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Abstract 

With the rapid proliferation of new wireless communication devices and services, the 

demand for the radio spectrum is increasing at a rapid rate, which leads to making the 

spectrum more and more crowded. The limited available spectrum and the inefficiency in 

the spectrum usage have led to the emergence of cognitive radio (CR) and dynamic 

spectrum access (DSA) technologies, which enable future wireless communication 

systems to exploit the empty spectrum in an opportunistic manner. To do so, future 

wireless devices should be aware of their surrounding radio environment in order to adapt 

their operating parameters according to the real-time conditions of the radio environment. 

From this viewpoint, spectrum sensing is becoming increasingly important to new and 

future wireless communication systems, which is designed to monitor the usage of the 

radio spectrum and reliably identify the unused bands to enable wireless devices to switch 

from one vacant band to another, thereby achieving flexible, reliable, and efficient 

spectrum utilisation. 

This thesis focuses on issues related to local and cooperative spectrum sensing for CR 

networks, which need to be resolved. These include the problems of noise uncertainty and 

detection in low signal to noise ratio (SNR) environments in individual spectrum sensing. 

In addition to issues of energy consumption, sensing delay and reporting error in 

cooperative spectrum sensing. In this thesis, we investigate how to improve spectrum 

sensing algorithms to increase their detection performance and achieving energy 

efficiency.  

To this end, first, we propose a new spectrum sensing algorithm based on energy 

detection that increases the reliability of individual spectrum sensing. In spite of the fact 

that the energy detection is still the most common detection mechanism for spectrum 

sensing due to its simplicity. Energy detection does not require any prior knowledge of 

primary signals, but has the drawbacks of threshold selection, and poor performance due 

to noise uncertainty especially at low SNR. Therefore, a new adaptive optimal energy 

detection algorithm (AOED) is presented in this thesis. In comparison with the existing 
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energy detection schemes the detection performance achieved through AOED algorithm is 

higher.  

Secondly, as cooperative spectrum sensing (CSS) can give further improvement in the 

detection reliability, the AOED algorithm is extended to cooperative sensing; in which 

multiple cognitive users collaborate to detect the primary transmission. The new combined 

approach (AOED and CSS) is shown to be more reliable detection than the individual 

detection scheme, where the hidden terminal problem can be mitigated. Furthermore, an 

optimal fusion strategy for hard-fusion based cognitive radio networks is presented, which 

optimises sensing performance. 

Thirdly, the need for denser deployment of base stations to satisfy the estimated high 

traffic demand in future wireless networks leads to a significant increase in energy 

consumption. Moreover, in large-scale cognitive radio networks some of cooperative 

devices may be located far away from the fusion centre, which causes an increase in the 

error rate of reporting channel, and thus deteriorating the performance of cooperative 

spectrum sensing. To overcome these problems, a new multi-hop cluster based 

cooperative spectrum sensing (MHCCSS) scheme is proposed, where only cluster heads 

are allowed to send their cluster results to the fusion centre via successive cluster heads, 

based on higher SNR of communication channel between cluster heads.      

Furthermore, in decentralised CSS as in cognitive radio Ad Hoc networks (CRAHNs), 

where there is no fusion centre, each cognitive user performs the local spectrum sensing 

and shares the sensing information with its neighbours and then makes its decision on the 

spectrum availability based on its own sensing information and the neighbours’ 

information. However, cooperation between cognitive users consumes significant energy 

due to heavy communications. In addition to this, each CR user has asynchronous sensing 

and transmission schedules which add new challenges in implementing CSS in CRAHNs. 

In this thesis, a new multi-hop cluster based CSS scheme has been proposed for CRAHNs, 

which can enhance the cooperative sensing performance and reduce the energy 

consumption compared with other conventional decentralised cooperative spectrum 

sensing modes.  
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Chapter 1 

Introduction 

Many studies predict that cities, neighbourhoods, campuses, and buildings will be 

smarter [1-6]. Our surroundings such as houses, cars, furniture, and cloths will be 

equipped with a variety of intelligent, sensing, tracking and wireless communications 

capabilities. Moreover, the rapid growth in cellular and wireless broadband have 

resulted in a tremendous increase in the number of wirelessly connected devices. 

Applications such e-health and vehicular systems, and Machine to Machine 

applications are causing a growing demand for more radio spectrum.  

However, recent radio spectrum measurements undertaken by the UK regulator 

Office of Communications (Ofcom) have shown that most of the licensed spectrum 

bands are largely underutilised for significant periods of time in various geographical 

areas in the UK [7]. The limited available spectrum and the inefficiency in the 

spectrum usage have prompted the communication regulators around the world to 

consider a dynamic use of the available spectrum, which was later known as Dynamic 

Spectrum Access (DSA) technology [8], and develop a new spectrum allocation policy 

that enables unlicensed users to exploit the wireless spectrum opportunistically.  

The key enabling technology of DSA techniques is CR technology, which is 

proposed as a possible solution to improve spectrum utilisation. Spectrum sensing is a 

key component of CR, as it plays a major role in optimising the utilisation of the radio 

spectrum. It has the ability to access the licensed spectrum bands without causing any 

harmful interference to the licensed users. To keep the collision interference minimal 

and at an acceptable level, secondary users must sense the spectrum to detect its 

availability and should be able to detect very weak primary user signals as well.  

Spectrum sensing plays a major role in cognitive radio networks CRNs as it helps to 

reveal spectrum holes properly within the licensed spectrum that are unoccupied. 
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These unoccupied spectrum holes will be used by CRNs for communication without 

causing any harmful interference to primary users. CRNs will release these unused 

bands as soon as the presence of a primary user is detected. 

However, there are several considerations and important requirements that must be 

taken into account when designing a spectrum sensing algorithm for CRNs[9]. These 

considerations and requirements can be summarised as following: 

 Interference Level: To design a good spectrum sensing algorithm, the primary 

system should be protected against harmful interference caused by secondary user 

when intending to access the primary spectrum bands. The interference range 

depends on the secondary user’s transmitted power and on the primary user’s 

interference tolerance [10]. With the proliferation of CR systems in the future, 

there will be an increase of CRNs operating over the same licensed band, which 

will result in an interference aggregate that could be harmful to primary users even 

if the primary user is out of range of any secondary user. This scenario could be 

avoided by developing a more highly sensitive detector and a new way to reduce 

the aggregate interference. 

 Sensing Time and Periodicity: During the sensing period, the secondary user 

should be able to identify the presence of primary users as quickly as possible, and 

should vacate the band immediately in the case of primary users reappearing [11]. 

This requires that the sensing periodicity should be short enough in order to reduce 

the delay and to minimise the degradation of quality of service (QoS) that is 

incurred by the primary users accessing the band.  Generally, the sensing period 

depends on the capabilities of the secondary user itself and the delay sensitivity of 

the primary user’s application, which is set by the radio spectrum regulators. For a 

better spectrum sensing design, and in order to maximize the time available for 

data transmission, it is more suitable to reduce the sensing time as much as 

possible.  
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 Detection Sensitivity: Realistically, most of the wireless communication channels 

suffer from the phenomena of fading and shadowing by obstacles, which reduce 

the received primary signal at the secondary user. In the case of low SNR of the 

sensing channel, the cognitive receiver must estimate the noise power accurately in 

order to distinguish between the noise signal and the primary signal [12]. In 

wireless networks, the noise power at each user is the result of two types of noise: 

the first; device noise, which comes from a nonlinearity of a receiver’s components 

and thermal noise in these components, and second; environment noise, which is 

caused by transmissions of other users. CR systems may not be able to achieve 

higher detection sensitivity with the presence of these constraints. It is worth 

mentioning that the sensing performance cannot be enhanced by increasing the 

detection sensitivity when the SNR of the detected signal is below a certain level 

known as the SNRwall thus a single spectrum sensing technique would be 

impractical. However, these issues can be tackled by allowing different secondary 

users to share their sensing measurements and cooperatively decide on the licensed 

spectrum occupancy.   

 Channel Overhead: Improving detection sensitivity comes at the cost of additional 

communication overhead. In cooperative sensing mechanisms, a control channel is 

required to enable the exchange of information between the cooperating users and 

fusion centre (FC). Obviously, the cooperation overhead will increase with the 

increasing number of cooperating users, due to the amount of data that needs to be 

reported to FC [13]. 

 Decision Accuracy: A good sensing scheme should ensure a high detection 

probability (Pd) and a low false alarm probability (Pf), which will help to optimise 

spectrum usage efficiency while guaranteeing a certain level of protection to 

primary users [14]. 
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1.1 Motivation and Objectives 

Inefficient usage of the radio spectrum alongside the rapid growth of wireless 

devices and applications have led to the emergence of CR to exploit unused spectrum 

in opportunistic manner.CR technology is now widely expected to play a significant 

role in future wireless communication networks, because of its ability to adapt the 

operating parameters of its users according to the surrounding radio environment, and 

then access to the available spectrum wherever and whenever it is needed without 

causing any undesirable interferences. Spectrum sensing is a key component of 

cognitive radio, as it plays a major role in optimising the efficiency of spectrum 

utilisation. Designing a reliable, fast and efficient spectrum sensing algorithm has 

become a critical challenge in CRNs, which needs more effort in order to satisfy the 

aforementioned spectrum sensing requirements. 

Various spectrum sensing approaches have been proposed in the literature with 

mitigated results as there are several issues that have not been addressed. One of the 

main issues in spectrum sensing is the detection of a weak primary signal at the 

secondary receiver. This problem is due to several phenomena such as multipath loss, 

multipath fading, shadowing and interference. The focus of this thesis is to design 

reliable and efficient spectrum sensing algorithms for CRNs. The motivation of this 

research thesis can be summarised as follows: 

 In an energy detection based spectrum sensing scheme, selecting a suitable sensing 

technique to detect the primary signal is very important to guarantee a reliable 

detection. However, the lack of knowledge about the primary signals on the one 

hand and the increasing implementation complexity of the sensing algorithms on 

the other, have made it difficult to obtain reliable detection using the single user 

method [15]. In such a case, an energy detection algorithm can be considered an 

optimal method due to its simplicity and does not require any prior information 

about the detection signal. Despite the advantages of energy detection, there are still 

some weaknesses that need a suitable solution to improve the detection 
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performance, including threshold detection setting, sensing delay, and noise power 

uncertainty. In order to deal with such issues, many improved approaches of energy 

detection have been proposed. In [16], a double threshold energy detection method 

is proposed instead of single threshold, which gives further reduction in error 

detection. Another way to determine the detection threshold is optimal threshold 

method [17-18], which is based on minimising the error detection. The effect of 

noise uncertainty on the performance of energy detection has been studied in      

[19-21]. However, all of these approaches have focused only on one of the above-

mentioned issues. Therefore, there is a need for designing a new energy detection 

algorithm that tackles all these issues together to provide detection that is more 

reliable. 

 In cooperative spectrum sensing (CSS) scenarios, the optimisation process of 

cooperative sensing can effectively improve the efficiency of cooperative detection. 

However, most of the existing optimisation algorithms are based on determining the 

optimal detection threshold numerically [22-27], leading to more time to implement 

because of their computational complexity. Furthermore, all these works consider 

that the noise power is fully known during the local sensing process, leading to 

more sensing errors. Therefore, there is a need for a new CSS algorithm that 

considers these issues in order to increase the sensing accuracy, thus improving the 

detection performance. 

 In CSS, the power consumption issue can be of great significance when the number 

of cooperative users or the number of reporting results sent by CR users to FC is 

large. In such cases, the energy efficiency should be considered in cooperative 

sensing algorithms. This means that all elements of the CSS, from the local sensing 

to cooperation protocols must be energy efficient. 

 Sensing time and reporting delay are important challenges that need to be 

addressed in the spectrum sensing algorithm. Sensing time depends on the sensing 

technique being used, which is proportional to the number of discrete samples used 

in the signal detection process. Typically, the sensing period is constant and 
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depends on the cognitive user capabilities and the delay sensitivity of the primary 

user’s application. Accordingly, the longer the sensing time, the less time is 

available for transmission, thus reducing the CR user throughput. On the other 

hand, sharing the sensing results with a FC in centralised networks or other CR 

users in decentralised systems will incur reporting delay, hence, increasing the 

sensing time. For example, the transmitted messages from different cooperative 

users on the control channel may collide and thus retransmission is needed. 

Furthermore, sending the sensing data by multiple hops such as in the relay 

cooperative sensing will produce extra reporting delay. In order to improve the 

cooperative sensing delay, many trade-offs need to be considered, such as 

spectrum sensing-energy trade-off and energy-sensing delay trade-off. 

 In decentralised CRNs, due to the lack of a FC, each cognitive user has its own 

independent and asynchronous sensing and transmission schedules, causing the 

cognitive user to detect the transmissions of other cognitive users as well as 

primary users during its local sensing period, especially when energy detection is 

adopted to act as local spectrum sensing, hence, degrading the efficiency of 

spectrum sensing. 

To address the issues and limitations identified above, I have set a number of 

objectives that I believe will help increasing the spectrum utilisation on the one hand, 

and providing a good protection to the primary system against the potential 

interferences that may be caused by CR users on the other hand, thus, increasing the 

throughput of CRNs.  

The objectives of this research could be summarised as following: 

1. Develop a simple and efficient local spectrum sensing algorithm to reliably detect 

the primary signal. A reliable spectrum sensing algorithm comes at the expense of 

the cost and complexity, where it requires a highly sensitive detection to increase 

the sensing accuracy. Based on this, various individual spectrum sensing schemes 

have been proposed, to suit different system consideration and communication 
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technologies. However, there is no general sensing method available yet to fit all 

kinds of wireless communication systems and technologies. In terms of 

computational and implementation complexities, the energy detection algorithm is 

more suitable for CRNs due to low complexity. In contrast, existing energy 

detection algorithms need to improve the sensing reliability due to their bad 

detection accuracy, especially in low SNR. The challenge here is to determine the 

detection threshold that is mainly depending on the noise power and sensing 

channel conditions. 

2. Design a simple and efficient CSS algorithm that optimises the detection 

performance. This design is focused on the main elements of cooperative sensing, 

namely local sensing, reporting, and data fusion method, and how to improve the 

efficiency of each element. In this work, I investigate the optimality of CSS when 

optimal energy detection for local sensing and optimal counting fusion rule are 

applied. More specifically, in the local sensing phase, we apply the same algorithm 

developed in paragraph 1, where the optimal detection threshold under noise 

uncertainty is considered, aiming at minimising the local error rate, which provides 

more reliable and practical detection algorithm. Furthermore, in order to make an 

accurate spectrum sensing decision, an appropriate fusion technique at the FC is 

needed; therefore, an optimal hard decision fusion strategy is adopted, which 

optimises the sensing performance. 

3. Design a new energy efficient CSS algorithm for centralised CRNs. In CSS, each 

cognitive user reports its local sensing result to the FC or shares it with its 

neighbouring users using a control channel. However, this cooperation process 

presents certain problems that need to be addressed. First, the control channel may 

be subject to the fading effects, which may affect the quality of the reporting data 

and degrade its level of accuracy. Secondly, the control channel has a fixed 

bandwidth that limits the amount of reporting data that can be sent over it. Finally, 

the power consumption adds a scalability issue when increasing the number of 

cooperating users. Clustering is an effective approach to overcome these problems 
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as it helps to reduce the cooperation range and the incurred overhead. Multi-hop 

routing algorithms are another way to reduce the energy consumption due to 

reporting the sensing results through long distance reporting channels. My design is 

based on a combination between clustering and multi-hop techniques that aims at 

finding the optimal number of clusters so that the energy consumption is optimised, 

while providing efficient performance of spectrum sensing.  

4. Develop a new approach for CSS in decentralised CRNs, such as ad hoc networks. 

Although Decentralised cooperative spectrum sensing (DCSS) does not require a 

FC to collect all local sensing data, the direct exchanges of sensing results between 

CR users generate more control overhead, such as bandwidth and energy overhead. 

The challenge here is to find a way to reduce this control overhead without affecting 

the accuracy of the spectrum sensing. 

 

1.2 Key Contributions 

The contributions of this thesis focus on two modes of spectrum sensing in CRNs; 

single-user spectrum sensing, and CSS mode. In single-user spectrum sensing mode, I 

propose a novel optimal energy detection based spectrum sensing algorithm that aims 

to increase the reliability of local sensing and mitigate interference with the primary 

network. In CSS mode, a novel multi-hop clustering mechanism for CSS is proposed, 

to reduce the energy consumption and improve spectrum-sensing performance, which 

can be suitable for centralised and decentralised cognitive radio networks. 

The contributions of this work are summarised as follows: 

1 I propose a detection method that improves the performance of the energy 

detection algorithm. More specifically, the performance of conventional energy 

detection is greatly deteriorating due to the impact of noise uncertainty, especially 

in low SNR environments. On the other hand, the inappropriate setting of the 

detection threshold could lead to a significant decline in the performance of 
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detection.  Here, I explore these situations and I propose a new adaptive optimal 

energy detection (AOED) spectrum sensing algorithm. The optimal detection 

threshold has been derived from the basis of the trade-off between misdetection 

and the false alarm probabilities. I also developed an adaptive threshold factor 

with optimal algorithm in order to combat noise uncertainty, which is compatible 

with the real world communications and allows better spectrum sensing 

performance especially with low SNRs. This contribution has been published in 

[28]. In addition, I developed a new double optimal energy detection algorithm, 

which provides more protection to primary systems but at the expense of a small 

reduction in the detection probability. 

2 As a CSS algorithm can give further improvements in detection reliability, where 

multiple cognitive users collaborate to detect the primary transmission, I extended 

my AOED algorithm to the case of CSS strategy. I develop a new CSS based on 

adaptive optimal energy detection algorithm, which gives more reliable and 

accurate detection decision under low SNR for cooperative CRNs. Furthermore, in 

this design, the optimisation of CSS is studied, where an optimal fusion strategy 

for hard fusion based CSS is presented, which optimises the detection 

performance subject to a constraint of the amount of the error rate. It is shown that 

the majority rule is optimal or near optimal in terms of minimising the error rates. 

3 I develop a new multi-hop cluster based cooperative sensing strategy 

(MHCCSS)for large-scale CRNs, where the number of CR users is large and the 

distances between the cooperative users and the FC are long. In this design, the 

cluster heads will not send their cluster results directly to the FC as it is in 

traditional clustering approaches, which only reduce the reporting overhead, but 

they will send them to cluster heads in the next hop towards the FC. By dividing 

the total clusters into multi-levels based on distances between cluster heads and 

the FC, more energy can be saved during reporting the sensing results over 

reliable transmission channel, which leads to accurate spectrum sensing. This 

clustering approach extends the LEACH-C protocol [29], to enable multi-hop 



 

 

10 

transmissions between far cluster heads and the FC. In this scheme, the FC 

determines the optimal number of cluster heads in a centralised way, according to 

the best reporting channel gain, distance from the fusion centre, and the energy 

level of CR users. The materials presented in this work have been published in 

[30-31].  

4 I develop a new approach for CSS in decentralised CRNs, where I adopt the same 

idea of (MHCCSS) in centralised networks and modify it to match with the 

wireless networks that do not have centralised control. By combining clustering 

and multi-hop communication techniques, I can maintain more energy and 

improve the detection performance, especially in large scale cognitive networks. 

In this design, all CR users that are close to each other will group into few 

clusters, and one of the cluster heads which has the largest energy will be elected 

as a FC. Instead of each CR user sending its sensing results to its neighbours, it 

sends its own sensing results to a related cluster head, which in turn sends the 

cluster results to the FC either directly (one-hop communication) or indirectly       

( multi-hop communications) via intermediate cluster heads.  

 

1.3 Thesis Organisation 

The reminder of this thesis is organised as follows: 

 Chapter 2 

This chapter gives background information of this work. An overview on radio 

spectrum allocation and wireless communication systems is presented first, and then an 

introduction to DSA technology is given. After that, the basic concepts and definitions 

of CR alongside its possible applications are presented. Finally, the spectrum sensing 

techniques are reviewed to introduce the state-of-art algorithms relevant to this work. 
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 Chapter 3 

In this chapter, we describe the main issues of the spectrum sensing technique in 

CRNs, overview our proposed mechanisms that address these issues, and provide a 

brief description of the novel contributions in this thesis.  

 

 Chapter 4  

In this chapter, a new spectrum sensing based energy detection with a single user is 

proposed and discussed. Specifically, a closed form expression of the optimal 

detection threshold in energy detection algorithm with adaptive noise uncertainty 

factor is derived, based on minimising the local error rate under Bayesian criterion. 

The performance of the proposed model is analysed in terms of probability of 

detection and sensing time. For the purpose of comparison, the existing energy 

detection algorithms such as double threshold and conventional energy detection 

schemes are also investigated. 

 Chapter 5 

In this chapter, I extend our proposed algorithm in chapter 4 to be exploited in CSS, 

so that the hidden terminal issue can be tackled, and get more reliable detection. More 

specifically, I consider the performance optimisation of CSS by getting the optimal 

threshold of the local sensing based on minimising the local error, and exploiting it in 

CSS approach using K out N decision fusion rule, in which optimal K can be 

determined. 

 Chapter 6 

This chapter addresses the problems of energy consumption and spectrum sensing 

of centralised CSS approach. To alleviate such problems, I present a multi-hop 

clustering scheme. Considering the sensing errors, I first investigate the impact of false 

alarm and mis-detection probabilities on the sensing performance. Based on the 

proposed sensing strategy, I also investigate how I can reduce the energy consumption 
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of large CRNs, while keeping the sensing delay at a reasonable level, therefore, a 

trade-off between performance metrics is needed based on application requirements. 

 

 Chapter 7 

This chapter describes the existing issues of CSS approaches in decentralised 

CRNs, and presents a new multi-hop clustering based CSS for this kind of 

networks. In this design, since there is no central control in this type of wireless 

networks, as in ad hoc networks, the same proposed design of centralised CRNs is 

applied here, but with some modifications by employing one of cluster heads to act 

as a FC. The descriptions of clusters formation is illustrated in details in this 

chapter. The performance of the developed model in terms of energy efficiency and 

sensing accuracy is analysed and discussed, and for comparison, the conventional 

CSS approaches of decentralised CRNs are also studied here in order to validate my 

proposed scheme. 

 Chapter 8 

Finally, this thesis is summarized in chapter 8 and some ideas for future proposals 

are included based on the research carried out in this work. 
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Chapter 2 

Background 

2.1 Introduction 

The radio spectrum is defined as a subset of the entire electromagnetic spectrum 

that carries radio waves with frequencies ranging from around 3 KHz to 300 GHz, 

commonly used for radio communications. These radio communications include 

television, radio, satellite, cellular phone, Wi-Fi, radar, and many other communication 

technologies [32].  

Conventionally, radio frequency spectrum is often grouped in eight frequency bands 

based on different frequencies, starting with Very Low Frequency (VLF) that ranges 

between 3 KHz and 30 KHz, and extending to Extremely High Frequency (EHF) with 

the range of 30 GHz to 300 GHz, as shown in Figure 2.1. In general, radio signals with 

higher frequencies offer higher data bandwidth over a shorter communication range in 

comparison to lower radio frequencies. However, the performance of higher 

frequencies radio communication can be more affected by obstacles such as walls and 

trees than lower frequencies, whereas low frequencies have a capability to reach very 

long distances but with small data bandwidth and are less affected by obstacles and 

weather conditions. 
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Figure 2.1 Radio spectrum frequencies 
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In most countries, the radio spectrum is split into bands by a government regulator 

of the radio spectrum, coordinated by an international regulatory body called 

International Telecommunication Union (ITU) [33], and national agencies such as 

Ofcom in the UK [34], and Federal Communications Commission (FCC) in the USA 

[35]. 

These regulations dictate that radio frequency bands are divided into two types, 

licensed and unlicensed bands. Over the past decades, most of the licensed spectrum 

has been allocated for licensed users for exclusive use, including TV broadcast, 

cellular communication, military services, healthcare services, and public services, 

while small portions of unlicensed spectrum are left open for unlicensed users such as 

smart devices including smartphones, smartwatches, and smart grids; which connect 

with other devices or networks via different wireless protocols such as Bluetooth,    

Wi-Fi and near field communication (NFC). Moreover, the current static spectrum 

allocation strategy does not give the unlicensed user the right to access the licensed 

spectrum, even if its transmission does not introduce any interference to the licensed 

service.  

For decades, there has been a proportionate increase in the use of the radio spectrum 

with the evolution in wireless communication technology. Before 1930 the radio 

spectrum above 30MHz was almost free of man-made signals, where only broadcast 

radio was widespread at that time, on the contrary, today it has become a primary 

infrastructure for many wireless communications, including mobile networks.  

However, some portions of the radio spectrum, which is sometimes considered to 

be between 100 MHz to 3 GHz, are more valuable than others, as they offer a good 

transmission range and data bandwidth for mobile applications and could support 

video broadcasting [36]. 

With the development in personal wireless technologies and mobile 

communications, both licensed and unlicensed spectrum bands have become 

overcrowded. However, many of the radio spectrum measurements, carried out by 
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international organisations of the spectrum and specialized companies around the 

world, have shown that the conventional fixed spectrum allocation rules have resulted 

in low spectrum usage efficiency in almost all deployed frequency bands. For instance,  

recent radio frequency occupancy measurements undertaken by Ofcom in UK and the 

spectrum task force (SPTF) in USA have shown that some frequency bands in the 

licensed radio spectrum are largely unused, while some are heavily used in various 

geographical areas of the UK and USA [37-38]. Figure 2.2gives the average 

percentages of overall spectrum occupancy based on the actual measurements were 

made in all frequency bands in the (30-3000) MHz range over the United States and 

Europe [39-44]. These measurements conclude that the overall spectrum occupancy 

during the measuring period was 19.72% or less, which clearly confirm that some of 

the spectrum bands are rarely utilised continuously across time and space. 

Consequently, the traditional regulation of the spectrum requires reform in order to 

allow for more efficient use of the airwaves.  

Radio spectrum is a limited natural resource, and many new developments rely on 

wireless connectivity, thus, radio is an important part of this connectivity. Beyond 

2020, developments such as 5G, Big Data, the Internet of Things (IoT), Machine to 

Machine (M2M) communications, wireless internet access and smart cities will all 

utilise wireless connectivity that is dependent on various forms of radio mobile and 

fixed communications [45]. One of the possible solutions to the scarcity of radio 

spectrum is to enable some frequency bands to be shared for future wireless 

communication services. These spectrum bands include 5 GHz; which is already 

allocated for Wi-Fi application but it seems underutilised,  below 700 MHz for future 

mobile services, and 60 GHz for very high data rate over very short ranges using the 

new Wi-Fi standard, called 802.11ad  [46]. 
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Figure 2.2 Bar graph of the radio spectrum usage over various spaces around the USA and 

       Europe 

 

The spectrum regulator Ofcom in the UK has already managed some new strategy 

to make some radio resource to support current innovation technology, including 4G 
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wireless mobile standards and Wi-Fi broadband access [47]. The Figure 2.3 below 

illustrates the current spectrum usage in the UK. 
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Figure 2.3 Current UHF spectrum usage in the UK. 

Utilising new spectrum bands needs a new technique that enables users to identify 

the available spectrum bands before using them for communications. The key 

technologies that enable unlicensed users to utilise the licensed bands are CR and DSA 

technologies.   

This chapter gives the reader an overview of the many topics related to this thesis, 

including recent evolutions in radio communication services, current and future uses of 

the spectrum, DSA technology, basic concepts of CR and its potential applications. In 

addition, the chapter encompasses a literature review on spectrum sensing techniques 

for CRNs, including local and CSS. The purpose of the information provided in this 

chapter is to enlighten readers on some of the developments in wireless 

communication technology and understanding the techniques that will be introduced 

later in this thesis. 
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2.2 Dynamic Spectrum Access Technology 

DSA can be defined as a mechanism to adjust the spectrum resource usage in a 

near-real-time manner in response to the changing environment and objective 

(available channel and type of applications), changes of radio state, and changes in 

environment and external constraints. DSA is a method which can provide a flexible 

usage of parts of the radio spectrum, making it more efficient, thus helping service 

providers, and regulatory bodies like Ofcom to avoid spectrum scarcity [48]. DSA will 

be the pioneering technology that addresses the spectrum scarcity problem and 

increase the spectrum utilisation. Furthermore, DSA could play an important role in 

future mobile networks, such as 5G which is foreseen as the first major use of the DSA 

concepts [49]. This concludes that the advances in DSA technologies could enable a 

better quality of service to be achieved in unlicensed spectrum bands, which includes 

geolocation databases to manage interference between devices, cognitive sensing, 

carrier aggregation and smart antennas. 

As shown in Figure 2.4 , DSA strategies can be broadly classified under three 

models, dynamic exclusive use, open sharing or spectrum commons model, and 

hierarchical Access model [8].  

 

Figure 2.4 Classification of dynamic spectrum access 
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2.2.1 Dynamic Exclusive Use 

In dynamic exclusive use, spectrum bands are licensed to services for exclusive use, 

where the basis of current spectrum policy is kept while providing flexibility to 

improve spectrum utilisation. There are two basic approaches under this model: 

spectrum property rights and dynamic spectrum allocation [8]. The current spectrum 

management policy is based on the property rights model, which gives spectrum 

owners an absolute right over their spectrum, and does not allow secondary users to 

operate in the licensed spectrum [50]. This method of spectrum allocation policy has 

served many successful applications, like broadcasting and cellular, which can be cited 

as evidence by the proponents of spectrum property rights.  

On the other hand, dynamic spectrum allocation approach assigns a portion of the 

spectrum to services for exclusive use in a given region and at a given time [51]. 

Similar to the current fixed spectrum allocation policy, this strategy allocates, at a 

given time and region, a portion of the spectrum to a radio access network for its 

exclusive use. Based on an exclusive-use model, it has been established that both 

spectrum property rights and dynamic spectrum allocation cannot eliminate the current 

problem of spectrum underutilization with increasing wireless traffic. 

2.2.2 Open Sharing Model 

The open sharing model, which is also referred to as spectrum commons model, the 

spectrum is open for access to all users. This model is already in use in the unlicensed 

industrial scientific and medical (ISM) band. Centralised and distributed spectrum 

sharing strategies have been initially investigated to address technological challenges 

under this model. 

2.2.3 Hierarchical Access Model 

Hierarchical access model adopts a hierarchical access structure with primary and 

secondary users. The main idea is to open the licensed spectrum to secondary users 
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while limiting the interference perceived by the primary user. There are two 

fundamental spectrum sharing approaches that have been proposed in CR: underlay 

approach, and overlay approach [8, 52-53]. Under this radio spectrum access model, 

the radio spectrum is viewed as having a primary or licensed user, as well as a 

secondary or unlicensed user. The model is considered a hybrid of the other two 

models previously discussed. Compared to the dynamic exclusive use and open 

sharing models, the hierarchical model is perhaps the most compatible with the current 

spectrum management policies and legacy wireless systems. Furthermore, the underlay 

and overlay approaches can be employed simultaneously to further improve spectrum 

efficiency. In [8], major challenges and recent developments in both technological and 

regulatory aspects of opportunistic spectrum access are provided. Based on this 

concept, two different approaches to radio spectrum sharing between licensed and 

unlicensed users have been considered, namely spectrum underlay and spectrum 

overlay, as illustrated in Figure 2.5. 

 

 

Figure 2.5 Underlay and overlay spectrum sharing approaches 
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A Spectrum Underlay Model 

In underlay spectrum sharing, the CR user also called secondary user (SU), can 

transmit concurrently with a primary user (PU) by spreading transmitted signal over an 

ultra-wide band (UWB), and keeping their imposed interference below the interference 

temperature limit [54]. Although this approach does not require SUs to search for idle 

spectrum bands, it can only achieve short-range communication and reduce the 

achievable capacity of the secondary users due to the constraints of transmission power 

even if the licensed system is completely idle for a given time and location, which can 

be seen as a disadvantage of this approach. More so, in underlay access strategy, the 

achievable capability of the SU is further reduced during the busy periods of the PU 

because of the interference imposed by the primary user’s activity at the secondary 

user’s receiver. In order to tackle these aforementioned issues, overlay spectrum 

sharing was proposed. 

B Spectrum Overlay Model 

The overlay spectrum sharing approach has been proposed to address the issues of 

underlay spectrum sharing mode, where the secondary users can detect the spectrum 

holes (idle bands) and use them for transmission with high power to increase their data 

rates without interfering with primary systems. The spectrum overlay approach or 

opportunistic spectrum access (OSA) does not necessarily impose any severe 

restriction on the transmission power by secondary users. It allows SUs to identify and 

exploit the spectrum holes defined in space, time, and frequency [55]. This approach is 

compatible with the existing spectrum allocation, and therefore, the legacy systems can 

continue to operate without being affected by the SUs. However, the basic etiquettes 

for SUs need to be defined by the regulatory bodies to ensure compatibility with 

legacy systems. The spectrum overlay technique is a spectrum access system whereby 

a SU uses a spectrum band from a PU only when it is free. Unlike the underlay system, 

which hides the transmission signal under the noise level of the PU, the overlay system 

must have the capability of dynamic spectrum access, as it must work dynamically 
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around the licensed system’s allocation. This technique is based on a detection and 

interference avoidance mechanism. This mechanism requires the SUs to sense the 

frequency spectrum and thus, if a PU wants to access the spectrum, the SU should 

empty the channel. 

The spectrum overlay access strategy was first envisioned by Mitola (1999) under 

the term spectrum pooling [56]. Unlike the spectrum underlay, this radio spectrum 

access strategy does not impose severe restrictions on the transmission power of SUs, 

but rather there are restrictions on when and where SUs can transmit. The special 

radios that are enablers of OSA or DSA that can use spectrum holes in an opportunistic 

fashion are known as cognitive radios. 

2.3 The Concept of Cognitive Radio  

Cognitive radio, was first coined by Mitola in 1999 [56], and can be defined as a 

radio frequency transceiver that provides the capability to use the radio spectrum in an 

opportunistic manner using DSA technique [57-59]. In a CR system, there are two 

types of terminals: PUs, which have the right to access the spectral resources at any 

time, and SUs, which exploit the unused spectrum of the primary system. More 

specifically, a CR system must detect unused spectra assigned to licensed users; 

determine the characteristics of these spectra, such as: operating frequency, 

transmission mode, and the transmission bandwidth. Based on these spectra parameters 

and according to the CR user’s quality of service QoS requirements, the CR system 

will choose the best channel among all available spectra, and use it for communication 

without interfering with the transmission of the licensed user, and must vacate the 

spectrum or switch to another available spectrum as soon as the licensed user is 

detected. 

The term ‘cognitive’ originally referred to a device’s capability to sense the 

surrounding environment conditions and adapt its behaviour accordingly. Thus CR is 

based on the methodology of humans by understanding, learning and then adapting to 
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the surrounding environment.CR is seen as the solution to the current low usage of the 

radio spectrum. It is the key technology that will enable flexible, efficient and reliable 

spectrum use by adapting the radio’s operating characteristics to the real-time 

conditions of the environment. CR has the potential to utilise the large amount of 

unused spectrum in an intelligent way without interfering with other incumbent 

devices in frequency bands already licensed for specific uses. CR users are enabled by 

the rapid and significant advancements in radio technologies (software-defined radios, 

frequency agility, and power control), and can be characterized by the utilization of 

disruptive techniques such as wide-band spectrum sensing, real-time spectrum 

allocation and acquisition.  

Cognitive radio is defined in [58] as: an intelligent wireless communications that 

can effectively sense and observe radio environments (RF stimuli), reliably detect the 

primary signals and analyses these measurements using signal processing to obtain the 

channel quality and interference information, learning from these and previous 

measurements and adaptively change the internal states according to the radio 

environment, then opportunistically utilise the unused bands for communications 

without causing any harmful interference to the primary system. Based on the above 

definition, we can portray the concept of CR, as in Figure 2.6. 

 

Figure 2.6 Cognitive Radio Cycle 
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The fundamental functionalities required for the CR systems can be summarised as 

follows: 

 Spectrum Sensing: One of the most important elements in CR. Its function is 

sensing and monitoring the available spectrum bands reliably to detect the 

unused portion of the PU spectrum (spectrum holes).  

 Spectrum Management: CR system should capture the best available spectrum to 

meet the user communication requirements.Spectrum management functions are 

classified as: spectrum analysis and spectrum decision. In spectrum analysis, the 

information from spectrum sensing is analysed to gain knowledge about the 

spectrum holes (frequency, bandwidth, modulation mode, transmit power, 

location, and time duration). Then, a decision to access the spectrum is made by 

optimising the system performance given the desired objectives (maximize the 

throughput of the SUs) and constraints (maintain the interference caused to PUs 

below the target threshold). 

 Spectrum Sharing: After a decision is made on spectrum access based on 

spectrum analysis, the spectrum holes are accessed by the SUs. Spectrum access 

is performed based on a cognitive medium access control protocol (MAC), 

which intends to avoid collision with PUs and also with other SUs. The CR 

transmitter is also required to perform negotiation with the CR receiver to 

synchronize the transmission so that the transmitted data can be received 

successfully. 

 Spectrum Mobility: The CR user is regarded as a visitor to the PU spectrum, and 

a reliable communication cannot be sustained for a long time if the primary user 

uses the licensed spectrum frequently. Therefore, the CR system should support 

mobility to continue the communication in other vacant bands. When a PU starts 

accessing a radio channel which is currently being used by an SU, the SU can 

change to a spectrum band which is idle. This change in operating frequency 

band is referred to as spectrum handoff. During spectrum handoff, the protocol 



 

 

25 

parameters at the different layers in the protocol stacks have to be adjusted to 

match the new operating frequency band. Spectrum handoff must try to ensure 

that the data transmission by the SU can continue in the new spectrum band. 

Recently, CR has attracted a lot of attention due to its capability of vastly improving 

the spectrum utilisation efficiency, as it provides a dynamic mechanism for secondary 

users to share the radio spectrum with primary users in an opportunistic manner 

without disturbing the primary system.  

 

2.4 Cognitive Radio Applications 

The development of spectrum sensing and spectrum access technologies has 

enabled the applications of CR in many areas, ranging from smart grid network, 

medical network, public safety, emergency services, to military applications, and it is 

now widely expected to play a significant role in future wireless communication 

networks [11, 60]. Some of the applications that could benefit from CR are: 

 

 TV White Space: The Ofcom regulatory agency in the UK has recently released 

the final rule to use the TV white space in 2013 [61]. By enabling cognitive 

devices, also called white space devices (WSD), to detect the spectrum holes and 

using geolocation database within TV bands, more spectrum can be gained for 

various application, especially Wi-Fi, rural broadband, and M2M applications.   

 

 Smart Grid: In smart grid applications, such as home and office networks which 

are using femtocells techniques, increasing femtocells deployment and their signals 

can create interferences and spectrum usage problems [62-63]. By using CR 

femtocell technique, these interferences can be reduced to and from devices. 
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 Emergency Networks: Furthermore, the CR can play a significant role in 

emergency applications [60, 64]. In emergency situations of natural disasters, most 

times the connections fail to meet the necessary demands due to partial or full 

collapse in communication infrastructures due to changes in environmental 

conditions. CR could be used in such scenarios as it can adapt and provide reliable 

connections. 

2.5 Spectrum Sensing Techniques 

Spectrum sensing is the first function that needs to be performed in a CR system 

before allowing unlicensed users to access the vacant licensed spectrum. The main 

goal of spectrum sensing is to detect the unused frequency bands (spectrum holes) and 

to determine the method of accessing them without causing undesirable interference to 

the PU system. 

 Spectrum sensing for CRNs has become an active and important area in many 

research centres over recent years. In general, spectrum sensing techniques can be 

classified into four categories: transmitter detection, receiver detection, interference 

temperature based detection, and cooperative based sensing [9, 15, 52-53, 65-70]. The 

classification of these spectrum sensing categories is depicted in Figure 2.7.  

 

Figure 2.7 Spectrum sensing methods for CRNs 
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2.5.1 Transmission Detection 

In the transmission detection approach, the CR user must detect the weak signal of 

the primary user’s transmission through its local observations. Basically, there are 

three common schemes under this approach, which are based on detection of the 

energy of signal :matched filter [71-72], cyclostationary feature detection [73-74], and 

energy detection [14, 36].The first two schemes are coherent detectors that provide 

better detection probability but require a priori information about the primary signal, 

while the last one (energy detector) is a non-coherent detector that does not need a 

priori information about the primary signal, and is simpler to implement compared to 

the two first schemes, but provides poor detection performance at lower SNR; 

especially in the presence of noise power uncertainty. 

A Matched Filter Detection 

This method assumes that the PU sends a pilot signal with data. The pilot signal 

should be known by secondary users too allowing them to perform timing and carrier 

synchronisation to achieve coherence [71]. SUs should have perfect knowledge of the 

PUs signalling features such as modulation type, bandwidth, operating frequency 

packet format [72, 75]. The main advantage of this method is the less time to achieve 

high processing gain due to coherent detector. On the negative side, since the CR 

needs receivers for every kind of primary system, therefore, it increases the 

complexity, and result in more energy consumption to detect different primary signals. 

B Cyclostationary Feature Detection 

This method takes advantage of the cyclostationarity of the modulated signal. 

Modulated signals are in general coupled with sine wave carriers, pulse trains, 

repeating spreading or hopping sequences or cyclic prefixes, which result in built-in 

periodicity [73-75]. It is a method for detecting primary user transmissions by 

exploiting the cyclostationarity features of the received signals. The detection 

algorithms can differentiate noise from primary user’s signals. Therefore, this detector 
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can perform better than the energy detector in discriminating against noise due to its 

robustness to uncertainty in noise power. But the disadvantage of this approach is 

computationally complex and requires significantly long observation time. 

C Energy Detection 

The energy detection approach is the most common way of spectrum sensing when 

the primary user signal is unknown because of its low computational and 

implementation complexities [15]. The signal is detected by comparing the output of 

the energy detector with a threshold which depends on the noise floor. This approach 

has some difficulties, first of all, the threshold selection for detecting primary users, 

inability to differentiate interference from primary users and noise, and poor 

performance under low (SNR) value. Moreover, the energy detector does not work 

efficiently for detecting spread spectrum signals. 

Generally, the resolution of the energy detection scheme depends on the Signal-to-

Noise-Ratio SNR of the received signal. In practical applications, the received signal at 

each cognitive user may suffer from the hidden primary terminal problem and 

uncertainty due to fading and shadowing. These issues have been solved by 

cooperative sensing techniques [15, 67]. However, these approaches are based on the 

assumption that the noise power is absolutely known. In reality, the noise power varies 

with the time and location of the terminal. This is called noise uncertainty and cannot 

be estimated accurately. The impact of the noise uncertainty on the signal detection 

performance has been recently studied in [76-77]. In [76], the fundamental bounds of 

signal detection in the presence of the noise uncertainty are analysed. This study 

showed that there are some SNR thresholds (SNR walls) under noise uncertainty that 

prevent achieving a reliable detection, and even increase the number of samples to 

infinity. In [20], the authors proposed a new scheme that uses dynamic threshold to 

overcome the noise power fluctuation problem. However, the detection threshold in 

this algorithm has been determined conventionally based on constant false alarm rate 

(CFAR) which can provide at most constant Pf rate even in a high SNR region where 
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signal strength is much stronger than noise power, in addition, it cannot guarantee 

minimising the spectrum sensing error. 

Basically, the performance of the energy detection algorithm depends greatly on the 

detection threshold setting and the SNR level of the received signal. Accordingly, an 

optimal threshold based energy detection scheme has been proposed in [18, 23]. In 

[17], the authors presented the optimisation of threshold level based on minimising the 

sensing error for a given sensing constraint. However, all these proposed works did not 

consider the effect of noise uncertainty on the detection performance. Therefore, there 

is a need for a new algorithm that addresses these issues together in order to increase 

the reliability and the efficiency of detection. 

2.5.2 Receiver Detection 

The receiver detection approach exploits the local oscillator (LO) leakage power 

emitted from the primary receiver while receiving the signal from the primary 

transmitter. In this approach, an external sensor node is placed nearby the PU so it can 

detect the presence of LO power using the energy detection technique previously 

described, and then transmit the information to CR users via a control channel [78]. 

The best feature of this approach lies in the ability to locate the PU, thus avoiding the 

hidden primary terminal problem and uncertainty caused by shadowing and fading. 

However, there is a need for a highly sensitive energy detector to detect very weak LO 

leakage signals. 

2.5.3 Interference-Based Detection 

This approach is based on a new metric called the interference temperature that has 

been introduced into the cognitive radio domain by the Federal Communications 

Commission (FCC) [79]. The interference temperature metric is a measure of the 

temperature equivalent of the radio frequency (RF) power available (RF power 

generated by other emitters and noise sources in the vicinity of the receiver) at a 

receiving antenna per unit bandwidth, measured in units of Kelven [80]. This metric 
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can be used to set maximum acceptable levels of interference (interference temperature 

limit) for a given frequency band in a particular location. In interference-based 

detection strategies, the SUs are allowed to transmit in the given frequency band only 

if they guarantee that, their transmissions, added to the existing interference must not 

exceed the interference temperature limit at a licensed receiver in the same frequency 

band and in the same location [58, 80]. Because the CR users in this approach cannot 

distinguish between the actual primary signal and noise or interference, the accurate 

measuring of interference temperature is difficult and limited.  

The following section will focus on possible cooperation strategies that increase the 

reliability of the spectrum detection in the CRNs. 

2.5.4 Cooperative Spectrum Sensing 

Cooperative communication techniques have become an attractive topic in CR 

research. Cooperative communication mechanisms have been developed initially to 

provide high diversity gain, increase channel capacity and improve transmission 

performance, while CR has been proposed to improve spectrum efficiency by means of 

dynamic and opportunistic spectrum access. 

Recent works on cooperative spectrum sensing have shown that considerable 

network capacity and spectrum efficiency enhancements can be achieved through 

cooperative mechanisms such as: network coding, relaying and forwarding [81-88].  

Most of the proposed work focused on exploiting cooperative sensing to improve the 

utilisation of the radio spectrum in order to meet the demands of new wireless 

communication systems. For instance, in a cognitive relay network, the SU could send 

data to the destination node directly, if the PU is not using the source-destination 

channel. In the case of the PU returning to use the channel, the SU can continue its 

data transmission by exploiting the relay network band as relay channel. Generally, 

cooperative sensing mechanisms can make CRNs more practical by enabling multiple 

CR users to share the spectrum bands. This can be achieved with cooperative schemes 

in both, spectrum sensing and sharing of CRNs.  
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The main drawback of the primary transmitter detection approaches earlier 

described in section (2.5.1), is that they cannot avoid the hidden primary user problem 

caused by fading and shadowing effects [15]. Figure 2.8 shows a clear perception of a 

hidden primary terminal problem where the shaded areas show the communication 

range of the PUs and the CR users.  

 

Figure 2.8 Illustration of the hidden primary user problem in CR system 

As illustrated in Figure 2.8, there are many factors can cause the hidden primary 

problem including shadowing from obstacles affecting the wave propagation, as in the 

case of CR2; fading either due to multipath propagation, as in the case of CR3; or due 

to the location of the CR user being out of the primary transmitter range, as in the case 

of CR1. Here, all CR users cause unwanted interference to the PUs as the primary 

transmitter’s signal could not be detected because of the hidden primary user problem.  

Cooperative spectrum sensing CSS is considered as an alternative that could 

improve the sensing performance under fading and shadowing circumstances, which 

has attracted a lot of attention in recent years and resulted in many research efforts    

[89-95]. The CSS approach uses multiple spatially distributed users and transmit their 

observations to a fusion centre FC which fuses the local sensing information  using 

either hard decision fusion rules or soft fusion method before issuing a final decision 
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about whether the PU is present or not, then the final decision is sent back to all 

cooperative users in the network.   

In addition to addressing the hidden PU problem, CSS brings many benefits to CR 

systems, such as: increasing the detection performance under low SNR, enhancing the 

agility of detection by reducing the overall sensing time (which is critical in the case of 

reappearing PUs), improving the global error probability using less sensitive detectors, 

and reducing the hardware cost and complexity.  In general, CSS can be achieved 

using two approaches, namely: centralised CSS and distributed CSS. These approaches 

will be discussed in detail in the following sections. 

A Centralised Cooperative Spectrum Sensing Strategies 

Centralised CSS consists of primary users, cooperative users, and the fusion centre 

FC which represents the Access Point (AP) in the case of a wireless LAN or the Base 

Station (BS) in case of a cellular network. In addition to these elements, the CSS 

strategies include two types of wireless frequency channels for communication 

namely: sensing channel - the physical link between the primary transmitter and each 

cooperative user used to observe the primary signal, and control channel - the physical 

link between the cooperative users and the FC used for sending the sensing results 

[96]. Basically, the cooperation process between CR users consists of three main 

phases: local sensing, reporting, and data fusion. 

 Local sensing: As shown in Figure 2.9, in centralised CSS the FC determines a 

channel band of interest (sensing channel) and asks all cooperating users to perform 

local sensing. Upon reception of this request, all cooperative users tune their radio 

transceivers to the selected channel in order to observe the primary signal. 

 Reporting: In this phase, all cooperative users tune their radio transceivers to 

control channel frequency and start sending the results of their observations to the 

FC.  
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 Data Fusion: Finally, the FC collects the reported results and issues a final decision 

on whether the PU is present or not using a suitable data fusion function, and 

distributes the decision back to CR users over the control channel.  

It has already been proven that the performance of spectrum sensing deteriorates 

significantly in a multi-path channel, and under shadow fading, and receiver 

uncertainty circumstances. As illustrated in Figure 2.9, CRU1, CRU2, CRU3, CRU4, 

and CRU5 users are spatially distributed within the transmission range of the primary 

network while CRU6 is outside the range. In the scenario depicted in this figure, 

CRU4 and CRU5 will not be able to detect the primary signal correctly due to multi-

path and shadow fading phenomenon. Moreover, CRU6 will experience a radio 

uncertainty problem due to its inability to sense the primary transmission and the 

existence of PU1. Therefore, the transmission signal of CRU6 may overlap with the 

signal received by PU1. The degradation of independent measurements at each CR 

could be greatly improved by making a global decision derived from the collected 

observations in cooperative sensing strategies. 

 

Figure 2.9  Conventional centralised cooperative spectrum sensing approach 

The performance of centralised CSS depends largely on the performances offered in 

each phase.  These performances are affected by many factors such as: the accuracy of 

the local sensing, reliability of the reporting channel, data fusion techniques, network 

overhead. Improving the performance of centralised CSS has become the main focus 
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for many works in recent years. Some of works were aimed at enhancing the local 

sensing of CR user [27, 97-98], while others aimed to reduce the network overhead 

resulting from the large number of sensing data reports exchanged over the reporting 

channel [94, 99-100], with the latter problem receiving much more attention from the 

research community. In [101] the authors proposed to reduce the overhead by 

replacing observation reports by hard decision report. Thus the amount of reported 

data was decreased. In [100, 102] the authors proposed to use a censorship strategy 

where only a user that has a reliable information could report the sensing result to the 

FC. 

 Another method of network overhead reduction for CSS is to reduce the number of 

cooperative users, where the performance of spectrum sensing can be increased when 

cooperating a certain number of CR users with the highest SNR of sensing channel 

rather than participating all cooperative users in the network [22]. It is worth 

mentioning here that the detection performance and the achievable cooperative gain 

can be degraded due to spatially correlated shadowing when two closely located users 

experience similar shadowing effects [103]. Therefore, it is very important to select 

uncorrelated users for cooperation when designing the CSS algorithm.    

In practice, the control channel used for reporting between CR users and the FC 

might be subject to shadowing and fading effects, hence, causing spectrum sensing 

degradation.  Clustering technique has been recently adopted in CSS for CRNs in order 

to overcome the problems exhibited by CSS and there have been a number of research 

works that focused on using clustering methods to improve the cooperative sensing 

performance under imperfect channel conditions [93, 104-108], in which CR users are 

grouped into clusters and the user with highest reporting channel’s SNR is chosen a 

cluster head (CH), which in turn sends the cluster decision to FC. 

In [90], a new clustering strategy was proposed to reduce the reporting channel 

overhead and the sensing delay, where the optimal number of clusters is obtained 

based on the trade-off between the communication overhead and sensing reliability. 

The cluster heads are elected in a centralised way by FC according to the distance from 
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the FC and the received power signal of primary transmitter, where all members in the 

same cluster send their sensing measurements to the related CH which makes the 

cluster decision according to the largest one among them. In [109], another clustering 

scheme is proposed where each cluster is divided into multi groups in order to reduce 

the error probability caused by an imperfect reporting channel. In this scheme the 

optimal number of groups is determined by minimising the error rate of a cluster. The 

cluster based CSS under bandwidth constraints is studied in [110], where in each 

cluster only cognitive users with reliable information will send their observation 

results to the CH in order to decrease the average number of sensing bits. However, the 

above cluster- based sensing approaches focused mainly on the classical clustering 

methods which are inefficient in terms of energy consumption. 

Another important problem is the energy consumption in the cooperative spectrum 

sensing which must pay attention to it, especially in large scale networks. Some 

researchers have recently focused on this problem. In [110-111], the energy 

consumption of cluster-based sensing is studied, where more energy can be saved by 

decreasing the transmission energy consumption. Although such techniques could help 

to overcome the issues exhibited by centralised CSS, there are certain improvements 

that need to be made especially considering the trade-off between the sensing 

performance, control overhead, and energy efficiency.  

However, almost 90 % of the existing clustering algorithms as mentioned above are 

targeted at addressing one or two CSS issues including reporting error, sensing delay, 

bandwidth overheads. Furthermore, in terms of the energy consumption issue, the 

researchers have only focused on how to reduce the energy consumption, but they did 

not consider how to balance the energy within the cooperative network in order to 

prolong the lifetime of cooperative users.  In addition, in reality, most of the clusters 

far from the FC have reliable local sensing decisions, but may suffer from fading and 

shadowing due to the low SNR of reporting channel, which may lead to further 

deterioration in sensing performance due to the error reporting channel, and causing 
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more energy consumption especially in wide-range CRNs. Thus, there is a need to 

design a new CSS scheme that could tackle all these overhead issues. 

B Distributed Cooperative Spectrum Sensing Strategies 

In distributed CSS, the network is composed of CR users only, with no FC [15, 112]. 

In this approach each CR user performs local sensing then shares the sensing 

information with the others, without any central control, as depicted in Figure 2.10. 

The distributed CSS approach has certain advantages over the centralised CSS mode. 

The most important advantage is the lower implementation cost that results from the 

absence of backbone infrastructure. Furthermore, the communication between CR 

users in distributed CSS requires less power and consumes less energy than in the 

communication between CR users and the FC in centralised CSS.  

 

Figure 2.10 Conventional distributed cooperative spectrum sensing strategy 
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In distributed CSS, spectrum channels should be monitored periodically in order to 

detect available channels for transmission. This requires exchanging sensing data 

between CR users which might affect the performance of the CRN. There have been 

several contributions that aimed at improving the performance of distributed CSS. In 

[85], a distributed CSS based on network code scheme was proposed that tried to 

reduce the sensing data that should be transmitted. In this algorithm, each CR user 

detects the frequency channels firstly, encodes the occupancy information (busy or 

idle) of all channels into binary code and saves them in its frequency table. Then, 

every CR user performs a binary XOR (exclusive OR) operation for the two similar 

binary codes of the two randomly chosen channels in its frequency table and transmits 

the XOR-ed information to other CR users. By receiving the XOR-ed information, the 

CR users can improve their frequency table information by decoding the received 

XOR-ed information. After finishing all the reporting, each CR user is likely to have 

had sufficient and more accurate occupancy information of the frequency channels 

which leads to reducing potential collisions, as well as, improving the throughput of 

the CR users. However, this approach is based on the consideration that the reporting 

channel among CR users is perfect, which is practically unrealistic. Another scheme 

named: Gossiping Updates for Efficient Spectrum Sensing (GUESS) has been 

proposed in [113] to decrease the control traffic overhead in distributed CSS. In this 

protocol, initially each CR user performs the local measured signal at every time-step. 

If any CR user has a change in its local measured signal after each step, or it receives 

the update message from a neighbouring user, it will send its up-to-date signal to 

neighbouring users. In the case of the local signal change, the CR user computes the 

changing value and bitwise OR the result with original value. If it receives an update 

message, it ORs the received signal with its local value. Once all systems have 

converged, the CR users will have the up-to-date average signal. Thus, the 

communication time among CR users and the network overhead will be reduced. In 

[114], a fully distributed and scalable cooperative spectrum-sensing scheme based on 

consensus algorithms is proposed. In this approach, each cooperative user makes local 

measurements about primary users, then exchanges its local sensing with its own local 
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neighbours through the possible communication links, and adopts the consensus 

iteration until all individual measurement at each user converge towards a common 

value (global measurement) which is based on the previous measurements of each user 

and its neighbours.  

However, all the above works are based on the assumption that the communication 

channels between CR users are perfect, which is unrealistic. In other words, in some 

practical cases, some CR users may experience weak sensing and reporting channels, 

which leads to inaccurate decisions about spectrum availability. To overcome this 

issue, relay based CSS algorithms have been proposed [82, 87, 115-116], by making 

some users that have perfect channel conditions to relay the decisions among CR users. 

Although these protocols have improved the sensing performance, they add additional 

delay and more energy consumption.  

Clustering mechanisms are another method that can be explored in this field to 

reduce the network overhead. In these approaches, where there is no FC, the CR user 

that has a favourable channel gain can be selected as a FC which collects all results 

from CH. Recently; a few works have been focused on the clustering method in 

distributed CSS. In [117-118], the authors have presented a distributed clustering 

approach to save the sensing energy. In these schemes, after forming the clusters, one 

of the members with the highest sensing gain will be selected as a CH, and a FC will 

be selected dynamically from all active CHs to balance energy consumption within the 

network. However, in order to reduce the energy consumption in these schemes, the 

cluster range should be short enough which leads to an increased number of clusters in 

the case of wide range networks. Moreover, more clusters leads to increasing the range 

communication between CHs and FC and more energy consumption, which are 

impractical. Thus, there is a need for a new reliable and efficient algorithm for CSS in 

distributed CRNs. 
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2.6 Summary 

In this chapter, I presented a literature review in the field of CRNs. This includes a 

review of radio spectrum bands, DSA approaches, DSA and fundamental concepts of 

CR and its basic applications. In addition, I have reviewed some of the recent 

researches on spectrum sensing algorithms for CRNs, including single-user spectrum 

sensing and CSS approaches. 

The main motivation behind CRNs is to resolve the issue of the scarcity and the 

underutilisation of the available radio resources. By allowing CR users to 

opportunistically access the spectrum bands actually licensed for PUs, the spectrum 

utilisation can be optimised, thus improving the efficiency of today’s wireless 

communication systems. CR can be defined as a wireless communication method that 

enables CR users to effectively sense and observe radio environments, analyses these 

measurements and learn from these and previous measurements and adaptively change 

the internal states according to the radio environment, then opportunistically utilise the 

unused bands for communications without causing any harmful interference to the 

primary system. 

 There are many potential applications of CR, including military, leased networks, 

emergency situations, smart grids, wireless medical networks, and mesh networks. We 

can gain many benefits from CR technology such as improved spectrum utilization, 

enhanced link performance and high internet speed in suburban areas. 

Based on the definition of CR, there are four main functions in CR that are all 

dependent on each other, namely spectrum sensing, spectrum management, spectrum 

sharing and spectrum mobility. The main objective of spectrum sensing is to determine 

whether portions of the spectrum are available or not, while the function of spectrum 

management is to select the best available channel for communication based on the 

analysed information of spectrum sensing. The task of spectrum sharing is to 

coordinate access to selected channel with other users, and finally, vacate the channel 

when a primary user is detected to prevent causing any interference to licensed users. 
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Spectrum sensing, one of the most important elements of CR, is the first task which 

must be carried out in CRNs. In order to design an efficient spectrum sensing 

algorithm, several considerations and requirements need to be taken into account, 

including interference level, detection sensitivity, sensing delay, sensing decision 

accuracy and communication overhead. Although many spectrum sensing approaches 

are proposed in the literature for CRNs, most of them are only focused on one or two 

of these spectrum sensing requirements, and are not efficient enough for practical CR 

applications. Basically, spectrum sensing can be conducted either locally (single-user) 

or collaboratively (multi-users). There are three main algorithms for local spectrum 

sensing, namely energy detection, matched filter and cyclostationay feature detection, 

where each scheme has its own advantages and disadvantages. Despite the drawbacks 

of energy detection, including being susceptible to noise uncertainty and threshold 

setting, it is still the most popular spectrum sensing technique in CRNs.  

However, in fading and shadowing environments it is very difficult to obtain a 

reliable and accurate spectrum sensing, using single-user spectrum sensing algorithms, 

therefore, cooperative spectrum sensing is used to tackle this issue by exploiting the 

spatial diversity of CR users. Cooperative spectrum sensing can be mainly classified 

into two categories based on how CR users share the sensing data in the network, 

centralised and decentralised approaches. Although the performance of spectrum 

sensing can be significantly improved by using a cooperation mechanism, that comes 

at the cost of increasing the communication overhead with additional sensing delay.   

On the other hand, several algorithms have been introduced to decrease the 

cooperation overhead and enhance the sensing efficiency, including censoring 

approach, selection of cooperative users and clustering mechanism. However, although 

these algorithms are energy efficient, they are based, generally, on the assumption that 

the reporting channels between CR users and the FC are perfect (free of error), even in 

clustering approaches, especially in large-scale CRNs, where some of CHs with 

reliable local sensing may located far away from the FC, thus causing deterioration in 

sensing performance in addition to more energy consumption. 
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The main challenge is to design new spectrum sensing that provides reliable and 

more accurate detection on the one hand, while satisfying the requirements of 

spectrum sensing on the other hand. In this thesis, we develop new spectrum sensing 

algorithms for CRNs based on optimisation and multi-hop clustering mechanisms, 

aiming at increasing the efficiency of spectrum sensing while reducing the 

communication overhead. 
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Chapter 3 

Cooperative Spectrum Sensing Algorithms for Cognitive 

Radio Networks 

Following the presentation of existing spectrum sensing algorithms for cognitive 

CRNs, I try in this chapter to present the outline of our proposed algorithms. The main 

issues and challenges related to local and CSS will be presented in section 3.1. In 

section 3.2 I provide the new spectrum sensing algorithms for CRN. In section 3.3 I 

describe the evaluation and the simulation models of my proposed algorithms.  Finally, 

the summary of this chapter is provided in section 3.4. 

3.1 Motivation and Research Challenges 

The focus of this research is on the design of local and CSS algorithms for CRNs. 

The main objective of the spectrum sensing is to provide more accurate detection in 

order to increase the spectrum access opportunities to CR users without interference to 

the primary network. Cooperation between CR users can improve the sensing 

performance in fading and shadowing environments. Spectrum sensing can be 

implemented either using single-user transmitter detection methods or using CSS 

algorithms. Based on detection behaviour we consider three scenarios for spectrum 

sensing applications: single-user detection scenario, centralised cooperative sensing 

scenario and decentralised cooperative sensing scenario. 

3.1.1 Local Spectrum Sensing Challenges 

In single-user spectrum sensing, I consider a scenario where a wireless system 

consists of a primary transmitter with multiple PUs and multiple CR users that want to 

access the same spectrum for communication. Moreover, I assume that only the energy 
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information of the primary transmitter signal is known at the cognitive user, therefore, 

I adopt the energy detection algorithm for spectrum sensing due to its simplicity and 

does not required any information about the primary signal.  

My work aims to address the following energy detection based spectrum sensing 

challenges: 

 In traditional energy detection algorithms, which are commonly used when 

only energy information of the primary signal is available, inappropriate 

selection of the detection threshold λ could make it difficult to obtain an 

accurate spectrum sensing, especially in low SNR environment, so the 

detection threshold setting is a big challenge in the design of energy 

detection algorithms. 

 Energy detection schemes are sensitive to noise, and small fluctuations in 

noise power may cause a sharp decline in their detection performance. So the 

noise power uncertainty issue will add another challenge when designing an 

energy detection algorithm for spectrum sensing.  

 Hidden primary terminal is another challenge that cannot be avoided in the 

design of single-user spectrum sensing algorithms, which causes the 

detection performance to deteriorate as a result of fading and shadowing.   

From the above mentioned issues, we can see that existing energy detection 

approaches for spectrum sensing are not reliable and do not give accurate detection 

performance, especially under low SNR of sensing channel. Therefore, it is necessary 

to develop a new energy detection algorithm that can provide a reliable and accurate 

detection performance for spectrum sensing application.          

3.1.2 Centralised Cooperative Spectrum Sensing Challenges 

For infrastructure CRN such as IEEE802.22 based wireless regional area network 

(WRAN) [119], I consider a scenario where the CRN, with stable topology and 

consisting of multiple users with one FC, wants to share the spectrum of primary 
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network in an opportunistic manner. CSS mechanism can give more accurate sensing 

performance, but there are still some related challenges that need to be solved. My 

work aims to address the following centralised CSS challenges: 

 Optimisation of CSS is a good way to increase the detection accuracy at the 

FC, but it comes at the cost of computational complexity which leads to 

taking a long time to implement the spectrum sensing. 

 In large scale infrastructure CRNs, most CR users with reliable local sensing 

information will be far away from the FC, causing more deterioration in 

spectrum sensing performance due to reporting errors. 

 Although increasing the number of cooperative users can increase the 

efficiency of detection, it causes more sharing of sensing information, thus 

increasing the overhead. 

 Energy consumption and sensing delay are other important challenges, 

especially in large-scale CRNs, that need to be addressed in order to reduce 

the overhead while satisfying the user requirements.  

3.1.3 Decentralised Cooperative Spectrum Sensing Challenges 

In distributed CRNs, such as Ad Hoc CRN, the cooperation between CR users is 

implemented in a decentralised way, where there is no need for a backbone 

infrastructure. For this kind of application, I consider a scenario where a cognitive 

network with static topology and consisting of multiple users that want to coexist with 

the primary network, which consists of one primary transmitter with multiple users, 

without causing harmful interference. However, there are still some related issues and 

challenges that need to be solved in order to improve the detection performance of 

decentralised CSS algorithms.  

My work aims at addressing the main challenges of CSS challenges in distributed 

CRNs, which can be summarised as follows: 
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 In a large scale decentralised network, the cooperation between users 

requires exchanging a huge volume of sensing data between CR users, 

which results in increasing the control traffic overhead and causing more 

energy consumption. 

 In some practical scenarios, some CR users may locate close to each other, 

making them experience correlated shadowing, which leads to decreasing 

the cooperation gain. 

 In the presence of fading and shading, which often happens in reality, the 

links between CR users and their neighbours may be adversely affected, 

causing a significant deterioration in the overall performance of the 

cooperative spectrum sensing. 

 Another challenge which can be faced in the design of distributed CSS is the 

difficulty to get time synchronisations in sensing and transmission schedules 

due to the lack of a control centre, which may lead the CR user with the 

energy detection scheme to detect the transmissions of other cognitive users 

as well as primary users during its local sensing period, hence, causing false 

alarms in spectrum sensing. 

Therefore, there is a need for a new collaboration mechanism for decentralised CSS 

that improves the sensing performance, taking into accounts all of these issues. 

3.2 Spectrum Sensing Algorithms for Cognitive Radio Network 

In order to address the above mentioned challenges of spectrum sensing, I proposed 

a new energy detection algorithm for local sensing and new cooperation mechanisms 

for CSS based on optimisation and multi-hop clustering. These solutions include four 

new spectrum sensing algorithms that provide reliable and energy efficient spectrum 

sensing while increasing the efficiency of spectrum utilisation for CRNs: 
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a. A novel adaptive optimal threshold energy detection algorithm for local spectrum 

sensing that has been published in [28]. The proposed energy detection algorithm 

works the same way as a traditional scheme, where the power of the transmitted 

signal will be detected first and then compared with a predefined threshold λ to 

determine whether the spectrum band is occupied or not. In our algorithm, the 

optimal detection threshold λopt is determined based on estimated SNR γ and the 

noise power σn. Furthermore, in the presence of noise uncertainty we determined 

the value of λopt based on noise uncertainty factor ρ and adaptive threshold factor α. 

In order to obtain more reduction in error probability Pe of spectrum sensing, I 

designed a new double-optimal energy detection algorithm in which its performance    

basically depends on two optimal thresholdsλopt1 and λopt2.  

b. A novel CSS algorithm based on optimisation algorithm. In this optimisation CSS 

scheme, the issues of noise uncertainty at the local sensing, and computational 

complexity are considered. Specifically, each CR user performs a local spectrum 

sensing using our proposed optimal energy detection algorithm in [28], then sends 

its own 1-bit sensing result to the FC via the reporting channel, and finally the FC 

determines the final decision using the optimal fusion rule. In my optimisation 

algorithm, optimal detection threshold λopt can be determined based on minimising 

the local error probability Pe using a closed-form expression, while in existing 

optimisation CSS schemes the implementation of spectrum sensing depends on 

determining the local optimal threshold λopt analytically based on minimising the 

total error probability Qe which takes a long time.   

c. A novel multi-hop clustering approach for centralised CSS published in [30-31]. In 

this approach the CRs are grouped into a few multi-level clusters based on several 

metrics, including distances from the FC, energy level, and SNR of the reporting 

channels. Each cluster member sends its own 1-bit local sensing result to related 

CH, which in turn combines the local sensing of all cluster members and determines 

the cluster sensing result using the majority decision fusion rule. Then, each CH 
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sends its own 1-bit cluster sensing result to the FC. If the distance between the CH 

and the FC is greater than a predefined distance (one hop communication distance), 

the CH will send its result to the next level CH, which in turn sends it to the FC. 

Finally, the FC will fuse the results of all CHs and then determine the final decision 

using majority fusion rule.         

d. A novel multi-hop clustering mechanism for distributed cooperative spectrum 

sensing. In this algorithm, all CRs that are close to each other will be grouped into 

clusters and one of the users at each cluster will act as a CH. Based on the residual 

energy level of CHs, the CH which has the highest energy level will be elected to 

act as a FC. Each cluster member performs a local spectrum sensing using the 

energy detection algorithm, and then sends its 1-bit result to the CH using its own 

TDMA slot time, which in turn fuses the results of all cluster members and gets the 

cluster decision using the majority fusion rule. Finally, each CH sends its own 

cluster decision to the FC directly if the distance between the CH and the FC is less 

than the predefined distance (one hop communication distance), otherwise it sends 

the cluster result via next level CH towards the FC, which in turn will combine the 

results of all CHs and determines the final decision using majority fusion rule. 

These new algorithms will be described in detail in the following subsections. 

3.2.1 Local Spectrum Sensing Scheme 

I developed a new adaptive optimal threshold energy detection AOED algorithm 

using single-user for spectrum sensing that improves the sensing performance in low 

SNR environment. This scheme aims at determining the optimal threshold that 

minimises the error probability in the presence of the noise uncertainty, which in turn 

increases the spectrum utilisation efficiency while providing sufficient protection to 

primary users. The energy detection typically does not need any prior knowledge of 

the primary signal parameters; it just needs to know the power of the primary signal 

and the noise power. The schematic diagram of the novel optimal energy detector is 
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described in Figure 3.1 The block diagram of the energy detection in frequency 

domain.  

 

Figure 3.1 The block diagram of the energy detection in frequency domain 

Based on Figure 3.1 The block diagram of the energy detection in frequency 

domain, in order to measure the energy signal in frequency domain, the input signal 

x(t), which consists of primary signal s(t) and noise signal w(t), is filtered with a band 

pass filter (BPF) in order to limit the noise and to select the bandwidth of interest, then 

sampled and converted from continuous to discrete signal with sampling rate at the 

analogue to digital converter (ADC), taking Fast Fourier Transform (FFT) followed by 

squaring the coefficients and then taking the average over an observation time 

window. Finally, the output signal which is usually called a decision (test) statistic TD 

is compared with a predefined threshold λ to make the final decision on the presence or 

absence of the primary signal.  

As noted in this figure, the main procedures of our algorithm are the same as in the 

conventional algorithm [14], but the main difference lies in the mechanism for 

determining the detection threshold. In our algorithm we proposed a new optimal 

method to set the threshold based on minimising the error probability Pe, and 

developed a new adaptive optimal threshold λopt that addresses the impact of noise 

uncertainty.      

Furthermore, we developed a new double optimal threshold energy detection 

approach that provides more reduction in error probability, but at the cost of a decline 
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in detection probability. The detection procedures in this scheme are the same as in 

single-optimal threshold algorithm, the difference is in the threshold setting and the 

comparison stages. The detection decision depends on two optimal thresholds λopt1 and 

λopt2in which their values are basically dependent on the predetermined optimal 

threshold λopt and uncertainty region factor δ.  

 

Figure3.2 shows our single and double optimal threshold energy detection methods. 

As shown in this figure, if the decision statistic TD exceeds λopt2, then the energy 

detector indicates H1, which means that the primary signal is present, and if TD is less 

than λopt1, the energy detector decides H0, which means that the primary signal is 

absent. Otherwise, if the TD is between λopt1 and λopt2, which represents uncertainty 

region, the energy detector indicates “no decision”. A full description of these 

approaches will be given in chapter 4. 

 

 

 

Figure3.2 a) Single-optimal threshold energy detection method. b) Double-optimal threshold 

      energy detection method 

 



 

 

50 

3.2.2 Centralised Cooperative Spectrum Sensing Algorithm 

For infrastructure CRN, we present two new algorithms that enhance the spectrum 

sensing accuracy and reduce the cooperation overheads. In the first scheme, we present 

a new centralised CSS based on optimisation mechanism, where the local sensing is 

conducted using AOED algorithm while the optimal decision fusion role is executed at 

the FC in order to make the final detection decision. This algorithm aims to overcome 

the impact of noise uncertainty at the local sensing and optimises the detection 

performance.  

 

Figure 3.3 illustrates our optimisation algorithm for CSS, where each CR user 

performs its local spectrum sensing using our proposed adaptive optimal energy 

detection algorithm and based on its radio environment conditions it makes its own 

sensing decision bi and sends it to the FC via the reporting channel. Then, the FC 

combines the decisions and makes the final decision based on optimal K out M fusion 

rule.  

 

 

Figure 3.3 Optimisation cooperative spectrum sensing scheme 
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The optimal K can be determined theoretically, which depends on several 

parameters, including probability of occupancy, detection and false alarm probabilities, 

and the number of cooperative users M. The Design details of this scheme are 

presented in chapter 5. 

The second algorithm is that proposed for centralised cooperative spectrum sensing 

is the multi-hop clustering approach. Figure 3.4  gives the operating procedures of this 

algorithm. 

 

 

Figure 3.4 The flow chart of multi-hop cluster based centralised CSS for CRNs 
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The main purposes of this algorithm are to support energy efficient and reliable 

cooperation between CR users and the FC; especially in large scale networks, and 

increasing the network capacity by reducing the sensing time. The basic idea of the 

design is to group the CR users into a few multi-level clusters based on several 

metrics, including the distances from the FC, the energy level, and the SNR of 

reporting channels. Only the cluster heads are allowed to report the cluster result to the 

FC, and if the distance between the CHs and the FC is greater than a predefined 

threshold distance they will send the results to the nearest next level CH.  

Chapter 6 provides more descriptions on how this cooperative sensing scheme 

works, and its performance analyses.  

3.2.3 Decentralised Cooperative Spectrum Sensing Algorithm 

We develop a new multi-hop clustering algorithm for distributed CSS that reduces 

the cooperation traffic overheads and provides a reliable communication between CR 

users in order to improve the global sensing efficiency. Due to the lack of a FC, the 

clusters are formed in a distributed manner, and one of the cluster heads will be 

selected as a FC based on the energy level and the SNR of the reporting channel 

between them. Figure 3.5 illustrates the mechanism of the multi-hop clustering 

algorithm in decentralised CSS. 

The key advantages of this algorithm are: 

 Spectrum sensing efficiency: In some practical cases, especially in large scale 

network, some cluster heads will be far away from the fusion centre, which leads 

to error reporting, thus causing a deterioration in spectrum sensing accuracy. The 

multi-hop clustering mechanism will increase the sensing efficiency though 

selecting the optimal path between the far cluster heads and the fusion centre. 

 Energy consumption saving:  In the case of a long distance between cluster heads 

and the fusion centre, multi-hop communication will be more efficient than 

single-hop communication, but at the cost of a small increase in the sensing time 

delay. 
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 Spectrum sensing synchronisation: the proposed clustering algorithm can 

solve the issue of sensing synchronisation by configuring a central control 

similar to infrastructure networks. In this scheme, the number of members of 

each cluster and the number of clusters in each level (hop) are varying, 

which depend on the distribution of CR users within the network. 

 

 

Figure 3.5  Multi-hop cluster based decentralised CSS approach for CRNs 

 

A complete description of this multi-hop clustering algorithm for distributed 

cooperative spectrum sensing and its formation phases are provided in chapter 7. 
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3.3 Evaluation and Simulation Models 

In order to evaluate the proposed algorithms and developed models of spectrum 

sensing for CRNs, the simulation results and the performance of spectrum sensing 

schemes are investigated. The simulation environment was based on MATLAB
®

 

simulator [120]. Matlab (matrix laboratory) is a programming language developed by 

MathWorks, and is widely used in academic and research institutions as well as 

industrial enterprises. It supports an easy interactive environment and fast 

mathematical algorithms, and allows matrix manipulations, and plotting of functions 

and data. The performance of various spectrum sensing models such as local detection 

model, CSS model, and reporting energy dissipation models were analysed and 

simulated in this simulator  

 

 The radio energy model used in the simulations described in this thesis is given in    

Figure 3.6. For this model we adopted the same energy parameters presented in [29], 

which are set as follows: the electronic energy consumption is the same for 

transmitting and receiving and set to Eelec=50 nJ/bit; the amplifier energy consumption 

Eamp can be determined in terms of Efs (free space mode when R< Ro) or Emp         

(multi-path mode when R≥ Ro) based on transmitter amplifier mode; where    

Efs=   pJ/ bit/ m
2
; Emp=0.0013 pJ /bit/ m

4
 and      

   
   

        ; energy 

dissipated  to collect the data EDC=  nJ /bit and the energy consumed to execute the 

local spectrum sensing Es=190 nJ. Here, I assumed that the energy dissipated in 

sleeping mode, as well as in computing the observations and making the local decision 

is very small compared with other energy consumption, so we can ignore this energy.  

Since the thesis has dealt with several scenarios for spectrum sensing, therefore, 

some of the design and simulation parameters will be given separately in subsequent 

chapters within the simulation sections.  
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Figure 3.6 Radio energy dissipation model 

3.4 Summary 

The description of our proposed local and cooperative spectrum sensing algorithms 

for cognitive radio networks are given in this chapter. Obviously the efficiency of 

cognitive radio networks is mainly dependent on the performance of spectrum sensing 

algorithms; therefore, the need for reliable and more accurate spectrum sensing 

schemes is very important. Single-user spectrum sensing algorithms can provide 

accurate detection performance when the SNR of the detected channel is high, but in 

practice the problem of hidden primary terminal cannot be avoided either when the 

cognitive user is located outside of the range of the primary transmitter or due to 

fading and shadowing. Cooperative spectrum sensing mechanisms are considered to be 

effective ways to solve this issue and improve the detection performance. However, 

cooperative spectrum sensing algorithms also have some challenges that increase the 

burdens of the system, including energy consumption, control traffic overhead and 

inefficient sensing performance due to the error rate of the reporting channel. 
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In this thesis we have focused on the design of spectrum sensing algorithms for 

cognitive radio networks while considering all of these challenges. First, we designed a 

new single-user optimal energy detection algorithm in the presence of noise 

uncertainty that can provide a more reliable and accurate detection performance in a 

low SNR environment. In order to provide more protection for primary users we 

further developed a new double optimal threshold energy detection algorithm that 

gives more reduction in error probability with a small decrease in detection 

probability.  

Second, as single-user spectrum sensing schemes in some cases may suffer from the 

primary hidden terminal problem, we developed new algorithms for cooperative 

spectrum sensing that improve the spectrum sensing efficiency. For infrastructure 

cognitive radio networks, we designed a new cooperative spectrum sensing based on 

optimisation mechanism. In this algorithm, our first proposed single-user optimal 

approach is adopted for local sensing and the sensing results of all cognitive users are 

combined at the fusion centre based on the optimal decision fusion rule, which 

provides more accurate detection performance when the sensing channel of some 

cognitive users suffer from fading and shadowing.  In practice, both sensing and 

reporting channels may suffer from the fading and shadowing phenomena; leading to 

more deterioration in spectrum sensing performance. Therefore, a new multi-hop 

clustering mechanism for centralised cooperative spectrum sensing is proposed, where 

the optimal path between the cluster heads and the fusion centre is determined, which 

gives robust and efficient performance of spectrum sensing in terms of energy 

efficiency, sensing delay, and detection accuracy.  

Finally, in decentralised cognitive radio networks we developed a new multi-hop 

clustering algorithm for distributed cooperative spectrum sensing, which can enhance 

the links between all cognitive users within the network; thus, increasing the efficiency 

of the spectrum sensing and reducing the energy consumption and control traffic 

overhead. Moreover, the proposed algorithm and through the central mechanism that is 

provided has helped in resolving the issue of synchronisation. 
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Chapter 4 

Adaptive Optimal Energy Detection Based Spectrum 

Sensing Algorithm 

4.1 Introduction 

As seen in chapter 2, energy detection is among the most common spectrum sensing 

techniques in cognitive radio networks, as it does not need prior knowledge about the 

detected signal and could be implemented relatively easily. However, energy detectors 

exhibit some drawbacks including selection of the detection threshold, noise power 

uncertainty, and needing a high sensing time to achieve a given probability of 

detection especially in low SNR environments. Although there have been contributions 

in this area, none of them have addressed all these issues at the same time                 

[16-21, 77, 121-125]. 

In this chapter, we propose a novel optimal energy detection algorithm that tackles 

all above mentioned issues. Determining the energy detection threshold is one of the 

biggest challenges in energy detection algorithm. Here, we present a new approach to 

enhance the spectrum sensing performance by focusing on some of the weaknesses of 

energy detection, including threshold selection and poor performance under low SNR 

in the presence of noise uncertainty. We propose an optimal threshold based on 

spectrum sensing error function to detect the available spectrum channels. We first 

analyse the threshold detection optimisation with the availability of sufficient 

information on the average noise power, then the noise uncertainty will be considered 

in the design of energy detection, then, we developed a dynamic optimal threshold 

factor in order to reduce the degradation in detection performance caused by noise 

uncertainty. Finally, we have expanded the single optimal threshold algorithm to 

include the double optimal threshold scheme, in order to reduce the spectrum decision 
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error that may occur when the detection statistic falls near the detection threshold in 

single optimal mode. 

4.2 General Considerations in Energy Detection Spectrum Sensing 

In our approach, we assume a system model with a cognitive terminal that needs to 

detect a primary terminal signal using an energy detector. In this approach, only the 

transmitted power of the primary system is known at the CR user, therefore, this power 

will be detected first, and then compared to a predefined threshold to determine 

whether the spectrum band is available or not. When the energy of the received signal 

is greater than the detection threshold , the detector will indicate that the primary user 

is present, which will be depicted by the hypothesis H1, otherwise, the primary user is 

absent, which will be represented by the hypothesis H0.  

The performance of spectrum sensing is measured by two parameters:  

 The detection probability Pd: it indicates that the primary user exists. This 

probability should be as big as possible to protect the primary users from 

interference. 

 The false alarm probability Pf: it indicates that the primary user is present 

while in reality it is not. This probability should be as small as possible to 

increase the spectrum utilization. 

 The misdetection probability Pm: In addition, there is another important 

metric that is called Pm, which stands for the collision probability between the 

primary user and CR user. To provide adequate protection for the primary 

system from harmful interference, we must ensure to decrease the Pm as much 

as possible. 

In this section we will present a mathematical analysis that will determine these 

detection probabilities. The decision of spectrum availability in the energy detection 

method is the test of the following hypothesis [121]: 
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  (4 - 1)  

Where   n = 0,1,2,3... N, which represents the number of samples (detection period). 

    is the received signal at the secondary user,      is the primary user signal, and is 

assumed to be independent and identically distributed random process of zero mean 

and variance of   
 .      denotes the noise signal and is also assumed to be 

independent and identically distributed random process of zero mean Additive White 

Gaussian Noise (AWGN) with variance   
 . 

The test statistic for the energy detector can be represented as a series of Fast 

Fourier Transformer (FFT) components [126]: 

 

           
 

   

  
 
 
  

  (4 - 2)  

Here,       is FFT series of signal     , and   is the detection threshold value. 

According tocentral limit theorem and as long as N is large enough, the decision 

statistic in (2) can be approximated as a Gaussian distribution [121]: 
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  (4 - 5)  

Where      
    

  ) represents the average power signal to noise ratio SNR. 

Figure 4.1 depicts the Gaussian distributions of sensing metric TD in both cases of 

signal present (H1) and signal absent (H0). Here, I considered a binary symmetric 

channel just for clarification, while in realistic is different; where the probability that 

the primary signal is absent PH0 is greater than the probability that the primary signal 

is present PH1.From this figure we can see that the probability of false alarm Pf  is the 

probability that TD > λ when the primary signal is not present, while the misdetection 
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probability Pm is the probability that TD < λ when the primary signal exists. The figure 

also illustrates that a proper setting of the detection threshold can be determined by 

trade-offs between Pf and Pm, thus leading to obtaining the optimal threshold. 

 

Figure 4.1 Energy Gaussian distribution of TD under threshold λ 

The probability of detection    and the probability of false alarm Pf over AWGN 

channel are given respectively as follows [127]: 

 
               

    
 

 
     

    

    

  (4 - 6)  
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where rfc is the complementary error function which can be expressed by [128]:   

 
         

 

  
              

 

 

 (4 - 8)  

Another important probability parameter is: mis-detection probability Pm which is 

the probability that the energy detector indicates that the primary user is absent while it 

is actually is present.  This probability can be expressed as follows [127]: 

 
        (4 - 9)  
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If a priori information of the spectrum occupancy is available and given by PH1, 

PH0, which represents the probabilities of primary user presence and absence 

respectively, where PH1+PH0=1, we can formulate the probability of error as follows 

[129]:  

 
               (4 - 10) 

4.3 Optimal Threshold Energy Detection Model with Full Noise      

Knowledge 

The key metric of spectrum sensing performance depends on the probability of 

sensing error, which should be minimised as much as possible. In spectrum sensing, it 

is important to minimise the false alarm probability Pf, which leads to providing more 

spectrum access opportunities, and to provide more protection for the primary user, the 

lower mis-detection probability Pm is desired. In this section, we investigate the 

minimisation of the total error probability Pe in functions of the threshold parameter, 

where the noise uncertainty problem is not considered. In this model, we assume that 

the detection period N is big enough, so we can approximate the distribution of 

decision statistic as Gaussian distribution.  

In order to meet the sensing constraint (Pf*, Pm*), we consider the optimisation 

threshold level which minimises Pe under spectrum sensing constraint, and can be 

represented as: 

                           (4 - 11) 

s.t.                        

then, 

       

  
  

      

  
        

    

   
    (4 - 12) 

from the equations (4 – 6), (4 – 7), (4 – 8), and (4 – 9) we can get 
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(4 - 14) 

By substituting the parameters in (4-13) and (4-14) into (4-12), we can obtain the 

closed form expression of the optimal detection threshold (    ) as follows: 

 
     

         

 
 

(4 - 15) 

where 
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Based on the assumption that the noise power is fully known at the cognitive user, 

and the samples number N is large enough, the minimum samples required to satisfy 

the sensing constraint (Pf*,Pm*) can be expressed as [130]: 

                                                (4 - 19) 

According to (4-19), the minimum number of samples Nmin required to satisfy the 

spectrum sensing constraints will be very large especially in low SNR, which is 

practically infeasible. In other words, for a given number of samples N and SNR, the 

optimal threshold algorithm can minimise the error probability Pe but does not 

guarantee that the mis-detection probability Pm to be below maximum allowable mis-

detection probability (          . In such a case, the spectrum sensing 

performance will depend on two thresholds (             where    represents the 

detection threshold that meets the spectrum sensing constraint (            and 

    is the optimal threshold. The   can be represented as [17] 

            
         (4 - 20) 

where             
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In low SNR environment, the      is greater than the    in most cases even when 

the number of samples exceeds Nmin, making          overtake the allowable     

mis-detection probability      Therefore, the adaptive optimal threshold that 

minimises spectrum sensing error while providing a sufficient protection for primary 

users can be given as  

              
   (4 - 21) 

4.4 Optimal Threshold Scheme under Noise Uncertainty 

As in most communication systems, the noise is an error or undesired disturbance of 

a useful information signal. It is a summation of various independent sources including 

thermal noise, and interferences due to weak signals from transmitters very far away, 

and so on. However, the noise power may fluctuate over time and location, which 

yields noise uncertainty [131]. It is very clear from the equations; (4-15) and (4-18); 

described in the previous section that the optimal detection threshold      is 

proportional to nominal noise power   
 . As a result, the performance of the optimal 

threshold scheme will be degraded and thus the scheme will not be effective. To 

reduce the impact of the noise uncertainty, the equations (4-6); (4-7); and (4-15) have 

to be modified. 

In order to study the effect of  noise uncertainty on the detection performance, we 

modelled the distributional uncertainty of noise as         
      

 ), where    is the 

actual noise power,      
    

     is the lower bound of the noise uncertainty,  

     
     

   is the upper bound of the noise uncertainty,       is the  

noise uncertainty factor, and   
  is the expected or nominal noise power. Based on 

central limit theorem [36], the decision statistic under noise uncertainty can be 

approximated as Gaussian distribution and given as following: 

       
            

                                                    

            
                                                    

  (4 - 22) 
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Thus, the equations (4-6) and (4-7) are modified to obtain  
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The optimal threshold level can be calculated using the equation (4-15) after 

substituting the modified parameters in equations (4-22) and (4-23) into equations    

(4-16), (4-17), and (4-18). Under noise uncertainty, to meet the pair sensing constraints 

(Pf
*
, Pm

*
), the least number of samples required can be determined by 

      
                  

 

 
                

 

      
 

 
  

  (4 - 26) 

 

From equation (4-26), we can see that the samples number N approaches infinity as 

SNR (γ) decreases to        . It can also be found that, there are SNRwalls that 

prevent the detection from being robust, and cannot achieve a reliable detection even 

increasing the sample number to infinity. Thereby, the SNRwalls can be defined as 

            
 

 
 (4 - 27) 

4.5 Dynamic Optimal Threshold Detection Scheme 

In order to provide a guarantee of adequate protection for primary users against 

secondary user interferences, it is very important to choose a suitable detection 

threshold. The optimal threshold algorithm can provide this condition. However, as 

mentioned above, the detection performance of this scheme could decline sharply due 
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to noise uncertainty. In this section, we present a dynamic optimal threshold algorithm 

that tackles this issue. 

According to the noise uncertainty factor  , we assume that the dynamic threshold 

is distributed within the range (             , where       is dynamic 

threshold factor. In the case of noise uncertainty and dynamic threshold mode, the 

mean and variance of the decision statistic under two hypotheses are given 

respectively, as follows: 
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then, the probability relationships are expressed as 
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Thus, the dynamic optimal threshold can be determined using the same equation  

(4-15) with the new modified parameters as follows 
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Then, the minimum samples number N required under sensing constraints can be 

determined as 
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And 

          
 

    
 

 
 (4 - 37) 

4.6 Double Optimal Threshold Energy Detection Algorithm 

Although optimal threshold energy detection scheme has a capability to improve the 

detection performance by minimising the error probability, there is still a situation, 

when the decision statistic locates near the optimal threshold, which causes high 

sensing decision error. In order to overcome this issue, we proposed a new double 

optimal threshold energy detection (DOTED) algorithm, which can achieve more 

reduction in error detection with a slight decline in the efficiency of spectrum 

utilisation. Figure 4.2 shows the frequency domain diagram of the proposed energy 

detection scheme. 
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Figure 4.2 Block diagram of double threshold energy detection in frequency domain 

In order to measure the primary signal energy in frequency domain, simply the 

received signal first selects the interesting bandwidth by a band pass filter (BPF), and 

samples using analogue to digital converter (ADC) with sampling frequency fs, then 

converts to frequency domain taking Fast Fourier Transformation (FFT) followed by 
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squaring the coefficients and then taking the average over the observation band. 

Finally, according to a comparison between the average and determined thresholds, the 

presence or absence of the PU can be detected. 

In the conventional energy detection method, the spectrum decision resulting in the 

output of the detector depends on the result of the comparison between the detection 

statistic and the predefined single threshold, as shown previously in Figure 4.1. In 

double threshold energy detection method [16], the detector employs two thresholds to 

make a spectrum decision based on the same hypotheses as the single threshold energy 

detector, in addition to an uncertain region as there is no decision to be taken in this 

case. 

 

Figure 4.3 Gaussian distribution of TD under thresholds λopt1 and λopt2 

Figure 4.3 depicts the Gaussian distributions of sensing metric TD in both cases of 

signal present (H1) and signal absent (H0). From this figure we can see that the 

probability of false alarm Pf  is the probability that TD > λopt2 when the primary signal 

is not present, while the mis-detection probability Pm is the probability that TD < λopt1 

when the primary signal exists. The figure also illustrates that there is a region of 

uncertainty between the upper optimal thresholds λopt2 and lower optimal threshold 
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λopt1, and whenever the received energy falls in this region, no decision is taken and the 

detector waits until the next sensing frame. 

In the rest of the section, we will go through a mathematical analysis to determine 

the sensing parameters of the DOTED algorithm. In general, the values of sensing 

metrics (Pd, Pm and Pf) rely basically on detection threshold settings, which need to 

be optimally selected. As shown in Figure 4.2, the output decision of the DOTED has 

three cases depending on the value of sensing decision statistic TD 

    

                                                                  

                                                                

                                                                     

  (4 - 38) 

In order to get the probability parameters, we first need to determine the optimal 

detection threshold        which can be found in the same manner as in our           

single-optimal threshold algorithm. So, we can use the previous equations (4-11) to   

(4-18) to determine the optimal threshold      . The upper       and lower        

optimal thresholds can be calculated as follows 

              (4 - 39) 

                        (4 - 40) 

Where   denotes uncertainty region factor, and these equations were adjusted to 

make the uncertainty region symmetrical around the optimal threshold        

The equations of different probabilities are given below for AWGN channel. Under 

hypothesis H1, probability of detection (probability of deciding “1”, probability of 

misdetection or probability of deciding “0” and probability of “no decision” are 

represented by Pd1, Pm and Pnd1, respectively. 
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Similarly, under hypothesis H0, the probability of deciding “0”, probability of false 

alarm (probability of deciding “1”) and the probability of “no decision” are given by 

Pd0, Pf and Pnd0, respectively. 
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where                         represent the detection and false alarm 

probabilities with respect to lower optimal threshold      , respectively. 

 

4.7 Throughput Performance Analysis 

In previous sections, the sensing performance of the proposed energy detection 

algorithms has been presented. The analytical expressions of the probability 

parameters (Pd, Pf and Pm) for both single and double optimal threshold algorithms 

have been given. In this section, we try to examine the throughput performance of 

single user channel using our proposed single and double optimal threshold based 

spectrum sensing algorithms. In order to formulate the throughput expressions, we will 

go through mathematical analysis to determine the final throughput expression for 

each type of proposed energy detection algorithm. 



 

 

70 

According to Shannon capacity theorem, the upper bound on the achievable 

throughput of the cognitive radio network when it operates in the absence   and the 

presence   of the primary users can be represented, respectively, as follows [132] 

                                             (4 - 47) 

             
  

    
                    (4 - 48) 

Where B denotes the bandwidth of the AWGN channel,    
 

  
 and    

 

  
 are 

the SNR of cognitive radio link and the SNR of primary transmission link at cognitive 

user, respectively. Denote S as the received power of the cognitive user, P as the 

received power of the primary transmitter at the cognitive user, and No as the noise 

power. 

 

 

Figure 4.4 Frame structure of single-user periodic spectrum sensing 

As shown in Figure 4.4, if the probability for which the primary spectrum band is 

occupied (PH1), and the probability for which the band is empty (PH0) are available, 

and based on the sensing period (TS) and total Frame time of the periodic spectrum 

sensing (T), we define the average achievable throughput of the cognitive radio 

network R by [133] 
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(4 - 49) 

Obviously, from (4-49) we can see that the throughput of the single user based 

spectrum sensing algorithms is generally reliant on several parameters, some of these 

parameters such as detection threshold λ and sensing period TS can be controlled, and 

others like (C0, C1, PH0 and PH1)  are out of control and depend on the surrounding 

environment. In the following, we will formulate the throughput of the cognitive radio 

network for each energy detection based spectrum sensing algorithm. 

In conventional constant detection rate based energy detection (CDR-ED) 

algorithm, the detection threshold λT is predefined based on the desirable protection 

level for primary users       , then the false alarm probability Pf will be minimised for a 

given SNR and certain sensing period TS. Therefore, the throughput of the CRNs with 

CDR-ED based spectrum sensing can be represented as: 

 
                  

  

 
               

         
  

 
            

(4 - 50) 

In conventional double-threshold energy detection based spectrum sensing 

algorithm, the detection performance depends on two fixed thresholds (      , where 

   is set based on the desirable level of probability collision Pm1 between primary user 

and cognitive user, while          which depends on the uncertain region factor     

The throughput of the CRN under this detection scheme can be  defined as  

 
                 

  

 
                

          
  

 
               

(4 - 51) 

In single-optimal threshold energy detection algorithm, the maximum average 

throughput R can be achieved by minimising both false alarm             and      
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mis-detection             probabilities. In this case, the achievable throughput of the 

CRN can be given as 

 
                    

  

 
                 

          
  

 
                 

(4 - 52) 

In the case of Double-optimal threshold energy detection approach, more reduction 

in          can be achieved, and the throughput of the CRN can be formulated as 

 
                 

  

 
                   

         
  

 
                   

(4 - 53) 

In the following section, we will evaluate our proposed algorithms by simulating 

the analytical analyses described in this chapter, and comparing the simulation results 

with existing algorithms.     

 

4.8 Simulation Results 

This section provides the simulation results of the performance evaluation of single-

user energy detection algorithms that are proposed and described in this chapter. The 

simulation includes the spectrum sensing performance of the proposed algorithms and 

their throughput performance for CRN. The simulation has been conducted using the 

MATLAB®2009a simulator. In our numerical analysis, we assumed that the noise 

power is completely known and set it as (  
  = 1), also the desired pair sensing 

constraints are set as Pf
*
=0.1, Pm

*
= 0.1, (Pd

*
=0.9). 

In the following subsections, the performance of each proposed algorithm will be 

presented and discussed. The single-optimal threshold algorithm will be given first, 

and then followed by the performance of the double-optimal threshold mode, and 
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finally the throughput performance of the CRN under all proposed and conventional 

algorithms is presented and discussed for comparison. 

 

4.8.1 Single-Optimal Threshold Energy Detection Performance 

First, we study the impact of SNR of the sensing channel; the number of samples N 

and the detection threshold on the error probability level using single-optimal 

threshold energy detection algorithm, as shown in Figure 4.5.  

 

Figure 4.5 Performance of error probability with detection threshold 

 

It can be seen from the figure that increasing the SNR and the number of samples 

can lead to more reduction in the error probability. Moreover, it can be also observed 

that, there is only one optimal threshold that minimises the error rate, and the value of 

the optimal threshold increases with the increase of both SNR and the number of 

samples. Another important point that can be seen here is, for low SNR, the level of 

the error rate may be large and increasing the number of samples may not lead to a 
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significant improvement in the error rate. For instance, at SNR=-8 dB; increasing the 

number of samples from 400 to 800 will reduce the error rate from 0.298 to 0.142, 

while at SNR=-2 dB; the error rate will decrease from 0.674*10^-3 to 1.567*10^-6, 

indicating that the reduction rate at SNR=-8 dB is 50% while at SNR=-2 dB is 99.7%. 

 

 

Figure 4.6 Performance of error probability versus detection threshold with different PH1/PH0 

 

The relation between the probability of spectrum occupancy PH1/PH0 and the error 

rate is investigated in Figure 4.6. The figure shows that, increasing the probability of 

occupancy PH1 (probability for which the primary user is active) leads to a reduction 

in the value of optimal detection threshold. On the other hand, increasing PH1 from 0.2 

to 0.5 leads to an increase in the value of minimum error rate, and then begins to 

decline with the continued increase of PH1 from 0.5 to 0.8. As shown in the figure, the 

lowest value of the optimal error rate can be obtain at PH1=0.2 and PH0=0.8. 
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Figure 4.7 illustrates the sensing probability error versus average SNR with 

different N values. It is obvious to find that under different values of  N and for a given 

low SNR, the value of Pe decreases dramatically with increasing the value of N. In 

addition, it can also be observed that at low SNR values the optimal scheme under 

sensing constraints outperforms that with fixed N, where the probability of error has 

been improved and kept constant to (0.2) even in cases of very low SNR, but this is at 

the expense of increasing the samples number N, where           according to 

equation (4-19), and thus increasing the sensing time T for a fixed bandwidth W, 

where N equal time-bandwidth product (TW). 

 

 

Figure 4.7 Probability of sensing error according to an average SNR 

 

In real world communications, the noise power fluctuates over time and space, thus, 

causing significant degradation in sensing performance. Figure 4.8 depicts the effect of 

noise uncertainty on probability of error, and shows that a tiny fluctuation of average 

noise power could cause performance to drop seriously. 
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Figure 4.8 Probability of error according to the average SNR with different noise uncertainty 

     factor   

The results presented in Figure 4.8show the impact of the noise uncertainty on 

detection performance for different values of the noise uncertainty factor  . These 

results show that the noise uncertainty factor (     ), and for a given SNR range     

(-25,10) dB, the probability of sensing error will increase slightly with decreasing the 

value of SNR, and keep constant on the value of (0.2) even in very low SNR. For other 

values of a noise uncertainty factor     the sensing error increases proportionally to 

the value of    For instance, when the value of noise uncertainty factor        the 

probability of error will increase slightly, while the SNR will decrease until 

approaching the SNRwall, where ( SNRwall= 0.53) which is equivalent to (-2.75 dB) 

according to equation (25), then the probability of error will increase sharply and reach 

to (Pe=1) when            even samples number N increased to infinity. 

The results in Figure 4.8 also show that when the value of noise uncertainty factor   

increases, the value of SNRwall increases which makes the detection unreliable and 

impractical even in normal values of SNR. From these results we can also conclude 

that the optimal threshold detection method cannot detect the signal with SNR below 

SNRwall. Therefore, it is necessary to modify the optimal threshold in order to tackle 

the effect of the noise uncertainty on detection performance. 
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Figure 4.9 gives the probability of sensing error against average SNR for different 

values of noise uncertainty factor   and dynamic threshold factor   . 

 

Figure 4.9 Probability of error according to an average SNR with different uncertainty 

          factors  ,     

 

The results in Figure 4.9 show that the detection performance can effectively 

improve as long as the dynamic threshold factor    is equal to or greater than the noise 

uncertainty factor  . From these results we can see that for a given noise uncertainty 

factor        and with a gradual increase of the dynamic threshold factor    0.2, 

from an initial value of 1.0 to a final value of 1.6, the total error probability could be 

decreased significantly, and the value of SNRwall could be reduced drastically, 

especially, when     . For instance, for                 , the value of SNRwall 

is -0.833 (-0.79dB), while for                , the value of is SNRwall -0.098        

(-10dB). The results presented in this figure show that the influence of the noise 

uncertainty disappears completely when                   

Figure 4.10 illustrates the performance of the error probability as a function of 

sensing time for both proposed and traditional energy detection algorithms. In this 

simulation, we set the target Pf*=0.05, SNR=-15 dB, PH1=PH0=0.5, and the 
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bandwidth BW=1MHz. The results presented in this figure show the superiority of 

single-optimal threshold algorithm compared with the conventional scheme. The 

negative impact of noise uncertainty on the sensing time is clearly visible in this 

figure.  

 

Figure 4.10 Comparison of sensing time with and without noise uncertainty 

 

More specifically, there are two important points that could be noted here, the first 

point is that, regardless of the presence or absence of noise uncertainty, the proposed 

method gives better performance than the traditional method in terms of reducing the 

time of detection. For instance, in the case of absence of noise uncertainty (full noise 

knowledge), the sensing time that needs to meet the target error probability Pe= 0.35 in 

single-optimal threshold mode, which is almost (1.22ms), is less than that using 

conventional single-threshold mode, which is almost (3.11ms). The second important 

point is that for the case of noise uncertainty, the sensing time will be increased 

significantly due to noise uncertainty factor  . For instance, for a given target error 

rate Pe= 0.35, the sensing time that is required to meet this target will be almost 
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(8.9ms) using optimal mode, while in conventional mode the sensing time will be 

(23.4ms) in order to satisfy the same level of error probability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Performance of error probability versus sensing time with different values of 

        adaptive threshold factor   and noise uncertainty factor ρ 

 

Figure 4.11 shows the advantage of adaptive optimal threshold mechanism to 

overcome the impact of noise uncertainty. It can be seen that the sensing time can be 

greatly reduced when using the proposed algorithm. For example, to satisfy the 

required error probability Pe=0.15; we need (64.5ms) sensing time when the noise 

uncertainty factor is       , while the sensing time will be shortened to (18.5ms) 

when using adaptive threshold factor (          and can gain more reduction  down 

to (8.5ms) when the adaptive threshold factor equals the noise uncertainty factor. Thus, 

the proposed method has proved its efficiency compared to the traditional method in 

terms of reducing the time required for the spectrum sensing, in addition to reducing 

the error detection. 
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4.8.2 Double-Optimal Threshold Energy Detection Performance 

In this subsection, the numerical results of the spectrum sensing performance using 

double-optimal threshold energy detection algorithm are presented. The simulation 

results of the single-optimal threshold algorithm and traditional energy detection 

algorithms are also provided for comparison. The simulation parameters for comparing 

performance of our proposed schemes are listed as follows: the noise power σ
2
 = 1, 

number of samples N = 1000, SNR = -15 dB, target false alarm probability Pf
*
 

probability of spectrum occupancy is 50%, PH1= PH0= 0.5.  

Figure 4.12 shows the error probability in terms of detection threshold for various 

uncertain region factor f in double-threshold based energy detection algorithms. We 

can see that there is only one value of threshold that minimises the error rate, that 

is     . It can be also observed that the error rate decreases as the uncertain region 

factor f increases. 

 

Figure 4.12 Error Probability performance versus detection threshold for different uncertain 

     region factor f 
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Figure 4.13 Detection performance versus SNR with various uncertain region factor f 

 

The impact of uncertain region factor f on the detection performance of the double-

optimal threshold algorithm is given in Figure 4.13. It can be seen from this figure that, 

increasing the factor f leads to deterioration of the detection performance. For instance, 

for a given value of SNR=-10 dB; the detection rate will be (0.8524) when single-

optimal threshold scheme is used; while the detection rate will reduce significantly to 

(0.137) when double-optimal threshold with f=1.1 is used. From above, double-

optimal threshold algorithm can reduce the error rate effectively, but at the cost of a 

further deterioration of the detection performance. Therefore, trade-off between these 

metrics is needed to be considered when designing the double-optimal threshold 

energy detection algorithm in order to meet the requirement of the application. 

 

Figure 4.14 depicts the performance of detection rate for various energy detection 

algorithms, including proposed and existing schemes. The simulation parameters are 

assumed as: the target Pf* =0.1, number of samples is N=100, the uncertain region 

factor is 1.1, PH1=PH0=0.5. In general, the single-threshold modes have better 

detection performance compared to the double-threshold mode. On the other hand, and 
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as shown in Figure 4.14, the detection performance of the proposed optimal threshold 

modes is superior to the detection performance of conventional modes, especially in 

low SNR. 

From this result, it can be concluded that the single-optimal energy detection 

algorithm can increase the detection accuracy and can give better detection 

performance compared to all other energy detection algorithms, while the double-

optimal threshold scheme still gives better detection probability than other single and 

double threshold based conventional modes. 

 

Figure 4.14 Detection probability performance versus SNR of various energy detection 

          algorithms 

 

Figure 4.15 illustrates the performance of error probability as a function of SNR for 

various energy detection algorithms. It can be shown that the error rate of double-

threshold in both optimal and conventional modes are reduced greatly compared to 

single-threshold modes, while the double-optimal threshold mode still provides more 

reduction in error rate compared to the conventional double-threshold algorithm. For 

instance, when SNR=-10 dB, the error rates of the conventional and optimal single-
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threshold modes are 0.8 and 0.7341, respectively, while the levels of error rate of the 

conventional and optimal  are decreased greatly to 0.423 and 0.2935, respectively. 

 

Figure 4.15 Error rate performance in terms of SNR for various energy detection schemes 

 

The performance of the sensing time of the proposed algorithms is given in      

Figure 4.16. The simulations are based on the following parameters: SNR=-20 dB; 

AWGN channel bandwidth BW=20MHz; uncertain factor f=1.005; PH1=0.7; PH0=0.3; 

total periodic spectrum sensing frame T=100 ms; and region uncertainty factor 

f=1.005. The simulation results in this figure show the superior performance of the 

false alarm probability of the double-threshold modes compared to those using single-

threshold modes in terms of sensing time. For instance, for a given target false alarm 

probability Pf *=0.05, the sensing time required to meet this target using each of the 

conventional double threshold modes, double optimal threshold mode, conventional 

single threshold mode, and single optimal threshold is (1.9 ms, 2.1 ms, 4.3 ms, 7 ms), 

respectively. Obviously, double threshold algorithms can decrease the sensing time 

effectively compared to single threshold algorithms. 
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Figure 4.16 Performance of false alarm probability versus sensing time for different energy 

      detection algorithms 

 

4.8.3 Throughput Performance of the Proposed Algorithms 

In order to verify the performance of the throughput of the proposed algorithms, we 

need to simulate these algorithms using a computer simulator. In our simulation, we 

assume the following simulation parameters and radio environment. The sensing 

channel SNRS=-20 dB, cognitive radio link SNRCog =20 dB, bandwidth BW=20 MHz, 

desirable Pd
*
 =0.9, sensing period T=100 ms, and the region uncertainty factor f=1.005 

in case of double threshold energy detection mode. The system diagram is illustrated in 

Figure 4. 17. 

We aim in this evaluation to study the throughput performance of the proposed 

detection algorithms and compare them with existing schemes, showing the effect of 

both the sensing time and the probability of occupancy on the throughput values. 

Figure 4.18 and Figure 4.19 illustrate the achievable throughput of different energy 
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detection based spectrum sensing algorithms for CRN, with probability of occupancy 

PH1=0.4 and 0.8, respectively.  

 

Figure 4. 17 The system diagram of the performance evaluation of proposed energy 

          detection algorithms 

 

Figure 4.18 Throughput performance versus sensing time for different detection algorithms 

      with PH1=0.4, PH0=0.6 
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Figure 4.19 Throughput performance versus sensing time for different detection algorithms 

      with PH1=0.8, PH0=0.2 

As is clear from these two figures, in general, the achievable throughput of the 

double threshold algorithms is better than that of single threshold modes, where the 

maximum achievable throughput of double energy detection modes can be obtained in 

less sensing time compared to that in single threshold algorithms. For instance, in 

Figure 4.18, the maximum throughput in double optimal threshold modes can be 

achieved in sensing time (2.3ms), while in single optimal threshold mode the 

maximum throughput is obtained in sensing time almost (5.7 ms), indicating that the 

double optimal threshold algorithm has better performance than single optimal 

threshold algorithm. 

We can also observe from these figures that the throughputs of the optimal energy 

detection algorithms can be clearly affected with the changes of probability of 

occupancy PH1, while there were no significant effects in conventional energy 

detection modes, including single and double energy detection algorithms. For 

instance, the sensing time that is required to obtain the maximum achievable 

throughput in the single-optimal threshold algorithm can be reduced from 9 ms to 5.7 

ms when the spectrum occupancy rate PH1 changed from 0.8 to 0.4. Moreover, in 

double-optimal threshold modes, the sensing time that is needed to achieve the 
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maximum throughput can also be reduced from 4 ms to 2.3 ms when PH1 decreases 

from 0.8 to 0.4, showing the improvement of throughput of the optimal energy 

detection algorithms with the decreasing of spectrum occupancy rate.  

4.9 Summary 

In this chapter, novel energy detection algorithms for single user spectrum sensing 

have been developed. This work aims at minimising the probability of total detection 

error under noise uncertainty, by proposing an optimal threshold energy detection 

algorithm. I derived the closed form expression of the optimal detection threshold 

based on trade-offs between misdetection probability Pm and the probability of false 

alarm Pf. I discussed the effect of noise uncertainty on the performance of our optimal 

threshold scheme, and developed a dynamic optimal threshold factor    to combat the 

noise uncertainty. The simulation results show the advantages of this mode as long as 

the value of dynamic threshold factor   is equal to or greater than the noise 

uncertainty coefficient  .In addition, the results proved the effectiveness of this 

method on reducing the error probability, especially in low SNR.  

In order to validate the work in this chapter, the sensing performance of the 

proposed energy detection has been compared with that of existing energy detection 

algorithms [17, 20], and showed the superiority of its performance by simulation 

results. The results have been published in IEEE (ISCC2012) [28], which gives more 

confidence on obtained results.  

Furthermore, I proposed a new double-optimal threshold scheme, which provides 

more reduction in error probability. The performance of the proposed detection 

algorithm has been analysed and compared with other existing approaches. The 

detection performance and the throughput of the cognitive network are discussed, and 

they demonstrated the effectiveness of the double optimal threshold method on 

reducing the error rate, but at the cost of decreasing the detection accuracy. Therefore, 

there is a need for a trade-off between error rate level and detection level when 

determining the detection thresholds.  
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Chapter 5 

Cooperative Spectrum Sensing Based Optimisation Scheme 

5.1 Introduction 

CRNs are essentially designed to provide more spectrum resources for future 

wireless technologies. This requires each CR user within the network to perform 

spectrum sensing before utilising the spectrum in order to prevent any harmful 

interference to the primary network. In practice, the sensing channel between the 

primary transmitter and the CR user may suffer from fading and shadowing, which 

leads to a difficulty in obtaining an accurate spectrum sensing. CSS mechanism can 

solve this issue effectively by exploiting the feature of spatial diversity.  

In this work, we consider an infrastructure CRN consisting of one FC and multiple 

CR users interested in sensing a certain spectrum channel, which is licensed for PUs to 

use it for communication without interfering with the primary network. For this CSS 

application, the optimisation method is considered as the best and most effective way 

to get accurate detection at the FC, but at the cost of computational complexity leading 

to a lot of time to implement spectrum sensing. Furthermore, most existing CSS 

approaches are based on using energy detection for local sensing with the assumption 

that noise power can be accurately estimated. However, in practice this is difficult and 

the noise uncertainty at the local sensing degrades the sensing performance even if 

CSS strategies are adopted. Therefore, this issue needs to be considered in the design 

of the CSS algorithm. 

In this work I address these challenges by adopting adaptive optimal energy 

detection algorithm at the local sensing, which is presented in the previous chapter, 

and using an optimal decision fusion rule at the FC to get the final decision on 

spectrum occupancy. This offers a possibility to minimise the computational 

complexity by determination of the optimal detection threshold based on minimising 
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local error probability rather than total error probability. Unlike existing optimisation 

algorithms for cooperative spectrum sensing in which noise uncertainty is not 

considered as local sensing, in this work the impact of noise uncertainty is also 

considered while optimising the detection performance at the FC. 

The presented work in this chapter is organised as follows: Section 5.2 will give an 

overview of recent optimisation algorithms for cooperative spectrum sensing. In 

section 5.3 we will present our cooperative spectrum sensing scheme, and analyse its 

performance mathematically. The evaluation of our algorithm will be provided in 

section 5.4. Finally, in section 5.5 we will present a summary of this chapter.  

5.2 Background 

In practical CRNs, low SNR, fading and shadowing, and sensing time constraints, 

may cause a single detector to fail to sense the presence of the PU, which prompted the 

researchers to propose CSS. The detection performance of CSS algorithms are 

dependent on three main metrics, local sensing; reporting channel condition; and the 

fusion rules used at the FC. Energy detection algorithm is commonly used as a local 

sensing mechanism in CSS algorithms.  

Recent research in CSS has been concentrated on one or two of the CSS metrics in 

order to improve the sensing efficiency [22-27, 129, 134-137]. For instance, the 

optimal detection threshold of local sensing has been determined numerically based on 

minimisation of the total error probability at the FC in [26, 136], which takes a lot of 

time to implement due to computational complexity. In [22], the authors presented the 

optimisation of CSS based on both Constant Detection Rate (CDR) and Constant False 

Alarm Rate (CFAR), and showed that the  optimal detection performance can be 

obtained through the cooperation of a certain number of users with high sensing 

channel SNR rather than all cooperative users. 

However, all above optimisation CSS approaches are grounded on an ideal wireless 

environment, and made upon the assumption that the noise power is totally known at 
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each cognitive user, and the impact of noise uncertainty on the detection threshold 

setting has not been considered. In a realistic wireless environment, these assumptions 

become impractical and cause deterioration in the performance of CSS, especially in 

law SNR environment. 

In this work, I propose a different optimisation mechanism for centralised CSS 

through the expansion of my previous work in [28] to encompass the CSS. Instead of 

determining the optimal threshold of the local sensing that minimises the total error 

rate at the FC, which increases the computational complexity, I determine the optimal 

threshold based on minimising the local error rate in the same way as [28], and then 

the optimum value of the total error rate can be obtained by using the optimal decision 

rule at the FC. I also consider the noise uncertainty at the local sensing, which 

increases the total detection accuracy especially in low a SNR environment. 

5.3 Cooperative Spectrum Sensing Optimisation Algorithm 

In my work I consider a scenario for CR application where a CRN with M of CRs 

and one FC wants to exploit the unused primary TV channels network, also called TV 

white spaces. The system framework used in our work is illustrated in Figure 5.1. 

We assume the primary transmitter PT and the FC are far apart, so the relative 

distances between any two CRs are much smaller than their distances to the PT, then, 

the primary signal received by each cognitive user can be assumed to be independent 

and identically distributed. We also assume that the reporting channels (links between 

CRs and the FC) are under bandwidth limited, therefore, we employ a one-bit hard 

decision fusion rule at the FC rather than the data fusion rule; which needs to exchange 

a large number of bits with the FC. 

In order to utilise the TV channels opportunistically, the CRs are required to 

perform cooperative spectrum sensing first, and then if the white spaces are detected 

they will be allowed to access the spectrum safely. 
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Figure 5.1 A Cognitive Radio Network Opportunistically Using the Spectrum Licensed to a 

       primary TV broadcast network. 

 

 

 

Figure 5.2 Cooperative Spectrum Sensing Optimisation Model. 
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In overlay spectrum access approaches, the CRs need to perform periodical and 

precise sensing to observe the primary system activities. In this work, we present a 

new cooperative spectrum sensing scheme based on adaptive optimal energy detection 

to increase the accuracy of spectrum sensing, especially in a low SNR environment. 

The procedure of our CSS scheme is given in Figure 5.2, where each CRi                                 

(i =1,2,….,M) performs local spectrum sensing individually using the adaptive optimal 

energy detection algorithm [28], then makes its binary decision bi and forwards it to 

the FC. Finally, the FC combines all those local decisions using the optimal decision 

fusion rule to make a final decision B whether the spectrum is occupied or vacant. 

Here, we consider the optimisation of CSS when optimal ED and optimal decision 

fusion are used. Furthermore, to make our detection design more practical and 

realistic, the impact of noise uncertainty and the reporting channel error are applied. 

5.3.1 Local Spectrum Sensing 

For local spectrum sensing mechanism, I adopt the adaptive optimal threshold 

energy detection algorithm which presented in Chapter 4. This energy detection 

algorithm provides more reliable and accurate detection performance [28]. In this 

energy detection algorithm, the optimal detection threshold was determined based on 

minimising the error probability Pe, which can increase the spectrum utilisation 

efficiency while providing more protection to the primary users. In order to study the 

detection performance of the proposed spectrum sensing scheme, we need to determine 

the detection metrics Pd, Pf, and Pm, respectively. To avoid repetition, we can use the 

equations derived in Chapter 4. All the mathematical analyses of these spectrum 

sensing metrics can be found in sections 4.3, 4.4, 4.5, and 4.6. 

5.3.2 Optimisation of Cooperative Spectrum Sensing 

Existing contributions in the area of cooperative spectrum sensing optimisation 

focus on determining the optimal detection threshold numerically, which will add more 

time to implement for its computational complexity. In this section, we investigate the 
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optimality of cooperative spectrum sensing when optimal energy detection for local 

sensing and optimal counting fusion rule are applied. 

 

At the FC, in order to make an accurate spectrum sensing decision, the FC needs to 

employ an appropriate fusion technique. Decision fusion rules are often carried out 

centrally at the FC as a counting (K out of M) logical functions, which include the 

AND, OR, and majority rule as special cases. This means that if K or more CR users 

decide hypothesis H1, then the final decision B will be H1 [138]. 

    
                               

 

   

                                        

  (5 - 1)  

where    denotes the single local decision of i
th

  CR user. 

In practice, most of the reporting channels between CR users and the FC are 

imperfect due to fading and shadowing, thus, error may occur during sending the 

sensing decisions to FC. In such a case, we can model the reporting channels as binary 

symmetric channels with error probability Pe, and the detection and the false alarm 

probabilities at the FC can be represented, respectively, as [139]: 
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 (5 - 5)  

Where      and       are the probability of detection and the false alarm probability 

of the i
th 

CR user at local sensing, respectively, while     and     represent the 

detection and false alarm probabilities of the i
th 

CR user received at the FC, 

respectively. 
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When the reporting channels between CR users and the FC are perfect and free of 

error, the sensing results will be sent correctly to the FC, thus, the detection and the 

false alarm probabilities of each CR user will be the same at the FC. According to      

(5-3) and (5-5), the probabilities of detection Qd and false alarm Qf  at FC can be 

written based on binomial distribution, respectively, as: 
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 (5 - 7)  

where      and       are the probability of detection and the false alarm probability of 

the i
th 

CR user, respectively. 

Clearly, when K=1, the equation (5-6) represents the OR rule and written as 
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(5 - 9)  

 

                  
 

 (5 - 10) 

In the case of double-optimal ED at the local sensing, the      can be obtained using 

(4-41) in chapter 4. 

The equation (5-6) represents the AND rule when K=M, then it becomes 
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Finally, the detection probability of majority rule can be determined by 

setting            , and then the equation (5-6) becomes: 

           
 

 
     

 

        
   

 

     

 (5 - 13) 

Based on the assumption that the distance between the primary transmitter and any 

CR user is large compared with the distance between any two CR users, we can 

assume that the SNR of the sensing channel at each CR user is identical,                    

γ1= γ2…… = γM= γ. Furthermore, in the case of an AWGN environment, we assume 

that all CR users use the same detection threshold λi, implying  Pf,1=Pf,2= …….. = Pf, 

and Pd,1=Pd,2= …….. = Pd. therefore, the overall false alarm and the detection 

probabilities are given based on voting fusion rule, respectively, by: 
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There are two main criteria to assess the performance of spectrum sensing: 

maximizing the detection probability for a given target of false alarm probability 

(Neyman-Pearson criterion), or minimising the total error probability based on some 

optimal parameters (Bayesian criterion). Here, we consider the optimality of CSS 

under the Bayesian criterion, which is more practical in situations where the a priori 

probabilities of the two hypotheses H1 and H0are assumed to be known. For binary 

hypothesis test problem, four possible cases can occur: 1) decide H0 when H0is true; 2) 

decide H0 when H1 is true; 3) decide H1 when H0 is true; 4) decide H1 when H1 is true.  

Another assumption, which the Bayesian paradigm is based on, is that a cost is 

assigned to each possible decision. The goal in the Bayesian criterion is to determine 

the decision rule so that the average cost, also known as Bayesian risk R, is minimised. 

Under this criterion, we can define the Bayesian risk of CSS as [26]: 
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     (5 - 16) 

 
                                  

                                  
(5 - 17) 

 
                                    

            
(5 - 18) 

Where C00, C01, C10, and C11represent the cost of correct identification of unused 

spectrum, mis-detection, false alarm, and correct detection, respectively. Observe that 

the terms1 and 4 of the right side in (5-18) represent the correct decisions, while the 

terms 2 and 3 are the error decisions. Clearly, in wireless digital communications, 

making a wrong decision is always more costly than making a correct decision, that’s, 

C01>C11&C10>C00. Note that, if we choose the cost of an error decision to be “1” and 

the cost of a correct decision to be “0”; that is, C00 =C11=0&C10 =C01 =1. Thus, the 

Bayes average risk in (5-18) can be reduced to the average error probability as [129]: 

                 (5 - 19) 

Substituting (5-6) and (5-7) into (5-18), and since the Qm=1-Qd, we have the error 

probability represent as: 

 

         
 

 
   

 

         

 

   

    

    
 

 
   

 

      
   

 

   

     

(5 - 20) 

My goal here is to determine the optimal K that minimises the total error probability 

Qe. In [136], the optimal decision fusion rule that minimises the overall probability of 

error was given, which proved that the half-voting rule (majority rule) is an optimal 

fusion rule,  and the optimal Kopt was found to be: 
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     (5 - 21) 

Where     is the ceiling function. 

 

In my work, I consider the optimality of CSS under Bayesian assumption, where the 

a priori probability of the spectrum occupancy is assumed to be known, thus, the 

optimisation of CSS will be represented as the following problem: 

    
     

      (5 - 22) 

We can simplify (5-16) using the fact that 

                 
 

 
   

 

         

 

   

    (5 - 23) 

We have 

 

         
 

 
   

 

         

 

   

   
 

 
   

 

         

 

   

  
 

 
     

 

                    

   
 

 
   

 

      
   

 

   

   
 

 
   

 

      
   

 

   

  
 

 
   

 

       
   

 
   

     

(5 - 24) 

Then, 
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(5 - 25) 

The minimum probability of error and the corresponding optimal K can be obtained 

by applying the first partial derivative for (5-21) and then find the solution of: 
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(5 - 27) 

       
                  

       
   

    (5 - 28) 

This can be simplified as follows:  

 
  

  
 
    

    
 

 

 
   

   
 
    

    
 

 

 (5 - 29) 

Taking the natural logarithm for two sides of the equation, we obtain the following: 
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5.3.3 Time Model of Optimisation CSS scheme 

It is desirable in CR applications to make spectrum sensing time much lower than 

the transmission time that is allocated for communication, so that the throughput of CR 

networks can be increased. In CSS mechanisms, the sensing period within each 

spectrum sensing frame is divided into local sensing time and reporting time; which 

depends on the number of cooperative users. 

 

Figure 5.3 Spectrum Sensing Time Structure of Conventional CSS Scheme 

As illustrated in Figure 5.3, the spectrum sensing time TS of CSS schemes can be 

reduced by decreasing both local sensing time TLS and reporting time TR 

simultaneously. The spectrum sensing time TS of the conventional CSS schemes can be 

given as : 

         (5 - 32) 

Where T denotes the total frame time, and TX represents the transmitting time. 

Using Figure 5.3, the sensing time TS can be given as: 

           (5 - 33) 

Then: 

             (5 - 34) 
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Obviously, local sensing time TLS = N/BW depends mainly on the number of 

samples N and the bandwidth BW of the sensing channel, and practically TS is often 

determined to a certain value depending on the type of application. As proved in 

chapter four, our local optimal ED method can achieve a target error rate in less time 

compared to that in traditional ED algorithms. On the other hand, the reporting time TR 

depends basically on the number of CR users and the time slot of each CR user Tr, 

which in turn relies on the BW of the sensing channel, where Tr =1/BW. However, 

reporting time TR may make the spectrum sensing time unreasonably long when the 

number of cooperative users M is very high. Thus, cooperating a number of CR users 

M
*
 that achieves a target of detection error rate Qe* instead of participating all CR 

users M can play a significant role in reducing the overall spectrum sensing time TS.  

In order to reduce the reporting time TR, first, at each reporting slot time Tr; the FC 

calculates Kopt and Qe using (5-21) and (5-20), respectively, then compares the 

calculated Qe with the desired one Qe*, where the number of cooperative users M* will 

be increased after each reporting slot time Tr. Finally, the number of CR users M* can 

be determined when Qe ≤ Qe*, where 1≤ M* ≤ M.  

Thus, the new expression of the sensing time   
  in our optimal CSS algorithm can 

be given as: 

   
     

        (5 - 35) 

Where    
  is the sensing time of our local spectrum sensing, and M* denotes the 

required number of CR users to achieve a target Qe*.  
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5.4 Evaluation of Optimisation CSS scheme 

To further validate the above mathematical analysis, we will give the simulation of 

our CSS scheme in terms of detection efficiency and sensing time delay. In these 

simulations, our optimised CSS algorithm is compared with other centralised CSS 

schemes, such as the schemes in [27, 136]. The simulation of the proposed CSS 

optimisation scheme is conducted under the following assumptions and parameters: 

 Both the cognitive radio and the primary networks are static, therefore, the 

wireless communication conditions during each sensing period can be considered 

constant.  

 Only one spectrum channel is sensed over each sensing period, and the additive 

white Gaussian noise AWGN channel is considered. 

 In all the following simulations, the number of samples at the local sensing N=500 

with noise variance   
     and the number of cooperative users is M=10, and any 

change in the simulation parameters will be mentioned later. . 

Our goals through these simulations are in two axes: 

1. Study and verification of the various optimisation parameters in CSS 

algorithm. 

2. Evaluate the performances of the proposed CSS approach in terms of 

detection accuracy and sensing time delay. 

 

In our proposed CSS algorithm, the optimisation parameters for both local spectrum 

sensing and CSS are considered, where the optimal detection threshold at the local 

spectrum sensing and the optimal voting rule Kopt at the FC are determined based on 

minimising the total error rate.  
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5.4.1 Simulation of Optimisation Parameters in CSS Scheme 

The following simulations aim to determine the optimal selections of the local 

sensing threshold λ and the number of voting fusion rules K in order to minimise the 

probability of total detection error Qe that may occur during spectrum sensing. The 

obtained minimum values of Qe for all possible values of K from K=1 to K=10 

conducted in AWGN detecting channel for both cases of spectrum occupancy PH1=0.3 

and PH1=0.5 are presented in Table 5.1 and  

Table 5.2, respectively. 

 

K 1 2 3 4 5 6 7 8 9 10 

λopt1 574 557 546 537 528 520 512 503 492 476 

Qe1 0.0760 0.0410 0.0300 0.0260 0.0250 0.0270 0.0317 0.0414 0.0618 0.1155 

λopt2 526 526 526 526 526 526 526 526 526 526 

Qe2 0.4500 0.3220 0.1716 0.0680 0.0273 0.0388 0.1044 0.2260 0.3690 0.4690 

Table 5.1 Total detection error rates Qe against optimal local threshold λopt and voting rule 

       number with spectrum occupancy (PH1=0.5, PH0=0.5) 

 

K 1 2 3 4 5 6 7 8 9 10 

λopt1 580 561 549 540 531 523 515 506 495 481 

Qe1 0.0738 0.0387 0.0277 0.0235 0.0224 0.0237 0.0274 0.0351 0.0511 0.0912 

λopt2 543.7 543.7 543.7 543.7 543.7 543.7 543.7 543.7 543.7 543.7 

Qe2 0.4073 0.1415 0.0371 0.0282 0.0655 0.1315 0.2055 0.2621 0.2904 0.2989 

 

Table 5.2 Total detection error rates Qe against optimal local threshold λopt and voting rule  

 number K with spectrum occupancy (PH1=0.3, PH0=0.7) 

 

Values λopt1 and Qe represent the optimal local threshold that is determined 

numerically and its related total error rate, respectively, while λopt2 and Qe2 denote the 

optimal local threshold which is calculated mathematically, and its related total error 

rate, respectively. As seen in Table 5.1, when 50% of the spectrum is occupied, the 

optimal fusion rule over all the examined range of local detection threshold that gives 
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the minimum total error rate in both existing [27, 136] and proposed methods is 

Kopt=5. When the spectrum occupancy is set to PH1=0.3 and PH0=0.7 as shown in  

Table 5.2, the optimal fusion rule remained the same without changing Kopt=5 under 

existing optimisation methods, while it reduced to Kopt=4 when the proposed algorithm 

is used.   

These simulation results are illustrated in Figure 5.4 (a) and (b), where the local 

detection threshold is examined within the range of λ=350 and λ=650 numerically in 

order to get the optimal value that minimises the total error rate as the same way in 

existing methods. In our optimisation method we get the minimum total error rate by 

determining the optimal local detection threshold λopt and the optimal fusion rule Kopt 

mathematically using the equation of optimal detection threshold in (4-15); which was 

derived in chapter 4, and the equation of optimal fusion rule in (5-31).  

 

 

 

 

 

 

 

Figure 5.4 Total detection error rate Qe versus voting number K and local detection 

                threshold λ with average SNR=-10dB 

 

The results show in the tables and figures above that our scheme is less complex 

and does not incur additional time to find the optimal threshold numerically, although 

there is a slight difference between the values of the total error rate that have been 

obtained using existing methods and that using our scheme. Moreover, the difference 

  

(b) PH1=0.3, PH0=0.7 

 

(a) PH1=0.5, PH0=0.5 
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of achieved minimum total error rates and the little shift of optimal local threshold in 

the results shown in Table 5.1 and  

Table 5.2 imply that the selections of optimal local threshold λopt and optimal fusion 

rule Kopt depend on the particular spectrum occupancy statistics represented by PH1 

and PH0, and the condition of sensing channels. 

 

Figure 5.5 shows the effect of spectrum occupancy PH1 and PH0 on the value of 

optimal fusion rule Kopt for different SNR values. It is obvious that the optimal value of 

the fusion rule is greatly affect with the values of spectrum occupancy at low SNR 

environment, but this effected is reduced with increasing the SNR, and almost reaches 

a state of stability about the value of half voting Kopt=M/2 at high SNR, as it is in the 

purple line in this figure. Another characteristic point that can be distinguished in this 

figure is that for any given value of SNR and when spectrum occupancy rate 

PH1=PH0=0.5, the value of optimal fusion rule will be fixed on half voting value 

Kopt=M/2. 

 
 

Figure 5.5 Optimal fusion rule Kopt versus spectrum occupancy statistics PH1 and PH0 

Another important factor that affects the value of Kopt in order to minimise the total 

detection error rate is the local detection threshold λ. Figure 5.6 and Figure 5.7 show 
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the relationship between Kopt and λ for different values of spectrum occupancy and 

SNR of sensing channel, respectively. 

 

Figure 5.6 Optimal fusion rule Kopt against local detection threshold λ for different PH1 values 

    in CSS under AWGN channel with SNR=-10 and M=20. 

 

 

Figure 5.7 Optimal fusion rule Kopt against local detection threshold λ with different SNR in 

      CSS with spectrum occupancy rate PH1=PH0=0.5 and M=20 
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As can be seen in Figure 5.6 and Figure 5.7, under different values of spectrum 

occupancy and SNR of sensing channel the value of Kopt decreases as the value of λ 

increases. Furthermore, at small threshold values the optimal fusion rule is AND rule, 

Kopt=20, meanwhile for large threshold values the optimal fusion rule is OR rule, 

Kopt=1. On the other hand, the value of Kopt also changes as the values of spectrum 

occupancy and SNR change. For instance, in Figure 5.6 and for a fixed local threshold 

(λ=510), when the values of probability of spectrum occupancy PH1 are (0.3, 0.5, and 

0.7), the values of Kopt that minimise the total error rate at the FC will be (11, 10, 9), 

respectively, indicating that the optimal fusion rule decreases while increasing the 

spectrum occupancy rate PH1. Furthermore, it can be shown that in Figure 5.7 under 

different values of SNR (-15dB, -10dB, and -5dB), and for a given threshold value 

(λ=540), the values of optimal fusion rule Kopt are (4, 7, and 15), respectively, which 

implies that the Kopt values increases as the SNR of sensing channels increases.       

 

From all above simulation results presented in this section we can conclude that the 

minimisation of total error rate at the FC occurs when optimal threshold at the local 

sensing and optimal fusion rule at the FC are selected. In addition, the value of optimal 

fusion rule Kopt depends basically on several factors, including spectrum occupancy 

rate, SNR of sensing channel, and local detection threshold λ, and all these factors are 

nested with each other in terms of impact on the value of Kopt. However, at low SNR 

the value of Kopt increases as the value of spectrum occupancy PH1 increases, while at 

high SNR the value of Kopt will fix on half voting rule Kopt=M/2 for all values of 

spectrum occupancy PH1. In general, increasing the value of local detection threshold 

λ will lead to decrease the value of Kopt, and for low fixed λ the optimal fusion rule 

will be AND rule, Kopt=M, while at large fixed λ the optimal fusion rule is OR rule, 

Kopt=1. 
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5.4.2 Spectrum Sensing Performance 

In this subsection, we present the sensing performances of our proposed CSS 

algorithm, the performance of existing CSS schemes is also provided for comparison. 

As mentioned earlier, the spectrum sensing performance is measured by three major 

metrics: detection probability Pd; false alarm probability Pf; and mis-detection 

probability Pm. Obviously, it is very desirable when designing any spectrum sensing 

algorithm that Pf and Pm should be as little as possible and Pd should be as much as 

possible. 

In the following simulations, we will provide the comparison of the sensing 

performance for CSS with different fusion rules. In these experimental simulations we 

set the total detection rate at the FC Qd=0.99, thus, the total mis-detection probability 

at the FC for all conventional CSS approaches is Qm=0.01, and the uncertainty region 

factor        for the case of double threshold energy detection scheme. 

Figure 5.8 depicts the false alarm performance with average SNR for different 

fusion rules. It can be seen that the optimal CSS based AND algorithm has a very low 

false alarm probability Qf value compared to that with majority rule, which in turn 

outperforms all other CSS schemes.  

 

Figure 5.8 False alarm probability versus average SNR with different fusion rules 
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Figure 5.9 shows the mis-detection rate performance as a function of SNR for 

various fusion rules. As can be clearly seen, the performance of optimal CSS using OR 

rule is much better than other fusion rules.  This is due to the characteristics of 

decision fusion rules, which are designed to suit the required spectrum sensing 

applications. In other words, for spectrum sensing applications that require very low 

Qf, CSS based AND fusion rule is better, while for applications with very low Qm, CSS 

based OR fusion rule is the best. However, there is no fusion rule that provides very 

low values of Qf and Qm simultaneously, therefore, for such applications a trade-off 

between these two sensing metrics is needed, which can be obtained by using CSS 

based majority fusion or optimal fusion rule algorithm. 

 

 

Figure 5.9 Mis-detection probability versus average SNR with different fusion rules 

Figure 5.10 shows the detection error performance as a function of SNR with 

different decision fusion rules (AND; Kopt=M, OR; Kopt=1, Majority; Kopt=M/2). This 

figure gives a clear picture of that the error performance of a double-optimal ED 

outperforms all the rest of the cooperative and non-cooperative algorithms, especially 

at low SNR, indicating to the inefficiency of the double threshold Ed with cooperative 

spectrum sensing mechanism. This figure shows also that the conventional CSS with 
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OR fusion rule has better error performance than that of optimal CSS with OR fusion 

rule, indicating that the optimal CSS with OR and AND fusion rules are not suitable 

for application with very low detection error. On the other hand, the CSS with majority 

rule has batter error performance than of CSS with OR and AND fusion rules, which 

makes it more convenient in CSS systems. 

 

Figure 5.10 Total detection error rate versus average SNR with different fusion rules 

 

In the following simulations, we will examine the effect of noise uncertainty on the 

total sensing performance at the FC, and explain the way to reduce this impact. In 

these simulations, for simplicity we assume that all CR users have the same SNR value 

of AWGN sensing channel. 

 

Figure 5.11 illustrates the total detection error probability Qe of the optimal CSS 

based majority fusion rule with different noise uncertainty values . Here, we used the 

majority fusion rule at FC, as it represents the optimal fusion rule when the spectrum 

occupancy is 50%.   



 

 

110 

 

Figure 5.11 Total detection error rate against SNR with various noise uncertainty values () 

As shown in Figure 5.11, there is a significant decline in detection error at the FC 

due to noise uncertainty at the local sensing, and the level of this decline increases as 

the noise uncertainty factor  increases. For instance, suppose that the desired error 

rate required at the FC is 0.05, to achieve this level, the SNR level at the local sensing 

should be -10.7dB in the case of without noise uncertainty =1.00, while this level 

increases to -5.45dB and -3.3dBfor =1.10 and =1.20, respectively. This indicates 

that the cooperation gain feature of reducing the detection sensitivity at the local 

sensing in CSS may lose as a result of the impact of noise uncertainty. It also can be 

seen from the simulation that the SNRwall level, a level beyond which the detector 

cannot detect the signals, increases as the noise uncertainty factor  increases. For 

instance, when noise uncertainty factor is =1.10, the value of SNRwall will be -7.2 dB, 

while at the value of =1.20, the SNRwall is -4.4 dB, which indicates that the SNRwall 

also is affected by the noise uncertainty. 
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The total detection rate performance Qd of our optimal CSS algorithm with different 

noise uncertainty values  is given in Figure 5.12. As seen in this figure, the detection 

performance of our optimal CSS in the event of the presence of noise uncertainty is 

very poor compared to that without noise uncertainty, and when the value of noise 

uncertainty factor ρ increases, the value of SNRwall will increase and in turn makes 

the detection unreliable and impractical even in normal values of SNR. For instance, in 

order to achieve a desired Qd=0.9, we need a sensing channel with SNR=-12.4 dB in 

the case of full noise knowledge, while in the case of noise uncertainty with ρ=1.10, 

we need at least a sensing channel with SNR=-5.85dB. 

 

 

Figure 5.12 Total detection probability versus SNR with different noise uncertainty values  

To further validate our optimal CSS algorithm we compare the detection and error 

performances of our optimal CSS algorithm to other optimisation based CSS schemes 

presented in [27, 136]. 
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Figure 5.13 illustrates the performance of total detection probability with SNR for 

various optimal CSS schemes in the presence and absence of noise uncertainty. There 

are several important points that can be observed in this figure. First, the detection 

performance of optimal CSS schemes outperforms that of conventional CSS algorithm, 

especially in low SNR environment. Second, the detection performance of our optimal 

CSS approach is very close to that of existing optimal CSS schemes, especially in the 

case of full knowledge noise power (without noise uncertainty). Finally, the detection 

performance of all spectrum sensing approaches is affected by the noise uncertainty in 

general, but this effect is much greater in the optimal based CSS schemes compared to 

the traditional CSS schemes. This is due to the SNRwall that limits the ability of the 

detector in local sensing for detecting the signals, which in turn depends on noise 

uncertainty factor ρ according to (4-27) in chapter four.   

 

 

Figure 5.13 Total detection performance versus average SNR in different CSS schemes with 

      and without noise uncertainty 
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Figure 5.14 describes the detection error performance with SNR in various CSS 

algorithms, including our optimal CSS scheme in both with and without noise 

uncertainty, and shows that our optimal CSS scheme has the same error performance 

as existing optimal CSS algorithms, which outperforms that of the conventional CSS 

scheme. However, despite the fact that our optimal CSS algorithm and existing optimal 

CSS schemes have almost the same spectrum sensing performances, our optimisation 

algorithm has less complexity and does not need more additional time for selecting the 

local detection threshold compared to existing optimal CSS algorithms.   

 

 
Figure 5.14 Total detection error performance against average SNR in different CSS 

            algorithms with and without noise uncertainty 

 

In CSS practical scenarios, the reporting channels between CR users and the FC are 

assumed to be imperfect due to the fading and shadowing effects. Therefore, to make 

our optimal CSS algorithm more practical, we need to consider this practical scenario 

in our optimal CSS scheme. In the following simulations, we will assess our optimal 

CSS algorithm when the noise uncertainty with ρ=1.2 and the reporting channel error 

with error rate R=0.3 are considered.  
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Figure 5.15 shows the performance of detection error rate of our optimal CSS 

algorithm with SNR in the presence of noise uncertainty and reporting channel error.   

As is evident in Figure 5.15, the performance of detection error rate at the FC in our 

optimal CSS algorithm deteriorates dramatically when both noise uncertainty with 

ρ=1.2 and reporting channel error with error rate R=0.3 are applied (pink line), and this 

deterioration is somewhat lower compared with that in traditional CSS algorithms 

(pink dashed line); especially within the range of SNR between -4 dB and -1 dB. 

However, due to the noise uncertainty the total error rate will be very high at the SNR 

level below SNRwall, which in this simulation is equal to -4.35 dB according to noise 

uncertainty factor ρ=1.2. On the other hand, according to error rate R, the reporting 

channel error can limit the total error rate Qe to a value, 0.1 in this simulation, even in 

high SNR of sensing channel. 

 

Figure 5.15 Total error performance versus SNR in CSS with noise uncertainty and reporting 

    channel error 

Figure 5.16 gives the simulation results of the total detection rate with SNR in CSS 

algorithms when both noise uncertainty and reporting error are considered. As is very 
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clear, the detection rate of our optimal CSS scheme declines significantly in the 

presence of both noise uncertainty and reporting error. For instance, for a given   

SNR=-10 dB, the detection rate is 0.986 in the case of perfect conditions, while it 

reduces to 0.15 in the case of imperfect conditions, when both noise uncertainty with 

ρ=1.2 and reporting error with error factor R=0.3 are applied. 

 

Figure 5.16 Total detection rate with average SNR in CSS with noise uncertainty and reporting 

   channel error 

 

After presenting the simulation results of the impacts of noise uncertainty and 

imperfect condition of the reporting channel on the sensing performance in our optimal 

CSS scheme, we need to provide a validation of our solution that tackles these effects.    

The issue of reporting error can be reduced by using relaying mechanisms or clustering 

approaches, therefore, the analysis and evaluation of the solution to this issue is 

postponed to the next chapter, which describes our clustering approach.   

In the following simulations, we will give the simulation results that validate our 

analytical mathematics that were presented previously as a solution to tackle the 

impact of noise uncertainty on the detection performance at the FC. In these 
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simulations, we also present the sensing performance of a conventional CSS scheme 

for comparison. 

            Figure 5.17 shows the performance of total detection probability with SNR 

for optimal and conventional CSS algorithms in the presence of noise uncertainty with 

ρ=1.2 and different values of threshold uncertainty factor α.  

 

            Figure 5.17 Total detection error rate versus SNR with ρ=1.2 and different α in CSS 

            algorithms 

 

As illustrated in this figure, there is a significant improvement in the sensing 

performance for both optimal and conventional CSS schemes with the use of threshold 

uncertainty factor α method, and this improvement increases the value of α increase 

towards ρ. For instance, when the value α=1.00, which represents the case of noise 

uncertainty without a proposed solution, the value of SNRwall=-4.4 dB, while the value 

of SNRwall will be decreased to -11.4 dB when α=1.15, which is very close to the value 

of ρ. Another distinctive point can be observed in             Figure 5.17 is the efficiency 

of sensing performance of our optimal CSS compared with that in a conventional CSS 

scheme. For example, in the spectrum sensing application that required a detection 
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error rate Qe=0.05, we can see that our optimal CSS scheme can achieve this error rate 

with SNR=-10.7 dB in the case of full knowledge noise power, while the SNR that 

achieves the same error rate will be -7.55 dB when the conventional CSS algorithm is 

used. Furthermore, in the event of noise uncertainty with factors ρ=1.2 and α=1.15, 

and for the same given error rate Qe=0.05, the SNR should be -8.15 dB in order to 

achieve this error rate using our optimal CSS, while this level of SNR will be increased 

to -6.3 dB for the same error rate when conventional CSS scheme is used. 

Figure 5.18 depicts the detection probability performance as a function of average 

SNR for both optimal and conventional CSS schemes, and shows the advantages of 

using threshold uncertainty method to address the impact of noise uncertainty on the 

detection efficiency.   

 

Figure 5.18 Total detection rate versus SNR with ρ=1.2 and different α in CSS algorithms 

As seen in Figure 5.18, the detection probability of our optimal CSS scheme 

outperforms of that of conventional CSS for both with and without noise uncertainty. 

For instance, in the case of full knowledge noise power, for a given SNR=-10 dB the 

detection error rate will be 0.98 when the optimal CSS scheme is used, while in the 
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conventional CSS algorithm it will be 0.077. Moreover, in the case of noise 

uncertainty with ρ=1.2 and α=1.15, and for a given SNR=-8dB, the detection 

probability of the optimal CSS algorithm is Qd=0.96, whereas the achievable Qd of the 

conventional CSS is 0.062. The simulation results in this figure show also that the 

detection performance can be improved when a suitable threshold uncertainty factor α 

is used at the local sensing. However, this method needs the noise uncertainty factor ρ 

to be known at the local sensing in order to set an appropriate threshold uncertainty 

factor α that tackles the impact of noise uncertainty. 

 

5.4.3 Spectrum Sensing Time Performance 

In this section we evaluate the spectrum sensing performance of our optimal CSS 

algorithm in terms of spectrum sensing time by comparing it with other conventional 

and existing CSS schemes. For that, first by fixing the number of CR users M, we 

investigate the effect of number of samples N on the sensing performance in the 

presence of noise uncertainty. Secondly, we assess the spectrum sensing performance 

with changing the number of CR users for different values of noise uncertainty factors 

ρ, while fixing the number of samples N. In our evaluation we set the simulation 

parameters as follows: number of CR users M=10; PH1=PH0=0.5; average             

SNR=-10 dB at each CR user; the desirable false alarm probability for all CR users is 

Pf =0.15; and bandwidth of sensing channel BW=6MHz. For simplicity, we assume 

that the reporting channels between CR users and the FC are free of error.   

Figure 5.19 shows the effect of changing the number of samples N on the 

performance of total error rate Qe in both optimal and conventional CSS algorithms in 

the presence of noise uncertainty. As shown in this figure, the performance of our 

optimal CSS scheme outperforms that in conventional CSS for all different values of 

noise uncertainty factors ρ. The simulation results also demonstrate that the number of 

samples N required to achieve the desired error rate Qe increases dramatically with a 

slight change in the noise uncertainty factor. 
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Figure 5.19 Total error probability versus number of samples in both optimal and conventional 

   CSS schemes with different noise uncertainty factors ρ 

 

ρ 
OED based CSS ED based CSS OED based CSS ED based CSS 

N 
TS= N/BW 

(ms) 
N 

TS= N/BW 

(ms) 

Increasing  

Rate % 

Increasing  

Rate % 

1.00 360 60 430 71   

1.01 570 95 680 113 58.3 59.1 

1.02 1010 168 1220 203 76.8 79.6 

1.03 2260 376 2660 443 123.8 118.2 

Table 5.3 The impact of noise uncertainty on the number of samples N when Qe=0.05 

Table 5.3 gives the obtained results of changing the noise uncertainty factor ρ on 

the number of samples N required to achieve a desirable error rate Qe=0.05. As 

observed in this table, for a given Qe and ρ, the number of samples N and the 

corresponding sensing time TS of our optimal CSS mode are less than those in 

conventional CSS mode. For instance, when the value of noise uncertainty ρ=1.02, the 

sensing time TS of our optimal and conventional CSS schemes are 168µs and 203µs, 

respectively, indicating that the sensing time required to satisfy a given spectrum 



 

 

120 

sensing performance is greater than that in our optimal CSS algorithm with the 

increasing rate of 20.8%.  

Furthermore, for a given Qe=0.05 and when ρ is increased from 1.02 to 1.03, the 

sensing time TS will be significantly increased in both our optimal and conventional 

CSS algorithms with the increasing rate of 123.8% and 118.2%, respectively. This is 

due to the fact that increasing the noise uncertainty factor will cause more deterioration 

in the performance of local spectrum sensing, which leads to increasing the total error 

rate Qe, thus we need to increase the number of samples in order to satisfy the target 

error rate. 

In Figure 5.20 we simulate the total error rate performance of our adaptive optimal 

CSS algorithm when different threshold factors are applied in order to reduce the 

impact of noise uncertainty.   

 

Figure 5.20  Total error probability versus number of samples in optimal and conventional CSS 

   schemes with noise uncertainty factor ρ=1.025 and different adaptive threshold factors α 

As shown in Figure 5.20, the detection error rate can be improved significantly as 

the adaptive threshold factor α increases. For instance, when ρ=1.03 and α=1.00; 

which represents the event of noise uncertainty, and for a given desired error rate     



 

 

121 

Qe= 0.05, the number of samples N will be 2260 and 2660 for both our adaptive 

optimal and conventional CSS algorithms, respectively. On the other hand, the values 

of N for both our optimal and conventional CSS schemes are decreased dramatically to 

340 and 850, respectively, when the value of adaptive threshold factor α increases to 

1.03. 

In the following simulations, we will evaluate the performance of the sensing time 

of our optimal CSS algorithm and compare it with conventional and existing 

algorithms. In these simulations, the number of samples N is fixed at 500, while the 

number of CR users was made variable in order to examine the effect of reporting time 

slots on the performance of overall spectrum sensing time. 

Figure 5.21 shows the performance of total error rate with number of CR users in 

the presence of noise uncertainty in different type of CSS schemes.  

 

 

Figure 5.21 Total error probability versus number of samples in optimal CSS scheme with 

        different noise uncertainty factors ρ and threshold uncertainty factors α 

As shown in Figure 5.21, in general, the performance of total error rate improves 

significantly with the increase in the number of CR users in all CSS schemes. We can 
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also observe that the sensing performance of optimal based CSS algorithms 

outperforms that in the conventional CSS scheme. In addition, the simulation results 

show that a slight increase in the noise uncertainty factor will lead to increase the 

number of CR users required to achieve the desired error rate, and this number will be 

less in optimal CSS schemes compared to the conventional CSS scheme. For instance, 

in the event of ρ=1.00 (without noise uncertainty), the required number of CR users M 

to satisfy a target error rate Qe=0.05 will be 7 and 14 in optimal and conventional CSS 

algorithms, respectively, whereas when the noise uncertainty factor increases by 0.025, 

the number of CR users M will be increased to 30 and 36 in optimal and traditional 

CSS schemes, respectively, indicating that the noise uncertainty can increase the 

reporting time in order to satisfy quality of service. 

Figure 5.22 illustrates the performance of error rate with the number of CR users M 

in different CSS schemes, and showing the advantages of using our adaptive threshold 

factor α in order to reduce the impact of noise uncertainty.    

 

Figure 5.22 Total error probability versus number of samples in optimal CSS scheme with 

       different noise uncertainty factors ρ and threshold uncertainty factors α 

 

As clearly observed from this figure that the error rate performance of all CSS 

approaches can be improved effectively when increasing the adaptive threshold factor 
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α, and the impact of noise uncertainty can be reduced almost entirely when α=ρ. For 

instances, in case of noise uncertainty with ρ=1.025 and α=1.00, the number of CR 

users M are 30 and 36 in both optimal and conventional CSS algorithms, respectively, 

whereas these numbers will be reduced to 8 and 14, respectively, when the adaptive 

threshold factor α increases to 1.02.   

 

The performance of error rate Qe with spectrum sensing time TS in different CSS 

schemes is presented in Figure 5.23. In this simulation, we assume that the number of 

samples M=500; bandwidth BW=5MHz; SNR=-10dB; reporting slot time of i
th

 CR 

user Tr= 10µs; while the number of CR users M is supposed to be variable within the 

range of 2 to 100.    

 

Figure 5.23 Detection error probability Qe as a function of sensing time TS in of different CSS 

    scheme 

 

It can be seen from the figure that the error rate performance of our optimal CSS 

scheme outperforms that in other existing CSS schemes. Although existing optimal 

CSS schemes have the same sensing performance of our optimal CSS scheme, as 

shown, they need extra time in order to achieve the same target error rate. For instance, 

when the value of desired error rate Qe=0.02, the sensing time TS required to achieve 
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this target is 232 µs using our optimal CSS scheme, whereas in other existing optimal 

and conventional CSS schemes the values of TS will be 332 µs and 592 µs, 

respectively. Through these results we can conclude that our optimal CSS algorithm 

can achieve any target error rate in less sensing time TS compared to other existing 

CSS schemes, thus, increasing the throughput of the cognitive radio network. 

 

5.5 Summary 

In this chapter, we study and examine the optimisation of CSS, and proposed a new 

optimal CSS algorithm based on adaptive optimal ED algorithm proposed in chapter 4 

[28]. This scheme uses the optimal ED algorithm that minimises the error rate at the 

FC, and then the local sensing results will be combined at the FC using optimal fusion 

rule, thus the total error rate Qe can be minimised very easily. We also investigated the 

impact of noise uncertainty ρ on the detection error rate, and developed an adaptive 

threshold factor α that reduces the effect of ρ, and the results demonstrated that the 

impact of noise can be reduced effectively when the threshold factor α =ρ.  

To validate the proposed optimisation CSS algorithm, the sensing performance of 

the proposed scheme is compared with that of existing optimisation CSS approaches 

[26, 136]. We observed through simulation that our optimal CSS algorithm achieves 

better performance than conventional approaches, especially in low SNR environment. 

Although that the existing optimal CSS schemes have almost the same sensing 

performance of our proposed optimal CSS scheme, they still required additional time 

to determine the optimal local threshold numerically. We showed also through 

simulations that our optimal CSS algorithm achieves the target error rate in much 

lower sensing time than other existing CSS schemes. 
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Chapter 6 

Multi-hop Clustering Approach for Centralised CSS 

6.1 Introduction 

In conventional centralised CSS, each CR user detects the presence of PU 

independently and then sends its local sensing observation or own decision over 

control channel to the cognitive fusion centre FC, which in turn makes a final decision 

on the spectrum availability either by collecting all the local observations using one of 

the data fusion methods (Soft Data Fusion) or by combining the local decisions using 

one of the decision fusion methods (Hard Decision Fusion) [13]. In this way, the 

impact of multipath fading and shadowing on the sensing channel can be addressed.  

Basically, the cooperation process between CR users in CSS consists of three main 

phases: local sensing, reporting, and data fusion. The performance of centralised CSS 

depends largely on the performances offered in each phase. These performances are 

affected by many factors such as the accuracy of the local sensing, reliability of the 

reporting channel, data fusion techniques, and network overhead. It is well known that 

the benefits of CSS come at the cost of control channel overhead and more 

transmission data, requiring more power consumption and introducing additional 

transmission delay.  

 

Clustering has been recently adopted in CSS for CRNs in order to overcome the 

problems exhibited by CSS. There are a number of research works that have focused 

on using clustering methods to improve the cooperative sensing performance under 

imperfect channel conditions [90, 93, 105-106, 108, 140], in which CR users are 

grouped into clusters and the user with highest reporting channel’s SNR is chosen as 

cluster head CH, which in turn sends the cluster decision to FC. 
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However, the existing cluster-based spectrum sensing approaches have been 

focused mainly on the classical clustering methods, which are inefficient in terms of 

energy consumption. Furthermore, in reality, most clusters far from the FC have 

reliable local sensing decisions, but may suffer from fading and shadowing due to low 

SNR of reporting channel, which may lead to further deterioration in sensing 

performance due to error reporting channel, and causing more energy consumption 

especially in large-scale CRNs. This chapter proposes a new method to deal with the 

above issues, considering the trade-offs among these problem. 

 

6.2 Multi-hop Cluster Based CSS Scheme 

In this chapter, we develop a multi-hop cluster based cooperative spectrum sensing 

algorithm. By dividing the total cooperative users into multi-level clusters  based on 

the distance between the CHs and the FC, the issues of power consumption and the 

degradation of spectrum sensing performance can be solved, more energy can be 

saved, and the performance of the spectrum detection and sensing delay can be also 

improved. 

 

6.2.1 Description of Multi-hop Cluster Based CSS Scenario 

In this model, we consider a wireless CRN with M CR users, which act as local 

sensing devices, and are assumed to be organised into clusters. Each cluster has a 

cluster head CH that makes a cluster decision based on the local decisions received 

from its cluster members and reports the result to the cognitive base station that acts as 

a FC. We also consider that the PU signal at CR users is not initially known, therefore, 

we adopt an energy detector to conduct the local sensing, which is suitable for any 

signal type. In this detection algorithm, only the transmitted power of the primary 

system is known. Therefore, this power will be detected firstly, and then compared 

with a predefined threshold to determine whether the spectrum band is available or not 

[121]. When the energy of the received signal is greater than the detection threshold  , 
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the detector will indicate that the PU is present, which will be depicted by the existing 

hypothesis H1, otherwise, the primary user is absent, which will be represented by null 

hypothesis H0. 

The system structure of a CRN according to our clustering approach is illustrated in 

Figure 6.1. First, all CRs are grouped into clusters using LEACH-C protocol [29].  In 

this protocol, the optimal number of cluster heads CHs is determined by the FC in a 

centralised way, according to the best reporting channel gain, distance from the FC, 

and the energy level of the CRs. Based on the multi-hop routing mechanism, the FC 

will determine multi-level CHs according to their distances from the FC. For instance, 

the FC will determine a set of level-1 CHs whenever the distance of CRs is greater 

than a certain energy level predefined by the FC. 

 

Figure 6.1 Multi-hop cluster-based cooperative spectrum sensing 
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Here, we make the following assumptions: 

a. We assume that a CRN topology is stable and consists of one fusion centre 

FC, one primary transmitter, and M of cognitive radio users CRs. 

b. The cognitive users either are location aware, equipped with Global 

Positioning System (GPS), or location unaware. In such a case, the FC 

broadcasts an advertisement signal to all CRs at a certain power level, and 

each CR user computes its approximate distance to the FC according to the 

received signal strength.    

c. CRs can use power control to tune the amount of sending power according 

to the transmission distance. 

d. The instantaneous channel state information of the reporting channel is 

available at the CRs. 

e. The channel between any two CRs in the same cluster is perfect since they 

are close to each other. 

The process of our proposed cluster-based CSS algorithm is conducted through the 

following steps: 

 

1. CR j in cluster i conducts spectrum sensing individually and makes a local 

decision Dij for i =1,…,K, j =1,…,Ni , where K is the number of clusters, 

Ni is the number of CR in cluster i and      
 
    , where M is the total 

number of CRs in the network. 

2. Then, each CRij will report its results to the CHi to make a cluster decision 

Ci based on Majority data fusion method. 

3. Afterwards, all CHLi+1will send their results Ci to the FC via intermediate 

cluster heads CHLi based on inter-cluster tree routing at FC. 
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4. Finally, the fusion centre will collect all sensing results from cluster heads 

and make the final decision based on majority fusion rule, and then 

broadcast it back to CRs via cluster heads. 

 

6.2.2 Multi-hop Cluster Formation 

The Multi-hop LEACH-C is a centralised clustering scheme, which operates in 

rounds, and each round consists of two phases: setup phase when the cluster heads and 

clusters are organised, followed by a steady state phase when cluster members begin to 

send their data to CH and on to the FC, as shown in Figure 6.2. 

 

Figure 6.2 Time line of Leach-C protocol 

A Setup Phase 

During the setup phase of our clustering protocol, each CR user sends information 

about its current location or its distance from the FC, current energy level, and SNR of 

reporting channel to the FC. We assume that the FC can reach all CRs in one hop over 

a common control channel. 

 

Firstly, the FC divides the CRs into different levels according to their distances 

from the FC. In order to reduce the energy consumption during the reporting phase, a 
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predefined distance threshold (dhop) will be determined according to default power 

level required for one hop communication. In the multi-hop scenario, if we assume that 

there are L hops, where there are (L-1) predefined distance thresholds 

(dhop1,dhop2,….,dhopL-1), where dhop1=dhop; dhop2=2*dhop1; dhopU-1 = (L-1)*dhop. 

Any CR user that has a distance less than dhop will be set in level 1, otherwise, if it 

has a distance less than dhop2it will be set in level 2, and so on. After discovering CRs 

at different levels, the FC sorts CRs in descending order according to the SNR of 

reporting channel and to their residual energy. Then, FC computes the average energy 

level of each CR user, and whichever CR users have energy above this average level 

will be listed under the list of candidates as a CHL for current round, while the 

remaining CR users will act as cluster members. The FC determines the optimal 

number of clusters based on minimising the energy consumed by cluster members to 

transmit their results to the CHL, by minimising the total sum of squared distances 

between the cluster members and the closest CHL [29].  

 

In this proposed multi-hop clustering algorithm, depending on the spatial 

distribution of CRs and their distances from the FC, I have two main possibilities for 

the number of clusters in each hop. The first possibility may be an equal number of 

clusters in each hop with a different number of members in each cluster, and the 

second possibility is the number of clusters may be unequal in every hop with an equal 

number of members in all clusters. In this thesis, I have adopted in the design of the 

multi-hop routing algorithm on the equal sized clusters, in which the number of cluster 

members is equal in all clusters. In order to discover clusters at different levels, the FC 

broadcasts its Identifier (ID) over the common control channel, and all cluster heads, 

which receive this broadcast, will record the FC ID. Then, all CHs send a message 

with their own ID’s to the FC using their default power level (the required power for 

intra-cluster communication). Based on a single hop distance, CHs that are near to the 

FC will form level one hop CHL1s. Afterwards FC will send a new control packet with 

all level one CHL1 ID’s in it. As the same, all CHs will reply to this message at default 

low power level with their own ID’s as well as ID’s of level one CHL1 ( CHL1 will not 
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reply to this message, since their ID’s are present in the control packet). In this case, 

CHs cannot send their reply directly to the FC, where they will send at lower power 

level. Since CHL1 are at the distance of one hop from CHL2, therefore, these replies will 

be received by level one CHL1 whose ID’s are present in the reply message, which in 

turn relays them to the FC. Similarly, the FC will repeat broadcast control message 

with ID’s of all CHs that have been discovered. This process continues until 

completing all CHs in the network. 

B Cluster Formation Phase 

The cluster formation is done by CHs, where each CH broadcasts an advertisement 

message (ADV) using a carrier-sense multiple access (CSMA) MAC protocol, which 

instructs the CR users to select their CHs. After receiving the messages from all CHs, 

each CR user sorts the received power signal of each message and selects the largest 

one as its selected CH. Then, each CR user should inform the CH that it would be a 

member of the cluster by sending back a join-request message to the selected CH using 

CSMA MAC technique. This join message contains the cluster head’s ID and the CR 

user’s ID. Each CH compares its ID with the received one, and if the cluster head’s ID 

matches its own ID, the CH will accept the join request; otherwise, the request is 

rejected. 

After completing the cluster formation, each CH knows which CRs are in its cluster 

and creates a TDMA schedule assigning each member a time slot to transmit its 

sensing result, and then informs all members in its cluster of a CSMA code which is 

used for communication among them. After the TDMA schedule is known by all 

members in the cluster, the set-up phase is complete and the data transmission can 

start. 

C Steady State Phase 

In this phase, the CRs start to transmit their results to the CH during their allocated 

time slots. As shown in Figure 6.2, this phase is divided into frames, which depend on 
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the number of clusters. The time to send a frame of data is constant and depends on the 

number of cluster members. During each frame, all the cluster members send their 

results to the CH in respect to the TDMA schedule, and then the CH collects the local 

decisions, makes the cluster decision about the presence of the primary signal, and 

sends it to the FC via intermediate cluster heads within different levels in accordance 

to its time slot. Afterwards, the FC combines the received clustering decision to make 

the final decision then broadcasts it back to all CHs, which in turn send it to their 

cluster members. 

 

6.3 A Mathematical Model of the Proposed Algorithm 

In this section we introduce the mathematical models for analysing the energy 

consumption and sensing delay, and computing the spectrum sensing probabilities for 

our proposed multi-hop clustering algorithm. These models are described in detail in 

the following subsections.     

 

6.3.1 Energy Model of Cooperative Spectrum Sensing 

Typically, most of energy dissipation in each single wireless device is the result of 

transmitting energy dissipation to run the radio electronics, the power amplifier, and 

receiving energy dissipation to run the radio electronics. In our analysis, we use the 

same radio model described in [29], where the energy required to transmit or receive 

one message of size B bits over a transmission distance R, is given by: 

           
            

                   

                             

  (6 - 1)  

                 (6 - 2)  

Where Eelec the electronic energy consumed to send or receive a message; ETX 

represents the total energy consumed by the transmitter, while ERX is energy consumed 

by the receiver.    and     denote the energy dissipated by the transmit power 
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amplifier to maintain an acceptable SNR in order to transfer data reliably, and depend 

on the channel model, and      
   

   
  is the breakpoint or threshold distance [141]. 

Power control can be used to invert this loss by appropriately setting the power 

amplifier; if the distance R is less than a threshold RO, the free space model    is used; 

otherwise the multipath model     is used. 

 

A Energy Model of Conventional CSS 

In conventional cooperative spectrum sensing approaches, the FC selects a sensing 

channel and instructs all CRs to individually perform local sensing, also sends the 

Time Division Multiple Access (TDMA) schedule for each CR user transmission. 

Therefore, every CR user will remain in sleep state with significantly less power and 

will not be on until its transmit slot time. Using a direct communication route, each CR 

user sends its local decision directly to the FC. Therefore, if the FC is far away from 

the CR user, direct reporting will consume more energy. 

 

Figure 6.3 Sensing frame structure of conventional CSS 

Figure 6.3 shows a general sensing frame structure of conventional CSS. In general, 

the energy consumption of a conventional CSS during the sensing period may include 

the energy consumed in sensing the channel occupancy Es; the energy consumed in the 

sleeping mode Ep; the energy consumed in computing the observations and making a 
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local decision Ec; and the energy consumed in transmitting the local decision to the 

fusion centre ER. In practice, Ep<Ec<<ER, then we can ignore Ep and Ec. Under these 

considerations, the energy consumption of M CRs can be calculated as follows: 

     
             

                                         

                                                    

  (6 - 3)  

where D represents the transmission distance between CR user and the FC. 

              (6 - 4)  

                (6 - 5)  

We can see from (6-5) that the power consumption is mainly depending on the 

number of CRs and the distance between the CR user and the FC. 

 

B Energy Model of Cluster Based CSS 

In one hop clustering approaches, the data transmission begins when each cluster 

member sends its local sensing decision to the selected CH during each frame as 

shown in Figure 6.4. 

Presumably, the distance between each cluster member (non-CH) and the closest 

CH is small, so the free space model R
2 

is adopted in energy dissipation. Thus, the 

energy consumed   by each cluster member is expressed by: 

                        
  (6 - 6)  

Assuming that the CRs are uniformly distributed in Z x Z region, and based on the 

approximation in [29], we can approximate the area occupied by each cluster to 
  

 
, 

thus, the expected R
2
 becomes: 

         
  

 
 (6 - 7)  

Where K is the number of clusters. Therefore, the expression (6-6) can be rewritten as: 
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Figure 6.4  Frame structure of cluster based CSS. 

                            

  

 
 (6 - 8)  

Also in this system, we assume that the FC is far from the CRs, thus the energy 

dissipation in each CH during a single frame follows the multipath model                  

(R
4
 power loss) and can be given as: 

 

                                            

                                    
(6 - 9)  

 
              

 

 
        

 

 
       

        

(6 - 10) 

Here R represents the distance between CH and the FC, and EDC denotes the energy 

dissipated in data collection. The energy dissipated in a cluster during the frame is 

given by: 

               
 

 
                

 

 
         (6 - 11) 
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and the total energy consumed by the network is 

                         (6 - 12) 

 

                           
 

 
        

 

 

                    
 

 
   

  
 

 
              

 

 
     

  

 
  

(6 - 13) 

 

                                       

                      

  

 
 

(6 - 14) 

The optimum number of clusters K can be found by differentiating the equation    

(6-14) with respect to K and equating to zero as: 

       
          

         
  (6 - 15) 

C Energy Model of Multi-hop Cluster Based CSS 

In multi-hop cluster based CSS algorithm, the FC sets the cluster heads, and issues a 

TDMA schedule for each level of cluster heads. Then, each cluster head will issue its 

own TDMA schedule for cluster members. Based on this schedule, cluster heads not 

only collect the local sensing results from their cluster members, but also act as 

relaying users for lower level cluster heads. Thus, the cluster heads that are far away 

from the FC will send their sensing results to the FC through intermediate cluster 

heads, which leads to consuming less energy compared to direct reporting. 

 

Here, the power consumption of each non-cluster head is the same as in the one-hop 

clustering algorithm. The power consumption of cluster heads will be different, 
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because the cluster heads are divided into multi-levels depending on their distance 

from the FC, and only the level one cluster heads will send their results directly to the 

FC, while other level cluster heads will send their results through next level cluster 

heads until reaching the FC. As a result, the power consumption in each cluster head 

will be dependent on the distance from other upper level cluster heads, as well as on 

the length of time taken receiving and relaying the results of lower level cluster heads.  

The calculation of our multi-hop clustering algorithm is as follows. The non-cluster 

head users only need to perform the local sensing and send their sensing results to their 

CH, and because they are close to each other, thus, the energy consumed by each 

cluster member can be expressed by: 

                        
  (6 - 16) 

The cluster head needs to fuse the all local sensing results and relay the other level 

cluster heads results, so its energy consumption is: 

 

                                                           

                        
(6 - 17) 

             (6 - 18) 

                           
 

 
               (6 - 19) 

                     

 

 
 (6 - 20) 

       
                     

                                

                     
                               

  (6 - 21) 

Where Relays(i) is number of data relay, i represents the cluster head, and dRelays(i) is 

the distance to its next hop CH. Finally, the total energy consumption can be written 

as: 
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                                      (6 - 22) 

 

6.3.2 Sensing Model of Multi-hop Cluster Based CSS 

Cooperative spectrum sensing schemes are developed to improve the detection 

performance and shorten the sensing time. The performance of these approaches is 

measured mainly by two parameters: detection probability Pd, which indicates that the 

primary user exists, and false alarm probability Pf, which indicates that the primary 

user is present while in reality it is not. Another important parameter is mis-detection 

probability Pm, which indicates that the primary user is absent while actually it is 

existing. 

 

In our algorithm, each cluster member makes its own one bit hard decision: ‘0’ or 

‘1’ which means absence or presence of primary activities, respectively. This one bit 

decision is reported independently to the FC via multiple intermediate CHs, which 

makes the final decision on the primary activity using one of the hard decision rules. 

 

A Local Sensing 

Spectrum sensing is essentially a binary hypothesis testing problem, assuming that 

cognitive users are independent of each other, and each one conducting a local sensing 

using a simple energy detection algorithm (ED) [121], so the model can be described 

as follows: 

         
                                            

                                 

  (6 - 23) 

xi(t) is received signal of the ith cognitive user; s(t) is transmitted signal of primary 

transmitter; ni(t) is zero mean additive white Gaussian noise;    is the channel gain;    

and    represent that the primary signal is absent and present, respectively. The main 

function of energy detection is to make a decision between the two hypotheses. 
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During local sensing process, each CR makes local sensing using the energy 

detection algorithm and reports its local observation to the fusion centre FC 

individually. The false alarm probability Pf and the detection probability Pd at each 

CR can be calculated as [121]: 

      
    

  
  (6 - 24) 

      
    

  
  (6 - 25) 

where, Q represents cumulative distribution function and can be expressed as [128]: 

      
 

   
       

  

 

 

 

    (6 - 26) 

      
 ,       

       ,   
      

 ,  
      

          N: number of 

samples,   
   is the noise power, and                                 denotes to 

signal to noise ratio SNR. 

Using the strategy of constant false alarm rate (CFAR) and for a given desirable Pf, 

the value of threshold   can be predefined from (6-24) as: 

       
        

        , then this value will be used to determine the value of 

detection probability Pd using  (6-25). In non-fading environments, where         is 

deterministic, the Pf and Pd of each CR user are the same as expressed in (6-24) and 

(6-25) above. On the other hand, when each CR user receives the primary signal 

through the Rayleigh fading channel, the received signal energy and SNR at each user 

are location dependent. In such a case, the average probability of detection         may be 

derived by averaging (6-25) over the fading statistics as follows [103] 

             
 

      (6 - 27) 
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Where       is the probability density function of the received SNR at each CR 

user under the Rayleigh fading channel. 

 

B Cooperative Sensing With Imperfect Reporting Channels 

In practice, because of the imperfect reporting channel, errors can be occurring on 

the local decision bits which are transmitted by CR users to the FC. Thus, each 

reporting channel can be modeled as a binary symmetric channel with cross-over 

probability pe which is equal to the bit error rate (BER) of the channel. Specifically, let 

pe = Pr(FC receives bit’1’| CR sends bit’0’) and pe = Pr(FC receives bit’0’| CR sends 

bit’1’). Consider the ith CR user, and for binary phase shift keying modulation (BPSK) 

with Rayleigh fading channels, the average error probability pe,i can be given as [132]: 

      
 

 
    

   
       

  (6 - 28) 

Where     is the average SNR of the reporting channel between the CR user and the 

FC. 

Under these conditions, the FC receives a bit ‘1’ in two cases: when a CR user 

sends a bit ‘1’ with probability            ; or when a CR sends a bit ‘0’ with 

probability           . On the other hand, the FC receives a bit ‘0’ under two cases: 

when a CR user sends a bit ‘0’ with probability            ; or when a CR sends a 

bit ‘1’ with probability            . Thus, the detection and false alarm probability at 

the FC can be written, respectively, as follows [139]: 

    
                          (6 - 29) 

    
                          (6 - 30) 
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C Majority (k out of n) Hard Decision Fusion Rule 

In general, there are three mean hard decision combination rules in wireless 

networks namely OR, AND, and Majority rules. If there are n cooperative users that 

have independent own decisions, when k=1, k=n, and k= [n/2], the k out of n rule 

represents OR rule, AND rule, and Majority rule, respectively. OR rule provides more 

protection to the primary system, because it allows the CRs to access the spectrum 

when all the reported decisions from CRs demonstrate that the primary user is absent, 

but it does not give us efficient spectrum utilization. On the other hand, in AND rule, 

the FC decides the primary user is present when all cooperative users reported that the 

primary user is present, thus, it gives a perfect spectrum utilization, but with poor 

protection to the primary system. Therefore, we adopted the majority rule in our 

system model, which provides a trade-off between the spectrum utilization and the 

interference protection. 

 

If the reporting channels are free of errors, then the detection and false alarm 

probabilities can be written, respectively, as: 

      
 
 
      

        
   

 

   

 (6 - 31) 

      
 
 
      

        
   

 

   

 (6 - 32) 

Where M is the total number of cooperative users, and k =M/2. 

 

Practically, most reporting channels are imperfect; therefore, errors may occur 

during reporting the local sensing results to the FC. Here, we consider a BPSK signal 

in a CR network; error probability pecan be calculated under multipath and shadowing 

effects according to (6-28). In our clustering approach, we assume that the cluster 
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members are close to each other, therefore, the intra-cluster communication channels 

(channels between cluster members and the related cluster head) are perfect          

(error free). The total detection and false alarm probability at the CHs and the FC are 

given, respectively, as follows: 

                      (6 - 33) 

                      (6 - 34) 

      
 
 
      

        
   

 

   

 (6 - 35) 

      
 
 
      

 
       

   
 

   

 (6 - 36) 

 

D Multi-hop Cluster Based CSS Mode 

Consider a multi-hop clustering cognitive radio network with both identical and 

non-identical channels. We assume that there are L hops between the primary user and 

the FC. Each non identical cluster head CHL forwards the cluster results to the next 

hop cluster head CHL-1 with probability error pe given as [132]:  

      
 

 
    

  
 

    
 
  (6 - 37) 

 

And for non-identical channels the equivalent probability error can be expressed as 

[139] 

    
 

 
            

   

   

   (6 - 38) 
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Where      is the probability error of one hop cluster. 

 

In the event that the reporting channel is identical, (the SNR is the same for all 

cluster heads), the equivalent probability error will be given as 

    
 

 
           

     (6 - 39) 

Then, the total QD&QF will be expressed as: 

                      (6 - 40) 

                      (6 - 41) 

 

6.3.3 Spectrum Sensing Delay of Multi-hop Cluster Based CSS 

Another metric that is important for spectrum sensing is detection delay time. In 

cooperative spectrum sensing, an additional time-delay will be introduced due to the 

cooperation between CRs and the FC.  Form Figure 6.3, the total detection delay of the 

conventional and the cluster based cooperative spectrum sensing, respectively, can be 

derived as follows. 

 

In conventional mode, all cooperative users perform local sensing independently at 

the same time, and then each one will send its sensing decision according to its own 

TDMA schedule time. Thus, the total sensing time of the conventional cooperative 

spectrum sensing Tcon. can be given as: 

 

                   (6 - 42) 

Where        is the local sensing time, M is the number of cooperative users, and    

denotes the reporting time of one user. 
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As we know, the main goal of the cluster-based algorithm is to reduce the 

communication overhead between the CRs and the FC, also to decrease the sensing 

time, thus increase the agility of the system. In the cluster based CSS scheme, after the 

formation of all clusters is completed, all cluster members within each cluster will start 

to perform the local sensing individually at the same time, and then report their 

decision results to their CHs using their TDMA schedule time. Afterward, each CH 

will send its cluster result to the FC according to its TDMA schedule time. Back to 

Figure 6.4, if we symbolize the setup time Tsetup, and the number of cluster K, then, the 

total sensing time of the cluster based CSS Tclus., can be written as 

                         
 

 
          (6 - 43) 

From the above equations (6-42) and (6-43), we can observe that the cluster based 

CSS has a shorter sensing time compared to the conventional approach due to the 

advantages of parallelism benefited from clustering, and when K=M,             , 

which is almost the same as that of the conventional scheme. When K<<M, the 

detection time can be decreased greatly with the clustering algorithm. 

In the multi-hop clustering mechanism, relaying the sensing results from far cluster 

heads to the FC via intermediate cluster heads introduces an additional delay, which 

depends on the number of all relaying signals in the network Nrelay. Thus, the total 

sensing time of the multi-hop clustering CSS approach will be the same in the equation 

(6-43) with adding relaying delay time Trelay, which can be expressed as follows. 

 

                 

 

   

    (6 - 44) 

                            
 

 
                  (6 - 45) 
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The optimal number of clusters K that minimises the total sensing time Tmultihop can 

be determined by differentiating the (6-45) with respect to K and equating the results to 

zero, as follows: 

               , 

                           

             

  
                

      (6 - 46) 

6.4 Simulations and Results 

The evaluation results obtained using MATLAB
® 

software are presented in this 

section, which show the performance gain of the proposed method in terms of 

spectrum sensing and power consumption. The conventional cooperative spectrum 

sensing schemes, such as direct reporting and traditional cluster algorithms are also 

simulated for comparison. The discussion of the simulation results is presented in 

detail in the following subsections. 

 

6.4.1 Energy and Sensing Delay Simulations 

For our experiments, we consider a cognitive radio network with100 nodes which 

are randomly generated and uniformly distributed between (x=0, y=0) and (x=200, 

y=200) with the BS at location (x=100, y=275) as shown in Figure 6.5, and the 

reporting message is 1 bit long. Also we assume a simple model for the radio hardware 

energy dissipation and adopt the same communication energy parameters as in [29], 

and are given as: Eelec= 50 nJ/ bit; Efs=   pJ/ bit/ m
2
; Emp=0.0013 pJ /bit/ m

4
; 

EDC=  nJ /bit. 
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Figure 6.5 shows the topology and the formation of our multi-hop clustering 

approach with 4-hops and 20 clusters, which we used in our simulation. Here, we 

consider that the FC can divide the CRs into 4 levels (Li), i = 1,2,3,4, based on their 

distances from the FC, assuming that the distance threshold of one hop 

communication              , which is here equal to (87.7 m). Thus, the FC will 

discover the different levels (L1, L2, L3, and L4) of CRs according to (do, d1, and d2), 

where d1=2do, and d2=3do, respectively.  

 

Figure 6.5 CR network deployment with Cluster formation 

 

Here, for simplicity, we considered that the number of CRs at each level is the same 

and equal to 5. In practice, this is not always true, because in some cases and 

depending on the distances between the CRs and the FC, the number of CRs in some 

levels will be greater than other levels, which leads to an unequal number of clusters in 

each level. However, there is not much impact on the evaluation of our energy mode 

under all assumptions, including equal number or unequal number of CHs at each 

level. 
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Figure 6.6 illustrates the total energy dissipation in the network with different 

modes. We can show that the energy performance of the cluster based CSS scheme is 

better than the conventional mode. Furthermore, more energy reduction can be 

achieved when the multi-hop clustering approach is used. It can also be shown that the 

energy consumption of the conventional mode increases greatly with the increase of 

the number of CRs, while in other modes it increases slightly with the number of CRs, 

particularly in multi-hop clustering mode.  

 

Figure 6.6Average Energy Dissipation versus number of users with different CSS modes. 

The results also show that there is a slight saving in energy performance of 4-hop 

clustering mode compared with 2-hop mode. For instance, in the case of 100 CRs, the 

results show that there is a great reduction in energy dissipation and savings can reach 

64% in one-hop clustering mode compared to the conventional cooperative mode, 

whereas the two-hop clustering mode has achieved 50% of energy savings compared 

with one-hop clustering approach. Furthermore, we will get a slight reduction in the 

energy consumed when the number of hops is increased.  As shown in Figure 6.6the 

decline of the energy consumed in 4-hop will be 15% compared to 2-hop mode. In 

other words, multi-hop clustering CSS algorithm can provide a great energy efficient 

transmission, which is particularly true for a wide cognitive radio networks. 
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The optimum number of clusters that minimises energy dissipation in cognitive 

radio networks is studied here. According to (14), we can analytically determine the 

optimal number of clusters K. Using our experimental parameters, and when    

                   the value of K will be (       . We verified this 

analytical result using simulations by varying K between 2 and 50. 

 

Figure 6.7 Energy dissipation versus number of clusters. 

Figure 6.7,which shows the energy dissipation as a function of K for two models 

(one-hop and two-hop), shows that the optimal number of clusters is around 4 for 100 

cooperative users, which agrees well with our analysis. As illustrated in the figure, 

when there are only a few clusters (less than optimal number), the cluster members 

need more energy to report the results to their cluster head over far distance, and when 

there are more clusters (greater than optimal number), the dissipated energy will 

increase as a result of the long distance between them and the fusion centre. 
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Another improvement that can be achieved by using our algorithm is the sensing 

agility. Figure 6.8 gives us the normalised sensing delay  
  

     
  in terms of the number 

of clusters K in different number of hops L.  

 
Figure 6.8 Sensing delay time performance of different cooperative mode 

As we can see in Figure 6.8, the normalised sensing time of single hop and multi-

hop clustering approaches have a steep decline with the increase in the number of 

clusters K, and then begin to increase gradually at different rates according to the 

number of hops L. More specifically, although the multi-hop clustering scheme 

reduces the sensing time significantly within the range         it adds further 

delay time within the range     , but is still much less than conventional mode 

(direct reporting).This is because more hops leads to more relaying needed to send the 

results to the FC, and thus, adds further delay time, according to (6-41) and (6-42). 

According to (6-43), we can analytically determine the value of the optimal number of 

clusters (Kopt) that gives a minimum sensing delay, which will be 10 when M = 100. 
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6.4.2 Spectrum Sensing Performance 

In this section, the sensing performance of multi-hop cluster-based CSS scheme is 

investigated under the perfect and imperfect reporting channels. The numerical results 

of our proposed algorithm are given to verify the analytical framework that is 

presented in the previous section. 

First, the sensing performance of the conventional CSS is presented, where CRs are 

reporting their local sensing results directly to the FC. Figure 6.9 shows the resulting 

receiver operating characteristic (ROC) curve for the decision fusion rules with the 

case of an Additive White Gaussian Noise (AWGN) for both sensing and reporting 

channels. 

 

Figure 6.9  ROC curve of cooperative spectrum sensing with different fusion rules 

In this simulation, we assumed that a cognitive radio network with M=50 

cooperative users operating at an average SNR of sensing channel                 

using N=50 samples. It can be seen from this figure that, for the same Qf  the Majority 

rule always outperforms OR rule and AND rules, and OR has better detection 

capability than AND fusion rule. 
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Second, the effectiveness of error reporting under Rayleigh fading channels is 

considered, as shown in Figure 6.10. Here, we assumed that the number of samples 

N=10, and the average SNR of sensing link (between the primary transmitter and the 

CRs) is -10 dB. As we can see from this figure, when the number of CRs M increases 

from 50 to 100, and using the majority rule as a decision fusion rule at both the FC and 

the cluster head, the detection performance will improve significantly. On the other 

hand, with the erroneous reporting channels, and when the average SNR of the 

reporting channel between each CR user and the FC is-5dB, the detection capability 

will be degraded due to the fading phenomena. 

 

Figure 6.10. ROC curves of cooperative spectrum sensing over Rayleigh fading channels with 

 and without error 

 

In Figure 6.11, the ROC performance of multi-hop clustering CSS scheme over 

Rayleigh fading is given. In this simulation, we consider 100 CRs are deployed 

randomly with different average SNR of sensing and reporting channels within the 

ranges of (-10, -5) dB and (-25, 25) dB, respectively. For simplicity, we assume that 

the noise power at each CR user is equal to 1, and also the majority fusion rule at both 
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the cluster heads and the FC is used. The results of conventional mode are also given 

for a comparison. 

 

Figure 6.11. ROC curves for multi-hop Clustering CSS using Majority fusion rule. 

As can be seen from this figure, the detection accuracy deteriorates as the number 

of error reports increases due to low SNR of the reporting channel. However, the 

sensing performance can be enhanced using a clustering approach.  By using the 

clustering mechanism, the local sensing will be sent to the FC via intermediate CR 

user (CH) that has the largest SNR of reporting channel. In this simulation, we set the 

number of clusters K = 5, and the reporting SNR of CHs are (25, 8, 3, 0, -1) dB. 

Simulation results indicate a clear improvement in sensing performance compared to 

traditional detection mode even though some CHs suffer from poor SNR, especially 

the far CHs. 

 

Figure 6.11 also illustrates the advantage of the detection capability of the multi-

hop clustering algorithm when the SNR of multi-hop is better than one-hop.  Here, we 

assume that the clusters (K = 5) are formed at the FC based on the CR users’ distances 

to the FC and divided into multi-hop levels. For instance, for two levels hop scenario, 
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2 in level-1 and 3 in level-2. In three levels hop scenario, 2 clusters in hop level-1, 2 in 

hop level-2, and 1 in hop level-3. Therefore, we can exploit the channel conditions 

between successive hops, which are much better than between far clusters and the FC. 

In our simulation, the SNR of the successive three levels hop communication are 

chosen randomly as (25, 8, 12, 14, 15) dB, respectively. In other words, 25 dB 

represents the SNR of reporting channel between the first CHL1 and the FC, 8 dB 

denotes to the SNR of reporting channel between the second CHL1 and the FC, and so 

on, while 15 dB is the SNR of reporting channel between the CHL3 and the first or 

second CHL2. As shown, the sensing performance of the multi-hop clustering scheme 

outperforms the one-hop mode, which basically depends on the channel conditions of 

the successive multi-hops. Although, the sensing performance of the multi-hop 

algorithm has not reached the ideal case (Free error case), it can be seen that there is a 

great improvement in the sensing performance for the 3-hop approach compared to    

2-hop, resulting from good reporting channels and the short distances between CHs. 

 

6.5 Summary 

Designing a reliable and efficient detection algorithm for spectrum sensing is a 

major problem in cognitive radio networks. In this chapter, we proposed a new multi-

hop clustering approach for cooperative spectrum sensing. In practice, most of CR 

users who have good local sensing information are far away from the FC, causing 

weakness in the reporting channel and thus reducing the detection performance. In this 

chapter, a new multi-hop clustering approach is developed that reports the local 

sensing results via a reliable reporting channel, hence increasing the detection 

accuracy.  

In order to evaluate the proposed CSS algorithm, the performance of the proposed 

scheme in terms of spectrum sensing and energy consumption has been compared with 

that in conventional approaches. The simulation results showed that our multi-hop 

clustering approach achieves better energy saving and detection performance than the 
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existing approach, at the expense of a little delay. Moreover, the proposed method can 

detect the spectrum availability much faster than conventional algorithms due to the 

characteristics of clustering, but adds a slight delay compared with the one hop 

clustering approach due to successive multi-hop relaying delay. Through simulation 

results obtained in this chapter, it can concluded that in order to design a good 

spectrum detector, trade-offs among the evaluation points is required, and we should 

balance these trade-offs according to the application requirements. 

The work presented in this chapter is published in two IEEE conference 

proceedings [30-31], which gave more reliability of the simulation results obtained in 

this work.  
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Chapter 7 

Multi-hop Clustering Approach for Decentralised CSS 

7.1 Introduction 

In decentralised CRNs such as cognitive ad-hoc networks and cognitive sensor 

networks, there is no control centre, thus the cognitive nodes have the ability to 

exchange their sensing information among themselves and make their own decisions 

as to which part of the spectrum they can use. As described in chapter 2, the existing 

decentralised cooperative spectrum sensing algorithms are still suffering from certain 

limitations. The most important issue is the large transmission bandwidth required for 

secondary users to share a large amount of sensing data in order to issue decisions on 

the spectrum availability collaboratively. Furthermore, these communications between 

cooperative users result in more energy consumption and further sensing delay. 

Another important issue is the occurrence of certain users close to each other which 

might lead to correlated shadowing, thus, hampering the cooperation gain. On the 

other hand, the lack of fusion centre implies that each cognitive user will need to 

perform its local sensing before transmitting the results to its neighbours without time 

synchronisation. The lack of synchronisation in local spectrum sensing may lead to 

make the cognitive user detecting not only the transmissions of primary users but also 

the transmission of other cognitive users, thus causing more false errors in local 

spectrum sensing. 

 

Various algorithms have been proposed to improve the performance of 

decentralised cooperative spectrum sensing in cognitive radio networks, which can be 

classified as: gossiping algorithms or clustering schemes. The work presented in [85]  

was aimed at reducing the sensing data that should be exchanged among neighbouring 

cooperative users using network coding. The authors in [113] have proposed an 
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incremental gossiping approach for efficient cooperation within a cognitive network 

termed as GUESS, where the cooperative users will send their sensing results only 

when either they have a change in their local measured signal after each step or receive 

the update messages from neighbouring users, thus, reducing the communication 

traffic overhead. Although these schemes are fast and robust to network changes, they 

are based on the assumption that the communication links between cooperative users 

are ideal, which makes them infeasible in practice.  

Relay techniques can improve the detection performance of the distributed 

cooperative spectrum sensing in the case of imperfect communication links between 

cognitive users, by making some users that have perfect reporting channel conditions 

relay the sensing decisions among cognitive users [82-83, 87-88, 142-143]. Although 

these protocols have improved the sensing performance, they added additional delay 

and more energy consumption.  

 

Cluster based distributed cooperative spectrum sensing mechanism is another 

method that can be used to reduce the network overhead. In these approaches, where 

there is no FC, the cognitive user that has a favourable channel gain can be selected as 

a FC which collects all results from CH. In [117-118], the authors have presented a 

distributed clustering approach to save the sensing energy. In these schemes, after 

forming the clusters, one of the members with the highest sensing gain will be selected 

as a CH, and a FC will be selected dynamically from all active CHs to balance energy 

consumption within network. However, in order to reduce the energy consumption in 

these schemes, cluster size needs to be small; however, this leads to an increase the 

number of clusters in the case of wide range networks. Moreover, more clusters leads 

to increasing the range communication between CHs and FC and more energy 

consumption, which are impractical. Therefore, there is a need fora new reliable and 

efficient algorithm for cooperative spectrum sensing in distributed cognitive radio 

networks. 
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In this chapter we present a novel hierarchical clustering algorithm for distributed 

CSS by combining clustering and multi-hop routing techniques. In this algorithm one 

of the CHs will be elected to act as a FC, while other CHs will send their cluster results 

to the selected FC either directly or via intermediate cluster heads based on their 

distances from the FC. This mechanism will bring us an increase in detection 

efficiency with a reduction in cooperation overhead. 

7.2 Multi-hop Cluster Based Decentralised CSS Scheme 

In this section, we present a multi-hop clustering approach for distributed 

cooperative spectrum sensing. In this approach, we have used the same idea of our 

multi-hop clustering algorithm presented in chapter 6 and employed it here to adapt 

with decentralised networks. First, we assume that all cognitive users that are close to 

each other are grouped into a few clusters. In this case, instead of each cognitive user 

sharing its sensing results with its neighbours, each cluster member will send its 

sensing result to a related CH, which in turn combines all the results of their members 

using a certain fusion rule and then sends the cluster result to FC. Unlike infrastructure 

based networks, due to the lack of FC in decentralised networks, one of the elected 

CHs will be selected as a FC. Based on the location of CH from the FC, each CH will 

send its result to FC either directly (one-hop communication), or indirectly via 

intermediate CHs (multi-hop communication).By dividing the total cooperative users 

into multi-levels clusters  based on the distance between the CHs and the FC, the 

issues of energy consumption and the degradation of spectrum sensing performance 

can be solved, more energy can be saved, and the performance of the spectrum 

detection and sensing delay can be also improved. 

7.2.1 Description of Multi-hop Cluster Based Decentralised CSS Scenario 

In our proposed algorithm, we consider a decentralised wireless cognitive radio 

network with M cognitive radio users CRs, acting as local sensing devices, and aim at 

sensing a certain spectrum band using cooperation mechanism. In order to reduce the 
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cooperation overhead while keeping a better spectrum sensing performance, we chose 

to utilise the clustering approach and multi-hop routing mechanism to conduct 

cooperative spectrum sensing in decentralised networks. The main idea of the 

clustering algorithm proposed in this work is to group cognitive users that are close to 

each other in clusters, where one of the cluster members will be selected as a CH based 

on their energy level and the SNR of reporting channel. Multi-hop routing techniques 

can also be exploited in decentralised CSS, which provides better transmission 

reliability between one user and other users in the cognitive network that may be not 

within direct wireless transmission range of each other. 

 

The structure of the decentralised cognitive radio network according to our      

multi-hop clustering approach is given in Figure 7.1.   

 

Figure 7.1 Multi-hop cluster-based decentralised cooperative spectrum sensing 
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In this algorithm, the CHs and clusters are formed in a distributed way, where the 

cognitive users who are close together form a cluster. Afterward, one of the CHs will 

be chosen to act as a FC based on energy level of the CHs, the CH who has the largest 

energy level will be acting as a FC. By considering the multi-hop reporting 

mechanism, the CHs in different levels will be determined with the help of FC based 

on the best SNR of the reporting channel among CHs of different levels. Here, the CHs 

and the FC will be dynamically selected in order to prolong the network lifetime. 

Our decentralised algorithm is based on the following assumptions: 

a. We assume that the cognitive radio network topology is stable with M of 

cognitive users.   

b. Cognitive users can use power control to tune the amount of sending power 

according to the transmission distance. 

c. The instantaneous channel state information of the reporting channel is 

available at the cognitive users. 

d. The channel between any two cognitive users in the same cluster is perfect 

since they are close to each other. 

e. We consider that all cognitive users are battery-operated devices; therefore, 

the CHs and FC are reselected at each round to prolong the overall average 

lifetime. 

The process of our proposed multi-hop cluster-based decentralised CSS algorithm is 

conducted through the following steps: 

1. CR j in cluster i conducts spectrum sensing individually using energy 

detection scheme, and makes a local decision Dij for i =1,…,K, j =1,…,Ni , 

where K is the number of clusters, Ni is the number of CRs in cluster i and 

     
 
    , where M is the total number of CRs in the network. 

2. Then, each CRij will report its results to the CHi to make a cluster decision 

Ci based on majority decision fusion rule. 
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3. Afterwards, all CHLi+1 will send their results Ci to FC via intermediate 

cluster heads CHLi based on inter-cluster tree routing at the FC. 

4. Finally, the FC will collect all sensing results from CHs and make the final 

decision based on majority fusion rule, and then broadcast it back to CRs 

via CHs. 

7.2.2 Multi-hop Cluster Formation 

Our proposed multi-hop clustering algorithm is based on rounds, where each round 

consists of two phases: setup phase, which includes the formation of FC, CHs, and the 

clusters of each level, followed by a steady state phase when the cluster members 

perform their local spectrum sensing, then send their data to CH and then to the FC, 

see Figure 7.2. 

 

Figure 7.2 Time line of cluster based DCSS 
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A. Setup Phase 

Our proposed multi-hop clustering approach for decentralised CSS is based on 

rounds, and the setup phase starts at the beginning of each round, as shown in Figure 

7.2. The main goal of the setup phase is to create the infrastructure of our proposed 

algorithm by identifying the CHs, clusters and the FC, respectively. 

B. Determination of the Cluster Heads  

At the beginning of each round, each cognitive user sends an advertising message, 

containing its identity ID and the energy level, to all neighbours to form a cluster, 

using its default transmission power. Then, each cognitive user will construct a table to 

maintain the IDs and the energy levels of all neighbouring users. Afterwards, each 

cognitive user will compare its energy level with that of all neighbouring users, and 

whichever cognitive user has the largest energy level among its neighbours will elect 

itself as a CH. 

C. Cluster Formation 

The cluster formation is done by CHs, where each CH broadcasts an advertisement 

ADV message using a carrier-sense multiple access CSMA protocol, which instructs 

the non-CHs to select their CHs. After receiving the messages from all CHs, each non-

CH sorts the received power signal of each message and selects the largest one as its 

selected CH. Then, each non-CH should inform the CH that it would be a member of 

the cluster by sending back a join-request message to the selected CH using CSMA 

technique. This join message contains the cluster head’s ID and the non-CH’s ID. Each 

CH compares its ID with the received one, and if the cluster head’s ID matches its own 

ID, the CH will accept the join request; otherwise, the request is rejected. 

After completing the cluster formation, each CH knows which CRs are in its cluster 

and creates a TDMA schedule assigning each member a time slot to transmit its 
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sensing result, and then informs all members in its cluster a CSMA code which is used 

for communication among them. Here, we can determine two cases: 

 Equal sized clusters, which is a special case when the users within the cognitive 

network are uniformly distributed. In this case, all the clusters have the same 

number of members CM, and since all the clusters have the same TDMA schedule, 

they will get the sensing results at the same time.   

 Unequal sized clusters, which is a general case when the users within the cognitive 

network are randomly distributed. In such a case, some clusters may have small 

numbers of members CM, while others have large numbers, depending on the 

cluster size. This will make the large sized clusters have more time slots for CMs 

than small sized clusters, leading to delay in getting the cluster result compared with 

the latter. 

D. Determination of the FC and Multi-level CHs 

We assume that each CH can reach all cognitive users in one hop communication 

using maximal power. Once clusters are formed, the CHs will broadcast an ADV 

message that contains their ID’s and energy levels, in order to choose the suitable FC 

and also to discover the CHs at different levels. Then, each CH constructs a table to 

maintain the information of other CHs, where each CH compares its energy level with 

that of other CHs recorded in the table, and any CH who has the largest energy level 

among all CHs will elect itself as a FC. To inform all the rest of the CHs, FC will 

broadcast the HEAD message using its maximum power, and all CHs which hear this 

message will record the FC ID. Afterwards, all CHs send the reply signal with their 

ID’s to the FC using their default low transmission power. Only level-1 CHs will reply 

successfully to FC, since they are single hop distance from the FC. Then, FC will 

broadcast a control packet with all level-1 CHs ID’s in it. All CHs will reply to this 

control packet at default transmission power with their own ID’s as well as ID’s of 

level-1 CHs, where level-1 CHs will not respond to this message, since their ID’s are 
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present in the control packet. Therefore, this reply will get to level-1 CHs, and those 

whose ID’s are present in the reply message will relay this message to the FC. More 

specifically, each level-1 CH will receive the reply messages from all level-2 CHs in 

different power levels, then sort them and choose the largest one as an intermediate 

CH. Then, this intermediate CH will relay the reply message to FC. The FC will record 

the ID’s of CHs, level of CHs and the ID’s of intermediate CHs. Similarly, FC will 

again send control message with ID’s of all CHs that have been discovered. All the rest 

of the CHs will reply to this messages and the processing will be done as described 

above. This will be continued until completing all the CHs. At this stage, the setup 

phase has been completed, and the steady state can start. 

E. Steady State Phase 

After completing the setup stage, the FC will send a START message to all 

cognitive users via CHs to start the local spectrum sensing. Once the local sensing is 

completed, each cluster member will send its own sensing results to the selected CH 

using its own time slot, then each CH fuses the results of all related cluster members 

using majority fusion rule, and sends its cluster result to FC either directly or indirectly 

depending on the level of cluster. For instance, level-1 CHs will send their sensing 

results directly to FC, while level-2 CHs send their sensing results to selected level-1 

CHs, and the latter in turn will relay them to the FC, and so on. Once all the CHs 

results have been received by the FC, the FC will combine them using the majority 

fusion rule and then send back the final result to all CHs, which they in turn will send 

on to all related cluster members. 

7.3 Mathematical Model of the Proposed Algorithm 

In this section, we present the mathematical model of our multi-hop clustering 

algorithm for decentralised CSS. This mathematical model has been built based on the 

design parameters of the proposed algorithm, which includes the energy consumption 
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model, spectrum sensing model, and sensing delay model. These models are described 

in details in the following subsections.  

7.3.1 Energy Model of Decentralised Cooperative Spectrum Sensing 

In wireless communication networks, most energy dissipation in each single 

wireless device is the result of transmitting energy dissipation to run the radio 

electronics, the power amplifier, and receiving energy dissipation to run the radio 

electronics. In our analysis, we use the same radio model described in [29], where the 

energy required to transmit or receive one message of size B bits over a transmission 

distance R, is given by: 

           
            

                      

                                

  (7 - 1)  

                 (7 - 2)  

Where Eelec the electronic energy consumed to send or receive a message; ETX 

represents the total energy consumed by the transmitter, while ERX is energy consumed 

by the receiver.    and     denote the energy dissipated by the transmit power 

amplifier to maintain an acceptable SNR in order to transfer data reliably, and depend 

on the channel model, and     
   

   
  is the breakpoint or threshold distance [29]. 

Power control can be used to invert this loss by appropriately setting the power 

amplifier; if the distance R is less than a threshold RO, the free space model     is 

used; otherwise the multipath model     is used. 

A. Energy Model of Conventional Decentralised CSS 

In conventional decentralised cooperative spectrum sensing approaches, where 

there is no FC, each CR user individually performs a local spectrum sensing, and then 

exchanges its own sensing decision with neighbouring users who are within its 
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transmission range, and finally determines the final decision using the majority fusion 

rule. Here, we assume the default transmission range of each cognitive user is limited 

by RO. Therefore, only the energy consumed in the communications within this 

transmission range will be included in the calculation of the total energy consumption 

ET. Figure 7.3 shows an example of a mechanism of calculating the total energy 

consumed in sending and receiving the local sensing among M=5 of cognitive users. 

 

Figure 7.3 Illustration diagram for energy consumption in conventional distributed CSS 

In general, the energy consumption of a conventional decentralised CSS during the 

sensing period may include the energy consumed in local spectrum sensing Es; the 

energy consumed in the sleeping mode Ep; the energy consumed in computing the 

observations and making a local decision Ec; the energy consumed in transmitting the 

local decision to neighbour users ETX and the energy consumed in receiving the local 

sensing ERX. In practice, Ep<Ec<ERX<<ETX, then we can ignore Ep and Ec. Under these 

considerations, and as shown in Figure 7.3, the energy consumption of conventional 

decentralised CSS can be calculated as follows: 
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Depending on the transmission range of each CR user R=RO, the energy consumed 

in transmitting and receiving the local sensing results between two cognitive 

neighbouring users can be given, respectively, as  

           
            

                     

                                                  

  (7 - 3)  

           
                                           

                                                 

  (7 - 4)  

We can see from (7-3) and (7-4) that the energy consumption is mainly depending 

on the number of CRs and the distance between two cognitive users. 

So, the total energy consumption ET during the cooperative spectrum sensing in 

conventional decentralised algorithms can be expressed as 

                       

   

   

   

   

 (7 - 5)  

 

B. Energy Model of Cluster Based Decentralised CSS 

One of the advantages of clustering is the big energy saving, especially in large 

scale cognitive radio networks. The data transmission begins when each cluster 

member sends its local sensing decision to the selected CH during their time slots. 

Presumably, the distance between each cluster member (non-CH) and the closest CH is 

small, so the free space model R
2 

is adopted in energy dissipation. Thus, the energy 

consumed               by i
th

 cluster member is expressed by: 

                            
  (7 - 6)  

In our system, because the clusters are formed in a decentralised way and depending 

on the location of cognitive users, the sizes of clusters will not be equal. Therefore, 

each CHj has a certain number of cluster members Nj, and needs to combine the local 

sensing results and then sends them to the FC. In decentralised systems one of the CHs 
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can act as a FC, so the energy consumed by each CHj will depend on its distance Dj 

from the selected FC, which follows either the free space model D
2
 or the multipath 

model D
4
 according to (7-1) and (7-2), respectively. The energy consumed by each 

CHj can be given as: 

                                                                 (7 - 7)  

                                
      

             

      
            

  (7 - 8)  

The energy dissipated in a cluster during each round is given by: 

                           (7 - 9)  

and the total energy consumed by the network is 

                         (7 - 10) 

                                     (7 - 11) 

Where K represents number of clusters. 

 

C. Energy Model of Multi-hop Cluster Based CSS 

In the multi-hop cluster based CSS mechanism, after determining the CHs and 

forming the clusters, each CH will issue its own TDMA schedule for its cluster 

members. Based on this schedule, cluster heads not only collect the local sensing 

results from their cluster members, but also act as relaying users for lower level cluster 

heads. Thus, the cluster heads that are far away from the FC will send their sensing 

results to the FC through intermediate cluster heads, which leads to lower energy 

consumption compared to direct reporting. 
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Here, the energy consumption of each non-CH will be the same as in the one-hop 

clustering algorithm, while the energy consumption of CHs will be different, because 

the CHs are divided into multi-levels depending on their distance from the selected FC, 

and only the level one cluster heads will send their results directly to the FC, while 

other level CHs will send their results through next level CHs until reaching the FC. 

As a result, the energy consumption in each CH will be dependent on the distance from 

other upper level CHs, as well as on the length of time spent receiving and relaying the 

results of upper level CHs.  

The mathematical equations that govern the energy consumption in our multi-hop 

clustering algorithm are described as follows.  

The energy consumption by non-CHs will be the same as in one-hop clustering 

approach, so we can use the same equation in (7-6). Each CH needs to fuse all the 

local sensing results of its cluster members and relay the results of upper level CHs, so 

its energy consumption can be given as: 

                                                     (7 - 12) 

             (7 - 13) 

                                     (7 - 14) 

                        (7 - 15) 

     
                   

                                     

                   
                                   

  (7 - 16) 

Where Relaysj is the number of relays made by j
th

 CH, and dRelaysj is the distance 

between the j
th

 CH to next hop CH. Finally, the total energy consumption can be 

written as: 

                                  (7 - 17) 

where  K represents the number of clusters. 



 

 

169 

7.3.2 Sensing Model of Multi-hop Cluster Based Decentralised CSS 

As mentioned previously, CSS mechanisms have many advantages over non-

cooperative methods; one of them is enhancing the detection reliability by exploiting 

the spatial diversity of the cognitive users. The performance of CSS approaches is 

measured mainly by two parameters: detection probability Pd, which indicates that the 

primary user exists, and false alarm probability Pf, which indicates that the primary 

user is present while in reality it is not. Another important parameter is mis-detection 

probability Pm, which indicates that the primary user is absent while actually it is 

existing. 

 

In conventional decentralised CSS algorithms, each cognitive user performs its 

local sensing and then shares the result with other users within its transmission range, 

and combines its sensing results with the received results and decides whether the 

spectrum is available or not using a local fusion rule. Each cluster member makes its 

own one bit hard decision: ‘0’ or ‘1’, which means absence or presence of primary 

activities, respectively. In the case of the decision not being satisfied, cognitive users 

may need to send their combined results to neighbours again and repeat this process 

until a cooperative decision is reached. 

 

In our multi-hop clustering approach for decentralised CSS, all cognitive users that 

are close to each other will be grouped into clusters, on the assumption that the 

members of each cluster have almost the same sensing channel conditions as they are 

close to each other. Afterwards, the sensing results of each cluster will be reported to 

FC in order to get the final cooperative decision, where one of the CHs will act as a 

FC.  

The mathematical equations that govern the sensing performance of our multi-hop 

clustering scheme in decentralised CSS are described as follows: 

At first the FC sends a start signal to all cognitive users to begin their local 

spectrum sensing using the energy detection algorithm. The sensing performance of 
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each cluster member depends mainly on the SNR of the sensing channel, where the 

false alarm probability Pf and the detection probability Pd under AWGN channels can 

be written as [121]:    

       
     

  
  (7 - 18) 

       
     

  
  (7 - 19) 

Where, Q represents cumulative distribution function, λ is detection threshold, µ0; 

µ1; σ0; σ1 denote the mean and the variance parameters under H0 and H1 hypotheses, 

respectively. We consider here that the noise power is totally known at each cognitive 

user. 

Due to the nature of wireless reporting channels between the cluster members and 

the CH, it is likely to get errors in receiving the local results at the CH. For instance, a 

reporting error may occur when a cluster member sends a single bit “0” while the CH 

receives “1”, or may send one bit “1” but the CH receives “0”. In our analysis, we 

assume that all the cluster members are close to each other; therefore, we can consider 

that the reporting channels between the CH and their cluster members are free of error.  

When the CHs have received all the local sensing results from all related cluster 

members they combine them using the majority fusion rule, in which the radio 

spectrum will be decided busy when at least half of the cluster members decide it’s 

busy. Thus, the detection and false alarm probabilities can be represented, respectively, 

as 

       
 
 
      

        
   

 

     

 (7 - 20) 

       
 
 
      

        
   

 

     

 (7 - 21) 

In order to obtain the final cooperative decision on the spectrum occupancy, each 

CH needs to send its sensing results to the FC using reporting channels.In practice, 
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because of the imperfect reporting channel, potential errors Pe can arise when the CHs 

report the clusters results to the FC.  

Reporting error probability Pe can be represented by two cases: 1) FC receives a bit 

“1” when a bit “0” is sent by a CH. 2) FC receives “0” when a bit “1” is reported by a 

CH. Using the definitions of Pe, we can display the probabilities associated with 

detection and false alarm on the tree diagram as shown in Figure 7.4.  

 

Figure 7.4 Tree diagram of the probabilities associated with the detection and false alarm 

        probabilities 

In our algorithm analysis, we model each reporting channel as a binary symmetric 

channel with probability Pe which is equal to the bit error rate BER of the channel. 

Here, we consider the binary phase shift keying modulation BPSK with Rayleigh 

fading channels, thus, the average error probability Pe,j for jth CH can be given as 

[132]: 

      
 

 
    

   

       
  (7 - 22) 

where     is the average SNR of the reporting channel between the jth CH and the FC. 

As shown in Figure 7.4, from the perspective of detection probability Pd, the 

possibility of the FC to receive a bit ‘1’ when the CHs send the “1” can occur in two 

cases: when the CH sends a bit ‘1’ with probability           ; or when the CH 
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sends a bit ‘1’ with probability            . On the other hand, from the perspective 

of false alarm probability Pf, there are two cases in which the FC can receive a bit ‘1’ 

when the CH sends a bit ‘0’ with probability            ; or when the CH sends a bit 

‘1’ with probability            . Thus, the detection and false alarm probabilities at 

the CHs and the FC can be written, respectively, as follows 

                                                                       (7 - 23) 

                                                                       (7 - 24) 

                             (7 - 25) 

                             (7 - 26) 

      
 
 
      

        
   

 

     

 (7 - 27) 

      
 
 
      

        
   

 

     

 (7 - 28) 

The above mentioned equations are based on the assumption of direct reporting 

mechanism between the CHs and the FC. In large-scale cognitive radio network 

applications, the multi-hop clustering approaches may be more appropriate. In our 

multi-hop clustering algorithm, to calculate the detection and false alarm probabilities, 

we need to determine the Pe of multi-hop reporting channels. Here, we consider two 

cases of reporting channels, identical and non-identical channels. We assume that there 

are L hops between the primary user and the FC. Each non identical cluster head CHL 

forwards the cluster results to the next hop cluster head CHL-1 with probability error Pe,i  

given as [139] 

       
 

 
            

   

   

   (7 - 29) 
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Where      is the probability error of one-hop cluster. In the event that the reporting 

channel is identical, (the SNR is the same for all CHs participating in Multi-hop 

reporting route), Pe,1=Pe,2=Pe,3=…………., Pe,k=Pe,  the equivalent probability error 

will be given as 

       
 

 
           

     (7 - 30) 

The equivalent total detection and false alarm probabilities at the FC can be 

determined using the same equations in (7-25), (7-26), (7-27), and (7-28). 

7.3.3 Spectrum Sensing Delay of Multi-hop Cluster Based Decentralised CSS 

It is obvious that the main motivation behind CSS techniques is the exploitation of 

spatial diversity, which leads to a significant improvement in detection performance, 

which is commonly termed as a cooperation gain. But the achievable cooperation gain 

comes at the cost of variety of overheads, one of these overheads is sensing time and 

delay.  

In conventional decentralised CSS approaches, the cognitive users can share their 

sensing results, send their combined results to others and repeat this operation until a 

unified decision is converged. Therefore, the sensing time that is required to reach the 

cooperation decision depends mainly on local sensing time TL, the number of 

neighbouring users, and the number of iterations that are needed to reach the final 

decision. Here, if we assume that the time required to integrate the results is very short 

and can be neglected, as well as, if we assume that there is synchronisation in the local 

spectrum sensing by all cognitive users, the total sensing time that is required in 

conventional decentralised CSS schemes can be determined as  

                                   

 

   

 (7 - 31) 

Where Ni represents the number of neighbouring users of the ith cognitive user, TR 

denotes to the time required to carry out  reporting, Di is the distance between the ith 
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cognitive user and its neighbours, and dO is distance threshold that determines the 

neighbouring users. 

 

In cluster based decentralised CSS mechanisms, after the formation of all clusters is 

completed, all cluster members within each cluster will start to perform the local 

sensing individually, and then report their decision results to their CHs using their 

TDMA schedule time. Afterwards, each CH will send its cluster result to the FC 

according to its TDMA schedule time.  

 

Figure 7.5 Sensing frame structure in cluster based decentralised CSS 

As shown in Figure 7.5, assuming that all the cluster members perform the local 

sensing at same time, and the size of clusters might be not equal, so each CH may have 

a different number of cluster members. If we symbolize the setup time Tsetup, number 

of clusters K and the number of cluster members of jth CH is Nj, then, the total sensing 

time of the cluster based CSS Tclus., can be written as 

                           

 

   

     (7 - 32) 

In the multi-hop clustering mechanism, relaying the sensing results from far cluster 

heads to the FC via intermediate cluster heads introduces an additional delay, which 

depends on the number of all relaying signals in the network Nrelay. Thus, the total 

sensing time of the multi-hop cluster based decentralised CSS approach will be the 
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same in the equation (7-31) with added relaying delay time Trelay, which can be 

expressed as follows 

                 

 

   

    (7 - 33) 

                              

 

   

             (7 - 34) 

 

7.4 Simulations and Results 

In this section, we provide the evaluation results of our proposed approach for 

decentralised CSS using MATLAB
® 

software, which shows the performance gain of 

the proposed method in terms of energy consumption, sensing time delay and spectrum 

sensing performance. The conventional decentralised cooperative spectrum sensing 

schemes, such as direct exchanging results among neighbouring users and traditional 

cluster algorithms are also simulated for comparison. The simulation results with the 

discussion will be provided in detail in the following subsections. 

 

7.4.1 Energy and Sensing Delay Simulations 

In our experiment, we consider a cognitive radio network with M=200 cognitive 

users which are randomly generated and uniformly distributed between (x=0, y=0) and 

(x=200, y=200). In our simulation, we assumed that each cognitive user sends its own 

sensing result via the reporting channel using 1-bit reporting message. Also we assume 

a simple model for the radio hardware energy dissipation and adopt the same 

communication energy parameters described in [29], which are given as:               

Eelec= 50 nJ/ bit; Efs=   pJ/ bit/ m
2
; Emp=0.0013 pJ /bit/ m

4
; EDC=  nJ /bit and 

Es=190 nJ. 
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Figure 7.6 gives a 200-node random test network, showing the formation of our 

multi-hop clustering approach decentralised CSS with 2-hops and 7 clusters. Here, we 

consider that the clusters are formed in a decentralised way, where the nodes that are 

close to each other will group in one cluster, and the node that has highest energy will 

be selected as a cluster head CH. The distances between any cognitive user and its 

neighbours are determined here by             , which represents the default 

communication range and here is equal to 87.7 m. Naturally, under these 

considerations, each cluster will have a different number of members from the other, 

thus each CH has a different TDMA schedule time slot. The CH that has the highest 

energy level among selected CHs will be chosen as a FC. Finally, the number of CHs 

in each hop will be determined based on the distances from the FC. 

 

Figure 7.6  200-node random test network illustrating two-hop clustering approach for 

             decentralised CSS 

Figure 7.7 illustrates the total energy dissipation in the network with different 

modes. We can show that the energy performance of the cluster based CSS scheme is 

better than the conventional mode. Furthermore, more energy reduction can be 
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achieved when the multi-hop clustering approach is used. In this simulation, we used 

the same simulation considerations as mentioned above, but we increased the 

dimensions of the test area to between (x=0, y=0) and (x=350, y=350) in order to make 

a comparison between different modes more clearly.  It can be shown from the figure 

that the energy consumption of the conventional mode increases greatly with the 

increase in the number of CRs, while in cluster modes it increases slightly with the 

number of CRs, particularly in multi-hop clustering mode. 

 

Figure 7.7 Average Energy Dissipation versus number of users with different CSS modes 

 

The results also show that there is a slight saving in energy performance of the 2-hop 

clustering mode compared with the 1-hop mode. For instance, in the case of 100 CRs, 

the results show that there is a significant saving in energy dissipation in one-hop 

clustering mode compared to the conventional cooperative mode, with a reduction rate 

-71.4 % and this can be increased to -82.2% in the case of 200 CRs. It can also be 

noted that increasing the number of hops lead to a slight reduction in the energy 

consumption. For instance, the reduction rate in energy consumption of the two-hop 

clustering mechanism compared to the one-hop clustering mode is -26.7% when 100 
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CRs are collaborated, and it remains almost the same reduction rate for the rest of 

numbers of cooperative users. 

 

Sensing time delay is another important parameter in the design of spectrum sensing 

algorithms, and it is desirable to be the lowest possible value. Figure 7.8 illustrates the 

sensing time performance of our proposed decentralised CSS scheme with different 

hop levels. The sensing time of conventional mode is also simulated here for 

comparison.  

 

Figure 7.8 Sensing delay time performance of different decentralised CSS schemes 

As shown in Figure 7.8, generally, there is a great reduction in sensing time of our 

proposed algorithm compared to that in conventional mode. More specifically, in 

conventional decentralised mode, we can see that the sensing time increases linearly 

with a constant increasing rate of 1% (nsec/user) with the increase of cognitive users, 

while this increase will be small in one-hop clustering mechanism. It can also be seen 

that increasing the number of hops will lead to a slight increase in the sensing time, but 

it is still small compared to the conventional algorithm. For instance, when 100 

cognitive users are cooperating to conduct CSS, the sensing time that is required in the 
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conventional decentralised algorithm is 1.1 ns, while in the multi-hop clustering 

scheme, including one-hop, two-hop, and three-hop, the sensing time will be 0.35, 0.5, 

and 0.58 ns, respectively. Increasing the number of cognitive users to 200 makes the 

sensing time of conventional and our proposed algorithm, including one-hop, two-hop, 

and three-hop to take the following values: 2.1, 0.41, 0.56, and 0.59 ns, respectively. In 

other words, our proposed one-hop clustering algorithm can give a reduction in 

sensing time by 68.2% and 80.5% compared to the conventional algorithm when the 

numbers of cognitive users are 100 and 200, respectively. 

However, the multi-hop communication mechanism can incur additional delays due 

to the use of multiple relay communications instead of direct communication. For 

instance, as shown in Figure 7.8, in the case of a 70-node network, the sensing times 

that are required to complete the cooperative spectrum sensing using one-hop, two-

hop, and three-hop clustering algorithms are 0.32, 0.46, and 0.56 nsec, respectively, 

which are still much less than the traditional mode. 

There is another important point that can be observed in the figure, which is that in 

some cases the sensing time of multi-hop clustering schemes can be greater than the 

traditional schemes, especially when the number of users is small, as shown here, 

when the number of users is between 10 and 40. This is due to the fact that in the 

multi-hop clustering algorithm, the time required for the formation of clusters and 

determining the levels of CHs will have an impact and adds an extra delay compared 

with the conventional algorithm, but this time will remain acceptable in practical 

applications because it is still small. 

Physically, the scientific explanations of the main results that we have obtained in 

Figure 7.8 can be described by two key points. First, in the case of the traditional 

algorithm, increasing the number of cognitive users leads to an increase in the number 

of neighbours, thus increasing the time required for the exchange of results among 

neighbours, which are mainly based on iteration to get the final result. Second, in the 

case of multi-hop clustering schemes, despite the fact that the increase in the number 

of cognitive users leads to an increase in the number of cluster members, thereby 
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increasing the time required to get the sensing results of each clusters, these results of 

clusters are obtained at one time. The fact that all clusters are working in parallel, 

means that, the time that is required to get the results of all clusters will depend on the 

cluster that has the largest number of members. 

 

7.4.2 Spectrum Sensing Performance 

The most important goal to focus on when designing a spectrum sensing algorithm 

is the efficiency and reliability of detection, as they have a direct impact on the 

performance of cognitive radio networks. In this section, the sensing performance of 

the multi-hop cluster-based decentralised CSS scheme is investigated under the perfect 

and imperfect reporting channels. The numerical results of our proposed algorithm are 

given to verify the mathematical analyses that are presented in the previous section. 

 

First, the sensing performance of the conventional decentralised CSS is 

investigated, where CRs are reporting their local sensing results directly to the 

neighbours that are within their default transmission ranges. Then, the sensing 

performance of our proposed multi-hop clustering algorithm for decentralised CSS is 

simulated and compared with that of the conventional scheme.  

 

The conditions and parameters of our simulation were set as follows. We 

considered that 200 CRs are deployed randomly with different average SNR of sensing 

and reporting channels within the ranges of (-12, -10) dB and (-20, 20) dB, 

respectively. We also assumed that the local sensing is conducted by each CR user 

using the energy detection method with N=10 of samples. For simplicity, we assume 

that the noise power at each CR user is equal to 1, and also the majority fusion rule at 

both the CHs and the FC is used. 

 

Figure 7.9 illustrates the mechanism used in the simulation of the proposed 

algorithm, where the CRs are grouped into K=8 clusters with different numbers of 
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members Nj in each cluster as follows (25, 15, 30, 32, 18, 20, 36, 24). As shown in this 

figure, the multi-hop mechanism can be exploited efficiently so that the results of 

clusters are sent to the FC over the CHs with high SNR of reporting channels. 

 

 

Figure 7.9 Multi-hop clustering scenarios for decentralised CSS 

 

Figure 7.10 gives the ROC performance of the multi-hop clustering CSS scheme 

over Rayleigh fading channels. In this simulation, in the case of the one-hop clustering 

approach, where the number of clusters is K = 8, and the reporting SNR of CHs are 

(10, 18, 10, 5, -5, -1, -2, -3) dB, respectively. It can be observed that there is a 

significant improvement in the sensing performance of the one-hop clustering 

algorithm compared to the traditional mode even given that some CHs are suffering 

from poor SNR, especially the far CHs. 

As can be seen from this figure, the detection accuracy deteriorates as the number 

of error reports increases due to low SNR of the reporting channel. However, the 

sensing performance can be enhanced using the clustering approach. By using the 

clustering mechanism, the local sensing will be sent to the FC via intermediate CHs 

that have the largest SNR of reporting channel. 
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Figure 7.10  ROC curve of decentralised cooperative spectrum sensing with different fusion 

       rules 

 

Figure 7.10 also shows the feature of the multi-hop clustering algorithm in 

improving the efficiency of detection by choosing the best reporting route to the FC. In 

our simulation, the sensing performance of two-hop and three-hop clustering 

approaches have also been investigated in order to enhance the detection performance. 

As shown, the sensing performance of the multi-hop clustering scheme outperforms 

the one-hop mode, which basically depends on the channel conditions of the 

successive multi-hop. We can conclude that the detection performance can be greatly 

improved when the multi-hop clustering approach is utilised, especially in the cases of 

imperfect reporting channels.  

7.5 Summary 

In this chapter, we proposed and evaluated a multi-hop clustering approach for 

decentralised CSS in CRNs. By adopting the same idea of the mechanism proposed in 

chapter 6 [30-31], we group CRs that are close to each other into clusters and one of 

them that has higher residual energy will be selected as a CH, then a CH with the 
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highest residual energy will act as a FC. Using this mechanism, the issue of 

synchronisation and interference problems from other CR users can be solved. 

 

In conventional clustering approaches, most CR users who have good local sensing 

information are far away from the FC, thus they are sending their sensing results over 

imperfect reporting channels, thereby causing deteriorating detection performance. We 

developed a multi-hop clustering approach that provided reliable reporting routes to 

send the local sensing results, hence increasing the detection accuracy.  

For performance evaluation, the spectrum sensing and overhead performance of the 

proposed algorithm have been simulated and compared with that of conventional 

schemes. The simulations results showed that our multi-hop clustering approach 

achieves better energy saving and detection performance than the existing approach, 

but at the expense of a little delay. Moreover, the proposed method can detect the 

spectrum availability much faster than conventional algorithms due to the 

characteristics of clustering, but adds a slight delay compared with the one hop 

clustering approach due to successive multi-hop relaying delays. It can concluded from 

the results that in order to satisfy the requirement of a certain application while 

reducing the overhead of the wireless network, trade-offs among these evaluation 

points are needed. 
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Chapter 8 

Conclusions and Future Work 

The research presented in this thesis has focused mainly on spectrum sensing 

techniques in cognitive radio networks. Several novel schemes and algorithms for both 

local and cooperative spectrum sensing have been developed and presented. In this 

thesis, we developed a new optimal energy detection algorithm for local spectrum 

sensing that aims to minimise the local sensing error in the presence of noise 

uncertainty. Furthermore, we developed a new cooperative spectrum sensing algorithm 

based on multi-hop clustering mechanisms, which can be applied for centralised and 

decentralised cognitive radio network applications. The new multi-hop clustering 

cooperative spectrum sensing scheme aims at providing reliable and more accurate 

spectrum sensing while reducing the cooperation overhead as much as possible. 

 

This chapter is organised as follows: A summary of the thesis is given in section 

8.1. Section 8.2 presents the key contributions of the thesis. The evaluation of the work 

presented in this thesis and several future research directions are summarised in section 

8.3. Finally, the conclusions are given in section 8.4. 

8.1 Thesis Summary 

The enormous increase in the number of wireless devices has led to an increasing 

demand for radio spectrum, which in turn has led to the introduction of cognitive radio 

techniques to resolve the issue of the scarcity of spectrum. These technologies are 

widely expected to play a significant role in future wireless communication networks, 

by enabling the secondary users to share the licensed spectrum bands in an 

opportunistic manner without disturbing primary networks. The heart of the cognitive 

wireless network is the ability of cognitive users to sense the spectrum availability and 

the primary user activities correctly, and therefore, the spectrum sensing can be 
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considered one of the most important elements that directly affect the performance of 

cognitive radio networks. While these networks provide more spectrums to meet the 

requirements of new wireless applications and devices, they add new constraints 

whichdo not exist in traditional networks. Specifically, according to the spectrum 

sensing process as an important component in cognitive radio networks, the cognitive 

user should be able to identify the presence of primary users as quickly as possible and 

should vacate the band immediately in the case of primary users reappearing, which 

requires that the sensing periodicity should be short enough in order to reduce the 

delay and to minimise the degradation of quality of service (QoS) that is incurred by 

the primary users accessing the band. Furthermore, in most practical cases it is very 

difficult to estimate correctly the noise ratio at the cognitive user, which adversely 

affects the accuracy of the spectrum sensing, and this effect increases when the SNR of 

the sensing channel is low. Although such issues can be alleviated through cooperating 

and exploiting the spatial distribution among the cognitive users, it comes at the cost of 

increasing the overhead of the network, including the energy consumption and sensing 

time with the increasing number of cooperative users.  

Therefore, it is necessary to design new spectrum sensing algorithms for cognitive 

radio networks in order to increase the efficiency of spectrum utilisation while 

providing an adequate protection for primary networks, taking into account the 

spectrum sensing constraints. In our work, to achieve this target we have developed 

several algorithms for spectrum sensing in cognitive radio networks. 

 

Chapter 1 highlighted the main considerations and important requirements that must 

be taken into account when designing an algorithm for spectrum sensing in cognitive 

radio networks as: 

1) The cognitive users should accurately detect the spectrum availability in 

order to guarantee sufficient protection to the primary network when 

intending to access the available spectrum, and should vacate the band 

immediately in the case of primary users reappearing. 
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2) The sensing period should be as short as possible, while guaranteeing a 

reliable spectrum sensing, in order to increase the throughput of cognitive 

radio network.  

3) In cooperative spectrum sensing mechanisms, channel overheads such as 

communication overhead and energy consumption is another constraint 

that needs to be taken into account when designing an algorithm for 

spectrum sensing, especially when the number of cooperative users is very 

high. 

These considerations and requirements make the design of spectrum sensing for 

cognitive radio network difficult. On the one hand, the detection algorithm must 

provide a reliable and more accurate spectrum sensing, and on the other hand this 

algorithm must not incur additional overhead. Therefore, a trade-off between these 

design parameters is needed. 

 

Chapter 2 presented an overview on the field of cognitive radio networks, including 

radio spectrum bands; dynamic spectrum access techniques; the importance and the 

fundamental concepts of cognitive radio alongside its possible applications. In this 

chapter, a state-of-the-art on spectrum sensing algorithms for cognitive radio networks 

found in the literature is also given, including local and cooperative spectrum sensing, 

pointing out the main drawbacks of existing works and the issues that need to be 

addressed as: 

1) Energy detection algorithms are still used widely in spectrum sensing in 

spite of some weaknesses, including detection threshold setting, sensing 

delay, and noise power uncertainty. Existing energy detection based 

spectrum sensing algorithms are focused only on one of these issues while 

neglecting the others. 

2) In cooperative spectrum sensing, most existing optimisation algorithms are 

based on determining the optimal detection threshold numerically, which 
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takes a lot of time, thus increasing the sensing time. On the other hand, the 

noise power uncertainty is not considered at the local sensing, which leads 

to a significant degradation in the performance of overall spectrum 

sensing. 

3) The cooperation overhead problem in both centralised and decentralised 

cooperative spectrum sensing mechanisms, including detection accuracy, 

energy consumption, and sensing delay, especially in the case of a higher 

number of collaborative users, still needs more efforts in order to satisfy 

the requirements of future wireless networks. 

 

Chapter 3 described in detail the above mentioned issues and presented the possible 

approaches to tackling these challenges. The novel contributions of this thesis are 

explained briefly in this chapter, which have been detailed in subsequent chapters. 

 

Chapter 4 presented our optimal energy detection algorithm for spectrum sensing 

application in cognitive radio networks, including single threshold and double 

threshold modes. These optimal schemes have been evaluated through simulations and 

compared to existing energy detection algorithms. 

 

In chapter 5, we provided with details our optimisation algorithm for centralised 

cooperative spectrum sensing. We evaluated our scheme through simulations and 

outlined its advantages over existing optimisation schemes. 

 

Chapter 6 presented our multi-hop clustering algorithm for centralised cooperative 

spectrum sensing, describing its different phases, which proposed to tackle the 

cooperation overhead issues. This algorithm has been evaluated through simulations 

and compared to existing algorithms. 
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Finally in Chapter 7, we described in detail our multi-hop clustering approach for 

decentralised cooperative spectrum sensing with showing its different parts. We 

evaluated our multi-hop algorithm through simulations and outlined its advantages 

over existing works. 

8.2 Thesis Contributions 

Many spectrum sensing algorithms for cognitive radio network applications have 

been proposed in the literature, but most of them did not consider the basic 

requirements of spectrum sensing during the design. In order to design a good 

spectrum sensing scheme, it is important to clearly identify the goals and requirements 

of spectrum sensing application. This will help us to make good trade-offs in the 

design parameters to provide best support for cognitive radio network applications. 

Based on basic spectrum sensing design constraints we developed new detection 

mechanisms that suit both single and cooperative spectrum sensing applications. These 

detection mechanisms are based on the following developed algorithms, which 

represent our main contributions: 

 We have developed a new energy detection algorithm for spectrum sensing 

application based on the single optimal threshold mechanism [28], aiming at 

minimising the sensing error, thus increasing the detection accuracy. We also 

developed an adaptive threshold factor with optimal mode in order to combat 

the noise uncertainty especially in a low SNR environment. In order to get 

more reliable detection we proposed a new energy detection scheme based on 

double optimal threshold with a slight decline in the efficiency of spectrum 

utilisation.  

 For centralised cooperative spectrum sensing applications, we proposed a new 

cooperative spectrum sensing based on an adaptive optimal energy detection 

algorithm that provides more accurate detection under low SNR of sensing 

channel. The advantage of this scheme lies in the simplicity of its computations 

compared with existing schemes, which is based mainly on using the optimal 
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energy detection algorithm in the local sensing and optimal fusion rule at the 

fusion centre.  

 We presented a new multi-hop clustering algorithm for centralised cooperative 

spectrum sensing applications that is more suitable for large scale cognitive 

radio networks [30-31]. In this design, the cluster heads will not send their 

cluster results directly to the fusion centre as it is in traditional clustering 

approaches, which only reduces the reporting overhead, but they will send them 

to cluster heads in the next hop towards the fusion centre in order to reduce the 

energy consumption. By dividing the total clusters into multi-levels based on 

distances between cluster heads and the fusion centre, more energy can be 

saved during reporting the sensing results over a reliable transmission channel, 

which leads to a more accurate spectrum sensing mechanism. 

 We developed a new multi-hop clustering approach for decentralised 

cooperative spectrum sensing applications. This algorithm can bring several 

benefits, including reducing the cooperation traffic overheads; providing a 

reliable communication between cognitive users in order to improve the global 

sensing efficiency; decreasing energy consumption; and addressing the sensing 

synchronisation. In this design, the clusters are formed in a distributed manner, 

and one of the cluster heads will be selected as a fusion centre based on the 

energy level of the cluster head and the SNR of the reporting channel between 

them. 

8.3 Evaluation of Contributions and Future Work 

In order to develop the present work and to gain more improvements on the 

spectrum sensing mechanisms for cognitive radio networks, the following are possible 

suggestions for further work:  

 Throughout this thesis we have employed energy detection as the local 

spectrum sensing technique, and developed a new adaptive optimal energy 
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detection scheme that tackles the low performance of energy detection due 

to noise power uncertainty. However, our design of the adaptive optimal 

energy detection algorithm was based on the assumption that the additive 

white noise has a Gaussian distribution, considering only the thermal noise 

source, while the combined noise or non-Gaussian noise due to other noise 

sources has not been considered. On the other hand, the performance of our 

spectrum sensing algorithms was analysed and demonstrated theoretically 

with MATLAB R2009a simulation. To make our design more realistic, we 

can extend our work of local spectrum sensing in future by taking into 

account the effects of thermal noise and other interference sources, and 

instead of generating the RF signals in MATLAB, we can integrate our 

design in a real wireless network, where actual transmitted signals could be 

collected in the field, so that the sensing performance can be demonstrated 

under a real wireless environment. The aim of future work is to study the 

real effects of noise power uncertainty on the performance of local 

spectrum sensing in order to find an actual range    
       

   of noise 

uncertainty under real noise and interference sources. 

 In our multi-hop clustering algorithm for cooperative spectrum sensing 

technique which we presented in chapter 6 and 7, we discussed the need 

for trade-offs between the design parameters (sensing accuracy, sensing 

delay, and energy consumption) while designing spectrum sensing 

algorithms in order to satisfy the requirement of the application. In future, 

we plan to treat the trade-offs issue as an optimisation issue using some 

professional evolution techniques such as multi-objective optimisation, 

where the optimal solution can be obtained in the presence of trade-offs 

between the above conflicting performance related parameters.  

 In this thesis we presented new spectrum sensing mechanisms that are 

compatible with stationary wireless cognitive radio networks, while the 

mobility of both primary users and cognitive users were not considered. 
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Mobility can affect the detection performance of cooperative sensing in 

many directions, such as cooperation gain, cooperation overhead, and 

correlations among cooperative users, thus improving or degrading the 

spectrum sensing performance, depending on the speed and the direction of 

the mobility and the location of corresponding cooperative users. Our 

future plan is to extend our work to study the effect of primary users and 

cognitive users’ mobility on the detection performance, taking into account 

the above mentioned mobility parameters.  

8.4 Concluding Remarks 

The tremendous development in wireless communications technology and the 

emergence of modern services has increased the need for more radio spectrums. Since 

the radio spectrum is limited and in order to provide more spectrum, the 

communication regulators around the world have developed a new spectrum allocation 

policy called dynamic spectrum access that enables the unlicensed users to exploit the 

unused spectrum opportunistically. Cognitive radio was proposed to enable dynamic 

spectrum access technology and improve the spectrum utilisation using spectrum 

sensing techniques. Spectrum sensing plays a major role in cognitive radio networks as 

it helps to optimise the efficiency of spectrum utilisation. To this end, the detection 

schemes that are used for spectrum sensing should have high detection probability Pd 

and low false alarm probability Pf, in order to increase the efficiency of spectrum 

usage while keeping a sufficient level of protection to primary networks. In addition, 

cognitive users should conduct periodical spectrum sensing with a short enough 

sensing period in order to reduce the delay and to minimise the degradation of quality 

of service (QoS) that is incurred by the primary users accessing the band. However, 

designing a reliable, fast and efficient spectrum sensing algorithm has become a 

critical challenge in CR networks, which needs more effort in order to satisfy the 

spectrum sensing requirements. Moreover, due to fading and shadowing phenomena 

the SNR of the detecting signal will be very low and therefore obtaining reliable 
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detection is very difficult, especially in the presence of noise uncertainty. On the other 

hand, cooperative spectrum sensing mechanisms can significantly improve the 

detection performance by addressing the fading and shadowing issues, but they add 

other issues, including cooperation overhead; sensing delay due reporting; and energy 

consumption, especially when the number of cooperative users is large. 

Therefore, new spectrum sensing approaches are needed to tackle these detection 

issues while satisfying the spectrum sensing requirements. In this thesis, we focused on 

the main problems and challenges in the design of spectrum sensing algorithms for 

cognitive radio networks, and then we presented the solutions that tackle these 

problems. The solutions presented in this thesis for spectrum sensing issues are 

composed of four novel spectrum sensing algorithms: (1) a new adaptive optimal 

energy detection scheme for local spectrum sensing [28], (2) a new optimisation 

algorithm for cooperative spectrum sensing , (3) a multi-hop clustering algorithm for 

cooperative spectrum sensing in centralised cognitive radio networks [30-31], and (4) a 

new multi-hop cluster based cooperative spectrum sensing scheme for decentralised 

cognitive radio networks . All these proposed algorithms were analysed and simulated 

using computer simulation, and their performances were evaluated by comparing them 

with those of existing algorithms. The evaluation of our proposed spectrum sensing 

algorithms was mainly based on three important parameters, namely, sensing accuracy, 

sensing time delay and energy consumption. Our simulation results, generally, showed 

the advantages of our solutions to other existing approaches. In particular, for local 

spectrum sensing mode, the simulation results demonstrated that our proposed 

algorithm can provide more accurate spectrum sensing than that of existing schemes in 

the presence of noise uncertainty and low SNR environment. Furthermore, for 

cooperative spectrum sensing scenarios, the evaluation results showed that our 

proposed algorithms can help to optimise the spectrum sensing performance in terms 

of sensing accuracy, sensing time delay and energy consumption. The experiments 

showed also the need for a trade-off between these designing parameters according to 
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the spectrum sensing demands while satisfying the requirements of the certain 

application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

194 

References 

[1] T. Gea, et al., "Smart Cities as an Application of Internet of Things: 

Experiences and Lessons Learnt in Barcelona," in Seventh International 

Conference on Innovative Mobile and Internet Services in Ubiquitous 

Computing (IMIS), 2013, pp. 552-557. 

[2] J. Gubbi, et al., "Internet of Things (IoT): A vision, architectural elements, and 

future directions," Future Generation Computer Systems, vol. 29, pp. 1645-

1660, 2013. 

[3] P. S. Steve Methley, "Technologies and approaches for meeting the demand for 

wireless data using licence exempt spectrum to 2022," Quotient Associates 

Limited, Cambridge, UK 2013. 

[4] M. N. K. Boulos and N. M. Al-Shorbaji, "On the Internet of Things, smart 

cities and the WHO Healthy Cities," International journal of health 

geographics, 2014. 

[5] J. G. Paradells, C. Demirkol, I. Oller, J. Catalan, M., "Infrastructureless smart 

cities. Use cases and performance," in International Conference on Smart 

Communications in Network Technologies (SaCoNeT), 2014, pp. 1-6. 

[6] A. Zanella, et al., "Internet of Things for Smart Cities," IEEE Internet of 

Things Journal, vol. 1, pp. 22-32, 2014. 

[7] Anil Shukla, "Cognitive Radio Technology: A Study for Ofcom-Summary 

Report,"  QinetiQ Ltd/06/0042 Issue 1.1, Feb, 2007. 

[8] Z. Qing and B. M. Sadler, "A Survey of Dynamic Spectrum Access," IEEE 

Signal Processing Magazine,, vol. 24, pp. 79-89, 2007. 

[9] Ahmed S. B. Kozal, et al., "The Key Elements of Cognitive Radio: A Survey," 

in The 11th annual postgraguate symposium on the convergence of 

telecommunications, networking and broadcasting, Liverpool John Moores 

University, 21-22 June 2010. 

[10] L. Won-Yeol and I. F. Akyildiz, "Optimal spectrum sensing framework for 

cognitive radio networks," IEEE Transactions on Wireless Communications, 

vol. 7, pp. 3845-3857, 2008. 

[11] H. Arslan, Cognitive Radio, Software Defined Radio, and Adaptive Wireless 

Systems: Springer, 2007. 

[12] B. C. Levy, Principles of Signal Detection and Parameter Estimation: Springer 

Publishing Company, Incorporated, 2008. 



 

 

195 

[13] B. F. L. Akyildiz, Ravikumar Balakrishnan, "Cooperative spectrum sensing in 

cognitive radio networks: A survey," Physical Communication (Elsevier), vol. 

4, pp. 40-62, 2011. 

[14] F. F. Digham, et al., "On the energy detection of unknown signals over fading 

channels," IEEE International Conference on Communications, ICC '03. , vol. 

5, pp. 3575-3579, 2003. 

[15] T. Yucek and H. Arslan, "A survey of spectrum sensing algorithms for 

cognitive radio applications," IEEE Communications Surveys & Tutorials, vol. 

11, pp. 116-130, 2009. 

[16] W. Jinbo, et al., "An Energy Detection Algorithm Based on Double-Threshold 

in Cognitive Radio Systems," 1st International Conference on Information 

Science and Engineering (ICISE), pp. 493-496, 2009. 

[17] D.-C. O. a. Y.-H. Lee, "Energy Detection Based Spectrum Sensing for Sensing 

Error Minimization in Cognitive Radio Networks," International Journal of 

Communication Networks and Information Security (IJCNIS), vol. 1, pp. 1-5, 

2009. 

[18] X. Shujing, et al., "Optimal threshold of energy detection for spectrum sensing 

in cognitive radio," International Conference on Wireless Communications & 

Signal Processing,WCSP '09. , pp. 1-5, 2009. 

[19] B. Shent, et al., "Energy Detection Based Spectrum Sensing for Cognitive 

Radios in Noise of Uncertain Power," International Symposium on 

Communications and Information Technologies,  ISCIT '08. , pp. 628-633, 

2008. 

[20] W. Jinbo, et al., "The Performance Merit of Dynamic Threshold Energy 

Detection Algorithm in Cognitive Radio Systems," 1st International 

Conference on Information Science and Engineering (ICISE), pp. 692-695, 

2009. 

[21] H. Junwei and Z. Yunxiao, "An Enhanced Energy Detection Algorithm in 

Cognitive Radio," 5th International Conference on Wireless Communications, 

Networking and Mobile Computing, WiCom '09., pp. 1-4, 2009. 

[22] E. Peh and L. Ying-Chang, "Optimization for Cooperative Sensing in 

Cognitive Radio Networks," IEEE Wireless Communications and Networking 

Conference, WCNC '07., pp. 27-32, 2007. 

[23] Z. Wei, et al., "Cooperative Spectrum Sensing Optimization in Cognitive 

Radio Networks," IEEE International Conference on Communications,  ICC 

'08., pp. 3411-3415, 2008. 

[24] J. Jun and X. Youyun, "Optimization for cooperative spectrum sensing under 

Bayesian criteria," International Conference on Wireless Communications & 

Signal Processing, pp. 1-5, 2009. 



 

 

196 

[25] E. C. Y. Peh, et al., "Optimization of Cooperative Sensing in Cognitive Radio 

Networks: A Sensing-Throughput Tradeoff View," IEEE Transactions on 

Vehicular Technology,, vol. 58, pp. 5294-5299, 2009. 

[26] L. Quan, et al., "Optimization of energy detection based cooperative spectrum 

sensing in cognitive radio networks," International Conference on Wireless 

Communications and Signal Processing (WCSP), pp. 1-5, 2010. 

[27] L. Yixian, et al., "Energy detection threshold optimization for cooperative 

spectrum sensing," in 2nd International Conference on Advanced Computer 

Control (ICACC), 2010, pp. 566-570. 

[28] A. B. Kozal, et al., "An improved energy detection scheme for cognitive radio 

networks in low SNR region," in IEEE Symposium on Computers and 

Communications (ISCC), 2012, pp. 000684-000689. 

[29] W. B. Heinzelman, et al., "An application-specific protocol architecture for 

wireless microsensor networks," IEEE Transactions on Wireless 

Communications, vol. 1, pp. 660-670, 2002. 

[30] A. S. B. Kozal, et al., "Spectrum sensing-energy tradeoff in multi-hop cluster 

based cooperative cognitive radio networks," in IEEE Conference on Computer 

Communications Workshops (INFOCOM WKSHPS), 2014, pp. 765-770. 

[31] A. S. B. Kozal, et al., "Energy-Efficient Multi-hop Clustering Scheme for 

Cooperative Spectrum Sensing in Cognitive Radio Networks," in IEEE 11th 

Consumer Communications and Networking Conference (CCNC), 2014, pp. 

151-157. 

[32] J.-M. C. a. G. Pogorel, The radio spectrum: managing a strategic resource. 

London: ISTE ; Hoboken, NJ : Wiley, 2008. 

[33] The International Telecommunication Union ITU Official Web site. Available: 

http://www.itu.int/en/about/Pages/default.aspx 

[34] The Office of Commuications Ofcom Official Web site. Available: 

http://www.ofcom.org.uk/ 

[35] The Federal Communications Commission FCC Official Web site. Available: 

http://www.fcc.gov/ 

[36] H. Urkowitz, "Energy detection of unknown deterministic signals," 

Proceedings of the IEEE, vol. 55, pp. 523-531, 1967. 

[37] M. McHenry, et al., "XG Dynamic Spectrum Sharing Field Test Results," 2nd 

IEEE International Symposium on New Frontiers in Dynamic Spectrum Access 

Networks, DySPAN "07. , pp. 676-684, 2007. 

[38] Anil Shukla, "Cognitive Radio Technology – A Study for Ofcom," QinetiQ 

Ltd, Hampshire, UK., 2006. 

http://www.itu.int/en/about/Pages/default.aspx
http://www.ofcom.org.uk/
http://www.fcc.gov/


 

 

197 

[39] M. L. Tugba Erpek, Ken Patton, "Spectrum Occupancy Measurements, Loring 

Commerce Centre, Limestone, Maine," Shared Spectrum Company, Vienna, 

VA,Sep. 20, 2007. 

[40] Tugba Erpek, et al., "Spectrum Occupancy Measurements Collected On April 

16-18, 2007," Shared Spectrum Company, Dublin, IrelandNovember 15, 2007. 

[41] K. S. Mark A. McHenry, "Spectrum Occupancy Measurements Location 1 of 

6: Riverbend Park, Great Falls, Virginia" , Shared Spectrum Company, Vienna, 

VA, August 15, 2005. 

[42] D. M. Mark A. McHenry, "Spectrum Occupancy Measurements, Chicago, 

Illinois," Shared Spectrum Company, Vienna, VA,Decemper 20, 2005. 

[43] "Spectrum Survey in Urban Environment: UPC Campus Nord, Barcelona, 

Spain," Mobile Communication Research Group (GRCM), Department of 

Signal Theory and Communications (TSC), Universitat Politècnica de 

Catalunya (UPC), Bercelona, December 2010. 

[44] "General Survey of Radio Frequency Bands – 30 MHz to 3 GHz," Shared 

Spectrum Company, Vienna, VA,Sep. 23, 2010. 

[45] A. Osseiran, et al., "The Foundation of the Mobile and Wireless 

Communications System for 2020 and Beyond: Challenges, Enablers and 

Technology Solutions," in IEEE 77th Vehicular Technology Conference (VTC 

Spring), 2013, pp. 1-5. 

[46] Wi Fi Standard 802.11ad. Available: 

http://standards.ieee.org/news/2013/802.11ad.html 

[47] Enabling UK growth-Releasing Public Spectrum. Available: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/

77429/Spectrum_Release.pdf 

[48] W.-F. The future role of spectrum sharing for mobile and wireless data services 

Licensed sharing, and dynamic spectrum access Available: 

http://stakeholders.ofcom.org.uk/binaries/consultations/spectrum-

sharing/summary/Spectrum_Sharing.pdf 

[49] The UK Spectrum Strategy: Delivering the best value from spectrum for the 

UK. Available: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/

287994/UK_Spectrum_Strategy_FINAL.pdf 

[50] D. N. Hatfield and P. J. Weiser, "Property rights in spectrum: taking the next 

step," in First IEEE International Symposium on New Frontiers in Dynamic 

Spectrum Access Networks, DySPAN 2005. , 2005, pp. 43-55. 

[51] X. Lin, et al., "DRiVE-ing to the Internet: Dynamic Radio for IP services in 

Vehicular Environments," in 25th Annual IEEE Conference on Local Computer 

Networks, LCN 2000. Proceedings. , 2000, pp. 281-289. 

http://standards.ieee.org/news/2013/802.11ad.html
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/77429/Spectrum_Release.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/77429/Spectrum_Release.pdf
http://stakeholders.ofcom.org.uk/binaries/consultations/spectrum-sharing/summary/Spectrum_Sharing.pdf
http://stakeholders.ofcom.org.uk/binaries/consultations/spectrum-sharing/summary/Spectrum_Sharing.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/287994/UK_Spectrum_Strategy_FINAL.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/287994/UK_Spectrum_Strategy_FINAL.pdf


 

 

198 

[52] I. F. Akyildiz, et al., "NeXt generation/dynamic spectrum access/cognitive 

radio wireless networks: A survey," Computer Networks, vol. 50, pp. 2127-

2159, 2006. 

[53] W. Beibei and K. J. R. Liu, "Advances in Cognitive Radio Networks: A 

Survey," IEEE Journal of Selected Topics in Signal Processing,, vol. 5, pp. 5-

23, 2011. 

[54] F. C. Commission, "Spectrum Policy Task Force," Rep.ET Docket no.02-135, 

2002. 

[55] H. Bogucka, et al., "Secondary spectrum trading in TV white spaces," IEEE 

Communications Magazine, vol. 50, pp. 121-129, 2012. 

[56] J. Mitola, III and G. Q. Maguire, Jr., "Cognitive radio: making software radios 

more personal," IEEE Personal Communications,, vol. 6, pp. 13-18, 1999. 

[57] J. Mitola, "Cognitive Radio: an integrated agnet architecture for software 

defined radio," Ph.D Thesis, KTH Royal Institue of Technology, Sweden, 

2000. 

[58] S. Haykin, "Cognitive radio: brain-empowered wireless communications," 

IEEE Journal on Selected Areas in Communications, vol. 23, pp. 201-220, 

2005. 

[59] F. C. Commission, "Software Defined Radio(SDR)/Cogniive Radio (CR) 

Technologies," Spectrum Policy Task Force,Rep.ET Docket No. 03-108,Dec. 

2003. 

[60] W. Jianfeng, et al., "Emerging cognitive radio applications: A survey," IEEE 

Communications Magazine,, vol. 49, pp. 74-81, 2011. 

[61] TV white spaces: A consultation on white space device requirements. 

Available: 

http://stakeholders.ofcom.org.uk/binaries/consultations/whitespaces/summary/c

ondoc.pdf 

[62] Gu, et al., "Cognitive femtocell networks: an overlay architecture for localized 

dynamic spectrum access [Dynamic Spectrum Management]," IEEE Wireless 

Communications,, vol. 17, pp. 62-70, 2010. 

[63] R. Ranganathan, et al., "Cognitive Radio for Smart Grid: Theory, Algorithms, 

and Security," International Journal of Digital Multimedia Broadcasting, vol. 

2011, p. 14, 2011. 

[64] P. Pawelczak, et al., "Cognitive radio emergency networks - requirements and 

design," in First IEEE International Symposium on New Frontiers in Dynamic 

Spectrum Access Networks, DySPAN '05., 2005, pp. 601-606. 

[65] I. F. Akyildiz, et al., "CRAHNs: Cognitive radio ad hoc networks," Ad Hoc 

Networks, vol. 7, pp. 810-836, 2009. 

http://stakeholders.ofcom.org.uk/binaries/consultations/whitespaces/summary/condoc.pdf
http://stakeholders.ofcom.org.uk/binaries/consultations/whitespaces/summary/condoc.pdf


 

 

199 

[66] D. D. Ariananda, et al., "A survey on spectrum sensing techniques for 

Cognitive Radio," Second International Workshop on Cognitive Radio and 

Advanced Spectrum Management,  CogART "09. , pp. 74-79, 2009. 

[67] K. Ben Letaief and Z. Wei, "Cooperative Communications for Cognitive Radio 

Networks," Proceedings of the IEEE, vol. 97, pp. 878-893, 2009. 

[68] S. Xiaofei Chen;   Nagaraj, "Entropy based spectrum sensing in cognitive 

radio," Wireless Telecommunications Symposium, WTS 2008, pp. 57 - 61, 

2009. 

[69] P. Sramek, et al., "Methods of spectrum sensing for cognitive radio systems 

using TV frequency bands," 20th International Conference Radioelektronika 

(RADIOELEKTRONIKA), pp. 1-4, 2010. 

[70] Y.-C. L. Yonghong Zeng, Anh Tuan Hoang, and Rui Zhang, "A Review on 

Spectrum Sensing for Cognitive Radio: Challenges and Solutions," EURASIP 

Journal on Advances in Signal Processing, p. 15, 2010. 

[71] J. Chenggang, et al., "Statistical matched filter based robust spectrum sensing 

in noise uncertainty environment," in IEEE 14th International Conference on 

Communication Technology (ICCT), 2012, pp. 1209-1213. 

[72] M. H. Mohamad, et al., "Matched filter detection technique for GSM band," in 

International Symposium on Telecommunication Technologies (ISTT), 2012, 

pp. 271-274. 

[73] A. Al-Dulaimi, et al., "Cyclostationary Detection of Undefined Secondary 

Users," in Third International Conference on Next Generation Mobile 

Applications, Services and Technologies, NGMAST '09. , 2009, pp. 230-233. 

[74] H. Li, "Cyclostationary Feature Based Quickest Spectrum Sensing in Cognitive 

Radio Systems," in IEEE 72nd Vehicular Technology Conference Fall (VTC 

2010-Fall), , 2010, pp. 1-5. 

[75] D. Bhargavi and C. R. Murthy, "Performance comparison of energy, matched-

filter and cyclostationarity-based spectrum sensing," in IEEE Eleventh 

International Workshop on Signal Processing Advances in Wireless 

Communications (SPAWC), , 2010, pp. 1-5. 

[76] R. Tandra and A. Sahai, "Fundamental limits on detection in low SNR under 

noise uncertainty," in International Conference on Wireless Networks, 

Communications and Mobile Computing,  , 2005, pp. 464-469  

[77] R. Tandra and A. Sahai, "SNR Walls for Signal Detection," IEEE Journal of 

Selected Topics in Signal Processing, , vol. 2, pp. 4-17, 2008. 

[78] B. Wild and K. Ramchandran, "Detecting primary receivers for cognitive radio 

applications," First IEEE International Symposium on New Frontiers in 

Dynamic Spectrum Access Networks, DySPAN '05. , pp. 124-130, 2005. 



 

 

200 

[79] FCC, "Notice of Inquriy and Notice of Proposed Rulemaking "  ET Docket No 

03-289, Nov 2003. 

[80] P. J. Kolodzy, "Interference temperature: a metric for dynamic spectrum 

utilization," Int. J. Netw. Manag., vol. 16, pp. 103-113, 2006. 

[81] Z. Mingrui, et al., "Comparison of DF and AF based cooperative spectrum 

sensing in cognitive radio," 14th Asia-Pacific Conference on Communications,  

APCC 08. , pp. 1-4, 2008. 

[82] S. Atapattu, et al., "Relay Based Cooperative Spectrum Sensing in Cognitive 

Radio Networks," in IEEE Global Telecommunications Conference, 2009., 

2009, pp. 1-5. 

[83] W. Chin-Liang and S. Syue-Ju, "An Efficient Relay Selection Protocol for 

Cooperative Wireless Sensor Networks," in Wireless Communications and 

Networking Conference, 2009. WCNC 2009. IEEE, 2009, pp. 1-5. 

[84] S. Tae-Eung, "Cooperation in decentralized cognitive networks: Relaying, 

spectrum sensing and randomization," IEEE 20th International Symposium on 

Personal, Indoor and Mobile Radio Communications pp. 1044-1048, 2009. 

[85] H. Zhang-Hong, et al., "A distributed cooperative spectrum sensing based on 

network code in cognitive radios," in International Conference on 

Apperceiving Computing and Intelligence Analysis,  ICACIA '09., 2009, pp. 9-

13. 

[86] T. Feng, et al., "Spectrum sharing based on detection thresholds for cognitive 

radio with cooperative relay," 12th IEEE International Conference on 

Communication Technology (ICCT)'10, pp. 1445-1448, 2010. 

[87] C. Hongbin, "Relay Selection for Cooperative Spectrum Sensing in Cognitive 

Radio Networks," in International Conference on Communications and Mobile 

Computing (CMC), , 2010, pp. 188-192. 

[88] D. Tuan and B. L. Mark, "Combining cooperative relaying with spectrum 

sensing in cognitive radio networks," IEEE Radio and Wireless Symposium 

(RWS) pp. 224-227, 2010. 

[89] S. Barbarossa, et al., "Cooperative sensing for cognitive radio using 

decentralized projection algorithms," in IEEE 10th Workshop on Signal 

Processing Advances in Wireless Communications, SPAWC '09. , 2009, pp. 

116-120. 

[90] G. Chen, et al., "Cooperative Spectrum Sensing with Cluster-Based 

Architecture in Cognitive Radio Networks," 69th IEEE  Vehicular Technology 

Conference,VTC '09., pp. 1-5, 2009. 

[91] W. Dan and A. H. Tewfik, "Efficient Cooperative Spectrum Sensing in 

Cognitive Radio," IEEE Global Telecommunications Conference., pp. 1-6, 

2009. 



 

 

201 

[92] L. Li, et al., "A New Cooperative Spectrum Sensing Algorithm in Cognitive 

Networks," 5th International Conference on Wireless Communications, 

Networking and Mobile Computing, pp. 1-4, 2009. 

[93] J. Duan and Y. Li, "A novel cooperative spectrum sensing scheme based on 

clustering and softened hard combination," IEEE International Conference on 

Wireless Communications, Networking and Information Security (WCNIS) '10, 

pp. 183-187, 2010. 

[94] E. C. Y. Peh, et al., "Cooperative Spectrum Sensing in Cognitive Radio 

Networks with Weighted Decision Fusion Scheme," in IEEE 71st Vehicular 

Technology Conference (VTC 2010-Spring),, 2010, pp. 1-5. 

[95] L. Zejiao, et al., "A Study of SNR Wall Phenomenon under Cooperative 

Energy Spectrum Sensing," in 22nd International Conference on Computer 

Communications and Networks (ICCCN), 2013, pp. 1-5. 

[96] S. Xie, et al., "A Parallel Cooperative Spectrum Sensing in Cognitive Radio 

Networks," IEEE Transactions on Vehicular Technology,, vol. PP, pp. 1-1, 

2010. 

[97] Z. Jiang, et al., "Double Threshold Energy Detection of Cooperative Spectrum 

Sensing in Cognitive Radio," 3rd International Conference on Cognitive Radio 

Oriented Wireless Networks and Communications pp. 1-5, 2008. 

[98] S. Dae-Young, et al., "Cooperative Spectrum Sensing with Dynamic Threshold 

Adaptation," IEEE Global Telecommunications Conference., pp. 1-6, 2009. 

[99] C. Young-June, et al., "Overhead-Throughput Tradeoff in Cooperative 

Cognitive Radio Networks," in IEEE Wireless Communications and 

Networking Conference,WCNC '09., 2009, pp. 1-6. 

[100] Z. Xiangwei, et al., "Bandwidth efficient combination for cooperative spectrum 

sensing in cognitive radio networks," in IEEE International Conference on 

Acoustics Speech and Signal Processing (ICASSP),  , 2010, pp. 3126-3129. 

[101] Q. Qin, et al., "A Study of Data Fusion and Decision Algorithms Based on 

Cooperative Spectrum Sensing," Sixth International Conference on Fuzzy 

Systems and Knowledge Discovery. FSKD '09. , vol. 1, pp. 76-80, 2009. 

[102] S. Chunhua, et al., "Cooperative Spectrum Sensing for Cognitive Radios under 

Bandwidth Constraints," in IEEE Wireless Communications and Networking 

Conference, WCNC '07., 2007, pp. 1-5. 

[103] A. Ghasemi and E. S. Sousa, "Collaborative spectrum sensing for opportunistic 

access in fading environments," in First IEEE International Symposium on 

New Frontiers in Dynamic Spectrum Access Networks, DySPAN '05.  , 2005, 

pp. 131-136. 



 

 

202 

[104] S. Chunhua, et al., "Cluster-Based Cooperative Spectrum Sensing in Cognitive 

Radio Systems," IEEE International Conference on Communications, ICC '07., 

pp. 2511-2515, 2007. 

[105] L. Jookwan, et al., "Weighted-Cooperative Spectrum Sensing Scheme using 

Clustering in Cognitive Radio Systems," 10th International Conference on 

Advanced Communication Technology,ICACT '08. , vol. 1, pp. 786-790, 2008. 

[106] S. Bin, et al., "User clusters based hierarchical cooperative spectrum sensing in 

cognitive radio networks," 4th International Conference on Cognitive Radio 

Oriented Wireless Networks and Communications,CROWNCOM '09. , pp. 1-6, 

2009. 

[107] E. Karami and A. H. Banihashemi, "Cluster Size Optimization in Cooperative 

Spectrum Sensing," Ninth Annual Communication Networks and Services 

Research Conference (CNSR), pp. 13-17, 2011. 

[108] N. Reisi, et al., "Cluster-based cooperative spectrum sensing in cognitive radio 

networks under log-normal shadow-fading," 19th Iranian Conference on 

Electrical Engineering (ICEE) '11 pp. 1-5, 2011. 

[109] K. Wonsop, et al., "Optimization of multi-cluster multi-group based 

cooperative sensing in cognitive radio networks," MILITARY 

COMMUNICATIONS CONFERENCE, MILCOM '10, pp. 1211-1216, 2010. 

[110] L. De Nardis, et al., "Clustered hybrid energy-aware cooperative spectrum 

sensing (CHESS)," 4th International Conference on Cognitive Radio Oriented 

Wireless Networks and Communications, CROWNCOM '09. , pp. 1-6, 2009. 

[111] X. Wenfang, et al., "Cluster-Based Energy Efficient Cooperative Spectrum 

Sensing in Cognitive Radios," 5th International Conference on Wireless 

Communications, Networking and Mobile Computing,  WiCom '09. , pp. 1-4, 

2009. 

[112] D. B. R. a. G. Yan, "Spectrum Sensing Methods and Dynamic Spectrum 

Sharing in Cognitive Radio Networks: A Survey," International Journal of 

Research and Reviews in Wireless Sensor Networks, vol. 1, 2011. 

[113] N. Ahmed, et al., "GUESS: gossiping updates for efficient spectrum sensing," 

Proceedings of the 1st international workshop on Decentralized resource 

sharing in mobile computing and networking, pp. 12-17, 2006. 

[114] L. Zhiqiang, et al., "A Distributed Consensus-Based Cooperative Spectrum-

Sensing Scheme in Cognitive Radios," IEEE Transactions on Vehicular 

Technology, vol. 59, pp. 383-393, 2010. 

[115] Z. Liangjun, et al., "Optimization of Relay-Based Cooperative Spectrum 

Sensing in Cognitive Radio Networks," in 7th International Conference on 

Wireless Communications, Networking and Mobile Computing (WiCOM), 

2011, pp. 1-4. 



 

 

203 

[116] P. Shengliang, et al., "Relay based cooperative spectrum sensing in distributed 

cognitive radio networks," in IEEE Wireless Communications and Networking 

Conference (WCNC), 2012, pp. 1370-1374. 

[117] L. Chia-han and W. Wolf, "Energy Efficient Techniques for Cooperative 

Spectrum Sensing in Cognitive Radios," 5th IEEE Consumer Communications 

and Networking Conference,  CCNC '08. , pp. 968-972, 2008. 

[118] W. Jin and Z. Xi, "Energy-Efficient Distributed Spectrum Sensing for Wireless 

Cognitive Radio Networks," INFOCOM IEEE Conference on Computer 

Communications Workshops, pp. 1-6, 2010. 

[119] C. Cordeiro, et al., "IEEE 802.22: the first worldwide wireless standard based 

on cognitive radios," in First IEEE International Symposium on New Frontiers 

in Dynamic Spectrum Access Networks, 2005, pp. 328-337. 

[120] MATLAB Decumentation. Available: 

http://www.mathworks.co.uk/help/matlab/index.html 

[121] F. F. Digham, et al., "On the Energy Detection of Unknown Signals Over 

Fading Channels," IEEE Transactions on Communications, vol. 55, pp. 21-24, 

2007. 

[122] N. Reisi, et al., "Performance Analysis of Energy Detection-Based Spectrum 

Sensing over Fading Channels," in 6th International Conference on Wireless 

Communications Networking and Mobile Computing (WiCOM), 2010, pp. 1-4. 

[123] K. T. Hemachandra and N. C. Beaulieu, "Novel Analysis for Performance 

Evaluation of Energy Detection of Unknown Deterministic Signals Using Dual 

Diversity," in IEEE Vehicular Technology Conference (VTC Fall), 2011, pp. 1-

5. 

[124] S. Nallagonda, et al., "Performance of energy detection based spectrum sensing 

in fading channels," in 2nd International Conference on Computer and 

Communication Technology (ICCCT), 2011, pp. 575-580. 

[125] B. Zhiqiang, et al., "Adaptive Threshold Control for Energy Detection Based 

Spectrum Sensing in Cognitive Radio Networks," in Global 

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, 2011, pp. 

1-5. 

[126] A. H. Kaiser, Digital Signal Processing Using the Fast Fourier Transform 

(FFT): GRIN Verlag, 2007. 

[127] S. Atapattu, et al., "Spectrum Sensing via Energy Detector in Low SNR," in 

IEEE International Conference on Communications (ICC) 2011, pp. 1-5. 

[128] D. Dutta, Textbook Of Engineering Mathematics: New Age International (P) 

Limited, 2006. 

http://www.mathworks.co.uk/help/matlab/index.html


 

 

204 

[129] W. Yue, et al., "Optimization of Parameters for Spectrum Sensing in Cognitive 

Radios," 5th International Conference on Wireless Communications, 

Networking and Mobile Computing,WiCom '09., pp. 1-4, 2009. 

[130] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection theory: 

Prentice-Hall PTR, 1998. 

[131] Z. Yonghong, et al., "Reliability of Spectrum Sensing Under Noise and 

Interference Uncertainty," IEEE International Conference on Communications 

Workshops, ICC Workshops '09. , pp. 1-5, 2009. 

[132] A. Goldsmith, Wireless Communications: Cambridge University Press, 2005. 

[133] Y.-C. Liang, et al., "Sensing-throughput tradeoff for cognitive radio networks," 

IEEE Transactions on Wireless Communications, vol. 7, pp. 1326-1337, 2008. 

[134] D. J. Kadhim, et al., "Optimization of Cooperation Sensing Spectrum 

Performance," in WRI International Conference on Communications and 

Mobile Computing,CMC '09. , 2009, pp. 78-82. 

[135] X. Shuquan and Z. Lei, "Optimization for Cooperative Spectrum Sensing in 

Cognitive Radio Networks," Third International Symposium on Intelligent 

Information Technology Application IITA '09., vol. 3, pp. 331-334, 2009. 

[136] Z. Wei, et al., "Optimization of cooperative spectrum sensing with energy 

detection in cognitive radio networks," IEEE Transactions on Wireless 

Communications, vol. 8, pp. 5761-5766, 2009. 

[137] D. Bielefeld, et al., "Optimization of cooperative spectrum sensing and 

implementation on software defined radios," 3rd International Symposium on 

Applied Sciences in Biomedical and Communication Technologies (ISABEL), 

pp. 1-5, 2010. 

[138] P. K. Varshney, Distributed Detection and Data Fusion: Springer New York, 

2012. 

[139] S. Atapattu, et al., "Energy Detection Based Cooperative Spectrum Sensing in 

Cognitive Radio Networks," IEEE Transactions on Wireless Communications, 

vol. 10, pp. 1232-1241, 2011. 

[140] B. Zhiquan, et al., "Cluster-based cooperative spectrum sensing for cognitive 

radio under bandwidth constraints," IEEE International Conference on 

Communication Systems (ICCS), '10, pp. 569-573, 2010. 

[141] A. F. Molisch, Wireless Communications, Second ed.: John Wiley & Sons Ltd., 

2011. 

[142] D. Lili and Z. Lei, "An Improved Cooperative Sensing Protocol for Cognitive 

Radio System," in Third International Symposium on Intelligent Information 

Technology Application, IITA '09. , 2009, pp. 620-623. 



 

 

205 

[143] L. Yunxue, et al., "Cooperative Spectrum Sensing for Dynamic Spectrum 

Access," WRI International Conference on Communications and Mobile 

Computing. CMC '09. , vol. 1, pp. 97-101, 2009. 

 

 


