an FI metric from an MLP trained on the data and using it to define a

Euclidean projective space where the BSS method is applied. The expectation is that

the enhanced separation between classes provided by the Fisher metric translates into

higher classification accuracies and sources that are closer to the true class prototypes.

Convex non-negative matrix factorisation

In this work, the Fisher metric is combined with a variant of the NMF family called

Convex-NMF [111]. In conventional NMF methods, a non-negative data matrix X of

size N × L (dimensions × samples) is approximately factorised into two non-negative

matrices: the matrix of sources or data basis S, of size N ×K, where K is the number

of sources (K < N); and the mixing matrix M, of size K × L, whose columns provide

the enconding of the data points in terms of the sources. The product of these matrices

approximates the original data matrix, X ≈ SM. In this study, each column of the data

matrix corresponds to the spectrum of an observation and comprises radiation intensities

at N different frequencies.

127

4.5. Supervised blind signal separation using FI metrics

To achieve a more interpretable model, Convex-NMF imposes the constraint that the

sources in S must lie within the column space of X, that is, S = XU, where U is

called the unmixing matrix. In this setting, X ≈ XUM. By restricting S to convex

combinations of the columns of X we can understand the sources as weighted sums

of data points. This NMF variant applies to both non-negative and mixed-sign data

matrices, since only M and U are required to be non-negative.

The mixing and unmixing matrices are updated with the following multiplicative algo-

rithm,

MT ←MT

√
(XTX)+ U + MTUT (XTX)−U

(XTX)−U + MTUT (XTX)+ U

U← U

√
(XTX)+ MT + (XTX)−UMMT

(XTX)−MT + (XTX)+ UMMT
,

(4.3)

where the function (·)+ keeps the positive elements of a matrix and replaces negative

values with zeros and (·)− operates conversely. M and U are initialised using k-means

clustering, as proposed in [111]. This update process minimises the reconstruction error

||X−XUM||2 while ensuring that the elements of M and U remain non-negative.

Given that the MRS samples are of mixed sign, their sources should be too. Thus, if

S is taken as the source spectra matrix, its columns will be readily interpretable and

no pre-processing of the data will be required to ensure the non-negativity of X, like it

would be in a standard NMF method. The mixing matrix M, non-negative by definition,

can be understood as the concentration of the constituent signals in each data sample.

Description of the MRS data

The data analysed in this study are modelled from samples extracted from a database

used in a previous publication [112]. Class (tumour type) labelling was used to generate

posterior distributions of the data density using single multivariate normal models fitted

to the mean and covariance matrices of class specific cohorts of single voxel proton MRS

(SV-1H-MRS) acquired at two different echo times (short, 20-32 ms (STE) and long,

135-144 ms (LTE)) from brain tumour patients.

The final dataset includes, at LTE, 20 samples of astrocytomas grade II (A2), 78 glioblas-

tomas (GL) and 31 metastases (ME); and at STE it contains 22 A2 samples, 86 GL and

38 ME. The data dimensionality is 195, reflecting the clinically-relevant frequency inten-

sity values measured in parts per million (ppm) that are typically sampled from each

spectrum in the [4.24,0.50] ppm interval. A second dataset was generated to validate the

method, comprising 50 samples drawn from the same distributions used for the training

set.

128

4.5. Supervised blind signal separation using FI metrics

Results

Three binary classification problems are tackled, one for each possible pair of classes.

Performance is analysed in terms of classification accuracy and quality of the sources

obtained, measured as the correlation between them and the true sources. Each clas-

sification problem is run 20 times to average the effect of the variable initialisations of

the algorithm. Regarding the projection of the data, three methods are tested: Sammon

mapping (Eq. (3.39)), standard MDS (Eq. (2.6)) and an iterative majorisation algorithm

(IMA) [93].

Table 4.11: Classification accuracy results for the original version of Convex-NMF and the three
projection-based variations.

Validation accuracy (%)

Classes
STE LTE

Original Sammon MDS IMA Original Sammon MDS IMA

A2 vs. GL 94 85.5 90 90 80 98 95 97

A2 vs. ME 97 93.8 99 99 88 99.9 99.9 100

GL vs. ME 67.7 72.8 75 74 62 81.8 82 83

Table 4.12: Source correlations between the two sources obtained in each problem and the true
mean spectra of the corresponding classes.

Source correlation

Classes
STE LTE

Original Sammon MDS IMA Original Sammon MDS IMA

A2 vs. GL
A2 0.96 0.98 0.99 0.99 0.99 1 1 1
GL 0.96 1 1 1 0.80 0.99 0.99 0.98

A2 vs. ME
A2 0.96 0.93 0.98 0.99 1 0.99 0.99 1
ME 0.99 0.94 0.99 1 0.94 0.96 0.97 1

GL vs. ME
GL 0.94 1 0.98 0.98 0.68 0.99 0.99 0.99
ME 0.98 1 1 1 0.89 0.99 0.99 0.99

The classification results on validation data (Table 4.11) show a general performance

improvement over the original approach when the method is applied on the projected

data using Fisher distances. There are some exceptions, however, where the standard

Convex-NMF does better than the alternatives: In A2 vs. ME at STE it outperforms

the Sammon version and in A2 vs. GL at STE it improves on all three mappings. Of

the three supervised versions of the algorithm, MDS and IMA obtain better results,

especially at STE.

Regarding the quality of the sources, Table 4.12 indicates that, in general, all four ap-

proaches produce very good approximations. The most interesting classification problem

is GL against ME, for it is the most challenging from the three. These two classes have

a very similar mean spectrum, which causes the low accuracies in the bottom row of

Table 4.11. Despite that, the Fisher metric-based versions of Convex-NMF manage to

129

4.5. Supervised blind signal separation using FI metrics

replicate the true sources remarkably well.

Fig. 4.42 represents the mean spectra of the true classes. As mentioned above, the

resemblance between them is very high in terms of the position and height of the peaks.

The only clear difference is the height of the second main peak. Figs. 4.43–4.46 contain

the sources extracted by the four methods tested. Plain Convex-NMF does not get both

main peaks right at the same time, and it instead identifies each class with one of them.

On the other hand, the Fisher metric approaches retrieve sources that are almost identical

to the original ones.

Figure 4.42: True GL (A) and ME (B) mean spectra.

The results confirm that an unsupervised BSS method like Convex-NMF can benefit from

the use of known data labels and obtain higher classification rates and more accurate

sources. Furthermore, this is achieved without deteriorating the interpretability of the

results.

130

4.5. Supervised blind signal separation using FI metrics

Figure 4.43: Class GL (A) and ME (B) mean spectra obtained with plain Convex-NMF.

Figure 4.44: Class GL (A) and ME (B) mean spectra obtained with Sammon mapping +
Convex-NMF.

Figure 4.45: Class GL (A) and ME (B) mean spectra obtained with MDS + Convex-NMF.

Figure 4.46: Class GL (A) and ME (B) mean spectra obtained with IMA + Convex-NMF.

131

4.6. Chapter summary

4.6 Chapter summary

This chapter shows examples of the different modules that form the Fisher network

framework put into practice. To start with, Section 4.1 illustrates the effect of the FI

metric using a simple 2-D classification problem, showing that the metric rearranges data

points precisely in the way it was desired to, as seen in Fig. 4.2. In Section 4.2, the metric

is proven beneficial in high-dimensional KNN classification tasks using an artificial non-

linear problem, where it outperforms the Euclidean version of the classifier. Section 4.3

then compares the proposed geodesic approximation algorithm with other methods in

the literature. The performance figures indicate that, although the suggested approach

obtains an improvement on the accuracy of existing methods, it is only a small gain that

does not justify the added computational cost unless the dataset used is small.

The main set of experiments (Section 4.4) take the reader through the process of build-

ing Fisher networks using six real-world datasets. First, Section 4.4.1 benchmarks the

classification performance of the MLP estimator used to derive the metric against other

methods that have been applied to the same data previously in the literature, concluding

that the accuracy of the chosen model is comparable to that of state-of-the-art methods.

After that, Section 4.4.2 starts by applying the criteria described in Section 3.4.1 to find

out suitable value ranges for the locality parameter σG. Using those values, examples of

networks are built and described in the following subsection, where they are compared

to analogous graphs generated using Euclidean distances. The latter show a significant

deterioration in the quality of their predictions and in the concordance between the com-

munities found and the true class labels, which highlights the benefits of including side

information in the construction process.

Coloured networks are produced for the same datasets, providing a more informative

visualisation of the data. Then, the last subsection finds reference cases for the six

networks, and Table 4.10 shows that the classification accuracies of the MLP can be

closely reproduced by using only a few central nodes in a case-based approach.

Finally, Section 4.5 discusses the inclusion of an element of supervision in the process of

convex non-negative matrix factorisation. By applying CNMF on a mapped version of

the data using Fisher distances, the performance of the plain algorithm is improved both

in terms of classification accuracy and quality of the sources obtained.

132

Chapter 5

Review, conclusions and future
work

The fifth and final chapter closes this thesis with a discussion of the work carried out and

the degree to which it satisfies the objectives and functionalities initially planned for the

framework. Then follows a list of interesting topics to investigate that could bring new

features into the system and mitigate its limitations.

5.1 Review

The main motivation of this work was to develop a visualisation and classification method-

ology with a focus on interpretability. The initial idea was to use a Fisher information-

based distance metric to define a pairwise similarity measure that would guide the con-

struction of networks. Following that approach, a Fisher metric in the data space is

derived from sigmoidal output discriminant estimators. The result is a Riemannian met-

ric with a rigorous theoretical basis that calculates distances between points in terms of

the class membership probability fluctuations present along the path followed, automati-

cally filtering the local relevance of the different variables with respect to the problem at

hand. Although the Fisher metric is only the first part of the framework, using it as the

foundation of the system represents the first step towards interpretability, since it makes

distances a reliable measure of how similar samples really are with regard to the under-

lying posterior class probabilities. Section 4.2 provides an example of the robustness of

the metric, especially in high dimensional problems, the main application scope of the

framework. Other methodologies can also benefit from the use of the metric, as seen in

Section 4.5.

However, the calculation of Fisher distances is not as straightforward as it is, for instance,

in a Euclidean metric. Capturing the differential relevance of the space comes at a cost:

133

5.1. Review

the Fisher metric is Riemannian and, as such, distances must be computed as an infinite

sum of infinitesimal displacements. Interestingly, Appendix C shows that distances under

an FI metric derived from a linear estimator are given by a closed-form expression that

is independent of the path followed. Unfortunately, this is only locally applicable to the

non-linear case, and the challenge of approximating geodesic paths must be faced when

calculating global distances. To do so, Section 3.3.3 presents the free point approach, a

novel algorithm based on the iterative optimisation of an initial path. When it comes

to performance, though, Section 4.3 shows that this method only provides a marginal

improvement on other existing algorithms that are computationally much cheaper.

As planned, data are represented using similarity networks, which are built from pairwise

Fisher distances using a Gaussian kernel that defines the structure of the graph. This

process involves the selection of a parameter, σG, that controls the influence of locality in

the generation of the weights of the network connections. The system presents the user

with a number of measures to aid the selection of its value, or chooses it automatically if

no external input is provided. Once the network is defined in the form of an adjacency

matrix, a spectral community detection algorithm is applied to find the set of clusters

that best represent the structure of the graph. The Fisher network is then ready to be

represented by plotting its nodes and placing edges between those of them that belong

to the same community, highlighting the structure of the data. Nodes are arranged

in the 2-D plot using MDS techniques, producing a neat visualisation of the dataset

where communities are automatically placed in an orderly pattern that reflects the class

probabilities of their members.

A further interpretability enhancement is implemented with informative backgrounds, a

variation of the standard representation that colours the background image of the network

plot according to the local posterior probabilities. This gives the user an interpretable

visualisation of the different parts of the network and how well defined they are in terms of

class membership probability. In short, Fisher network representations are exactly what

was looked for: an intuitive visualisation tool that can generate a highly informative

identifying picture for a dataset regardless of its dimensionality.

The other main functionality that was expected from the framework is the ability to per-

form label prediction, again stressing the importance of obtaining interpretable results.

Fisher networks achieve this through a simple weighted contribution of their nodes, which

has proven to be able to reproduce the classification accuracies of the original probability

estimator. Furthermore, the number of nodes that are taken into account can be reduced

substantially without significantly deteriorating the accuracy of the predictions drawn:

For the six real-world datasets studied in Section 4.4.2, using only the most central node

in each community (less than a dozen in the busiest case) was enough to produce classifi-

cation rates comparable to those given by an MLP, which were in line with other methods

134

5.2. Conclusions

in the literature.

5.2 Conclusions

Fisher networks constitute a novel mathematical framework for the analysis of categorised

data that performs two main functions: Firstly, it offers a data visualisation tool that

maps the original, often high-dimensional, space into a 2- or 3-D embedding where data

can be observed directly. The use of a tailored distance metric provides the system with

the ability to consider only relevant features of the space, making distances accurate

measures of dissimilarity even when the number of covariates is large. Secondly, the

framework produces interpretable probabilistic class predictions based on the estimates

of a supervised model. These are explained to the user as a linear combination of the

predictions of a reduced number of selected known cases in the dataset.

Although the derivation of the Fisher metric requires supervision in the form of class label

information, once the training stage is over and the metric is defined, distances can be

calculated between any pair of points. This means that new data samples with unknown

membership can be incorporated into an existing Fisher network simply by calculating

the strength of their connections to the rest of the points in the dataset. The community

detection algorithm can then be used to assign the new nodes to the appropriate clusters.

To summarise, the Fisher network framework is a successful materialisation of the ini-

tially desired features, allowing the user to benefit from the performance of black box

models while providing a case-based interpretation for their inferences and an informative

representation of the data under study.

5.3 Future work

Even though the goals of the research project have been satisfied, there are several avenues

that can be explored to improve the functionality of the framework.

• The estimation of the conditional class probabilities has been carried out using

logistic regression in the linear case and an artificial neural network for non-linear

problems, which is the default method of choice. The multilayer perceptron is

a versatile and powerful estimator, but it does not need to be the only option

available. It would be interesting to derive the Fisher metric for other probabilistic

models e.g., radial basis function networks [86] or relevance vector machines [87],

and compare the resulting visualisations and classification performance with those

of the MLP-based approach.

135

5.3. Future work

• Although Section 3.6.3 explains how to add new data points to an existing Fisher

network, Chapter 4 does not include any experiment that illustrates this using a

validation dataset. Table 4.10 in Section 4.4.2 contains leave-one-out classification

accuracies, but they come from data that was used for the training of the MLP,

either as training or test cases, due to the reduced number of samples available.

In the future, a more thorough experiment could be carried out where, by using a

large enough dataset, a validation set can be selected and excluded from the training

stage of the probability estimator without significantly affecting the quality of the

p(cj |x) estimates. Then, once the Fisher network is built, these samples could be

used as truly new cases, with the advantage that their class labels would be known.

In a medical scenario, for example, this would allow the clinician to visualise new

patients along with known ones in the same plot, also providing a selection of

related previous patients to support the class assignment process.

• The representations in Figs. 4.13–4.41 display the community structure of the net-

works using edges to connect points from the same cluster. However, these edges

do not provide the user with enough information to differentiate nodes that have

a strong community membership from those whose cluster assignment is less in-

fluential in the modularity score of the partition. The arrangement of the nodes

in the plot indirectly gives an indication of this, but the presence of edges is still

distracting in some cases. A possible solution is to modulate the width of edges

using their connection weights or, alternatively, the value of their elements in the

corresponding eigenvector of the community identification algorithm.

• The Fisher network examples in Chapter 4 are built from datasets of moderate

size, but even in those cases there are sometimes areas of the plots where a dense

presence of data makes it difficult to recognise nodes and communities clearly. For

example, in Fig. 4.13 there are two different communities at the very top of the C

shape, but it is easy to confuse them with a single cluster. Similarly, some regions

in Figs. 4.16, 4.20 and 4.24 are so crowded that even roughly estimating how many

data points there are in them is impossible. These issues will be more frequent in

large datasets, and for that reason it would be interesting to produce a hierarchical

visualisation based on reference cases. At the top view level, only a few nodes would

be displayed; the most central ones within their communities. Then, as the user

zooms into the network, the number of nodes shown increases, again in an order

given by their centrality. This would give a cleaner simplified view of the dataset

without having to plot every single node, which would still be available to view if

required.

• In regard to large datasets, the calculation of the full pairwise distance matrix could

become computationally expensive when there are many examples involved, since

136

5.3. Future work

the time required is proportional to the sample size squared. This was not a concern

in the experiments included in this thesis, so path integrals were approximated using

a large number of divisions to ensure an accurate result. With bigger datasets,

though, adjusting this parameter becomes of paramount importance. How to do

this automatically depending on the particular circumstances (e.g., the separation

between the points or their location in the space) is an important question that

needs to be addressed in order for the framework to be computationally efficient in

large problems.

• The results in Section 4.3 indicate that the performance of the proposed geodesic

approximation method is heavily dependent on the initial path used and likely

to get stuck in local minima. It may be worth investigating other initialisation

procedures or alternatives to replace gradient descent in the optimisation of the

objective function.

• Section 4.2 presented an analysis of the effect of the Fisher metric on a synthetic

non-linear KNN classification problem for an increasing number of variables. The

results provided interesting insights on the behaviour of both Fisher and Euclidean

metrics. It would be interesting to research this topic in further detail using other

artificially generated datasets with different data distributions.

• The study discussed above, as well as any functionality improvements, should also

be made extendable to multiclass problems, since it is normally in such contexts

where the advantages of interpretability and informative data visualisation are most

needed.

137

Appendix A

Derivation of the FI matrix

This appendix contains the derivation of the Fisher information matrix expressions in

Sections 3.2.1 and 3.2.2 from the first of the two definitions of the matrix in Eq. (3.14),

FI(x) =
J∑
j

(∇x log(p̂(cj |x)))(∇x log(p̂(cj |x)))T p̂(cj |x). (A.1)

For the sake of clarity, the following abbreviations are used throughout this appendix:

∇ = ∇x =
d

dx

a = a(x) (binary)

aj = aj(x) (multiclass)

p̂j = p̂(cj |x).

(A.2)

The calculation of FI(x) is first carried out for binary classifiers with sigmoid output and

then for multiclass estimators with softmax activation function.

A.1 FI matrix derivation for two classes

The output of the estimators considered in this subsection gives class-membership prob-

abilities of the form

p̂1 =
1

1 + exp(−a)
p̂0 =

exp(−a)

1 + exp(−a)
. (A.3)

138

Appendix A. Derivation of the FI matrix

Eq. (A.1) requires the terms ∇ log(p̂j). The logarithms of the probabilities are given by

log(p̂1) = − log(1 + exp(−a))

log(p̂0) = −(a+ log(1 + exp(−a)),
(A.4)

and their derivatives are
∇ log(p̂1) = (1− p̂1)∇a

∇ log(p̂0) = −p̂1∇a.
(A.5)

Inserting Eq. (A.5) in Eq. (A.1) and expanding the summation gives

FI(x) = (∇ log(p̂1))(∇ log(p̂1))T p̂1 + (∇ log(p̂0))(∇ log(p̂0))T p̂0

= ((1− p̂1)∇a)((1− p̂1)∇a)T p̂1 + (p̂1∇a)(p̂1∇a)T (1− p̂1)

= (∇a)(∇a)T p̂1(1− p̂1)2 + (∇a)(∇a)T p̂2
1(1− p̂1)

= (∇a)(∇a)T p̂1(1− p̂1).

(A.6)

A.2 FI matrix derivation for multiple classes

The multiclass predictor used in Section 3.1.2 produces probability estimates given by

p̂j =
exp(aj)∑J
k=1 exp(ak)

, (A.7)

and their logarithms are

log(p̂j) = aj − log

(
J∑
k=1

exp(ak)

)
, (A.8)

with derivatives

∇ log(p̂j) = ∇aj −
J∑
k=1

p̂k∇ak. (A.9)

Combining Eqs. (A.1) and (A.9),

FI(x) =
J∑
j

(
∇aj −

J∑
k=1

p̂k∇ak

)(
∇aj −

J∑
l=1

p̂l∇al

)T
p̂j , (A.10)

139

Appendix A. Derivation of the FI matrix

where the index l is introduced to avoid confusion. Expanding the product,

FI(x) =
J∑
j

(
(∇aj)(∇aj)T

−
J∑
l

(∇aj)(∇al)T p̂l −
J∑
k

(∇ak)(∇aj)T p̂k

+
J∑
k

J∑
l

(∇ak)(∇al)T p̂kp̂l

)T
p̂j .

(A.11)

By noting that any quantity t can be expressed as t
∑J

i pi =
∑J

i tpi, Eq. (A.11) can be

rearranged as

FI(x) =

J∑
j

(
J∑
k

J∑
l

(∇aj)(∇aj)T p̂kp̂l

−
J∑
k

J∑
l

(∇aj)(∇al)T p̂kp̂l −
J∑
k

J∑
l

(∇ak)(∇aj)T p̂kp̂l

+
J∑
k

J∑
l

(∇ak)(∇al)T p̂kp̂l

)T
p̂j .

(A.12)

The summations can then be merged, resulting in the final expression,

FI(x) =
J∑
j

(
J∑
k

J∑
l

(
(∇aj)(∇aj)T − (∇aj)(∇al)T

−(∇ak)(∇aj)T + (∇ak)(∇al)T
)
p̂kp̂l

)T
p̂j

=
J∑
j

J∑
k

J∑
l

(∇(aj − ak))(∇(aj − al))T p̂j p̂kp̂l.

(A.13)

140

Appendix B

Interpretation of the FI metric in
the context of information and
divergence

The purpose of this appendix is to review the meaning and validity of the Fisher informa-

tion metric in primary data space. The original definitions of information and divergence

and their relationship with the metric [56] are discussed in the case where the role of the

density function p(x|θ) is taken by a posterior distribution p̂(cj |x) that is assumed to

have been fitted using empirical auxiliary data. The idea is to replicate the derivation of

the traditional FI matrix expressions in the parameter space ensuring that the regularity

assumptions hold, with the aim of gaining a rigorous insight into the meaning of the

reversed formulation of the Fisher metric in the space of the covariates.

B.1 Information

The first step is to define the information of the likelihood of x1 given cj , L(x1|cj) =

p̂(cj |x1), with respect to that of x2, L(x2|cj) = p̂(cj |x2), for x1 and x2 samples of a

multivariate random variable X . The indicator cj implies y = j, where y is the class

label of x and j is one of the possible values of the discrete class variable Y. Let Hi,
i ∈ {1, 2}, be the hypotheses that the points xi were generated by class j. From Bayes’

theorem,

log
p̂(cj |x1)

p̂(cj |x2)
= log

p̂(x1|cj)
p̂(x2|cj)

− log
p̂(x1)

p̂(x2)
, (B.1)

where p̂(xi) is the prior probability of data point xi and p̂(xi|cj) is the class conditional

probability of xi given cj , that is, given membership to class j. Therefore, the right

hand side of Eq. (B.1) is the difference of the divergence between the logarithm of the

odds in favour of H1 before and after observing y1, y2 = j. This can be interpreted as

141

Appendix B. Interpretation of the FI metric in the context of information and divergence

the information resulting from the observation of class membership, and the logarithm

of the likelihood ratio, log(p̂(cj |x1)/p̂(cj |x2)), is defined to be the information in Y = j

for discrimination in favor of H1 against H2. The expectation of this information with

respect to p̂(cj |x1) over all possible classes gives what is normally known as the Kullback-

Leibler (KL) divergence,

IKL(x1 : x2) =
∑
j

log

(
p̂(cj |x1)

p̂(cj |x2)

)
p̂(cj |x1). (B.2)

Combining Eqs. (B.1) and (B.2), the KL divergence can be expressed as

IKL(x1 : x2) =
∑
j

log

(
p̂(x1|cj)
p̂(x2|cj)

)
p̂(cj |x1)− log

p̂(x1)

p̂(x2)
. (B.3)

This measure can therefore be seen as the expected value of the power of the class variable

Y to distinguish between x1 and x2 or, in other words, the information that it contains

about their likelihoods.

B.2 Divergence

Although IKL(x1 : x2) is what is commonly known as KL divergence, the original for-

mulation of the divergence measure defined it as a symmetric measure, obtained by

calculating the expected value of the information in Eq. (B.2) over both orders of H1 and

H2,

JKL(x1 : x2) = IKL(x1 : x2) + IKL(x2 : x1)

=
∑
j

log

(
p̂(cj |x1)

p̂(cj |x2)

)
(p̂(cj |x1)− p̂(cj |x2)),

(B.4)

which, again, represents a measure of the difficulty to discriminate between the two

hypotheses.

Both Eqs. (B.2) and (B.4) serve as starting points to calculate a local Taylor approxi-

mation that enables the derivation of the connection between these measures and the FI

metric. However, the use of this approximation relies on the validity of three regularity

conditions.

142

Appendix B. Interpretation of the FI metric in the context of information and divergence

B.3 Regularity conditions

The first two regularity conditions used in the original formulation (see Chapter 2.6

in [56]) require the conditional class probabilities p̂(cj |x) to be continuous, finite and

differentiable everywhere in the input space. In the following, it is assumed that all

vector derivatives with respect to the multivariate random variable X may be treated

independently from one covariate to the others. This assumption applies in the context of

posterior probability functions that may be linear in the parameters or semi-parametric,

including generic non-linear models such as artificial neural networks.

The third regularity condition follows directly from the standard normalisation of con-

ditional probability density functions (probability masses in the case of a discrete class

variable),

∑
j

p̂(cj |x) = 1 −→
∑
j

∇xp̂(cj |x) = 0 −→
∑
j

∇2
xp̂(cj |x) = 0. (B.5)

Additionally, this last condition can be used to derive the dual definition of the FI matrix

in Eq. (3.14). Expressing p̂(cj |x) as exp(log p̂(cj |x)) and taking derivatives of the left hand

side summation in Eq. (B.5),

∇2
x

∑
j

exp(log p̂(cj |x)) = ∇x

∑
j

(∇x log(p̂(cj |x)))p̂(cj |x) = 0. (B.6)

Expanding the derivatives on the right hand side, it follows that

∑
j

(∇2
x log(p̂(cj |x)))p̂(cj |x)

+
∑
j

(∇x log(p̂(cj |x)))(∇x log(p̂(cj |x)))T p̂(cj |x) = 0,
(B.7)

hence ∑
j

(∇x log(p̂(cj |x)))(∇x log(p̂(cj |x)))T p̂(cj |x)

= −
∑
j

(∇2
x log(p̂(cj |x)))p̂(cj |x),

(B.8)

which shows the numerical equivalence of the two definitions.

143

Appendix B. Interpretation of the FI metric in the context of information and divergence

B.4 Connection with the Fisher information

This subsection reproduces in the input space the relationship between the KL divergence

and the Fisher metric described in [56]. The starting point is the information measure

in Eq. (B.2) applied to a pair of adjacent points,

IKL(x : x + dx) = −
∑
j

log

(
p̂(cj |x + dx)

p̂(cj |x)

)
p̂(cj |x). (B.9)

Taking a Taylor approximation of log(p̂(cj |x + dx)) about x up to second order terms,

log(p̂(cj |x + dx))− log(p̂(cj |x))

= dxT∇x log(p̂(cj |x)) +
1

2
dxT

(
∇2

x log(p̂(cj |x))
)
dx.

(B.10)

Inserting this in Eq. (B.9),

IKL(x : x + dx) = −
∑
j

dxT (∇x log(p̂(cj |x)))p̂(cj |x)

−1

2

∑
j

dxT
(
∇2

x log(p̂(cj |x))
)
dxp̂(cj |x).

(B.11)

According to Eq. (B.6), the first summation is zero, so

IKL(x : x + dx) = −1

2
dxT

∑
j

(∇2
x log(p̂(cj |x)))p̂(cj |x)

 dx

=
1

2
dxTFI(x)dx.

(B.12)

After a similar procedure, the symmetric divergence in Eq. (B.4) yields

JKL(x : x + dx) = dxTFI(x)dx. (B.13)

Based on Eqs. (B.12) and (B.13), the differential distance between a pair of nearby

points in the input space can be understood as the KL divergence between their class

membership probabilities. This is equivalent, going back to Section B.1, to the expected

information provided by the class label to discern between the hypotheses H1 and H2

over all possible classes.

144

Appendix C

Derivation of the distance
expression for linear estimators

This appendix covers the derivation of Eq. (3.23), which gives the distance between any

pair of points under a Fisher metric defined using an LLR as the probability estimator.

This is an important expression because it provides an analytical and efficient way to

calculate global distances with a linear estimator in binary problems and it can also be

used to approximate straight line distances for non-linear estimators by using a Taylor

approximation.

Let us recall the expressions of the FI matrix

FI(x) = (∇xa(x))(∇xa(x))T p̂(c1|x)(1− p̂(c1|x)), (C.1)

the generalised linear estimator,

a(x) = β0 + βTx, (C.2)

and the path integral to be solved,

d(xA,xB) =

∣∣∣∣∫ tB

tA

√
ẋ(t)TFI(x(t))ẋ(t)dt

∣∣∣∣ . (C.3)

Combining Eqs. (C.1), (C.2) and (C.3),

d(xA,xB) =

∣∣∣∣∫ tB

tA

√
ẋ(t)TββT ẋ(t)p̂(c1|x(t))(1− p̂(c1|x(t)))dt

∣∣∣∣
=

∣∣∣∣∫ tB

tA

√
(βT ẋ(t))2p̂(c1|x(t))(1− p̂(c1|x(t)))dt

∣∣∣∣ . (C.4)

145

Appendix C. Derivation of the distance expression for linear estimators

The integration variable is now changed from t to a(x(t)), a for brevity,

a = βTx(t) + β0 −→
da

dt
= βT ẋ(t) −→ dt =

1

βT ẋ(t)
da, (C.5)

which leaves the integral in Eq. (C.4) as

d(xA,xB) =

∣∣∣∣∣
∫ a(xB)

a(xA)

√
(βT ẋ(t))2p̂(c1|x(t))(1− p̂(c1|x(t)))

1

βT ẋ(t)
da

∣∣∣∣∣
=

∣∣∣∣∣
∫ a(xB)

a(xA)

√
p̂(c1|x(t))(1− p̂(c1|x(t)))da

∣∣∣∣∣ .
(C.6)

Inserting the expression of the output of the linear estimator considered,

p̂(c1|x) =
1

1 + exp(−a(x))
, (C.7)

into Eq. (C.6) yields

d(xA,xB) =

∣∣∣∣∣
∫ a(xB)

a(xA)

exp
(
−a

2

)
1 + exp(−a)

da

∣∣∣∣∣ . (C.8)

A second variable change is carried out, this time it is b for a,

b = exp
(
−a

2

)
−→ db

da
= −1

2
exp

(
−a

2

)
= −1

2
b −→ da = −2

b
db, (C.9)

which results in

d(xA,xB) =

∣∣∣∣∣−2

∫ b(xB)

b(xA)

1

1 + b2
db

∣∣∣∣∣ = 2
∣∣∣[arctan(b)]

b(xB)
b(xA)

∣∣∣ . (C.10)

The final step is to undo the last variable change, leaving the expression in terms of the

generalised estimator a(x),

d(xA,xB) = 2
∣∣∣[arctan(a(x))]

a(xB)
a(xA)

∣∣∣ . (C.11)

146

References

[1] A. Vellido, J.D. Mart́ın-Guerrero, and P.J.G. Lisboa. Making machine learning
models interpretable. In Proceedings of the 20th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, pages 163–
172, 2012.

[2] J. Bring. How to standardize regression coefficients. The American Statistician,
48(3):209–213, 1994.

[3] F. Mosteller and J.W. Tukey. Data analysis and regression. Addison-Wesley, 1977.

[4] M.W. Kattan, J.A. Eastham, A.M. Stapleton, T.M. Wheeler, and P.T. Scardino.
A preoperative nomogram for disease recurrence following radical prostatectomy
for prostate cancer. Journal of the National Cancer Institute, 90(10):766–71, 1998.

[5] M. d’Ocagne. Traité de nomographie. Gauthier-Villars, Paris, 1899.

[6] I. Guyon. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182, 2003.

[7] A. Saltelli, K. Chan, and E.M. Scott. Sensitivity analysis. Wiley, 2000.

[8] V. Van Belle, B. Van Calster, D. Timmerman, T. Bourne, C. Bottomley,
L. Valentin, P. Neven, S. Van Huffel, J.A.K. Suykens, and S. Boyd. A mathematical
model for interpretable clinical decision support with applications in gynecology.
PLoS One, 7(3), 2012.

[9] V. Vapnik. Statistical learning theory. Wiley, New York, 1998.

[10] J. Huysmans, B. Beasen, and J. Vanthienen. Using rule extraction to improve the
comprehensibility of predictive models. Research report. Department of Decision
Sciences and Information Management, K.U. Leuven, Belgium, 2006.

[11] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[12] R. Andrews, J. Diederich, and A.B. Tickle. Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowledge-Based Systems,
pages 373–389, 1995.

[13] T.A. Etchells and P.J.G. Lisboa. Orthogonal search-based rule extraction (OSRE)
for trained neural networks: a practical and efficient approach. IEEE Transactions
on Neural Networks, 17(2):374–384, 2006.

147

References

[14] T.S. Rögnvaldsson, T.A. Etchells, L. You, D. Garwicz, I.H. Jarman, and P.J.G. Lis-
boa. How to find simple and accurate rules for viral protease cleavage specificities.
BMC Bioinformatics, 10, 2009.

[15] J.-S.R. Jang, C.-T. Sun, and E. Mizutani. Neuro-fuzzy and soft computing: a
computational approach to learning and machine intelligence. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997.

[16] E.H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies, 7(1):1–13, 1975.

[17] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications
to modeling and control. IEEE Transactions on Systems, Man and Cybernetics,
15:116–132, 1985.

[18] J.-S.R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans-
actions on Systems, Man, and Cybernetics, 23(3):665–685, 1993.

[19] E.O. Madu, V. Stalbovskaya, B. Hamadicharef, E.C. Ifeachor, S. Van Huffel, and
D. Timmerman. Preoperative ovarian cancer diagnosis using neuro-fuzzy approach.
In Proceedings of the European Conference on Emergent Aspects in Clinical Data
Analysis, pages 1–8, 2005.

[20] Z.Q. Gu and S.O. Oyadiji. Application of MR damper in structural control using
ANFIS method. Comput. Struct., 86(3-5):427–436, 2008.

[21] A. Khan, L. Sun, and E. Ifeachor. Content-based video quality prediction for
MPEG4 video streaming over wireless networks. Journal of Multimedia, 4(4):228–
239, 2009.

[22] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996.

[23] J. Whittaker. Graphical models in applied multivariate statistics. Wiley, Chichester,
1990.

[24] D. Bacciu, T.A. Etchells, P.J.G. Lisboa, and J. Whittaker. Efficient identification of
independence networks using mutual information. Computational Statistics, pages
1–26, 2012.

[25] H. Carlin, I.H. Jarman, S. Chambers, P.J.G. Lisboa, S. Knuckey, C. Perkins, and
M.A. Bellis. North West mental wellbeing survey - what influences wellbeing? NHS
North West commissioned report by the North West Public Health Observatory,
May 2011.

[26] J.H. Friedman. Flexible metric nearest neighbor classification. Technical report,
1994.

[27] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[28] K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10:207–244, 2009.

[29] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.

148

References

[30] W.S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,
17(4):401–419, 1952.

[31] G. Young and A.S. Householder. Discussion of a set of points in terms of their
mutual distances. Psychometrika, 3(1):19–22, 1938.

[32] J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions
on computers, 18(5):401–409, 1969.

[33] J. de Leeuw. Applications of convex analysis to multidimensional scaling. In Recent
Developments in Statistics, pages 133–146. North Holland Publishing Company,
Amsterdam, 1977.

[34] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

[35] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326, 2000.

[36] T. Cover and P. Hart. Nearest neighbor pattern classification. 13:21–27, 1967.

[37] E. Fix and J.L. Hodges. Discriminatory analysis, nonparametric discrimination:
Consistency properties. US Air Force School of Aviation Medicine, Technical Re-
port 4(3), 1951.

[38] K.Q. Weinberger, J. Blitzer, and L.K. Saul. Distance metric learning for large mar-
gin nearest neighbor classification. In Advances in Neural Information Processing
Systems 18, pages 1473–1480. MIT Press, 2006.

[39] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood com-
ponents analysis. In Advances in Neural Information Processing Systems 17, pages
513–520. MIT Press, 2004.

[40] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning, with
application to clustering with side-information. In Advances in Neural Information
Processing Systems 15, pages 505–512. MIT Press, 2002.

[41] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(7):179–188, 1936.

[42] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6):607–616,
1996.

[43] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance func-
tions using equivalence relations. In Proceedings of the International Conference
on Machine Learning, 2003.

[44] N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant
component analysis. In Proceedings of the 7th European Conference on Computer
Vision-Part IV, pages 776–792. Springer-Verlag, 2002.

149

References

[45] C. Domeniconi, J. Peng, and D. Gunopulos. Adaptive metric nearest neighbor
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24:1281–1285, 2002.

[46] C. Domeniconi and D. Gunopulos. Adaptive nearest neighbor classification using
support vector machines. In Advances in Neural Information Processing Systems
14, pages 665–672. MIT Press, 2001.

[47] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning
Theory (COLT’92), pages 144–152. ACM Press, 1992.

[48] C.J.C. Burges. Geometry and invariance in kernel based methods. In Advances in
Kernel Methods: Support Vector Learning, pages 89–116. MIT Press, 1999.

[49] S. Amari and S. Wu. Improving support vector machine classifiers by modifying
kernel functions. Neural Networks, 12:783–789, 1999.

[50] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On kernel-target
alignment. In Advances in Neural Information Processing Systems 14, pages 367–
373. MIT Press, 2001.

[51] J.T. Kwok and I.W. Tsang. Learning with idealized kernels. Proceedings of the
Twentieth International Conference on Machine Learning, pages 400–407, 2003.

[52] T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In Advances in Neural Information Processing Systems 11), pages 487–
493. The MIT Press, 1998.

[53] S. Amari. Differential-Geometrical Methods in Statistics (Lecture Notes in Statistics
28). Springer, 1985.

[54] C.R. Rao. Information and the accuracy attainable in the estimation of statistical
parameters. Bull. Calcutta Math. Soc., 1945.

[55] S. Amari. Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276, 1998.

[56] S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.

[57] K.M. Carter, R. Raich, W.G. Finn, and A.O. Hero III. FINE: Fisher information
nonparametric embedding. IEEE Trans. Pattern Anal. Mach. Intell., 31(11):2093–
2098, 2009.

[58] S. Kaski and J. Sinkkonen. Metrics that learn relevance. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN-2000), volume 5, pages
547–552, 2000.

[59] S. Kaski, J Sinkkonen, and J. Peltonen. Bankruptcy analysis with self-organizing
maps in learning metrics. IEEE Transactions on Neural Networks, 12:936–947,
2001.

150

References

[60] J. Peltonen, A. Klami, and S. Kaski. Improved learning of Riemannian metrics for
exploratory analysis. Neural Networks, 17(8-9):1087–1100, 2004.

[61] Mark Newman. Networks: An Introduction. Oxford University Press, Inc., New
York, 2010.

[62] M.E.J. Newman. Detecting community structure in networks. The European Phys-
ical Journal B-Condensed Matter and Complex Systems, 38(2):321–330, 2004.

[63] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas. Comparing community struc-
ture identification. Journal of Statistical Mechanics: Theory and Experiment,
2005(9), 2005.

[64] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,
2010.

[65] B.W. Kernighan and S. Lin. An eflicient heuristic procedure for partitioning graphs.
Bell system technical journal, 49:291–307, 1970.

[66] A. Pothen, H.D. Simon, and K.P. Liou. Partitioning sparse matrices with eigenvec-
tors of graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430–452,
1990.

[67] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(2):298–305, 1973.

[68] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning:
data mining, inference and prediction. Springer, 2 edition, 2009.

[69] M. Girvan and M.E.J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[70] M.E.J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical review E, 69(2), 2004.

[71] L.C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[72] M.E.J Newman. Fast algorithm for detecting community structure in networks.
Physical Review E, 69(6), 2004.

[73] J.R. Tyler, D.M. Wilkinson, and B.A. Huberman. Email as spectroscopy: auto-
mated discovery of community structure within organizations. In Proceedings of
the first international conference on communities and technologies, 2003.

[74] M.J. Rattigan, M. Maier, and D. Jensen. Graph clustering with network structure
indices. In Proceedings of the 24th international conference on Machine learning,
pages 783–790. ACM, 2007.

[75] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and iden-
tifying communities in networks. Proceedings of the National Academy of Sciences
of the United States of America, 101(9):2658–2663, 2004.

151

References

[76] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very
large networks. Physical review E, 70(6), 2004.

[77] K. Wakita and T. Tsurumi. Finding community structure in mega-scale social
networks. arXiv preprint cs/0702048, 2007.

[78] J.M. Pujol, J. Béjar, and J. Delgado. Clustering algorithm for determining com-
munity structure in large networks. Physical Review E, 74(1), 2006.

[79] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10), 2008.

[80] R. Guimera and L.A.N. Amaral. Functional cartography of complex metabolic
networks. Nature, 433(7028):895–900, 2005.

[81] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simmulated anneal-
ing. Science, 220(4598):671–680, 1983.

[82] J. Duch and A. Arenas. Community detection in complex networks using extremal
optimization. Physical review E, 72(2), 2005.

[83] M.E.J. Newman. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences, 103(23):8577–8582, 2006.

[84] C.M. Bishop. Pattern recognition and machine learning. Springer New York, 2006.

[85] C.M. Bishop. Neural networks for pattern recognition. Oxford University Press,
USA, 1995.

[86] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996.

[87] M.E. Tipping. Sparse Bayesian learning and the relevance vector machine. The
Journal of Machine Learning Research, 1:211–244, 2001.

[88] H. Ruiz, T.A. Etchells, I.H. Jarman, J.D. Mart́ın-Guerrero, and P.J.G. Lisboa. A
principled approach to network-based classification and data representation. Neu-
rocomputing, 112(0):79–91, 2013.

[89] T. Jebara. Machine Learning: Discriminative and Generative. Kluwer, 2003.

[90] A.Y. Ng and M.I. Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. pages 841–848, 2001.

[91] H. Ruiz, S. Ortega-Martorell, I.H. Jarman, J.D. Mart́ın-Guerrero, and P.J.G. Lis-
boa. Constructing similarity networks using the Fisher information metric. In
Proceedings of the 20th European Symposium on Artificial Neural Networks, Com-
putational Intelligence and Machine Learning, 2012.

[92] H. Ruiz, I.H. Jarman, J.D. Mart́ın-Guerrero, and P.J.G. Lisboa. The role of Fisher
information in primary data space for neighbourhood mapping. In Proceedings
of the 19th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2011.

152

References

[93] H. Ruiz, S. Ortega-Martorell, I.H. Jarman, A. Vellido, J.D. Mart́ın-Guerrero,
E. Romero, and P.J.G. Lisboa. Towards interpretable classifiers with blind signal
separation. In Proceedings of the 2012 International Joint Conference on Neural
Networks (IJCNN), pages 1–7. IEEE, 2012.

[94] A. Tsymbal, G. Rendes, M. Huber, and S.K. Zhou. HeC CaseReasoner: Neighbor-
hood graph for clinical case retrieval and decision support. 2009.

[95] W.S. McCulloch and W.H. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of mathematical biology, 5(4):115–133, 1943.

[96] Y. LeCun. A learning scheme for asymmetric threshold networks. Proceedings of
Cognitiva, 85:599–604, 1985.

[97] D.E. Rumelhart, G.E. Hintont, and R.J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

[98] P. Werbos. Beyond regression: new fools for prediction and analysis in the behav-
ioral sciences. PhD thesis, Harvard University, 1974.

[99] H. Cramér. Mathematical methods of statistics, volume 9. Princeton University
Press, 1946.

[100] K. Bache and M. Lichman. UCI Machine Learning Repository, 2013.

[101] A. Demiriz, K. Bennett, and M.J. Embrechts. Semi-supervised clustering using
genetic algorithms. In In Artificial Neural Networks in Engineering (ANNIE-99),
pages 809–814. ASME Press, 1999.

[102] Z.H. Zhou and Y. Jiang. NeC4.5: neural ensemble based C4.5. IEEE Transactions
on Knowledge and Data Engineering, 16(6):770–773, 2004.

[103] X. Llora, D.E. Goldberg, I. Traus, and E. Bernadó. Accuracy, parsimony, and
generality in evolutionary learning systems via multiobjective selection. In Learning
Classifier Systems, pages 118–142. Springer, 2003.

[104] J. Eggermont, J.N. Kok, and W.A. Kosters. Genetic programming for data classifi-
cation: Partitioning the search space. In Proceedings of the 2004 ACM symposium
on Applied computing, pages 1001–1005. ACM, 2004.

[105] G. Fung, M. Dundar, J. Bi, and B. Rao. A fast iterative algorithm for fisher
discriminant using heterogeneous kernels. In Proceedings of the 21st international
conference on Machine learning. ACM, 2004.

[106] P.J. Tan and D.L. Dowe. MML inference of oblique decision trees. In Proceedings
of the 17th Australian joint conference on Advances in Artificial Intelligence, pages
1082–1088. Springer-Verlag, 2004.

[107] M. Vlachos, C. Domeniconi, D. Gunopulos, G. Kollios, and N. Koudas. Non-linear
dimensionality reduction techniques for classification and visualization. In Proceed-
ings of the 8th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 645–651. ACM, 2002.

153

References

[108] S. Mutter, M. Hall, and E. Frank. Using classification to evaluate the output
of confidence-based association rule mining. In AI 2004: Advances in Artificial
Intelligence, pages 538–549. Springer, 2005.

[109] R.P. Gorman and T.J. Sejnowski. Analysis of hidden units in a layered network
trained to classify sonar targets. Neural networks, 1(1):75–89, 1988.

[110] P. Zhong and M. Fukushima. Regularized nonsmooth Newton method for multi-
class support vector machines. Optimisation Methods and Software, 22(1):225–236,
2007.

[111] C. Ding, T. Li, and M.I. Jordan. Convex and semi-nonnegative matrix factoriza-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):45–
55, 2010.

[112] S. Ortega-Martorell, P.J.G. Lisboa, A. Vellido, M. Julià-Sapé, and C. Arús. Non-
negative matrix factorisation methods for the spectral decomposition of MRS data
from human brain tumours. BMC bioinformatics, 13(1), 2012.

[113] D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999.

[114] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics,
5(2):111–126, 1994.

154

Publications

This section contains a list of the works published during the research period leading to

this thesis, displayed in inverse chronological order. A copy of the articles is included.

• A principled approach to network-based classification and data represen-

tation [88].

H. Ruiz, T.A. Etchells, I.H. Jarman, J.D. Mart́ın-Guerrero, and P.J.G. Lisboa.

Neurocomputing, 2013.

• Towards interpretable classifiers with blind signal separation [93].

H. Ruiz, S. Ortega-Martorell, I.H. Jarman, A. Vellido, J.D. Mart́ın-Guerrero, E.

Romero, and P.J.G. Lisboa.

Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN),

2012.

• Constructing similarity networks using the Fisher information metric [91].

H. Ruiz, S. Ortega-Martorell, I.H. Jarman, J.D. Mart́ın-Guerrero, and P.J.G. Lisboa.

Proceedings of the 20th European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learning (ESANN), 2012.

• The role of Fisher information in primary data space for neighbourhood

mapping [92].

H. Ruiz, I.H. Jarman, J.D. Mart́ın-Guerrero, and P.J.G. Lisboa.

Proceedings of the 19th European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learning (ESANN), 2011.

155

A principled approach to network-based classification
and data representation

Héctor Ruiz a,n, Terence A. Etchells a, Ian H. Jarman a, José D. Martı́n b, Paulo J.G. Lisboa a

a Department of Mathematics and Statistics, School of Computing and Mathematical Sciences, Liverpool John Moores University, James Parsons Building,

L3 3AF Liverpool, United Kingdom
b Department of Electronic Engineering, University of Valencia, Campus de Burjassot-Paterna, 46100 Burjassot, Valencia, Spain

a r t i c l e i n f o

Keywords:

Dataset visualisation

Interpretable model

Fisher information

Riemannian metric

Similarity network

Community detection

a b s t r a c t

Measures of similarity are fundamental in pattern recognition and data mining. Typically the Euclidean

metric is used in this context, weighting all variables equally and therefore assuming equal relevance,

which is very rare in real applications. In contrast, given an estimate of a conditional density function,

the Fisher information calculated in primary data space implicitly measures the relevance of variables

in a principled way by reference to auxiliary data such as class labels. This paper proposes a framework

that uses a distance metric based on Fisher information to construct similarity networks that achieve

a more informative and principled representation of data. The framework enables efficient retrieval of

reference cases from which a weighted nearest neighbour classifier closely approximates the original

density function. Importantly, the identification of nearby data points permits the retrieval of further

information with potential relevance to the assessment of a new case. The practical application of the

method is illustrated for six benchmark datasets.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the obstacles found in data mining applications is
the fact that high-dimensional data cannot be visualised directly,
making it difficult to observe data structure and to interpret
derived models. This lack of interpretability limits insights into
the data structure and will likely reduce the practical usefulness
of the methods proposed. This aspect is of paramount importance
in many practical applications, in particular in medicine and
commerce, where the end user is often unfamiliar with the details
of data analysis methodologies and therefore will be more prone
to accept recommendations if they are expressed using their own
language of expertise.

We propose a framework that, from a dataset with indicator
labels, produces an intuitively interpretable representation of it in
the form of a similarity network informed by a given query about
binary or multiclass assignment. Data points are represented by
nodes connected by edges whose strength depends on pairwise
similarity with respect to a conditional density function. The
underlying structure of the network reflects the statistical geome-
try of the original data space as determined by the density function
estimates. It is then straightforward to visualise similarity even

for high dimensional data. Furthermore, this enables an informa-
tive access to the dataset, or case-based retrieval, showing each
observation in the context of the most similar instances and
globally through its position within the network as a whole.

However, if a network is to be built on the basis of similarity
between data points, a rigorous definition of similarity is
required. Measures of similarity are central to pattern recognition
and data mining methodologies, although they are not always
explicitly calculated. For instance, using a distance function to
measure similarity between pairs of elements of a space is an
intuitive way to understand their relationship in the context of a
particular problem domain. Where explicit metrics are used in
practice, the Euclidean distance is a common choice because of its
simplicity and cheap computational cost, often overlooking the
equal weighting of each dimension that it implies. However, this
can be very misleading, especially in practical high-dimensional
applications, where it is usual to find variables that are partially
or totally irrelevant to the topic of interest. An approach to deal
with this difficulty is the widespread application of feature
selection, but this represents a binary filter which does not show
the relative similarity between individual observations.

Fisher information (FI) is a well-known measure of the
relevance of a parameter to a probability function. It can be used
to derive a local Fisher metric in either parameter [1] or primary
data space [2]. Previous work defined the Fisher kernel with
reference to generative models using a Fisher score obtained by
differentiating the logarithm of the density function p(x9y) with

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.neucom.2012.12.050

n Corresponding author.

E-mail addresses: H.Ruiz@2010.ljmu.ac.uk (H. Ruiz),

T.A.Etchells@ljmu.ac.uk (T.A. Etchells), I.H.Jarman@ljmu.ac.uk (I.H. Jarman),

Jose.D.Martin@uv.es (J.D. Martı́n), P.J.Lisboa@ljmu.ac.uk (P.J.G. Lisboa).

Neurocomputing] (]]]])]]]–]]]

respect to the model parameters [2]. This was then inserted into
discriminative models including regularised logistic regression
classifiers.

We show in Appendix A that the assumptions implied in the
definition of the Fisher Information apply also in the space of the
covariates. This defines a similarity measure between point pairs
by the symmetric divergence between the posterior distributions
p(c9x) of classifiers fitted to the class labels, which are categorised
by a discrete random variable C. The concept of a metric defined
by differentiating a posterior distribution p(c9x) with respect
to the coordinates is reported in [3] as a natural extension of
the metric defined in parameter space e.g. in [4]. This paper also
showed that geodesic distances between infinitesimal proximal
points are invariant under differentiable, invertible transforma-
tions of the coordinate space. However, there is no discussion of
the validity of the assumptions made in [4] regarding the
connection of the Kullback–Leibler divergence with the Fisher
metric. Similarly, FI in primary data space is applied to Bayesian
logistic regression in [5], again assuming the standard form in [4]
but switching from the space of model parameters to that of
coordinates of the data.

This paper proposes a local metric using the FI to measure the
information that an infinitesimal disturbance about a point in
primary data space carries about the posterior distribution fitted
to the auxiliary data. In effect, this metric rescales each covariate
dimension, expanding those corresponding to informative fea-
tures for classification and compressing the rest. By using this
metric to measure similarity between data pairs, a network can
be built that maps the arrangement of the dataset in the high-
dimensional Riemannian space defined by the Fisher metric.

The structure of these ‘‘Fisher networks’’ is analysed in this
work with Newman’s algorithm for community detection in
networks [6]. This technique uses the spectral properties of the
network to identify the set of partitions that best divide the
structure according to a well-defined measure of modularity,
resulting in nodes grouped in communities in a similar way that
cluster analysis groups data samples together in the original data
space. However, two important benefits arise from the use of
networks: first, the visualisation of the data is straightforward
regardless of the number of covariates and, second, the result of
the algorithm is stable and not dependent on initialisation.

Several real-world datasets are used to illustrate the applica-
tion of the framework. The result is a visualisation tool with a
novel perspective that automatically structures the data using
only the relevant contributions of the covariates to the class
membership probability and discards any unnecessary
information.

2. Methodology

The first half of this section describes the calculation of
distances between points in the data space under the Fisher
metric, highlighting the most important expressions along the
process. Density estimation is carried out using a discriminative
approach. Previous work on the Fisher metric in the data space
used generative models in conjunction with Bayes’ theorem to
estimate the posterior probability function p(c9x) [3,7,8]. By using
a linear logistic regressor (LLR) or a multilayer perceptron (MLP),
direct density estimation is avoided as an intermediate step
rendering metric learning more computationally efficient.

The intention of this work is not to contribute to the debate
of whether generative or discriminative models are to be pre-
ferred in machine learning applications. There is plenty of
literature available on that topic, e.g. [9,10]. This section shows
how the metric can be efficiently constructed from discriminative

estimators, providing an alternative to the generative approach
used elsewhere.

The second part of the section discusses the process followed
to map a distance measure onto a similarity network of data
points. The method used to extract the community structure of
the resulting networks is briefly described, explaining the princi-
ples that make this algorithm useful in practice.

The main original contribution of this paper is the integration
of an FI metric and a network community extraction algorithm
to produce a framework for an intelligent visualisation of data.
Additional novelties are the derivation of the FI metric in the
space of the data using discriminative estimators like the MLP and
LLR (for which an analytical expression of the distances is
presented), a detailed interpretation of the meaning of the FI in
primary data space in the context of classification and the use
of a simple 2D Sammon projection based on Fisher distances
to provide a tidy representation of the community structure of a
given dataset.

2.1. The Fisher metric

There exists a well-known relationship between the FI metric
and the Kullback–Leibler (KL) divergence, detailed in [4] when the
parameter vectors y1 and y2 are neighbouring points in the
parameter space. Starting from the definition of the divergence
and applying a Taylor expansion, it is shown that the divergence
is related to a Riemannian metric in the space of the parameters
determined by the FI matrix.

An analogous derivation of that relationship can be carried out
in the input space, now using neighbouring points x1¼x and
x2¼xþDx. Given a posterior probability p(c9x), assumed to have
been fitted using empirical data, the KL divergence is given by

Iðx : xþDxÞ ¼�
X

c

pðc9xÞlog
pðc9xþDxÞ

pðc9xÞ
: ð1Þ

The reader is referred to Appendix A for a thorough description
of the process followed to establish the relationship between
Eq. (1) and the differential form of the Fisher metric

Iðx : xþDxÞ ¼ 1
2 dðx,xþDxÞ2 ¼ 1

2DxT GðxÞDx, ð2Þ

where G(x) is the FI matrix, defined in the context of the present
work as

GðxÞ ¼
X

c

ðrx log pðc9xÞÞðrx log pðc9xÞÞT pðc9xÞ

¼�
X

c

r2
x log pðc9xÞpðc9xÞ: ð3Þ

Again, detail on the meaning of these expressions and their
derivation can be found in the appendix. As a summary, Eq. (2)
shows that the distance between two nearby points x1 and x2

under the Fisher metric is equivalent to the divergence between
the corresponding probabilities p(c9x1) and p(c9x2). Therefore,
directions of the space along which infinitesimal displacements
produce large variations of the posterior p(c9x) will have large
differential Fisher distances, indicating high relevance with
respect to the external class label and vice versa.

Table 1
Summary of the datasets used in the experiments.

Dataset Sonar Ionosphere Liver Diabetes Wine Glass

Samples 208 351 345 768 178 214

Dimensions 60 32 6 8 13 9

Classes 2 2 2 2 3 6

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]]2

2.1.1. FI matrix for binary classifiers

The definition of the FI matrix in Eq. (3) assumes an analytical
expression for the posterior probability function p(c9x). This
function must be estimated from the data and must be every-
where differentiable. The derivation in this section applies to
estimators with sigmoid link functions, thus deriving conditional
density functions parameterised by

pðc9xÞ ¼
cþð1�cÞe�aðxÞ

1þe�aðxÞ
, c¼ 0,1f g: ð4Þ

Taking derivatives of the logarithm of the probability distribu-
tion in Eq. (4) and inserting them into either of the definitions of
the FI matrix in Eq. (3) yields

GðxÞ ¼ ðrxaðxÞÞðrxaðxÞÞT pðc¼ 19xÞð1�pðc¼ 19xÞÞ, ð5Þ

where a(x) denotes the generalised linear estimator a evaluated at
X¼x, namely

aðxÞ ¼ bT xþb0 ðLLRÞ ð6Þ

aðxÞ ¼W2 �FðW1 � xþB1ÞþB2 ðMLPÞ, ð7Þ

where b and b0 are the regression coefficients of the LLR; W1, W2,
B1 and B2 are the synaptic weights of the MLP and F is the
sigmoid function.

2.1.2. FI matrix for multinomial classifiers

The derivation extends naturally to multiple classes, NCZ2, by
representing the posterior probability function p(ci9x) for each
class by the multinomial function

pðci9xÞ ¼
eaiðxÞPNC

j eajðxÞ
: ð8Þ

As in Section 2.1.1, taking logarithms and derivatives leads to
the expression of the FI matrix, resulting in the equivalent of
Eq. (5) for more than two classes

GðxÞ ¼
XNC

i

XNC

j

XNC

k

rxðai�ajÞ � rxðai�akÞ
T pðci9xÞpðcj9xÞpðck9xÞ: ð9Þ

2.1.3. Distance calculation with linear estimators

Given the FI matrix, the infinitesimal distance between a pair
of neighbouring points in the data space is given by the quadratic
differential form in Eq. (2), which can be integrated to calculate
the path integral distance between any pair of points xA and xB

dðxA,xBÞ ¼

Z 1

0

ffi
_xðtÞT GðxðtÞÞ _xðtÞ

q
dt

����
����, ð10Þ

where x(t) represents a path in the space that goes from
xA¼x(t¼0) to xB¼x(t¼1). When estimating p(c9x) using an LLR,
the integral can be solved analytically (see Appendix B) resulting
in the following closed-form expression:

dðxA,xBÞ ¼ 2 arctan e�aðxðtÞÞ=2
� �h iaðxBÞ

aðxAÞ

����
����, ð11Þ

which is independent of the particular path from xA to xB. In other
words, any path that joins xA and xB have the same length for the
Riemannian metric defined by the FI.

Although this may seem counter-intuitive, it becomes clear
when the detail of the method is scrutinised more closely. When
the probability function is estimated using a binary model from
the exponential family with a linear score function, the whole
data space in effect collapses into a straight line. This is because,
in the linear case, the score a(x) only takes into account displace-
ments along a single direction in the space. For the particular case
of LLR, this direction is given by the vector of regression
coefficients b due to the dot product bTx present in Eq. (6).

The result is that the posterior probability can only vary along
that direction. The Fisher metric focuses on variations of this
probability, so for any given pair of points it is only the distance
between their projections onto the vector b what determines the
distance between them in the Riemannian space. In other words,
because only one direction of the space is relevant, every path
that connects the points will have the same length regardless of
its shape.

In the case of the MLP, the activation a(x) is a non-linear
function of x, and consequently its first derivative depends on x.
This greatly complicates the integral in Eq. (10), making it non-
analytic. The same happens in the multinomial case, where the FI
matrix given by Eq. (9) does not allow for an analytical solution
for the path integral. Distances in these cases depend on the
choice of x(t), and a method is required to find the length of the
shortest path i.e. the geodesic distance.

2.1.4. Efficient estimation of the geodesic distance

The estimation of the geodesic distance can be efficiently
tackled using the graph approximation proposed in [7]. Although
the way the authors derive the Fisher metric in that work is
different from the discriminative approach followed here, both
alternatives end up facing the same problem of approximating the
shortest path. The method they propose is simple but effective:
first, all pairwise Fisher distances between points in the dataset
are obtained using straight paths and calculating numerically the
integral in Eq. (10). Then, these distances are used as edges of
a graph, each connecting the corresponding pair of nodes. Finally,
the geodesic distance between a given pair of points in the
dataset is estimated as the minimal path between their respective
vertices. This can be found using the implementation of Floyd’s
graph search algorithm in [11].

By definition, the result of the graph approximation depends
on the particular set of data points available to use as vertices. The
iterative approach in [12] removes this dependence and uses only
the definition of the metric to estimate geodesic distances.
However, when put into practice it only provides a marginal
improvement on the distances found, yet the heavy computa-
tional burden that it adds makes it only viable for small datasets.

2.2. The Fisher network

After defining the Fisher metric and the process to calculate
distances under it, the last step in the construction of similarity
networks is to determine the relationship between the pairwise
distances between the data points and the strength of the connec-
tions between the nodes. Then, the community structure can be
analysed with the spectral algorithm described in Section 2.2.2.

2.2.1. From distances to connections

The methods in Section 2.1 provide the tools to calculate an
objective measure of dissimilarity between point pairs. A further
step is therefore required to transform each distance value into
a quantitative measure of the similarity between pairs of data
points, with respect to the original estimate of the conditional
density function. Assuming that zero distance maps to maximum
similarity and recognising that the anisotropy of the projective
space of covariates has been captured by the Fisher metric, it is
natural to transform distances into similarity indicators which
represent the edge weights in the network using a Gaussian radial
kernel

Aij ¼ e�dðxi ,xjÞ
2=s2

, ð12Þ

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]] 3

where d(xi,xj) is the distance between the points and s is the
parameter that determines the width of the kernel. This para-
meter adjusts the degree of locality in the connections of the
network. It is in fact a useful parameter for practical applications,
as shown in Section 3.

The pairwise weights Aij are grouped together in the adjacency
matrix A, which is the starting point for the application of
Newman’s algorithm to find the community structure of the
network.

2.2.2. Newman’s algorithm for community detection

This subsection is a brief overview of the community structure
detection algorithm proposed in [6]. The method finds a natural
division of a network into subgroups, of a number and size
automatically determined by the intrinsic structure of the net-
work and the edge strengths. The objective is to partition nodes
into groups in such a way that there are fewer than expected
edges between the resulting groups. Accordingly, a measure of
modularity is defined as the number of edges falling within
groups less the expected number in an equivalent network with
edges placed at random. The objective is to maximise the overall
modularity of the network. In order to perform this maximisation,
the modularity measure is expressed as a matrix with elements

Bij ¼ Aij�
kikj

2m
, ð13Þ

where Aij is the pairwise weight of the connection between nodes
i and j given by Eq. (12), ki is the degree of node i and m is the total
number of edges in the network. The modularity of a group of
nodes within the network is defined as

Q ¼
1

2m

X
ij

Bij, ð14Þ

where nodes i and j both belong to that group. Now suppose the
whole network is divided into two groups in such a way that node i

receives a label si¼1 if it belongs to the first group and si¼�1 if it
falls in the second. The modularity of that division is, from Eq. (14)

Q ¼
1

2m

X
ij

Bij

ðsisjþ1Þ

2
, ð15Þ

which corresponds to the following matrix form

Q ¼
1

4m
sT Bs, ð16Þ

where s is a column vector of the labels defined above. Therefore,
the problem is to find the set of labels s (i.e. a particular binary
division of the network) that maximises Eq. (16). The solution to
this (see [6] for details) is given by taking s¼sign(u1), where u1 is
the eigenvector of B corresponding to the largest positive
eigenvalue.

The process is repeated for each of the resulting partitions in a
hierarchical manner. Every further split will add a quantity to the
modularity score resulting from the first partition, given by Eq. (16).
If this contribution is positive, the proposed partition is accepted,
otherwise leaving the corresponding subgroup as it is. When a point
is reached where dividing any of the current partitions deteriorates
the overall modularity, the process stops.

The benefits of this algorithm are threefold: first, no specifica-
tion of the number or size of the communities is needed, as they
arise naturally from the network; second, the resulting commu-
nities are well-defined as indivisible subgraphs, making the
stopping condition of the algorithm completely clear; and third,
there is no initialisation involved in the process, so the results are
completely repeatable.

2.2.3. Construction of the Fisher network

After the explanation of the methods involved in the frame-
work, this section provides a step-by-step description of the
process of building a Fisher network starting from a dataset:

(1) The first step is to train the model that is going to estimate
p(c9x). This means finding the coefficients b and b0 in the case
of the LLR and the weights W1, W2, B1 and B2 for the MLP (see
Eqs. (6) and (7)).

(2) The FI matrix can now be calculated at any point of the data
space using Eqs. (5) and (9), and therefore distances between
points can be obtained by approximating Eq. (10) using the
graph approximation [7] discussed in Section 2.1.4 (or using
Eq. (11) directly if the estimator used is the LLR). The distance
between every pair of points is calculated, and the results are
put together in a square pairwise distance matrix of size the
number of samples in the dataset.

(3) Using Eq. (12), each element in the distance matrix is used to
generate a weight that represents the strength of the connec-
tion between a pair of points. These weights are also grouped
into a matrix, and they define the structure of a fully
connected network where each node corresponds to a data
point in the original dataset. See Section 3.1 regarding the
choice of the parameter s in Eq. (12).

(4) As an optional step, the weakest connections in the matrix
can be pruned out to avoid their influence on the resulting
communities, although as Section 3.2 suggests this does not
have a significant effect.

(5) The pairwise weight matrix is processed using Newman’s
algorithm, finding the set of communities that best modular-
ise the network.

(6) The Fisher network is obtained from the weight matrix by
pruning the edges that connect nodes from different commu-
nities and keeping those that connect nodes from the same
partition.

3. Experimental results and discussion

This section reviews the construction of the similarity network
from a practical point of view, applying the methods described in
Section 2. Six known real-world datasets are studied, all of which are
available from the UCI machine learning repository (http://archive.ic-
s.uci.edu/ml/). These include binary classification problems (Pima
Indians Diabetes, Ionosphere, Liver Disorders and Sonar datasets) as
well as multinomial (Wine and Glass Identification datasets). Table 1
contains the main characteristics of the six datasets.

For the estimation of the posterior probability p(c9x), an MLP
regularised with weight decay is trained on a normalised version
of the dataset. The network parameters are determined by the
calibration of the posterior probability function, empirically
estimated for test data comprising a random sample of approxi-
mately a third of the samples in each dataset. Once the posterior
distribution is available, the FI matrix is calculated using Eqs.
(5) and (9) and pairwise geodesic distances are estimated with
the graph approximation suggested in [7] and described in
Section 2.1.4. This method approximates the integral in Eq. (10)
by dividing it into T pieces, and the authors show that T¼10 is
sufficient in terms of performance in their experiments. The
datasets used in our work are relatively small, so we set T¼100
for all the experiments as it is computationally affordable.

3.1. Selection of s

The width s of the Gaussian kernel in Eq. (12) needs to be
adjusted. In order to study the effect of changing the value of this

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]]4

parameter, we analyse three different measures obtained from
networks built using a range of values of s.

The first measure arises from performing a leave-one-out
prediction of the posterior p(c9x) for each node in the network.
First, the score a(xi) of each node is estimated as a weighted sum
of the rest of the nodes’ scores

âðxiÞ ¼
1P
jAij

X
j

AijaðxjÞ: ð17Þ

The estimate â(xi) forms the activation of a sigmoid function to
obtain the predicted probability p̂ðc9xiÞ. This is repeated for the
whole dataset, and the quality of the predictions is measured by
the discrete KL divergence between the estimates and the MLP
probabilities used as reference

KLðp,p̂Þ ¼�
1

L

X
i

X
c

pðc9xiÞ log
p̂ðc9xiÞ

pðc9xiÞ
: ð18Þ

The divergence is normalised using the number of samples L to
make it comparable across datasets of different sizes.

The second measure we use is Cramer’s V statistic (CV), which
provides an evaluation of how coherent the communities found
are with respect to the class labels of the data. It is calculated
from the contingency table of the vector of community member-
ships given by Newman’s algorithm and the vector of true labels,
as

CV ¼

ffi
w2

L �minðC1�1,C2�1Þ

s
, ð19Þ

where w is the chi-squared statistic, L is the number of data points
(or nodes in the network), C1 is the number of communities and
C2 is the number of classes in the dataset. This index ranges from
0 to 1 indicating the concordance between the community

allocation of the data points and the original class membership,
with CV¼0 meaning no association and CV¼1 corresponding to
complete concordance.

The last measure has to do with the classification accuracy
associated to the predictions given by Eq. (17) and that of the
MLP, which is used as a reference. Because the two classifiers are
applied to the same data, the extent to which the differences
between the errors they make can be attributed to chance is
quantified with McNemar’s test [13]:

z¼
9nA�nB9�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnAþnBÞ

p : ð20Þ

This can be approximated by a normal N(0,1) distribution, so it
is possible to calculate a p-value from the test and therefore
define a threshold for significance, which is of interest as we
would like a s that provides a network that can retain the
classification ability of the MLP.

Fig. 1 shows the three measures in Eq. (18)–(20) for the Sonar
dataset and values of s up to 5. Additionally, Fig. 1(b) includes the
accuracy of the classifications used to calculate McNemar’s test
(network predictions and MLP) and Fig. 1(c) displays the number
of communities found using Newman’s algorithm. The first plot
shows the KL divergence increasing with s. This is a general
tendency for all datasets: small values of s produce networks that
predict p(c9x) better, which is an expected result since a small s
means the Gaussian kernel is narrow and therefore only the
closest (and most similar) references will have a significant
weight in Eq. (17). The second measure, Cramer’s V, indicates a
high level of concordance between the communities and the
classes for the whole range of s, with the lowest values producing
the best results again. Finally, the third measure is indicating that
there is no statistically significant difference between the perfor-
mances of the two classifiers, so the p-value by itself would not

Fig. 1. Measures to aid the selection of s, Sonar dataset. (a) KL divergence. (b) Classification accuracy (dashed line: MLP accuracy). (c) Cramer’s V index (dashed line:

number of communities). (d) McNemar’s test p-value (dashed line: p¼0.05).

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]] 5

restrict the range of values from which to choose. This is
explained by Fig. 1(b), where we can see that the classification
accuracy of the network is very stable and there are only a few
minor deviations from that of the MLP.

Fig. 2 covers the same measures as Fig. 1, now for the Glass
dataset. This is a more difficult classification task, as Fig. 2(b) depicts.
The plots of the KL divergence and Cramer’s V index are similar
to those of the Sonar dataset, with the difference that, whereas
in Fig. 1(c) the variations of the CV were relatively small, in
Fig. 2(c) there is a larger difference between its maximum and
minimum values. The reason for this is that the Sonar dataset is
binary and its classes are easy to separate, thus being well repre-
sented with large and small numbers of communities. The Glass
dataset, on the other hand, contains six different classes with more
mixing, and therefore suffers a bigger CV drop when the number of
communities is small, i.e. when s is large.

In contrast to the result in Fig. 1(d), the p-value in
Fig. 2(d) suffers a drop that takes it below the 0.05 threshold at
around s¼1.5, the point at which the classification accuracy of
the network starts falling. All three performance measures appear
to weaken as s reaches 1.5, so in practice, we take this as a
restriction on the selection of its value, in this case so1.5.

These plots provide the user with the information required to
find suitable values of s depending on their preferences. For
instance, for the experiments in next section we start by finding
the smallest value of s (if any) for which the p-value obtained
from McNemar’s test was less than or equal to 0.05, and use it as
an upper bound. Then, we simply select the smallest s in that
range, as that will in general produce the best predictions (the
smallest KL divergence) and a good CV value (if not the
maximum).

This can serve as a sensible default criterion when there is no
preference. However, depending on the application, the user may
prefer to focus solely on coherence of the communities and select
the top CV value regardless of the rest of the measures. Or the
interest may be to obtain a certain number of communities, so
only values of s that produce that many partitions are considered,
and then the default criterion is applied. If a good calibration of
the predictions is a priority, a standard measure such as the
Hosmer–Lemeshow test [14] could be applied. Whatever the
interest is, a suitable measure can be incorporated to the analysis,
so the end user can always obtain a solution that satisfies their
needs by appropriately selecting s.

3.2. Network examples: the Sonar dataset

In this section, the Sonar dataset is used to illustrate examples
of communities extracted from different networks built from the
same dataset. Four values of s are studied: 0.05, 0.10, 0.15 and
0.20. Additionally, a second parameter is introduced: the propor-
tion of pruned edges. After calculating the edge weights, a certain
percentage of the connections in the adjacency matrix is removed,
starting from those with the smallest weight. The idea is to study
how the community structure of the network changes depending
on the amount of edges removed. Fig. 3 contains a summary of
the results.

The KL divergence in Fig. 3(a) is calculated the same way as
Eq. (18), only in this case the prediction of each node’s posterior is
carried out using only nodes that belong to the same community.
It can be understood as a measure of the prediction power of the
communities. Fig. 3(b) plots the number of communities found by

Fig. 2. Measures to aid the selection of s, Glass dataset. (a) KL divergence. (b) Classification accuracy (dashed line: MLP accuracy). (c) Cramer’s V index (dashed line:

number of communities). (d) McNemar’s test p-value (dashed line: p¼0.05).

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]]6

the algorithm, and Fig. 3(c) shows the number of singletons, i.e.
isolated nodes that are not members of any community.

The influence of s is as expected: small values produce smaller
but more numerous communities due to local connections being
favoured over longer ones. As s increases, this effect is mitigated
and the number of communities decreases, resulting in larger
subgraphs. Regarding the KL divergence, the observed values
are in line with the plots in Figs. 1 and 2(a), with the measure
increasing as s does.

The conclusion from Fig. 3 is that edge pruning does not have a
big impact on the community structure, as the outcomes remain
stable for most of the pruning range. Only when the percentage
of removed edges becomes very significant, around 80% in this
particular dataset, it affects the resulting communities. It does so
by increasing the number of communities and singletons present
in the network. This is, again, a result of enforcing locality, this
time by directly removing weak connections corresponding to far
away points. Fig. 3(a) also shows a decrease in the KL divergence
when pruning increases, but most of this reduction is explained
by the appearance of singletons, as these are not taken into
account by the measure.

Figs. 4–6 show three examples of the communities found in
the Sonar dataset for different values of the parameters. Each
node in the adjacency matrix is represented as a triangle or a
cross depending on its class label and edges connect nodes that
belong to the same community. To obtain a representation of the
communities as tidy as possible, nodes are arranged in the plot
according to a 2D Sammon projection of the dataset [15]. The

Sammon mapping algorithm takes a matrix of pairwise distances
between points in the dataset and projects the points into a lower
dimensional space. The objective is a mapped version of the
dataset where pairwise distances are as close as possible to those

Fig. 3. Characteristics of the communities found against percentage of edges pruned, from 60% to 95%; there is no variation in any of the plots for o60% edges pruned.

(a) KL divergence. (b) Number of communities. (c) Number of singletons.

Fig. 4. Fisher network representation of the Sonar dataset. s¼0.05, no pruning.

Twelve communities, 0 singletons, KL divergence¼0.00067 (over 208 nodes).

Network communities: CV¼0.8830. k-means (mapped dataset): max CV¼0.8829,

mean CV¼0.8747.

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]] 7

in the original high-dimensional space. Note that this algorithm is
used only to determine the position of the nodes in the visualisa-
tion of the communities, and has no influence whatsoever on the
resulting structure of the networks.

For each of the networks in Figs. 4–17, the set of communities
found by Newman’s algorithm is compared against the most
widely-used clustering algorithm: k-means. After finding the
communities for a particular case, k-means clustering is per-
formed on the same dataset with k equal to the number of
communities found by Newman’s method. Then, both partitions
of the data are compared against the true class labels using the CV
index in Eq. (19) with the same objective as in Section 3.1: finding
the degree of concordance between the partitions and the classes.
This process is repeated 100 times for k-means and the maximum
and mean values of the CV are reported.

For those cases where the network is built using Fisher
distances, k-means clustering is applied on the 2D Sammon

projection of the data. If the construction of the network uses
Euclidean distances, then k-means uses the original dataset. This
is to make the comparison fair in terms of the use of the class
label information.

Fig. 4 is an example of a set of communities found using a
small value of s. The resulting 12 communities are quite compact,
and there is little class mixing within the groups, as reflected by
the high CV value. The arrangement of the nodes makes it very
easy to identify which areas of the network are clear in terms of
class membership, located in both ends of the ‘‘C’’ shape, and
which correspond to the borderline cases, in the middle section of
the curve.

In generating Fig. 5, 90% of the weakest connections are
removed prior to running Newman’s algorithm. This has a bigger
impact on the border area between the classes than anywhere
else in the network, as this is where points tend to be more
separated between each other due to the higher variations of
p(c9x). As a result of that, some of the nodes there become
singletons and the borderline communities decrease in size. Some

Fig. 5. Fisher network representation of the Sonar dataset. s¼0.05, 90% pruning.

Twelve communities, 8 singletons, KL divergence¼0.00037 (over 200 nodes).

Network communities: CV¼0.8996. k-means (mapped dataset): max CV¼0.9058,

mean CV¼0.8966.

Fig. 6. Fisher network representation of the Sonar dataset. s¼0.20, no pruning.

Six communities, 0 singletons, KL divergence¼0.00240 (over 208 nodes). Network

communities: CV¼0.8627. k-means (mapped dataset): max CV¼0.8730, mean

CV¼0.8617.

Fig. 7. Euclidean network representation of the Sonar dataset. s¼2.30, no

pruning. Twenty-two communities, 7 singletons, KL divergence¼0.17792 (over

201 nodes). Network communities: CV¼0.6235. k-means (mapped dataset): max

CV¼0.8261, mean CV¼0.7581.

Fig. 8. Fisher network representation of the Diabetes dataset. s¼0.05. Eleven

communities, 0 singletons, KL divergence¼0.00012 (over 768 nodes). Network

communities: CV¼0.5981. k-means (mapped dataset): max CV¼0.6027, mean

CV¼0.5924.

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]]8

of the communities in the border become more homogeneous
after the formation of the singletons, and this results in a slightly
higher value of the CV compared to that of Fig. 4.

Fig. 6 replicates Fig. 4 with s¼0.2. As expected, the outcome is
fewer communities of larger size. As a consequence, there are now
only two communities covering the border area, with more class
mixing within them than there was in the border communities in
Figs. 4 and 5, therefore producing a smaller CV. These three figures
exemplify the variation that can be obtained in the community
structure of the same dataset by tuning the available parameters.

Finally, Fig. 7 is an example of a network built from the same
dataset following the same construction process but using Eucli-
dean instead of Fisher distances. The value of s is selected so that
it is as small as possible without causing numerical instabilities in
Newman’s algorithm. Although this method always provides the
same result by definition, when applied in practice, issues can
appear during the calculation of the eigenvectors and eigenvalues
if the adjacency matrix contains weights that are very small

compared to the largest values in the matrix (e.g.410100 times
smaller), and this can result in inaccurate eigenvectors and
consequently slightly different communities being found in con-
secutive runs of the algorithm. To prevent this from happening, s
is selected large enough so that there are not such extreme
differences in the magnitude of the weights. The threshold value
depends on the particular case, and is easy to find with an
acceptable precision. In practice, this value acts as a lower limit
of the range of s resulting from Section 3.1. In this work, this
minimum value goes from 0.05 to 0.20 for Fisher networks and
from 0.7 to 2.30 for Euclidean networks.

Going back to Fig. 7, the communities found in the Euclidean
network are nowhere near their Fisher counterparts in terms of
clarity of their structure. This is reflected not only in the
visualisation of the communities, but also in the KL divergence
of the p(c9x) estimates, several orders of magnitude bigger than
the values obtained using the Fisher metric, and in the CV index,
which also deteriorates substantially.

Fig. 9. Euclidean network representation of the Diabetes dataset. s¼0.75.

Twenty-three communities, 4 singletons, KL divergence¼0.02155 (over 764

nodes). Network communities: CV¼0.4464. k-means (mapped dataset): max

CV¼0.5417, mean CV¼0.5157.

Fig. 10. Fisher network representation of the Ionosphere dataset. s¼0.10. Seven

communities, 0 singletons, KL divergence¼0.00147 (over 351 nodes). Network

communities: CV¼0.9538. k-means (mapped dataset): max CV¼0.9579, mean

CV¼0.9565.

Fig. 11. Euclidean network representation of the Ionosphere dataset. s¼1.80. Ten

communities, 2 singletons, KL divergence¼0.22294 (over 349 nodes). Network

communities: CV¼0.7591. k-means (mapped dataset): max CV¼0.8287, mean

CV¼0.7659.

Fig. 12. Fisher network representation of the Liver dataset. s¼0.15. Eleven

communities, 1 singletons, KL divergence¼0.00259 (over 344 nodes). Network

communities: CV¼0.6033. k-means (mapped dataset): max CV¼0.6404, mean

CV¼0.6113.

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]] 9

Regarding the comparison of Newman’s algorithm and k-
means clustering, the CV values indicate that they produce very
similar partitions of the data in terms of coherence with the
original class labels. For the six datasets studied, the CV values
produced by the Fisher networks are very close to the mean CV
value obtained from k-means, with the maximum value usually
less than 0.01 above (with the exception of the Liver dataset,
where the difference is slightly bigger). However, there are two
significant advantages in the use of the network approach over k-
means: the number of partitions is selected automatically and
there is no sensibility to the initialisation of the algorithm.

When using Euclidean distances, there is a clearly noticeable
difference in performance in terms of the CV in favour of k-means,
as well as a bigger divergence between its max and mean CV
values. While the latter could be indicating that the concordance
of clusters and classes is more sensible to the initialisation of the
centroids now that the metric does not draw similar points
together, we do not see a clear explanation as to why the two
methods should differ from each other now anymore than they

did before. However, since the usefulness of the framework is
based on the use of Fisher metric, this does not represent a
critical issue.

3.3. Other datasets

Figs. 8–17 correspond to networks built using the other five
datasets listed before. In all cases, a range of suitable values of s is
calculated following the guidelines in Section 3.1, and s is set to
the smallest value within that range that provides stability of the
eigenvector calculation. No pruning of edges is performed in any
of the cases.

The results are consistent with those in Section 3.2. Fisher
networks allow for a clear visualisation of the data, with a tidier
community structure and better predictions of the posterior
probability than in the Euclidean case, as is reflected by the CV
index and KL divergence.

Fig. 13. Euclidean network representation of the Liver dataset. s¼0.75. Twelve

communities, 0 singletons, KL divergence¼0.15042 (over 345 nodes). Network

communities: CV¼0.2292. k-means (mapped dataset): max CV¼0.3091, mean

CV¼0.2626.

Fig. 14. Fisher network representation of the Wine dataset. s¼0.10. Ten com-

munities, 0 singletons, KL divergence¼0.00344 (over 178 nodes). Network

communities: CV¼1. k-means (mapped dataset): max CV¼1, mean CV¼0.9940.

Fig. 15. Euclidean network representation of the Wine dataset. s¼0.7. Twenty

communities, 9 singletons, KL divergence¼0.06453 (over 169 nodes). Network

communities: CV¼0.9493. k-means (mapped dataset): max CV¼0.9840, mean

CV¼0.9624.

Fig. 16. Fisher network representation of the Glass dataset. s¼0.20. Fifteen

communities, 3 singletons, KL divergence¼0.03033 (over 211 nodes). Network

communities: CV¼0.8712. k-means (mapped dataset): max CV¼0.8795, mean

CV¼0.8529.

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]]10

4. Conclusion

A framework is proposed that combines a Fisher information
based similarity measure with network structure analysis algo-
rithms to provide a rigorously principled visualisation tool for
high-dimensional data. Regardless of the data domain, a global
view of the dataset is produced that helps to interpret how the
data instances are distributed with respect to each other and
what is the underlying structure, all of that without losing sight of
what the question of interest is, built into the framework by the
posterior probability p(c9x). The benefits of using the Fisher
metric are obvious when compared to a conventional choice like
the Euclidean metric.

This methodology could be potentially very useful as a semi-
supervised classifier/visualisation tool, using the labelled portion of
the data to estimate the probability and derive the Fisher metric in
order to later build a relational network containing both labelled
and unlabelled samples. For example, in a medical application, this
would provide doctors not only the basic information about class
membership prediction of an unlabelled case, but also its location
within the network, the set of known cases it is more similar to, the
subdivision of the network that it belongs to, etc.

Future lines of work worth considering include the study of
alternatives for the visualisation of the network community
structure in 2D and 3D and the use of graph centrality measures
to identify the most relevant nodes in the networks for use as
reference cases in a collaborative approach. This could be useful to
reduce the size of large networks by using one or several reference
nodes as prototypes that represent whole communities, producing
a simplified and more tractable representation of the data.

On a related note, in applications with large datasets, the
minimal path approximation used in Section 3 may become
unfeasible, as it uses Floyd’s algorithm (complexity O(N^3), where
N is the number of samples). In that case, other possibilities like
Dijkstra’s algorithm with Fibonacci heaps would need to be inves-
tigated to reduce the computational cost, as it is shown e.g. in [16].

Appendix A

This section reviews the meaning and validity of the FI metric
in primary data space. The definitions of information and

divergence and their relationship with the Fisher information
metric are discussed in the case where the role of density function
p(x9y) is taken by a posterior distribution p(c9x) that is assumed to
have been fitted using empirical auxiliary data. The idea is to
replicate the original derivation of the FI expressions in [4],
ensuring that the regularity assumptions hold, with the ultimate
aim of gaining a rigorous insight into what exactly the meaning of
the reversed definition of the Fisher metric is in the space of
covariates.

A.1Information

The first step is to define the information of a likelihood
function, p(x19c), with respect to another, p(x29c), when x1 and
x2 are points in the data space X and c is a value of the discrete
class variable C. Let Hi, i¼1,2, be the hypotheses that the points xi

were generated by class c. By Bayes’ theorem

log
pðc9x1Þ

pðc9x2Þ
¼ log

pðx19cÞ
pðx29cÞ

�log
pðx1Þ

pðx2Þ
, ðA:1Þ

where p(xi) is the prior probability of the data point xi and p(xi9c)
is the class conditional probability of xi given C¼c. Therefore, the
right side of Eq. (A.1) is the difference of the divergence between
the logarithm of the odds in favour of H1 before and after
observing C¼c. This can be interpreted as the information result-
ing from the observation of class membership, and the logarithm
of the likelihood ratio, log(p(c9x1)/p(c9x2)), is defined to be the
information in C¼c for discrimination in favour of H1 against H2.
The expectation of this information with respect to p(c9x1) for the
whole set of class labels C gives what is normally known as the
Kullback–Leibler (KL) divergence

Iðx1 : x2Þ ¼
X

c

pðc9x1Þlog
pðc9x1Þ

pðc9x2Þ
: ðA:2Þ

Using Eq. (A.1), the KL divergence between distributions
p(c9x1) and p(c9x2) can be expressed as

Iðx1 : x2Þ ¼
X

c

pðc9x1Þlog
pðx19cÞ
pðx29cÞ

�log
pðx1Þ

pðx2Þ
: ðA:3Þ

The information I(x1:x2), or non-symmetric KL divergence, is a
measure that gives the mean value with respect to p(c9x1) of the
logarithm of the odds of the class conditional probabilities of the
hypotheses, p(xi9c), and the logarithm of the odds of the prior
density functions, p(xi).

A.2 Divergence

The original formulation of the KL divergence [4] defines it as a
symmetric measure, obtained by calculating the expected value of
the information in Eq. (A.3) over both orders of H1 and H2, and
represents a measure of the difficulty of discriminating between
the two hypotheses:

Jðx1: x2Þ ¼ Iðx1 : x2Þþ Iðx1 : x2Þ ¼
X

c

ðpðc9x2Þ�pðc9x1ÞÞ log
pðc9x2Þ

pðc9x1Þ
:

ðA:4Þ

Both Eqs. (A.4) and (A.2) can be used as the starting point for
calculating a Taylor approximation that applies locally for infini-
tesimal disturbances about a given point in primary data space
(see Section A.4). However, the use of this approximation relies on
the validity of three regularity conditions.

Fig. 17. Euclidean network representation of the Glass dataset. s¼1.40. Seven

communities, 2 singletons, KL divergence¼0.48365 (over 212 nodes). Network

communities: CV¼0.4915. k-means (mapped dataset): max CV¼0.6217, mean

CV¼0.5574.

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]] 11

A.3 Regularity conditions

The first two regularity conditions used in [4, Chapter 2.6]
require the probability density p(c9x) to be continuous, finite and
everywhere differentiable. In the following, it is assumed that
all vector derivatives with respect to the multivariate random
variable X may be treated independently from one covariate to
the others. This assumption applies in the context of posterior
probability functions that may be linear in the parameters or
semi-parametric, including generic non-linear models such as
artificial neural networks.

The third regularity condition follows directly from the stan-
dard normalisation of conditional probability density functions, or
probability masses in the case of a discrete class variableX

c

pðc9xÞ ¼ 1-
X

c

rxpðc9xÞ ¼ 0-
X

c

r
2
x pðc9xÞ ¼ 0: ðA:5Þ

Expressing p(c9x) as exp(log p(c9x)) and taking derivatives of
the first summation in Eq. (A.5)

r2
x

X
c

elogpðc9xÞ ¼rx

X
c

rx log pðc9xÞ � pðc9xÞ ¼ 0: ðA:6Þ

it follows thatX
c

r
2
x logpðc9xÞpðc9xÞ

þ
X

c

ðrx logpðc9xÞÞðrx logpðc9xÞÞT pðc9xÞ ¼ 0, ðA:7Þ

henceX
c

ðrx logpðc9xÞÞðrx logpðc9xÞÞT pðc9xÞ

¼�
X

c

r2
x logpðc9xÞpðc9xÞ ¼ GðxÞ, ðA:8Þ

which shows the numerical equivalence between the two defini-
tions of the FI matrix.

A.4 Fisher information

This subsection reproduces the relationship between the KL
divergence and the Fisher metric as described in [4] but in the
space of the data. The starting point is Eq. (1) in Section 2.1, the KL
divergence between the posterior probabilities of two neighbour-
ing points x and xþDx:

Iðx : xþDxÞ ¼�
X

c

pðc9xÞ log
pðc9xþDxÞ

pðc9xÞ
: ðA:9Þ

Taking the Taylor expansion of log p(c9xþDx)) about x up to
second-order terms

logpðc9xþDxÞ�logpðc9xÞ

¼Dxrx logpðc9xÞþ
1

2!
DxTr

2
x logpðc9xÞDx: ðA:10Þ

This is inserted in Eq. (A.9), yielding

Iðx : xþDxÞ ¼�
X

c

Dxrxpðc9xÞ

�
1

2!

X
c

pðc9xÞDxTr2
x logpðc9xÞDx: ðA:11Þ

Since the first term is zero according to Eq. (A.5)

Iðx : xþDxÞ ¼�
1

2!
DxT

X
c

r2
x logpðc9xÞpðc9xÞ

()
Dx

¼
1

2
DxT GðxÞDx, ðA:12Þ

where G(x) is the Fisher information matrix defined as any of the
two forms in Eq. (A.8).

A similar procedure using Eq. (A.4) shows that

Jðx : xþDxÞ ¼DxT GðxÞDx: ðA:13Þ

Based on Eqs. (A.12) and (A.13), the differential distance
between a pair of points x1¼x and x2¼xþDx can be understood
as the KL divergence between their class membership probabil-
ities. This is equivalent, going back to Section A.1, to the
information available to discern between the hypotheses H1 and
H2 given a particular class label and averaged over all possible
label values, where hypothesis Hi states that the point xi was
generated by the distribution of class label c.

Appendix B

This appendix covers the derivation of Eq. (11), which calcu-
lates the distance between any pair of points under the Fisher
metric when using an LLR as the probability estimator. This is
an important expression because it provides an analytical way to
calculate global distances with a linear estimator in binary
problems and can also be used to approximate straight-line
distances with non-linear estimators using a Taylor
approximation.

Inserting Eq. (5) into Eq. (10) gives

dðxA,xBÞ ¼

Z 1

0

ffi
_xðtÞT ðrxaðxðtÞÞÞðrxaðxðtÞÞÞT _xðtÞ � pðc¼ 19xðtÞÞð1�pðc¼ 19xðtÞÞÞ

q
dt

����
����,

ðB:1Þ

where x(t) is a path that goes from x(t¼0)¼xA to x(t¼1)¼xB.
The predictor a(x) is given by Eq. (6), resulting in

dðxA,xBÞ ¼

Z 1

0

ffi
_xðtÞTbbT _xðtÞ � pðc¼ 19xðtÞÞð1�pðc¼ 19xðtÞÞÞ

q
dt

����
����

¼

Z 1

0

ffi
ðbT _xðtÞÞ2 � pðc¼ 19xðtÞÞð1�pðc¼ 19xðtÞÞÞ

q
dt

����
����: ðB:2Þ

We now change the integration variable to a(x(t)), a for brevity

a¼ bT xðtÞþb0-
da

dt
¼ bT _xðtÞ-dt¼

1

bT _xðtÞ
da, ðB:3Þ

which leaves the integral as

dðxA,xBÞ ¼

Z aðxBÞ

aðxAÞ

ffi
ðbT _xðtÞÞ2 � pðc¼ 19xðtÞÞð1�pðc¼ 19xðtÞÞÞ

q
1

bT _xðtÞ
da

�����
�����

¼

Z aðxBÞ

aðxAÞ

ffi
pðc¼ 19xðtÞÞð1�pðc¼ 19xðtÞÞÞ

q
da

����
����: ðB:4Þ

Using the expression in Eq. (4) and simplifying

dðxA,xBÞ ¼

Z aðxBÞ

aðxAÞ

e�aðxðtÞÞ=2

1þe�aðxðtÞÞ
da

����
����: ðB:5Þ

And another variable change

b¼ e�aðxðtÞÞ=2-
db

da
¼�

1

2
e�aðxðtÞÞ=2 ¼�

1

2
b-da¼�

2

b
db: ðB:6Þ

This results in

dðxA,xBÞ ¼ �2

Z bðxBÞ

bðxAÞ

1

1þb2
db

�����
�����

¼ 2

Z bðxBÞ

bðxAÞ

1

1þb2
db

�����
�����¼ 92½arctan ðbÞ�bðxBÞ

bðxAÞ
9: ðB:7Þ

The final step is to undo the last variable change, returning to
a(x(t))

dðxA,xBÞ ¼ 2 arctan e�aðxðtÞÞ=2
� �h iaðxBÞ

aðxAÞ

����
����: ðB:8Þ

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]]12

References

[1] S. Amari, Information geometry on hierarchy of probability distributions, IEEE
Trans. Inf. Theory 47 (5) (2001) 1701–1711.

[2] T.S. Jaakola, D. Haussler, Exploiting generative models in discriminative
classifiers, Proc. Adv. Neural Inf. Process. Syst. 11 (1998) 487–493.

[3] S. Kaski, J. Sinkkonen, Metrics that learn relevance, in: Proceedings of the
International Joint Conference on Neural Networks, vol. 5, 2000, pp. 547–552.

[4] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.
[5] M. Girolami, B. Calderhead, S.A. Chin, Riemann manifold Langevin and

Hamiltonian Monte Carlo methods, J. R. Statist. Soc. B 73 (2) (2011) 1–37.
[6] M.E.J. Newman, Modularity and community structure in networks, Proc. Natl.

Acad. Sci. USA 103 (23) (2006) 8577–8582.
[7] J. Peltonen, A. Klami, S. Kaski, Improved learning of Riemannian metrics for

exploratory analysis, Neural Networks 17 (2004) 1087–1100.
[8] S. Kaski, J. Sinkkonen, J. Peltonen, Bankruptcy analysis with self-organizing

maps in learning metrics, IEEE Trans. Neural Networks 12 (4) (2001) 936–947.
[9] A.Y. Ng, M.I. Jordan, On discriminative vs. generative classifiers: a comparison

of logistic regression and naive Bayes, Proc. Adv. Neural Inf. Process. Syst. 14
(2001) 841–848.

[10] T. Jebara, Machine Learning: Discriminative and Generative, Kluwer, Norwell,
2003.

[11] D.F. Gleich, MatlabBGL Package, Version 4.0, 2008.
[12] H. Ruiz, I.H. Jarman, J.D. Martı́n, P.J.G. Lisboa, The role of Fisher information in

primary data space for neighbourhood mapping, in: Proceedings of the
European Symposium on Artificial Neural Networks, 2011, pp. 381–386.

[13] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge University
Press, Cambridge, 1996.

[14] D.W. Hosmer, S. Lemeshow, Goodness of fit tests for the multiple logistic
regression model, Commun. Stat. Theory Methods 9 (10) (1980) 1043–1069.

[15] J.W. Sammon, A nonlinear mapping for data structure analysis, IEEE Trans.
Comput. 5 (1969) (1969) 401–40918 5 (1969) (1969) 401–409.

[16] R. Cruz-Barbosa, D. Bautista-Villavicencio, A. Vellido, On the computation of
the geodesic distance with an application to dimensionality reduction in a
neuro-oncology problem, in: Proceedings of the Iberoamerican Congress on
Pattern Recognition, LNCS 7042, 2011, pp. 483–490.

Héctor Ruiz received a BEng degree in Telecommuni-
cations Engineering (2008) and an MEng degree in
Electronic Engineering (2010) from the University of
Valencia, Spain. He is currently pursuing the PhD
degree in the School of Computing and Mathematics
at Liverpool John Moores University, UK. His current
research interests include data mining, machine learn-
ing, network analysis and distance metric learning.

Terence A. Etchells is a research fellow in the School
of Computing and Mathematics at Liverpool John
Moores University, UK.

His research interests are: Rule Extraction from
Smooth Decision Surfaces; Scalable Algorithms for
Clustering, Association Maps, Network Analysis and
Graphical Models.

He completed his first degree in Mathematics at
York University (UK) in 1983, gained an M.Sc. in
Mathematics and Mathematics Education at Leeds
University (UK) in 1992 and completed his Ph.D. in
Rule Extraction at Liverpool John Moores University
(UK) in 2004.

Ian H. Jarman is a senior researcher in interpretive and
predictive modelling, Department of Mathematics and
Statistics, Liverpool John Moores University (LJMU). Ian
graduated from LJMU with a first class honours degree in
Mathematics, Statistics and Computing in 2002, continu-
ing to complete an EPSRC funded PhD in Bioinformatics
and then research assistant until 2006. In 2007 he
became a research associate with the School of Psycho-
logical Sciences, Manchester University undertaking
collaborate research with Unilever Corporate R&D. Ian

returned to LJMU in 2009 as senior researcher and
manager of a team of data analysts/researchers, transfer-
ring to his current position in 2011.

José D. Martı́n–Guerrero received a B.Sc. degree in
Physics (1997), a B.Sc. degree in Electronic Engineering
(1999), an M.Sc. Degree in Electronic Engineering
(2001) and a Ph.D. degree in Machine Learning (2004)
from the University of Valencia, Spain. He is currently a
Senior Lecturer at the Department of Electronic
Engineering, University of Valencia. His research inter-
ests include Machine Learning and Computational
Intelligence, with special emphasis in Reinforcement
Learning and visualization methods. He is a Member of
the Medical Data Analysis Task Force (Data Mining
Technical Committee, IEEE Computational Intelligence
Society).

Paulo Lisboa chairs the Department of Mathematics
and Statistics at Liverpool John Moores University. He
has published on computational data analysis for
medical decision support and machine learning, focus-
ing on interpretation by end-users. This includes
automatic rule generation, clustering & visualisation
of high-dimensional data, and conditional indepen-
dence maps, with over 200 refereed publications and
awards for downloads and citations of journal papers.
He chairs the Medical Data Analysis Task Force in the
Data Mining Technical Committee of the IEEE-CIS and
is associate editor for several journals including Neural
Networks, IET Science Measurement & Technology,

Neural Computing Applications and Applied Soft Computing.

H. Ruiz et al. / Neurocomputing] (]]]])]]]–]]] 13

Towards interpretable classifiers
with blind signal separation

Héctor Ruiz
Department of Mathematics and Statistics

Liverpool John Moores University
Liverpool, United Kingdom
H.Ruiz@2010.ljmu.ac.uk

Ian H. Jarman
Department of Mathematics and Statistics

Liverpool John Moores University
Liverpool, United Kingdom

I.H.Jarman@ljmu.ac.uk

José D. Martín
Departamento de Ingeniería Electrónica

Universidad de Valencia
Burjassot, Spain

jose.d.martin@uv.es

Sandra Ortega-Martorell
Departament de Bioquímica i Biología Molecular

Universitat Autònoma de Barcelona
Cerdanyola del Vallès, Spain

Sandra.Ortega@uab.cat

Alfredo Vellido
Department of Computer Languages and Systems

Universitat Politècnica de Catalunya
Barcelona, Spain

avellido@lsi.upc.edu

Enrique Romero
Department of Computer Languages and Systems

Universitat Politècnica de Catalunya
Barcelona, Spain

eromero@lsi.upc.edu

Paulo J.G. Lisboa
Department of Mathematics and Statistics

Liverpool John Moores University
Liverpool, United Kingdom

P.J.Lisboa@ljmu.ac.uk

Abstract—Blind signal separation (BSS) is a powerful tool to
open-up complex signals into component sources that are often
interpretable. However, BSS methods are generally
unsupervised, therefore the assignment of class membership from
the elements of the mixing matrix may be sub-optimal. This
paper proposes a three-stage approach using Fisher information
metric to define a natural metric for the data, from which a
Euclidean approximation can then be used to drive BSS. Results
with synthetic data models of real-world high-dimensional data
show that the classification accuracy of the method is good for
challenging problems, while retaining interpretability.

Blind signal separation; non-negative matrix factorisation;
Fisher information; Riemannian metric; data mapping; magnetic
resonance spectroscopy; brain tumour

I. INTRODUCTION
Blind signal separation (BSS) is a well-known family of

tools to separate complex signals into linear combinations of

sources whose joint distribution is close to factorised into a
product of independent univariate density functions for the
individual sources. This approach is rendered even more
interpretable when it is applied in the convex space of positive
semi-definite mixing and unmixing matrices [1]. Both the
sources themselves and the partial membership of each source
class can then be evaluated against prior knowledge.

In our example, synthetic data models are built from single
voxel magnetic resonance spectroscopy (MRS) signal
corresponding to a neuro-oncology problem. The sources will
ideally approximate prototypes for each brain tissue class and
the maximal values in each row of the mixing matrix will
correspond to the correct binary classification of that
observation. In this data set the correct prototype is taken to be
the mean of the generating distribution.

In a previous work [2], the authors investigated the
application of non-negative matrix factorisation (NMF)
methods [3,4] for the extraction of tissue type-specific MRS

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

signal sources in a fully unsupervised mode, to the analysis of
an international, multi-centre database that incorporates MRS
data corresponding to several types of human brain tumours.
The accuracies of the labels inferred for each patient case
where comparable to traditional supervised classifiers.

However, there is some instability in the classification
arising from mixing in data space, especially for challenging
differential assignments such as the discrimination of low
astrocytic tumours from high grade and from metastatic
growths. This limitation arises because the method is fully
unsupervised. This is reflected in the generating modes by wide
standard deviations for each class in addition to high
dimensionality of the data.

Recently, the Fisher information matrix has been proposed
as an effective way to build a meaningful, well determined
metric in primary data space with which to disaggregate class-
labelled data [5]. This metric defines the natural geometry of
data space taking into account both the position and class
labelling of each data point. However, the Fisher information
metric is non-Euclidean, i.e. it does not respect the triangle
inequality, with the consequence that projective methods such
as BSS cannot be applied directly in this space.

The natural way to bridge the gap between the non-
Euclidean metric and projective spaces is to map the data onto
an approximate, rigorous Euclidean metric space. This may be
done using data projection methods such as the Sammon
mapping, multidimensional scaling (MDS) or the iterative
majorisation algorithm (IMA).

In this paper we use synthetic data to study the hypothesis
that the three-stage approach consisting on first defining a
Fisher Information metric, then approximating the empirical
data distribution with a Euclidean projective space onto which,
subsequently, Convex-NMF [1] can be applied, results in a
natural decomposition of the data with sources that are closer to
the true class prototypes and in higher classification accuracies
than those obtained using a purely unsupervised
implementation of NMF.

II. METHODOLOGY

A. Convex non-negative matrix factorisation
In this study, we use a variant of the non-negative matrix

factorisation (NMF) family [3,4], namely Convex-NMF [1]. In
conventional NMF methods a non-negative data matrix V (of
dimensions d-by-n, where d is the data dimensionality and n is
the number of observations) is approximately factorised into
two non-negative matrices: the matrix of sources or data basis
W (of dimensions d-by-k, where k is the number of sources, and
k < d) and the mixing matrix H (of dimensions k-by-n, each of
whose columns provides the encoding of a data point: the
spectrum of an observation in this study). The product of these
two matrices provides a good approximation to the original
data matrix, in the form V≈WH.

To achieve interpretability, Convex-NMF imposes a
constraint that the vectors (columns) defining W must lie within
the column space of V, i.e. W=VA (where A is an auxiliary
adaptative weight matrix that fully determines W), so that

V≈VAH. By restricting W to convex combinations of the
columns of V we can, in fact, understand each of the basis or
sources as weighted sums of data points. This NMF variant
applies to both non-negative and mixed-sign data matrices, and
only H and A are constrained to be non-negative. These factors
are updated as follows:

 , (1)

where (·)+ is the positive part of the matrix, where all negative
values become zeros, and (·)- is the negative part of the matrix,
where all positive values become zeros. H and A are initialised
using K-means clustering, as proposed in [1]. This
multiplicative algorithm minimises the reconstruction error
given by ||V-VAH||2, while ensuring that the elements of the
matrices H and A remain nonnegative.

B. Interpretation of Convex-NMF in the context of MRS data
Given that the observed MRS data are of mixed sign, their

sources should also be of mixed sign. Thus, understanding W
as the source spectra matrix, the sources will be intuitively
interpretable and no pre-processing of the spectra will be
required in order to make them non-negative, thus preventing
any unnecessary loss of information (in the case of our data,
losing the information in the negative peaks of the LTE MRS
spectra). Due to the fact that it is non-negative by definition,
the mixing matrix H can be understood as estimates of the
concentration/abundance of the constituent signals.

C. Fisher information metric
The Fisher information (FI) is a measure of the amount of

information that a variable x carries about a magnitude θ upon
which its probability depends [6]. This is obtained by deriving
the logarithm of the conditional probability p(x|θ) with respect
to θ and then calculating the conditional expectation over x
with respect to the said probability, which results in the
measure being independent on x.

In this work, an alternative definition is used where the
roles of x and θ are swapped, and therefore the derivative is of
p(θ|x) with respect to x [7]. This FI is now a function of x and
takes the form of a square matrix of the same dimensionality as
x, that is, the dimensionality of the data space:

 , (2)

where Ep(θ|x) denotes the expectation over the values of θ with
respect to p(θ|x) and ∇x is the gradient with respect to x.

The motivation behind this modification of the original FI
is to use it in data mining applications, where x would be a
point in the space of the data and θ would be an auxiliary class
variable c. In this scenario, it is easy to define a differential
metric using the FI matrix:

 . (3)

This gives the distance between two neighbouring points x
and x+Δx under the metric defined by the FI matrix.

The interesting property of this metric is that it
automatically scales each dimension of the data space
according to its degree of relevancy with respect to class
membership, expanding directions along which p(c|x) changes
rapidly and compressing those where the variation is little. The
result is a Riemannian space where the posterior class
membership probability changes evenly in all directions.

D. Multi-layer perceptron
A crucial stage in the development of the FI metric is the

estimation of p(c|x). The ability of the metric to precisely
reflect similarity between data points into distances is
conditioned by how accurate the probability function on which
the FI is based is.

Our choice for an estimator is a multi-layer perceptron
(MLP), a feedforward artificial neural network whose
versatility makes it ideal for highly non-linear data
distributions. The MLP is present in the initial learning step of
the process, where its internal weights are trained with the
labelled dataset. The perceptron can then estimate probabilities
for unlabelled instances in this semi-supervised manner.

E. Dataset projection
After estimating the class membership probability it is

possible to compute distances between any two points xA and
xB in the data space by solving the following path integral
along the geodesic path:

 , (4)

where x(t) is the shortest path that goes from xA to xB in the
space defined by the Fisher metric.

This integral is not directly solvable for the non-linear
case; one way around this is to approximate it by dividing the
geodesic path into a number of segments whose distance can
be obtained using the linear solution to the integral [5].

At this point, a pairwise distance matrix is produced that
contains the Fisher distances between every pair of points in
the dataset. This will be used to map the dataset from the
original primary data space into a Euclidean feature space of
the desired dimensionality. We compare several projection
methods, namely the Sammon mapping, MDS and IMA.

1) Sammon mapping: This algorithm is used to analyse
multivariate data by mapping the data points from an original
high dimensional space to a space of lower dimensionality [8].
This non-linear mapping is based on the preservation of the
original pairwise distances between data points when moving
to the new data space.

The algorithm considers the situation of having N points in
a space of dimensionality L that we want to map to another
space of dimensionality D, and defines another set of N vectors
in this D-space. The distance between points xi and xj in the
original space is given by dij*, and the distance between their
corresponding maps in the D-space is denoted by dij. An initial

set of mapped points is generated, which result in a value for
the following error function, also known as Sammon’s stress:

 . (5)

The position of the points in the D-space is then iteratively
adjusted to reduce the error. In most cases, the method used to
minimize this error function is gradient descent.

The distance measure for dij* is usually Euclidean.
However, since we want to take into account the prior
information that we have about the data in the form of class
labels, we use the Fisher metric to compute these distances.

2) Metric multidimensional scaling: The idea on which
metric MDS is based, as in Sammon mapping, is the
preservation of the original pairwise distances in the projected
space. The error function usually has a similar shape as (5) [9].
In this work, we use

 . (6)

The main difference with (5) lies in the absence of

normalisation of the squared differences of the distances.
Similar to Sammon mapping, the position of the set of mapped
points is iteratively adjusted by gradient descent so as to
minimise the error function. Again, the distances dij* are
computed with the Fisher metric.

3) Iterative majorisation algorithm: The last algorithm in
this section expresses the mapping from an original L-space to
a D-space as a function f(x;W)=WT·Φ(x), where W is a P-by-D
matrix containing the free parameters and Φ(x)=(Φ1(x), ... ,
ΦP(x))T contains the values of the P basis functions Φi(x). The
mapping f(x;W) is a linear combination of these basis
functions, which can be linear or non-linear. In this work, we
have used P=N with Φ(xi)=(di1

*, di2
*, ... , diN

*)T, where dij
* is

the Fisher distance between points xi and xj. The method tries
to minimise the error function

 , (7)

where qij(W)=||WT(Φ(xi)-Φ(xj))||. This is minimised with
respect to the weights W using the iterative majorisation
algorithm. More detail on this can be found in [10].

III. EXPERIMENTAL RESULTS

A. Description of the data
The data analysed in this study are modelled from samples

extracted from a database used in a previous publication [2].
Class (tumour type) labelling was used to generate posterior
distributions of the data density, i.e. p(data|class) using single
multivariate normal models fitted to the mean and
variance/covariance matrices of class specific cohorts of single-
voxel proton MRS (SV-1H-MRS) acquired at two different

echo times (short, 20-32 ms (STE) and long, 135-144 ms
(LTE)) from brain tumour patients.

The analysed data set included, at LTE, samples of the
generated data for 20 astrocytomas grade II (A2), 78
glioblastomas (GL), and 31 metastases (ME); at STE, it
included 22 A2, 86 GL, and 38 ME. The data dimensionality is
195 reflecting the clinically-relevant frequency intensity values
measured in parts per million (ppm) that are typically sampled
from each spectrum in the [4.24,0.50] ppm interval.

A second dataset was generated for the validation of the
methods. In this dataset, each class has 50 samples generated
using the same means and covariance matrices used for the
training set. Note that, during the experiments, the metric is
derived using the training dataset labels only, and then it is
applied to calculate pairwise distance matrices of the training
and validation datasets, so no usage of the validation class
labels is made, as is expected from a semi-supervised learning
method.

All parameters mirror the actual data as closely as possible.
The aim of using generated data is to be able to test the
proposed methodology against known ground truth.

B. Empirical results

Pairwise classification between types of brain tissue were
performed, paying attention to the accuracy of the results and
the quality of the sources obtained.

Accuracy is measured as the ratio of correctly classified
cases out of the total number of instances, and the quality of
the sources is determined in terms of how similar they are
compared to the mean spectrum of the corresponding class.
Similarity is assessed using the correlation between the
resulting sources and mean spectra. Each classification
problem is run 20 times to average the effect of the variation
that the initialisation of Convex-NMF causes on the results.

The classification results on training data (Table I) show a
general improvement on the performance of the original
approach when we use the Fisher metric pre-processing before
applying Convex-NMF, whether it is using the Sammon
mapping, MDS or IMA. The increase of the accuracy on the
validation dataset (Table III) is smaller, as one would expect,
but still significant.

There are some exceptions where Convex-NMF performs
better than the alternatives, as in GL vs. ME at STE, when
using MDS with training data; in A2 vs. ME at STE, when
using Sammon with validation data; and in A2 vs. GL at STE,
where Convex-NMF outperforms all three mappings with
validation data. Despite that, there is an overall tendency of
accuracy increase.

Regarding the quality of the sources (Tables II and IV), all
four approaches yield very good sources in general. The most
interesting case is GL against ME both at STE and LTE,
where plain Convex-NMF does not perform as well as in the
other classifications. This is because GL and ME types have a
very similar spectral pattern (their mean spectra have
correlations of 0.9891 at STE and 0.9211 at LTE between each
other), which also explains why the classification accuracies
are so low for those two cases. The Fisher metric alternatives
manage to obtain very high source correlations and accuracies
even for the GL vs. ME problem, due to the additional
information that they bring into Convex-NMF from the
auxiliary data labels through the Fisher metric.

In the accuracy tables I and III, each cell contains the
amount of well classified samples in percentage and also in
fraction form in brackets. The column Original refers to the
results obtained applying plain Convex-NMF, and the other
subheaders identify the projection method used to map the
data. In the source correlation tables, the two scores within
each cell correspond to the correlation between the source of
the corresponding tissue type and the true mean spectrum of
that class.

TABLE I. CLASSIFICATION ACCURACIES FOR THE TRAINING DATASET

 STE LTE

Original Sammon MDS IMA Original Sammon MDS IMA

A2 vs. GL

total 83.3%
(90/108)

96.8%
(104.6/108)

96.3%
(104/108)

99.1%
(107/108)

60.2%
(59/98)

99%
(97/98)

99%
(97/98)

99%
(97/98)

A2 100%
(22/22)

90.5%
(19.9/22)

100%
(22/22)

100%
(22/22)

100%
(20/20)

100%
(20/20)

100%
(20/20)

100%
(20/20)

GL 79.1%
(68/86)

98.4%
(84.7/86)

95.3%
(82/86)

98.8%
(85/86)

50%
(39/78)

98.7%
(77/78)

98.7%
(77/78)

98.7%
(77/78)

A2 vs. ME

total 98.3%
(59/60)

99.8%
(59.9/60)

100%
(60/60)

100%
(60/60)

86.3%
(44/51)

100%
(51/51)

99.9%
(50.9/51)

100%
(51/51)

A2 100%
(22/22)

99.5%
(21.9/22)

100%
(22/22)

100%
(22/22)

100%
(20/20)

100%
(20/20)

100%
(20/20)

100%
(20/20)

ME 97.4%
(37/38)

100%
(38/38)

100%
(38/38)

100%
(38/38)

77.4%
(24/31)

100%
(31/31)

99.8%
(30.9/31)

100%
(31/31)

GL vs. ME total 69.8%

(86.6/124)
82.2%

(102/124)
69.6%

(86.4/124)
88.7%

(110/124)
60.6%

(66/109)
95.6%

(104.2/109)
94.5%

(103/109)
97.2%

(106/109)

GL 61.1%
(52.6/86)

77.3%
(66.5/86)

57.4%
(49.4/86)

86%
(74/86)

55.1%
(43/78)

95.6%
(74.6/78)

92.3%
(72/78)

96.2%
(75/78)

ME 89.5%
(34/38)

93.4%
(35.5/38)

97.4%
(37/38)

94.7%
(36/38)

74.2%
(23/31)

95.5%
(29.6/31)

100%
(31/31)

100%
(31/31)

TABLE II. SOURCE CORRELATIONS FOR THE TRAINING DATASET

 STE LTE

Original Sammon MDS IMA Original Sammon MDS IMA

A2 vs. GL A2
GL

0.98
0.96

0.89
1

0.99
1

0.94
1

0.98
0.70

0.98
1

0.97
1

0.98
1

A2 vs. ME A2
ME

0.98
0.99

0.93
1

0.94
1

0.99
1

0.99
0.88

0.99
1

0.98
0.99

0.99
1

GL vs. ME GL
ME

0.95
0.98

0.99
1

0.97
1

0.97
1

0.73
0.86

0.99
0.99

0.99
1

0.99
1

TABLE III. CLASSIFICATION ACCURACIES FOR THE VALIDATION DATASET

 STE LTE

Original Sammon MDS IMA Original Sammon MDS IMA

A2 vs. GL

total 94%
(94/100)

85.5%
(85.5/100)

90%
(90/100)

90%
(90/100)

80%
(80/100)

98%
(98/100)

95%
(95/100)

97%
(97/100)

A2 98%
(49/50)

82.8%
(41.4/50)

88%
(44/50)

84%
(42/50)

100%
(50/50)

100%
(50/50)

92%
(46/50)

100%
(50/50)

GL 90%
(45/50)

88.1%
(44.1/50)

92%
(46/50)

96%
(48/50)

60%
(30/50)

96%
(48/50)

98%
(49/50)

94%
(47/50)

A2 vs. ME

total 97%
(97/100)

93.8%
(93.8/100)

99%
(99/100)

99%
(99/100)

88%
(88/100)

99.9%
(99.9/100)

99.9%
(99.9/100)

100%
(100/100)

A2 98%
(49/50)

92.9%
(46.5/50)

98%
(49/50)

98%
(49/50)

100%
(50/50)

100%
(50/50)

100%
(50/50)

100%
(50/50)

ME 96%
(48/50)

94.6%
(47.3/50)

100%
(50/50)

100%
(50/50)

76%
(38/50)

99.9%
(49.9/50)

99.9%
(49.9/50)

100%
(50/50)

GL vs. ME total 67.7%

(67.7/100)
72.8%

(72.8/100)
75%

(75/100)
74%

(74/100)
62%

(62/100)
81.8%

(81.8/100)
82%

(82/100)
83%

(83/100)

GL 64%
(32/50)

71.3%
(35.7/50)

58.1%
(29.1/50)

64%
(32/50)

52%
(26/50)

84.8%
(42.4/50)

92%
(46/50)

86%
(43/50)

ME 71.4%
(35.7/50)

74.2%
(37.1/50)

91.9%
(45.9/50)

84%
(42/50)

72%
(36/50)

78.7%
(39.4/50)

72%
(36/50)

80%
(40/50)

TABLE IV. SOURCE CORRELATIONS FOR THE VALIDATION DATASET

 STE LTE

Original Sammon MDS IMA Original Sammon MDS IMA

A2 vs. GL A2
GL

0.96
0.96

0.98
1

0.99
1

0.99
1

0.99
0.80

1
0.99

1
0.99

1
0.98

A2 vs. ME A2
ME

0.96
0.99

0.93
0.94

0.98
0.99

0.99
1

1
0.94

0.99
0.96

0.99
0.97

1
1

GL vs. ME GL
ME

0.94
0.98

1
1

0.98
1

0.98
1

0.68
0.89

0.99
0.99

0.99
0.99

0.99
0.99

Figures 1 to 5 represent the sources involved in a particular
classification problem, GL against ME at LTE for the
validation dataset. We have chosen to illustrate this case
because it is where Convex-NMF struggles most to achieve
good classification rates and sources due to the prototypical

spectra of the two tissue types being very similar, as can be
seen in figure 1. It is therefore for a problem like this that the
Fisher metric approaches will show a more significant
performance improvement.

Figure 1. True GL (left) and ME (right) prototype spectra. X-axis: frequencies in ppm scale. Y-axis: Intensities normalised to unit length (UL2)

Figure 2. GL (left) and ME (right) sources retrieved using Convex-NMF. X-axis: frequencies in ppm scale. Y-axis: Intensities normalised to unit length (UL2)

Figure 3. GL (left) and ME (right) sources retrieved using Sammon map. X-axis: frequencies in ppm scale. Y-axis: Intensities normalised to unit length (UL2)

Figure 4. GL (left) and ME (right) sources retrieved using MDS. X-axis: frequencies in ppm scale. Y-axis: Intensities normalised to unit length (UL2)

Figure 5. GL (left) and ME (right) sources retrieved using IMA. X-axis: frequencies in ppm scale. Y-axis: Intensities normalised to unit length (UL2)

The resemblance between the true spectra of the two classes

is very high in terms of the position and height of the peaks.
The only clear differences between them are the height ratio of
the two main peaks and the height of the small one
immediately to the right of the left main peak. We can see in
figure 2 how the basic Convex-NMF does not manage to get
both peaks right at the same time. Instead, it identifies each
class with one of the two main peaks. The rest of the methods,
however, pick up correctly the proportion of the height of the
peaks for both classes and produce sources very similar to the
originals.

IV. DISCUSSION
The results of the experiments performed confirm the

hypothesis that an unsupervised interpretable method for blind
classification/signal separation, namely as Convex-NMF, can
benefit from the use of known data labels and result in a more
accurate classifier without any loss in the interpretability of the
results.

Moreover, a mechanism is provided that achieves blind
signal separation with a semi-supervised approach, by first
finding a natural metric to describe the class assignments,
followed by a mapping of the data into an approximate
distribution in a Euclidean space where the blind signal
separation can be applied with standard projective methods.

Furthermore, for the data analysed in this work, not only
was the accuracy of the classification of the samples generally
better, but the sources extracted were also of higher quality
than those obtained using the original unsupervised method,
both in the training and validation stages. In our opinion, the
improvement on these two aspects, especially in complex

classification problems, justifies the additional pre-processing
steps that precede the original approach.

Future work is to replicate this methodology on the original
medical data.

REFERENCES
[1] C. Ding, T. Li, and M.I. Jordan, “Convex and semi-nonnegative matrix

factorizations,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 32, no. 1, pp. 45-55, 2010.

[2] S. Ortega-Martorell, P.J.G. Lisboa, A. Vellido, M. Julià-Sapé, and C.
Arús, “Non-negative Matrix Factorisation methods for the spectral
decomposition of MRS data from human brain tumours,” BMC
Bioinformatics, vol. 13, no. 38, 2012

[3] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,”
Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.

[4] D. Lee and H. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-791, 1999.

[5] H. Ruiz, I.H. Jarman, J.D. Martín, and P.J.G. Lisboa, “The role of Fisher
information in primary data space for neighbourhood mapping,”
European Symposium on Artificial Neural Networks (ESANN) 2011
proceedings.

[6] S. Amari, “Information geometry on hierarchy of probability
distributions,” IEEE Information theory, vol. 47, no. 5, pp. 1701-1711,
2001.

[7] S. Kaski and J. Sinkkonen, “Metrics that learn relevance,” International
Joint Conference on Neural Networks (IJCNN) 2000 proceedings, vol. 5,
pp. 547-552, 2000.

[8] J.W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE
Transactions on computers, vol. C-18, no. 5, pp. 401-409, 1969.

[9] J.A. Lee and M. Verleysen, “Nonlinear Dimensionality Reduction”,
Springer-Verlag, NY, 2007.

[10] Z. Zhang, “Learning metrics via discriminant kernels and
multidimensional scaling: Toward expected Euclidean representation”,
International Conference on Machine Learning (ICML) 2003
proceedings, pp. 872-879, 2003.

Constructing similarity networks using the
Fisher information metric

H. Ruiz1, S. Ortega-Martorell2, I. H. Jarman1, J. D. Martín3, P. J.G. Lisboa1

1 - School of Computing and Mathematical Sciences - Department of
Mathematics and Statistics - LJMU, Liverpool L3 3AF - UK

2 - Departament de Bioquímica i Biología Molecular – Universitat
Autònoma de Barcelona, Cerdanyola del Vallés (Barcelona) - Spain

3 - Escuela Técnica Superior de Ingeniería - Departamento de Ingeniería
Electrónica - Universidad de Valencia, Burjassot (Valencia) - Spain

Abstract. The Fisher information metric defines a Riemannian space where
distances reflect similarity with respect to a given probability distribution. This
metric can be used during the process of building a relational network, resulting in
a structure that is informed about the similarity criterion. Furthermore, the
relational nature of this network allows for an intuitive interpretation of the data
through their location within the network and the way it relates to the most
representative cases or prototypes.

1 Introduction

Measures of similarity between data points are central to pattern recognition and data
mining methodologies, although they are not always explicitly calculated.
Nevertheless, using a distance function to measure similarity between pairs of
elements of a space is an intuitive way to understand their relationship in the context
of a particular problem domain. The Euclidean distance is a common choice because
of its simplicity and little computational cost, even though the equal weighting of
each dimension, for instance in clustering, leads to results that can be heavily
dependent on the choice of data representation.
The Fisher information (FI) is a natural choice of metric in the space of probabilistic
density functions [1]. In the case of the space of the covariates, a natural similarity
measure between points is provided by the symmetric divergence between the
posterior distributions p(c|x) of classifiers fitted to the class labels, which are
categorized by a discrete random variable C. The concept of a metric defined by
differentiating a posterior distribution p(c|x) with respect to the coordinates is
reported in [2] as a natural extension of the metric defined in parameter space, e.g. in
[3]. In a recent publication [4], we explained in detail the process of deriving a metric
from the Fisher information using linear and non-linear models and presented a novel
approach to the problem of finding geodesic distances in non-Euclidean metrics. The
idea in the present paper is to follow the same process and use the FI metric to go
from the dataset in the original high-dimensional space to a network where data points
are nodes connected to each other by edges based on their similarity.
The resulting networks are analysed in terms of prediction accuracy and structure and
the closing section discusses the interpretability of the classifier by identifying
relevant reference cases.

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

2 Methodology

This section provides a brief description of the FI metric derivation and discusses the
choice of the method used to build the networks.

2.1 Derivation of the Fisher information metric

The FI is a local measure of the variation that an infinitesimal displacement of a point
produces on the value of a probability distribution when evaluated at that point.
Traditionally, the space where this displacement takes place is that of some parameter
vector θ upon which the probability function depends. We are, however, more
interested in the approach introduced in [2], where the space of interest is the primary
data space, i.e. the space where the dataset under study lies. The data is assumed to be
divided into classes, with p(c|x) representing the posterior probability of the class
variable given a point in the data space.

Fig. 1: Derivation of the FI metric

Figure 1 outlines the process of deriving the FI metric. Initially we have a dataset
along with the class membership of each of the points. Using a density estimator, we
obtain the posterior distribution p(c|x). This estimate completely determines the
metric in the sense that only a good model will produce a metric that reflects
similarity accurately with respect to the true probability density. We use a multilayer
perceptron (MLP) for this purpose because of its versatile architecture, which makes
it ideal for non-linear data distributions.
The FI takes the form of a square matrix of the same dimensionality as the data. It is
obtained from the estimated density according to either of the two equivalent
definitions in (1).

��������|�� = �			���|����∇ ln ���|�����	−���|����∇� ln ���|����� (1)

where Ep(c|x) is the conditional expectation over the values of the class label c with
respect to p(c|x). The matrix defines a differential metric for the calculation of
infinitesimal distances: ���, � + ���� = ���������� (2)
This can be integrated to calculate the distance between any pair of points by using
the path integral

����, ��� = � !�" �#����$��#�%�" �#�&
' �#� (3)

dataset
+

class labels
p(c|x) FI matrix FI metric

global
distances

pdf estimator
(MLP) FI definition

differential
metric path integral

geodesic
distances

shortest path
finder

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

where ��#� is a path that goes from �� = ��# = 0� to �� = ��# = 1�. At this point
we can compute global distances in the space along a given path. The last part of the
process is to find geodesic paths between points and to calculate their length. To do
so, we use the free points approach. The reader is referred to [4] for an explanatory
section on this algorithm.

2.2 Construction of the networks

Usual methods to build networks are k-nearest neighbours (kNN), where each data
point is connected to the k nearest points, and ϵ-neighbourhood, where a connection is
present when points are closer than a constant distance ϵ. kNN is preferred over ϵ-
neighbourhood because it is adaptive to scale and density, while the use of the latter
can result in disconnected graphs.
During the experiments carried out for this work, we applied kNN and b-matching.
The b-matching method [5] is more rigorous than kNN in that it ensures that the final
number of neighbours of each node is always the same. However, it only guarantees
to converge if the linear programming relaxation of the formulation of the b-matching
problem is tight [6]. In practice, when applying the algorithm to our data we found
that it did not converge most of the time. For this reason, we only use kNN in this
work.

3 Experimental results

In this section, we study the implications of the use of the FI metric in the
construction of networks. Three aspects are discussed: the visualization power of
networks, classification accuracies using kNN and the presence of network
substructure.
The synthetic data analysed in this study are modelled from samples extracted from a
data base used in a previous publication [7]. Class (tumour type) labelling was used to
generate posterior distributions of the data density, using single multivariate normal
models fitted to the mean and variance/covariance matrices of class specific cohorts
of single-voxel proton Magnetic Resonance Spectroscopy (SV 1H-MRS) from brain
tumour patients.
This synthetic set included samples of the generated data for 78 glioblastoma-like
(GL), and 31 metastasis-like (ME) cases. The data dimensionality is 195 reflecting the
clinically-relevant frequency intensity values measured in parts per million (ppm) that
are typically sampled from each spectrum in the [4.24,0.50] ppm interval. A second
dataset was generated for the validation of the methods. In this dataset, each class has
50 samples generated using the same means and covariance matrices used for the
training set. The discrimination between GL and ME, on the basis of SV 1H MRS
information, is a very challenging problem due to their radiological similarities. The
appearance of both pathologies is often dominated by large peak intensities
corresponding to neutral lipids, a byproduct of necrosis [8].

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

3.1 Visualizing data using networks

Using networks to represent data is a
data space is high-dimensional and direct examination is not possible. Similarity
between points in the original space is captured by the
enabling the viewer to
Figures 2 and 3 show the kNN networks built from the dataset using Euclidean and
Fisher distances respectively
corresponding to ME.
network (Fig.3), with edges connected in a very local manner. The Euclidean network
(Fig.2), on the other side, presents a very fuzzy arrangement of the edges,
grouping of the nodes is quite weak in terms of conn

Fig. 2: kNN network (k=3) using Euclidean distances

Fig. 3: kNN network (k=3) using Fisher distances

The information contained in the class labels is put in the form of
by the FI metric and is captured in the network, producing an informative and
intuitive visualization of the data that otherwise would be difficult to interpret

3.2 Classification rates

Tables 1 and 2 contain the classification accuracies u
classification (E-kNN and F
corresponds to the results with

Visualizing data using networks

Using networks to represent data is a powerful visualization tool, especially when the
dimensional and direct examination is not possible. Similarity

between points in the original space is captured by the connections in the network,
enabling the viewer to see how the data looks like in terms of structure and clustering.
Figures 2 and 3 show the kNN networks built from the dataset using Euclidean and
Fisher distances respectively, with black nodes representing GL cases and

. It is immediate to see a much clearer structure in the Fisher
, with edges connected in a very local manner. The Euclidean network

, on the other side, presents a very fuzzy arrangement of the edges,
grouping of the nodes is quite weak in terms of connectivity within/between groups.

Fig. 2: kNN network (k=3) using Euclidean distances. Black = GL, white

Fig. 3: kNN network (k=3) using Fisher distances. Black = GL, white = ME.

contained in the class labels is put in the form of a distance measure
by the FI metric and is captured in the network, producing an informative and
intuitive visualization of the data that otherwise would be difficult to interpret

Classification rates

Tables 1 and 2 contain the classification accuracies using Euclidean and Fisher
kNN and F-kNN, respectively) for different values of k. Table 2

the results with the validation dataset. Fisher kNN obtains very good

powerful visualization tool, especially when the
dimensional and direct examination is not possible. Similarity

in the network,
ooks like in terms of structure and clustering.

Figures 2 and 3 show the kNN networks built from the dataset using Euclidean and
nodes representing GL cases and white

structure in the Fisher
, with edges connected in a very local manner. The Euclidean network

, on the other side, presents a very fuzzy arrangement of the edges, and the
ectivity within/between groups.

GL, white = ME.

. Black = GL, white = ME.

a distance measure
by the FI metric and is captured in the network, producing an informative and
intuitive visualization of the data that otherwise would be difficult to interpret.

sing Euclidean and Fisher kNN
for different values of k. Table 2

very good

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

accuracies as reported
MLP. The second table

Table 1: Classification rates on the training

Table 2: Classification rates on the validation dataset

During the validation stage
Euclidean kNN results for small values of k, but the difference becomes more
significant when the size of the neighbourhood increases. When this happens, the
performance of E-kNN deteriorates
of neighbours are misclassified
reflecting heterogeneity in the local structure of the network. The stability of F
under this variation is caused by the FI metric
high density of points
classes. This means that points away from the border form very c
homogeneous groups that are far away from the areas of mixed membership, therefore
having more stable neighbourhoods with respect to k

3.3 Class substructure

Going back to Fig.3, we
only because the classes are well separated, but also because
are arranged forming small groups or clusters. In this section, we briefly look into
some of these clusters
The plots in Fig.4 are
corresponding to the real GL spectrum. The four clusters are part of the GL class, and
are circled in red in the miniature view of the network.

Figure 4: Mean spectra of the different clusters

 1 3
E-kNN 0.83 0.8
F-kNN 0.99 0.99

 1 3
E-kNN 0.72 0.79
F-kNN 0.77 0.80

 in the first table because these are the training samples
. The second table provides a more realistic impression.

Table 1: Classification rates on the training dataset

Table 2: Classification rates on the validation dataset

During the validation stage, the use of the FI metric brings little improvement on the
Euclidean kNN results for small values of k, but the difference becomes more
significant when the size of the neighbourhood increases. When this happens, the

kNN deteriorates, so points correctly classified for a small n
misclassified when more neighbours are taken into account

reflecting heterogeneity in the local structure of the network. The stability of F
under this variation is caused by the FI metric moving the areas of the space
igh density of points from the same class away from the border regions between

classes. This means that points away from the border form very compact
homogeneous groups that are far away from the areas of mixed membership, therefore

neighbourhoods with respect to k.

Class substructure

Going back to Fig.3, we stated that a clear structure in the network is easy to see
only because the classes are well separated, but also because within each class
are arranged forming small groups or clusters. In this section, we briefly look into

 to find out the differences between them.
The plots in Fig.4 are the mean spectra of the points in each cluster, the first plot

to the real GL spectrum. The four clusters are part of the GL class, and
are circled in red in the miniature view of the network.

Figure 4: Mean spectra of the different clusters.

 5 7 9 11 13 15
0.81 0.81 0.83 0.76 0.74 0.77 0.74
0.99 0.99 0.98 0.99 0.99 0.99 0.98

 5 7 9 11 13 15
0.79 0.77 0.78 0.74 0.69 0.69 0.68
0.80 0.80 0.81 0.82 0.80 0.79 0.80

samples of the

improvement on the
Euclidean kNN results for small values of k, but the difference becomes more
significant when the size of the neighbourhood increases. When this happens, the

classified for a small number
when more neighbours are taken into account,

reflecting heterogeneity in the local structure of the network. The stability of F-kNN
the areas of the space with a

away from the border regions between
ompact and

homogeneous groups that are far away from the areas of mixed membership, therefore

is easy to see, not
within each class, nodes

are arranged forming small groups or clusters. In this section, we briefly look into

the mean spectra of the points in each cluster, the first plot
to the real GL spectrum. The four clusters are part of the GL class, and

15
0.74
0.98

15
0.68
0.80

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

The plots show how clusters from the same class are different in terms of the height
of the two main peaks of the spectrum, which vary from group to group giving rise to
a different “prototype” in each of them.
The shape of each spectrum has a specific meaning and corresponds to a different
medical condition, so within the same GL class we can find different subtypes of
brain tissue. In other words, a sample classified as GL could be further subclassified
depending on where it lies within the network.

4 Conclusions

The FI can work as a measure of how similar points in the space are with respect to
some class membership probability distribution. To do so, we derive a metric from the
FI matrix, and therefore a distance measure. This can be used to build a relational
network that captures similarity in the original data space and translates it into node to
node connections, resulting in a more interpretable representation of the data,
especially when the original data space is of high dimensionality.
The structure of the network contains useful information on how the data is
distributed in the space. Section 3.3 presented a very simple analysis of some of the
substructures found in the dataset. Our motivation for the use of networks is to
develop a way of interpreting new data by mapping it into the base network and
relating it to the reference cases in it. By doing so, we go from just a scalar that
represents the probability of a point belonging to a certain class to a much more
informative tool that not only predicts a category for the data, but also puts it into
context by telling how it relates to the most representative cases.
It is important to bear in mind the small sample size of the data (109 points in a 195-
dimensional space). We chose to keep the original size in the synthetic dataset
because it is not crucial for our aim of showing the interpretability of the
methodology. However, if the estimation of the probability surfaces was required to
be very precise, a larger dataset would be necessary.

References

[1] S. Amari (2001). Information geometry on hierarchy of probability distributions. IEEE Information
Theory, 47, vol. 5: 1701-1711.

[2] S. Kaski, & J. Sinkkonen (2000). Metrics that learn relevance. IJCNN 2000 proceedings, vol 5:547-
552.

[3] S. Kullback (1959). Information theory and statistics. Wiley. New York, 1959.
[4] H. Ruiz, I. H. Jarman, J. D. Martín, & P. J. Lisboa (2011). The role of Fisher information in primary

data space for neighbourhood mapping. ESANN 2011 proceedings.
[5] T. Jebara, J. Wang, & S. F. Chang (2009). Graph construction and b-matching for semi-supervised

learning. ICML 2009 proceedings.
[6] B. Huang, & T. Jebara (2011). Fast b-matching via sufficient selection Belief Propagation.

AISTATS 2011 proceedings.
[7] S. Ortega-Martorell, A. Vellido, P.J.G. Lisboa, M. Julia-Sape, & C. Arus (2011). Spectral

decomposition methods for the analysis of MRS information from human brain tumours. IJCNN
2011 proceedings.

[8] A. Vellido, E. Romero, M. Julia-Sape, C. Majos, A. Moreno-Torres, J. Pujol, & C. Arus (2011).
Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single-voxel 1H
MRS. NMR in Biomedicine. In press. DOI: 10.1002/nbm.1797

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

The role of Fisher information in primary data
space for neighbourhood mapping

H. Ruiz1, I. H. Jarman2, J. D. Martín3, P. J. Lisboa1

1 - School of Computing and Mathematical Sciences - Department of
Mathematics and Statistics - LJMU, Liverpool L3 3AF - UK
2 - Centre for Public Health - LJMU, Liverpool L3 2ET - UK

3 - Escuela Técnica Superior de Ingeniería - Departamento de Ingeniería
Electrónica - Universidad de Valencia, Burjassot (Valencia) - Spain

Abstract. Clustering methods and nearest neighbour classifiers typically compute
distances between data points as a measure of similarity, with nearby pairs of
points considered more like each other than remote pairs. The distance measure of
choice is often Euclidean, implicitly treating all directions in space as equally
relevant. This paper reviews the application of Fisher information to derive a
metric in primary data space. The aim is to provide a natural coordinate space to
represent pairwise distances with respect to a probability distribution p(c|x),
defined by an external label c, and use it to compute more informative distances.

1 Introduction

The primary purpose of this work is to define framework to calculate the similarity
between data points, in primary data space, using an auxiliary variable which is a
class label. This will enable networks of data points to be arranged in a way that is
informed about this variable. For the sake of illustration, we measure classification
rate using k-NN to evaluate the near neighbour homogeneity of the data with respect
to the auxiliary variable.
 In the standard formulation, each observation consists of a set of N variables,
and therefore represents a point in the N-dimensional space. A very intuitive and
widely used way to compute distances between data points is to use the Euclidean
metric. This distance assigns equal relevance to all directions and, by extension, to all
variables, but in reality each attribute will have a different degree of influence over
the auxiliary label c. In this work, similarity between data points is defined with
respect to some auxiliary data comprising observations of a dichotomous variable c
which divides the dataset into two classes. Data points are considered close to each
other if they have similar class membership probabilities, and this definition also
applies to groups of points and areas of the dataspace. The goal of this definition of
similarity is to form clusters or divide the data into classes that are homogeneous with
respect to the label c. That is precisely what a learning metric does. Effectively, such
a metric resizes each dimension in space expanding those corresponding to relevant
features and compressing those related with less important ones.
 While the bulk of statistical work on Fisher information is focused on the space
of model parameters, there also is some previous work on learning metrics defined in
primary data space [1,2,3] with successful applications to self-organizing maps and
standard clustering algorithms such as k-means. In common with the literature, the

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

work presented in this paper shares the objective of developing an intelligent metric
that improves the performance of the algorithms, but differs in three key aspects.
 Firstly, the way the Fisher metric is obtained. By definition, the metric is
derived from the probability density p(c|x), which must therefore be estimated [1,2,3].
The estimations used in this work are drawn directly from the posterior distributions
of class membership, with either generalised linear models or generic (semi-
parametric) non-linear inference models, namely a linear logistic regressor and a
multilayer perceptron (MLP).
 The second main difference is the approach used to compute distances. In the
non-Euclidean space resulting from the application of the Fisher metric, the shortest
distance requires the explicit optimisation of the distance measured across a geodesic
path. This is discussed in [3,4,5], but the two most related solutions [3] make strong
simplifying assumptions, one using a single straight line between distant points and
the other depending on the particular layout of the data points. We propose a new
method which is efficient in iteratively adjusting the path towards the shortest
distance, as explained in section 2.2.
 Finally, the motivation for the construction of the Fisher metric in this work is
different than that of the existing literature. In previous work, the concept of learning
metrics is included into existing clustering and classification methods to improve their
performance. That is not the case here. The methodology that this paper presents has
been developed with the intention of applying it to the construction of graphs from
datasets with auxiliary variables.

2 Methodology

This section describes the different concepts involved in the metric building process.
First the Fisher information is introduced and derived for linear and non-linear
estimators assuming a logistic regression transfer function of the output. Second, the
problem of finding geodesics is addressed and introduces the proposed generic
approach for distance estimation in primary data space with non-linear metrics.

2.1 Fisher information in the primary data space

The FI value [6] at a particular data point x in the space is the difference between the
information that the probability distributions p(c|x) and p(c|x+dx) carry, where dx is
infinitesimally small. In other words, a large FI value at a certain point means that a
slight change in the position of that point strongly influences the posterior density
function and thus that area of the space is very relevant with respect to the auxiliary
data c.
 The metric is defined by the matrix G(x) in the well-known quadratic
differential form [7]:

2 ∑ ∑ 11 (1)

 The Fisher information matrix in primary data space is defined equivalently by:

|

 | ln |

| ln |

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

 The calculation involves the conditional expectation over the values of the
external label c with respect to the probability function p(c|x). Limiting c to a discrete
variable simplifies the calculation because the expectation, which would be computed
as an integral in the continuous case, becomes a summation. We further assume a
specific structure for the form of the posterior probability p(c|x), namely

 |

1

1
, 0,1 (2)

 The dependence on x is contained in the activation variable a, which defines the
complexity of the estimator. In the logistic regressor, a is just a linear combination of
the input vector x and the coefficient vector β, while in the case of the MLP it is given
by a non-linear, but differentiable function of the inputs. Once p(c|x) is defined, the FI
can be expressed in matrix form, assuming column vectors, as follows:

1
 Returning to (1) yields the distance between infinitely close points. A general
formula for the distance between two points is obtained by solving the path integral:

 , (3)

 The next section provides a solution of integral in (3) in closed form for
dichotomous classifiers of the assumed form, whether linear or not.

2.1.1 Fisher distance with a linear estimator

We start with the logistic regression, with a=βTx+β0. Since a is linearly dependent on
x, its first derivative is constant, resulting in the following expression for the integral:

 , 1 (4)

which is readily solved by substituting a as the integration variable giving:

 , 2 (5)

 It is important to note that distance is independent of the particular path from xA
to xB., in effect collapsing the data space onto the projections along the vector defined
by the weights β.

2.1.2 Extension to a non-linear estimator

The natural next step is to develop an expression for the distance when using a non-
linear estimator of the posterior density distribution by solving equation (3) as in the
previous section, but with a as a non-linear function of x. Using the first two terms of
the Taylor expansion of a produces a linear approximation for which the distance
expression (5) applies. Equation (5) is thus globally applicable for the linear case, but
only locally valid for a non-linear estimator. In this work, the so-called free points
approach is used to overcome this limitation.

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

2.2 Geodesic distances. The free points approach

The algorithm described in this section performs two important functions: it ensures
that the Taylor approximation used previously holds and it finds the geodesic path
between xA and xB. Figure 1 shows an illustrative sketch of the approach.

Fig. 1: The free points approach for 3-dimensional data.

 The method starts by dividing the straight line joining xA and xB into segments.
A hyperplane is then defined between each pair of consecutive segments. All these
hyperplanes are parallel between each other and orthogonal with respect to the
straight line path. Then, a point is defined in each hyperplane, with the idea of
forming a path from xA to xB by joining all the points as shown in fig. 1. Since the
points can move freely within their respective hyperplanes, any path can be formed by
appropriately choosing the number of hyperplanes and the position of the points.
 The points move as a result of the minimization of the objective function,
defined as the overall length of the path computed as the sum of each segment’s
length. Each of these individual distances is calculated using (5). Since this applies
locally for the non-linear case, every free point must be close to its two neighbours,
and that is guaranteed by choosing a large enough number of hyperplanes.

3 Experimental results

In this section, the Fisher metric is put into practice in a classification problem using
synthetic data. Two versions of the standard k-nearest neighbours (kNN) classifier are
compared: one computes pairwise distances using the Euclidean metric (E-kNN) and
the other uses the Fisher distance (F-kNN) derived from a MLP.
 The method is benchmarked using a kNN classifier to assess the homogeneity of
the resulting network with respect to the external label, not because the classifier itself
brings any originality. Fisher metric based classifiers can be found in the literature,
the most important being the SVM-Fisher kernel methods [8].
 The dataset consists of two classes generated by two Gaussian distributions with
same means but different standard deviations (0.9 and 2). One distribution contains
the other, creating a non-linear border. This is a large dataset (104 samples/class) that
provides the MLP with enough training episodes to accurately estimate p(c|x), which
is critical for the estimation of the Fisher information. A validation dataset is
generated using the original generating functions of the data. This smaller dataset
(250 samples/class) contains the points to be classified, calculating distances using
either the Euclidean or Fisher metric and taking a majority vote in the usual way.

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

 Table 1 shows the results of the simulations. The first row in each cell shows the
percentage of correctly classified points using E-kNN and F-kNN in that order. The
relative increase of accuracy when using the Fisher metric appears in the second row.

 N
k

2 5 10 15 25 40

3
69.4/72
+3.75%

87.4/73.6
-15.79%

88.8/92.2
+3.83%

81.6/93.2
+14.21%

66.4/94.6
+42.47%

51.6/94.2
+82.56%

5
72.4/74.8
+3.31%

88.2/72.8
-17.46%

89/92.2
+3.6%

80/93.4
+16.75%

64.4/95
+47.52%

50.6/94
+85.77%

7
74/74
+0%

88.2/74.4
-15.65%

88.8/92.2
+3.83%

77.6/93
+19.85%

61.8/95.2
54.05%

50.4/94
+86.51%

11
73.6/75.6
+2.72%

88.8/76.6
-13.74%

87.2/93.2
+6.88%

74.8/93.2
+24.6%

57/95.2
+67.02%

50.2/94
87.25%

15
75.4/76.8
+1.86%

88.2/79
-10.43%

86/93.4
+8.6%

73/93.8
+28.49%

56.2/95.2
+69.4%

50.2/94.2
+87.65%

21
75/76.6
+2.13%

88.6/79.4
-10.38%

85.8/93.8
+9.32%

71.4/93.2
+30.53%

54.4/95.2
+75%

50/94.4
+88.8%

Table 1: Simulation results for input dimensionality N and k neighbours.

 In low dimensions, the two methods perform similarly. However, the accuracy
of the Euclidean classifier increases until N=10 and decreases from then on. To
understand this behaviour, a histogram of the pairwise distances is plotted in fig. 2 for
different values of N, comparing interclass and intraclass distances. The performance
of kNN is best when intraclass distances are small compared to interclass distances.

Fig. 2: Histograms of the pairwise distances for different values of N.

 The 2-dimensional case in Figure 2 shows all three distributions overlapping.
Individual histograms show that intraclass distances have their peak slightly more to
the left than interclass distances. In the next plot, N=10, the shape shifts right and
starts splitting up into two humps, the left one corresponding to class 1 intraclass
distances and the other formed by class 2 intraclass distances and interclass distances.
The increase of the distances is related to the increase of the diagonal of a hypercube
when N grows and is caused by the nature of the high dimensional space.

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

 The reason for class 1 distances to shift more slowly is their smaller standard
deviation. At this point, the classification of class 1 members becomes easier because
their intraclass distances remain small with respect to interclass ones. For class 2 the
situation is similar as when N=2, so the overall result is an increase of the accuracy.
 In the last four cases the distances keep growing as mentioned. Very important
is the fact that class 2 distances increase faster than interclass distances. This results in
a clear division of the three groups with increasing width and mean when going from
class 1 to class 2, causing the classification of all points as class 1 members. In the
case of an actual class 1 member, intraclass distances are much smaller than interclass
ones, so the k chosen neighbours always belong to class 1. For class 2, interclass
distances are smaller, resulting in a wrong choice of neighbours and a bad prediction.
 The Fisher metric compensates this effect by resizing the space dimensions. On
top of that, the MLP estimates p(c|x) much better in high dimensions, so the result
obtained is a very accurate classification. Also notice the stability of the percentages
achieved with F-kNN when the parameter k varies for large values of N.

4 Conclusions

This paper outlines the construction process of the Fisher metric from the choice of
the probability estimator to the development of a distance expression. Unique from
any previous work, the Fisher information is derived from sigmoidal output
estimators, and from this an analytical expression is obtained for the Fisher matrix.
 In addition, a closed form expression for the geodesic distance is obtained by
solving the path integral for a linear estimator. This opens the door to a distance
expression for the general non-linear case by local linearization of the response
surface of the MLP. Then the free points approach is introduced to find the geodesic
between points with the new metric and also to ensure that the approximations hold.

References

[1] S. Kaski, J. Sinkkonen and J. Peltonen, Bankruptcy analysis with self-organizing maps in learning
metrics, IEEE Transactions on Neural Networks, 12(4):936-947, 2001.

[2] J. Salojärvi, S. Kaski and J. Sinkkonen, Discriminative clustering in Fisher metrics. In Artificial
Neural Networks and Neural Information Processing – Supplementary proceedings
(ICANN/ICONIP 2003), June 26-29, Istanbul (Turkey), 2003.

[3] J. Peltonen, A. Klami and S. Kaski, Improved learning of Riemannian metrics for exploratory
analysis, Neural Networks, 17:1087-1100, 2004.

[4] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proceedings of the National
Academy of Sciences of the USA, 95(15):8431-8435, 1998.

[5] J. Baek, A. Deopurkar and K. Redfield, Finding geodesics on surfaces, unpublished, 2007.

[6] S. Kullback. Information theory and statistics, John Willey and Sons, New York, 1959.

[7] M. H. J. Gruber, Some applications of the Rao distance to shrinkage estimators, Communications in
Statistics – Theory and Methods, 37:180-193, 2008.

[8] T. Jaakkola, M. Diekhans and D. Haussler, Using the Fisher kernel method to detect remote protein
homologies, Proceedings of the 7th International Conference on Intelligent Systems for Molecular
Biology (ISMB-99), 149-158, August 6-10, Heidelberg (Germany), 1999.

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

	Introduction
	Statistical models
	Rule extraction
	Graphical models
	Aims and objectives
	Structure of the thesis

	Literature review
	Distance metric learning
	Unsupervised metric learning
	Principal component analysis (PCA)
	Multidimensional scaling (MDS)
	Isomap
	Locally linear embedding (LLE)

	Supervised metric learning
	Nearest neighbour classification and distance metric learning
	Metric learning using similarity-based optimisation
	Metric learning based on relevance measures
	Metric learning with kernels
	Fisher information metric in the input space

	Analysis of community structure in networks
	Traditional community extraction
	The graph partitioning problem
	Hierarchical clustering

	Modern community extraction
	Edge removal algorithms
	Modularity optimisation algorithms

	Methodology selection
	Selection of the distance metric
	Selection of the probability estimation method
	Generative models
	Discriminative models

	Selection of the community detection algorithm

	Novel contributions
	Fisher network framework for data visualisation and classification
	FI metric derivation using discriminative models
	Closed-form distance measure for linear models and iterative geodesic finder
	FI metric and blind signal separation
	Reference case identification and informative backgrounds
	Related work

	Chapter summary

	Methodology description
	Probability estimation
	Binary classification
	Linear estimators: Linear logistic regression
	Non-linear estimators: Multilayer perceptron

	Multiclass classification

	Fisher information matrix
	FI matrix for two classes
	FI matrix for multiple classes

	Fisher information metric
	The Fisher metric and the KL divergence
	Global distances for linear estimators
	Global distances for non-linear estimators: finding geodesic distances
	Straight path approximation
	Graph-based approximation
	The free point approach

	Fisher networks
	Selection of the network locality parameter
	Faithfulness of the network predictions
	Cramer's V statistic
	McNemar's test

	Community detection
	Practical uses of Fisher networks
	Dataset visualisation
	Informative backgrounds

	Identification of reference cases
	Case-based classification

	Chapter summary

	Experimental results
	The effect of the Fisher metric
	Fisher metric and KNN classification
	Comparison of geodesic calculation methods
	Performance comparison on real-world data
	The effect of the sample size

	Fisher networks for real-world data
	MLP classification benchmark
	Construction of Fisher networks
	Empirical selection of the network locality parameter
	Fisher network examples
	Fisher networks with informative backgrounds
	Reference cases in Fisher networks

	Supervised blind signal separation using FI metrics
	Convex non-negative matrix factorisation
	Description of the MRS data
	Results

	Chapter summary

	Review, conclusions and future work
	Review
	Conclusions
	Future work

	Derivation of the FI matrix
	FI matrix derivation for two classes
	FI matrix derivation for multiple classes

	Interpretation of the FI metric in the context of information and divergence
	Information
	Divergence
	Regularity conditions
	Connection with the Fisher information

	Derivation of the distance expression for linear estimators
	References
	Publications

