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ABSTRACT 

Artificial neural networks have been proposed as useful tools in time series analysis in a 

variety of applications. They are capable of providing good solutions for a variety of 

problems, including classification and prediction. However, for time series analysis, it must 

be taken into account that the variables of data are related to the time dimension and are 

highly correlated. The main aim of this research work is to investigate and develop efficient 

dynamic neural networks in order to deal with data analysis issues. This research work 

proposes a novel dynamic self-organised multilayer neural network based on the immune 

algorithm for financial time series prediction and biomedical signal classification, combining 

the properties of both recurrent and self-organised neural networks.  

The first case study that has been addressed in this thesis is prediction of financial time series. 

The financial time series signal is in the form of historical prices of different companies. The 

future prediction of price in financial time series enables businesses to make profits by 

predicting or simply guessing these prices based on some historical data. However, the 

financial time series signal exhibits a highly random behaviour, which is non-stationary and 

nonlinear in nature. Therefore, the prediction of this type of time series is very challenging. In 

this thesis, a number of experiments have been simulated to evaluate the ability of the 

designed recurrent neural network to forecast the future value of financial time series. The 

resulting forecast made by the proposed network shows substantial profits on financial 

historical signals when compared to the self-organised hidden layer inspired by immune 

algorithm and multilayer perceptron neural networks. These results suggest that the proposed 

dynamic neural  networks has a better ability to capture the chaotic movement in financial 

signals.  

The second case that has been addressed in this thesis is for predicting preterm birth and 

diagnosing preterm labour. One of the most challenging tasks currently facing the healthcare 

community is the identification of preterm labour, which has important significances for both 

healthcare and the economy. Premature birth occurs when the baby is born before completion 

of the 37-week gestation period. Incomplete understanding of the physiology of the uterus 

and parturition means that premature labour prediction is a difficult task. The early prediction 

of preterm births could help to improve prevention, through appropriate medical and lifestyle 

interventions. One promising method is the use of Electrohysterography. This method records 
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the uterine electrical activity during pregnancy. In this thesis, the proposed dynamic neural 

network has been used for classifying between term and preterm labour using uterine signals. 

The  results indicated that the proposed network generated improved classification accuracy 

in comparison to the benchmarked neural network architectures.  
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CHAPTER 1  INTRODUCTION 

1.1 Introduction 

Artificial neural networks (ANNs) have been prevalent in the usage of most machine learning 

applications in recent times. They have the power to predict and classify unknown patterns 

which are too complex for human observation (Makeshwar et al. 2010). In the literature, 

ANNs are also known as neurocomputer, connectionist network, and parallel distributed 

processor (Haykin 1998). ANNs have been proposed as useful tools in time series analysis in 

a variety of applications. Historically, they have also been proved to provide ways to 

overcome and solve practical problems such as prediction, classification, clustering, 

optimisation, etc. (Hertz et al. 1991). One type of neural network is the dynamic neural 

network, which is a neural network with feedback links. This dynamic neural network is 

applicable to various domains in order to deal with dynamical behaviour in time series data. 

The highly popular feed forward neural network is the multilayer neural network (MLP). It 

has been applied extensively in time series prediction. The main aim of this research is to use 

dynamic neural networks for the purpose of prediction and classification of time series data. 

The prediction process is used to detect values or events that will occur in the future based on 

some previous and current knowledge of certain data. Examples of prediction include 

weather forecast, stock rate prediction, earthquake prediction, marketing and sales 

forecasting.  Artificial neural networks can also be used for the prediction task and have very 

high success levels. 

Classification techniques are able to categorise a set of data into groups of objects that share 

similar behaviours based on small subsets of training sets. Kohavi (1995) defines the 

classifier as a function that is able to map unlabelled data to label type. Classification 

techniques have been considered as the most crucial methods for decision-making and are 

widely used in data analysis. The purpose of such classification is to analyse the data in order 

to simplify the understanding of its structure.  

Time series is a sequence of observations created by a complex system. Real time series are 

extremely useful in monitoring the behaviour of any complex systems over a given period. 

They can be used for analysis and forecasting of complex systems. Time series analysis has 
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recently gained much attention from scientists and researchers, whose interest has led to 

different types of time series in different worldwide applications such as biological signals, 

time series for monitoring industrial processes, financial time series, etc. (Mirea & Marcu 

2002; Roverso 2000; Fergus et al. 2013; Phinyomark et al. 2012; Adhikari & Agrawal 2013; 

Chowdhury et al. 2013a).  

Time series usually contain a trend of random behaviour. Analysis of such data is not an easy 

task considering the various internal and external factors affecting these time series. In the 

theoretical analysis, Herrera assumed that time series are generated by a dynamic system 

(Herrera 1999). The systems that generate time series involve complex properties, which are: 

the relationships that exist between the elements of a time series are nonlinear, and include 

extensive dynamic behaviour. These properties make it very difficult to accurately analyse 

the behaviour of such systems even if the underlying properties are completely known. The 

investigation into analysing time series has essentially helped in the development of a number 

of techniques such as traditional and intelligent methods. While the traditional method 

requires assumptions about the characteristics of data, the intelligent technique is based on 

learning methodology, which is more dependent on large amounts of examples called training 

data. The learning methods help to learn the behaviour of time series and generate models 

based on using the training data set, consequently achieving a better learning model. 

However, the complexity of time series is such that there are no known details about the 

system that creates such time series; therefore such issues cannot be resolved by traditional 

methods. Analysis of time series behaviour of any complex systems such as the human body, 

stock markets or even countries’ economies has always created a major challenge. The main 

advantage of using intelligent methods is not requiring any pre-information or details about 

time series.  

1.2 The problem statements  

Although there are massive applications of the well-known MLP neural networks, they suffer 

from difficulties such as the determination of the optimal number of hidden units, and 

estimating the best weight values. The selection of these parameters is very important to 

improve the performance of neural networks. Furthermore, the MLP neural network is 

affected by some learning algorithm problems such as over-fitting problems (Cao & Tay 

2001; Giles et al. 2001; Widyanto et al. 2005). This means that the neural network can 
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perfectly map between input and output in training data but it will not be able to sufficiently 

generalise its learning to new data.  

There are a number of studies which have investigated the ability to use different techniques 

to improve the generalisation ability of feed-forward neural networks and to automatically 

select the best number of hidden units and their weights. One of these techniques was 

proposed by Widyanto et al. (2005). They designed a self-organised hidden layer inspired by 

an immune algorithm (SONIA). SONIA contains an immune algorithm in the self-organised 

hidden layer. The main aim of this network is to improve the recognition and the 

generalisation propriety of the MLP neural network. SONIA was used to predict temperature-

based food quality; it showed an 18% improvement in correct recognition in comparison to 

the MLP network (Widyanto et al., 2005). Furthermore, this network has been used for 

prediction of financial and physical time series ( Hussain & Al-jumeily 2007; Mahdi 2010; 

Mahdi et al. 2009; Mahdi et al. 2010) and for classification (Widyanto et al., 2006). However, 

SONIA is a feed-forward neural network, which means that it can solve static problems but 

cannot remember past behaviours and as a result cannot generate good results with dynamical 

temporal data (Ling et al. 2007). Therefore, the SONIA neural network has been improved by 

using recurrent links between its layers in order to deal efficiently with temporal patterns in 

time series. The main advantage of recurrent connections in a neural network is their ability 

to deal with static and dynamical situations (Ling et al., 2007; Makarov et al., 2008). These 

connections can offer the cognitive function such as memory association, classification or 

predication of dynamic system (Hopfield 1982; Jaeger 2004). The work of Makarov et al. 

(2008) showed that recurrent networks can be used to learn dynamic as well as static 

problems. Furthermore, it has been proved that using recurrent feedback in feed-forward 

neural networks can enhance the dynamic behaviour of the feed-forward neural network. It 

can improve the network’s ability to analyse time series that has been created by complex 

systems. Therefore, this research is focused on finding an optimal dynamic neural network 

that can deal with complex time series analysis problems, and this will be achieved by 

designed a novel dynamic self-organised neural network which is inspired by immune 

algorithm. These links can improve the performance of the network to deal with data better 

that the ordinary SONIA network. They are applied to model and analysis some time series 

signals emerging from two complex domains, financial and medical.   

 



4 

 

1.3 The scope of the research work  

In the experiments undertaken in this research work, some interesting time series have been 

used. These time series signals are processed using the proposed dynamic neural network for 

prediction and classification purposes. These time series signals are: 

 Financial time series signals.  

 Biomedical signals 

1.3.1 Financial Time Series Signals  

Any time series generated from financial systems has the properties that its components, such 

as prices, are presented at certain times (daily, weekly, monthly, quarterly and yearly) and the 

movement of the prices is affected by factors (such as political events, rumours, business 

strategies, etc.). Financial time series signal is in the form of historical prices for example, the 

stock market. The future prediction of price in financial time series enables businesses to 

make profits. In this experiment, ten time series signals were used: six stock markets’ signals, 

three currency exchange rate signals and one oil pricing signal.  

1.3.2 Biomedical Signals 

Uterine EHG signals refer to the electricity activity captured at the uterus during pregnancy 

using an electrodes. These signals reveal a great deal of information about the uterine 

contraction. This further helps to predict the chances of a woman going into labour as preterm 

or term. Early detection of preterm can provide early involvement to decrease and stop 

preterm birth (Chen, Chuang, Yang, & Wu, 2011; Iams, 2003). The experiment in this time 

series is based on using the proposed neural network for classifying EHG signals. Before 

classification, the time series must be transformed by using pre-processing methods: firstly, it 

has been filtered into 0.3-3 Hz. Then, these EHG time series are transformed into a four-

dimensional vector space (feature space), as such features make the separation of groups 

easier. Three of these features are linear and one is nonlinear; these feature and filter 

parameters have been recommended by Fele-Zorz et al. (2008).  

1.4 Motivation 

The main motivation behind this research work was that, although extensive studies have 

been conducted for finding and designing the optimal neural network for classifying and 
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predicting time series, these studies are mainly limited to performance. Classifying and 

predicting the time series signals is useful from a bigger perspective. For example, predicting 

potential prices in the stock market helps not only an independent investor point of view but 

also a country’s economy. The first research work is targeted at predicting the future value of 

financial time series. More specifically, this study proposes to predict the future prices of 

stock prices based on their historical financial time series taken over a certain period of time. 

The main motivation for this research is to develop a new model of recurrent neural network 

in order to perform successful time series analysis for prediction and classification tasks.  

To develop and test the concepts, the research has focused on financial time series, but once 

the methodology is confirmed to work well on these signals, the research can be expanded for 

use on other real-world signals. These types of experiments can be suitably applied to real-

world problems. These applications can prove helpful in addressing some complex issues of 

time series signal prediction. The extensive amount of data sets used in this study give more 

insights into the functioning of complex systems, which were otherwise assumed to be black-

box systems. 

The proposed method in this study has been extended to the biomedical domain. In more 

specific terms, the research presented here is aimed at developing a recurrent neural network 

to classify the biomedical signals. It thus focuses on addressing the binary classification 

question of whether a patient will likely be normal or abnormal, e.g., in uterine EHG cases if 

a woman’s delivery will be preterm or term.  

1.5 Aims of the Thesis 

The main aim of this thesis is to investigate and develop an efficient dynamic neural network 

approach in order to deal with time series analysis. This research work focuses on combining 

recurrent connections with a self-organised hidden layer inspired by immune algorithm. The 

recurrent connections improved the performance of the proposed model by having a 

"memory" of past information passed to the network through context units. The main 

objective of this dynamic neural network is for predicting and classifying a time series signal 

emerging from a complex system. Such systems are assumed to be a black box, wherein the 

properties of their components are unknown. This research work will attempts to investigate 

the ability and the performance of the proposed network based on two types of architectures 

for the purpose of analysing two types of real-time series signals. The main benefit of this 
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network is that it has the ability to deal with variable length time series, and can still deal 

with the dynamic behaviour of the time series. Furthermore, it can be applied to classify 

between groups in time series.  

This research has been applied into two different domains: financial time series, and 

biomedical time series, which is the uterine EHG. In the first part of the proposed 

experiments, financial data are utilised. Based on the promising results obtained with the 

financial data, the ability of the proposed network to be used as a forecasting tool can 

demonstrate. The second part of this research proceeds with possibility of extending the 

proposed neural network to be used with other domains. For this, the biomedical time series 

signals have been used for classifying preterm and term subjects in EHG signals. In this 

study, good classification results have been achieved. Various concepts were applied relating 

to pre-processing and transformation methods in the two types of signals that have been used 

in this thesis.  

1.6 Objectives and Contribution of the Investigation 

In order to investigate the research aims, some objectives have been set, as follows:  

1. Develop a novel recurrent neural network architecture that can be used for the 

prediction and classification of real-time data. The proposed dynamic neural network 

is designed into two architectures. The first architecture is based on the Jordan 

recurrent neural network and is called Dynamic self-organised multilayer inspired by 

immune algorithm (DSMIA). The second architecture is developed based on the 

Elman recurrent neural network and is called Dynamic self-organised inspired by 

immune algorithm (DSIA). 

2. Investigating the ability of the DSMIA network to deal with stationary and non-

stationary time series.  

3. Utilising the regularisation techniques in the DSMIA network. 

4. Investigating the application of various recurrent neural network architectures for 

medical data analysis. 

5. Implementing and evaluating different experiments to measure the performance of the 

proposed DSIA network to detect preterm classes from uterine EHG signals. 
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1.7 Thesis Structure 

The remaining part of this thesis is organised as follows.   

Chapter 2 will discuss the literature review about neural networks. A brief history and the 

main proprieties of neural networks will be addressed in this chapter. Furthermore, a detailed 

description of neural network architectures and their learning algorithms will be discussed. 

Chapter 3 will give a brief description of various types of recurrent neural network 

architectures. Furthermore, the chapter will discuss the various applications of recurrent 

neural networks in various domains. Chapter 4 will propose two dynamic neural networks, 

presented as an extension of the ordinary self-organised hidden layer inspired by immune 

algorithm. The two architectures of the proposed network as well as their properties and their 

learning methods will be presented. In Chapter 5 description about time series data and 

related studies that have been performed in analysing time series will be given. This chapter 

will deal with one type of time series, which is financial time series. It will review the 

fundamentals of financial time series forecasting, and address the difficulties and problems 

with this type of time series. Furthermore, Chapter 5 will include the background of the 

neural network and traditional forecasting methods’ application in financial time series. 

Chapter 6 will discuss the application of recurrent neural networks in the biomedical domain. 

This chapter gives a brief introduction about medical time series. Then, it reviews the various 

techniques applied to analyse medical time series as well as the applications of recurrent 

neural network in medical time series analysis. A description of uterine Electrohysterography 

signals is also provided. Chapter 7 will describe the collection procedures and pre-processing 

methods used to assemble financial and uterine Electrohysterography signals. Furthermore, 

this chapter will present the simulation results for the various experiments that have been 

considered in this thesis. It also contains all the discussions from different experimental 

works. Finally, Chapter 8 will provide the conclusions and the directions for future work.  

1.8 Chapter summary 

Time series data are generated by very complex nonlinear dynamical systems. Therefore, 

analysis of such time series is very difficult. The challenge in time series prediction and 

classification is to discover the network model that would offer the best ability to deal with 

this type of data and to yield the best result. However, the neural network has some 

limitations in dealing with this type of data. Research work in this domain is continually 
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leading to the introduction of numerous of neural networks for the purpose of analysing such 

dynamical systems. This thesis will propose one type of dynamic neural network known as 

Dynamic self-organised neural network inspired by immune algorithm. The performance of 

the proposed network will be examined in two types of time series domains, financial and 

medical data. 
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CHAPTER 2  ARTIFICIAL NEURAL NETWORKS 

2.1 Introduction 

An artificial neural network (ANN) is a system that processes information, which is inspired 

by the biological neural network in the human brain. In this chapter, the properties and the 

history of neural networks will be introduced. A number of neural network architectures have 

been designed; in this chapter, the feed-forward network will be presented. In addition, 

different type of learning algorithm will be explained at the end of the chapter.  

2.2 Brief History  

In previous decades, there have been great efforts to study and understand the information 

process in the human neural system and to simulate nervous-system learning in order to solve 

real-world problems. It has been recorded that, since 1901, great attention has been paid to 

understanding the human brain. For example, Rojas (1996) has mentioned that, from 1901 to 

1991, almost 10% of the Nobel Prizes for Physiology and Medicine were awarded to 

scientists who contributed to the understanding of brain functions. It is worth mentioning that 

Cajal (1990) provided an important insight into the structural constituents of the brain when 

he introduced the best diagrams of neurons, which have been used ever since. The first 

artificial neural network was produced by Warren McCulloch and Walter Pitts in 1943 

(McCulloch & Pitts 1943). They designed the first mathematical model of an ANN, which, 

although very simple, had substantial computing potential. Besides these examples, the ANN 

has been evolving since 1940 (Miller et al. 1992), where neurobiological researchers have 

worked together with the mathematics and computer science community to develop artificial 

neural networks (Rojas 1996). They have focused their attention on finding ways of training 

neural networks. Hebbian learning was developed in 1949, and was named after the 

neuropsychologist (Hebb 1949). In 1958, Rosenblatt extended the McCulloch and Pitts 

neuron. The Rosenblatt neuron is named the perceptron (Rosenblatt 1958). 

In the mid-1980s, ANNs became very popular immediately after the back-propagation 

algorithm was developed by Rumelhart et al. in 1986 (Machado 1996a; Rumelhart & 

McClelland 1986). Events that followed this innovation led to thousands of papers being 

published on neural network applications. They have been borrowed by numerous disciplines 

(e.g. medicine, finance, physics, security, etc) in coming out with different hypotheses and 
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theorems. They continue to attract new thoughts and ideas for improved performance, and a 

number of network architectures and learning algorithms are now being studied (Miller et al. 

1992). They have been applied to perform many complex function approximations in 

different applications such as time series analysis, signal processing, pattern recognition, and 

image processing. In the literature, they have been put to practical use to solve various real-

world problems related to areas such as medicine, science, engineering, business, etc (Dase & 

Pawar, 2010; Ispawi, Ibrahim, & Tahir, 2012; Sarbaz et al., 2011; Sriraam, 2011). These 

different applications have shown how extensively ANN can be utilised successfully to 

overcome problems, as compared to other standard statistical tools (Zhang, 2000).  

There have been various studies and investigations conducted to improve and speed up the 

performance of neural networks by finding learning algorithms such as the Levenberg 

Marquradt Learning Algorithm (Hagan & Menhaj 1994). Besides, some researchers have 

tried to apply different techniques and approaches to develop the learning process in neural 

networks, such as using the momentum term (Miniani, 1990), variable learning rate (Jacobs 

1988), and weight decay (Krogh & Hertz 1995). 

2.3 Benefits of Artificial Neural Networks  

Artificial neural networks have been considered as modelling tools and they have important 

properties. In the following section, these properties will be described. 

First, neural networks can model linear and nonlinear relationships between variables 

(Scarborough, & Somers 2006). Nonlinearity means that the relationship between variables in 

a data set is not directly proportional, which means that slight changes in one variable can 

cause large changes in others (West 1985; Somers & Casal 2009). The property of 

nonlinearity is a very important and powerful aspect of neural networks. ANNs produce 

nonlinear models, which can be adapted to various problems. This property makes an ANN a 

more flexible model that is capable of dealing with real-world complex relationships (Zhang 

2000). This flexible model has the power to learn the underlying connections between data 

samples. The neural network nonlinearity is due to the nonlinear activation function existing 

in neurons. It transforms input into output using a nonlinear function, thus resulting in true 

nonlinear parameters.  
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It is essential to take into account the fact that the relationships among variables in the data 

set will be linear as well as nonlinear; this will support the improvement of data analysis. 

Therefore, researchers have to consider using techniques that are capable of discovering both 

linear and nonlinear relationships. Some researchers have strongly recommended using 

nonlinear methods to analyse data. Somers in 2001 pointed out that significant connections 

among variables cannot be linear (Somers 2001). He focused on the application of neural 

networks in organisational research. His work has shown that the relationship between work 

attitudes and job performance is nonlinear, and the performance of nonlinear neural networks 

is more effective than linear regression methods (Somers 2001). Bettis in 1995 recommended 

the use of nonlinear methods to analyse strategy and adaptation of system dynamics (Bettis, 

1995). In addition, ANNs are very beneficial in defining the upper boundary of analysis of 

variance when the relationships between variables are nonlinear. In general, ANNs present 

the prospect of new insights into the structure of relationships among variables.  

Most ANNs are considered as universal approximation functions that are capable of 

approximating any continuous nonlinear function with the desired degree of accuracy (Zhang 

2000; Hornik et al. 1989; Cybenko 1989; Roverso 2000). The approximation theory is based 

on approximate any function by evaluating a given set of values (Rojas, 1996). Universal 

approximation function theorem has been approved in a number of neural network 

architectures (Hornik et al. 1989; Cybenko 1989). Neural networks have many computational 

elements (neurons), each of which might use the nonlinear activation function. As a result, 

neural networks are able to model any general functions (Michie et al. 1994). Therefore, data 

with unidentified structure can be easily approximated and modelled by a neural network. 

Furthermore, the ANN models function through a learning process. The neural network 

learning process is similar to the human nervous system, which is based on “learning by 

example”. They are known as self-adaptive models, which adapt in order to approximate the 

behaviour of data (Ling et al. 2007; Detienne et al. 2003). Therefore, they have the ability to 

learn and adapt to various environments. Learning is defined as the capability to estimate the 

underlying behaviour in a specific set of data, which are called training data (Zhang 2000). 

ANNs can obtain any nonlinear mapping of training data through learning. The nonlinearity 

ability of neural networks is presented in the activation function that has been used to 

compute the neuron output. Thus, ANNs can be trained to represent any given problem 

behaviour. Hassoun (1996, p.1) revealed that “This feature makes such computational models 
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very appealing in application domains where one has little or incomplete understanding of the 

problem to be solved but where training data is readily available”. They have been designed 

with the capacity to adjust their synaptic weights in order to solve problems in different 

environments. Consequently, the weights will capture the information related to the problem 

from the training data. Thus, the knowledge of the ANN is retained across these weights. In 

addition, the neural network has the ability to generalise. This enhances the ability to predict 

output for given inputs that are not in the training set; thus, from the adaptive weights the 

network is able to generalise (Miller et al. 1992). Therefore, weights obtained from training 

data are applied to approximate targets of new data in the same environment, which are called 

test data.  

Additionally, biological neural networks operate in parallel; thus ANN has a parallel 

processing capability, in which the calculation for each neuron is generally independent of all 

other neurons (Wesley-Smith, 2006). ANNs are able to discovers many competing 

hypotheses simultaneously by using parallel units, therefore ANN can be applied for parallel 

processing (Razmjooy et al. 2011) . ANNs can be used to solve complex problems, as used 

by Roverso for dynamic event recognition and fault diagnosis (Roverso 2002).  

Finally, neural networks have the advantage of not using any assumptions about the 

underlying data structure and properties (Haykin 1998; Fausett 1994). Unlike standard 

statistical classification that needs prior information about data to perform classification, 

ANNs can model tasks and adjust their weights to the data without any previous information 

or specification on the underlying probability distribution (Zhang 2000). 

2.4 Neural Network Architecture 

An artificial neural network is a simulation model of the information processing of the human 

nervous system. This section will briefly describe some functions of the human nervous 

system that have stimulated the development of artificial neural networks.  

From the beginning it is worth mentioning, as asserted by Rojas (1996), that the human brain 

has the ability to solve problems that no digital computer can yet professionally deal with. 

Nervous systems are very complex architectures that contain millions of elements called 

neurons (neural cells). Rojas asserted that both neurons involved in neural structure and the 

whole neural systems are considered self-organising systems that have the ability to deal with 
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information in a variety of ways. Each of these types of neurons has been employed to 

perform a different function. These neural cells can create a response and output based on 

incoming signals. They transfer information by electrical signals. Signals run between 

neurons in a perfect manner (Rojas 1996). The fundamental nature of neural information 

processing is based on the relationship between electrical conduction of information in the 

cell and chemical transmission between cells. 

The nervous system contains four components: Dendrites, Synapses, Cell body, and Axon. 

Each of these elements has its own function. The dendrites are branches on the ends of 

neurons, which pass the incoming information signals to the cell body. The cell body creates 

the essential chemicals to process the incoming signals from the dendrites. The output of the 

cell body is carried by the axon, which transfers the signals from the cell body out to other 

neurons. The synapses are contact points between one neuron and another, and they store 

neural network information. Thus, the direction of the information broadcast is controlled by 

synapses. The strength of the individual synapses and the organising of neurons are estimated 

by a complex chemical process (Rojas 1996). 

 

Figure 2.1: Diagrammatic representation of a neuron (Maltarollo et al. 2013) 

 

Figure 2.1 illustrates a human neuron, where the neurons are attached through edges of the 

cell body. The synapses will be expressed in ANN models by embedding the weights. They 

will be adopted to contact neurons between the cell body and input or output neurons. They 

therefore measure the strength between neurons. They decide the importance of input signals 

and basically determine the network output. In addition, they can control the direction of the 
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information broadcasting. Thus, ANNs will be able to capture underlying patterns from 

inputs and map them to outputs (Swingler 1996). A subgroup of neurons is organised in a 

layer. The first layer is the input layer while the last layer is referred to as the output layer. 

The hidden layers are the extra layers located between the input and output layers. The input 

neurons obtain impulses from external networks. The hidden neurons obtain their impulses 

from other neurons, and their outputs are transmitted to other neurons in the ANN. The 

output neurons present their output outside the network. Every neuron is a processing element 

with an activation function. The activation functions are referred to as squashing functions, 

which squeeze the amplitude range of neuron output to some limited value (Haykin 1998). 

The activation functions can be used in the neural network, as illustrated in Figure 2.3. Then, 

the neural network can modify the values of their weights in order to learn a specific 

function. 

 
Figure 2.2: Artificial neuron 

 

Figure 2.2 shows a simplified artificial neuron. Suppose (x1, x2, ….xn) are input patterns for 

the neural network; the weight connect units i and j are represented by     , the      are the 

sum of the input values x multiplying by the weight assorted with unit and computed as: 

     ∑             (2.1) 

and the output from unit j is yj which is the result of the activation function for     : 

                (2.2) 

Where    is the transfer function. Common transfer functions used in the neural network are 

the logistic, the linear threshold, and the hyperbolic tangent, as shown in Figure 2.3. 
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Figure 2.3: The activation functions 

 

The linear threshold function has been used in the first neural network in Figure 2.3. It is 

based on the condition that the neuron is active if the impulse obtained is higher than a 

certain threshold. As for the logistic and hyperbolic tangent functions, they were used to 

make the function differentiable, and they differ only in the output range (0 to 1 for the 

logistic and -1 to 1 for the hyperbolic tangent). 

Information on an ANN can be propagated by the neurons in different directions, and the 

connections between neurons can be presented in different ways. Therefore, a number of 

neural network architectures have been designed. In the next section, two types of ANN 

structures that are commonly used for classification and prediction will be described. The 

first one is the feed-forward neural network, which involves the information from the input 

layer being transmitted down through the network layer until it reaches the output layer. The 

second network type is called the recurrent neural network (RNN), as it incorporates 

recurrent links into its structure, such as the feedback connections. 

2.4.1 Feed-Forward Neural Network 

The feed-forward neural network is also called the multilayer perceptron (MLP). It is the 

most familiar type of neural network. In the literature, a number of neural network 

publications have been concerned with the feed-forward neural network. It has been applied 

successfully, compared with standard recognition tools. In addition to their history of 

successful application, MLPs are attractive because they were confirmed as being universal 

approximator function in 1989 by Cybenko and Hornik et al. (Hornik et al. 1989; Cybenko 

1989). The universal approximation theorem asserted that a feed-forward network can 

approximate practically any nonlinear function (Gupta 2000).  
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The feed-forward network has a number of hidden layers. Each hidden layer has a number of 

hidden neurons. These hidden neurons provide neural networks with additional learning 

ability. They are able to learn more patterns and discover the hidden patterns in data. In 

addition, they can map the relationship between input and output neurons. Furthermore, the 

hidden layer in the MLP can map nonlinearities in data by using nonlinear transfer functions 

to compute the output of the hidden neurons.  

 

Figure 2.4: The feed-forward neural network 

 

The basic fed forward neural network architecture is illustrated in Figure 2.4. The network 

consists of L number of layers: the first layer is called an input layer with NI units, hidden 

layers with Nh units and an L layer is the output layer with No units. Let us suppose the inputs 

are  x=[x1,x2,….,xNI] , and weights are w; the network output will be y=[y1,y2,…,yNo]. The 

inputs are first passed to the input units in the input layer and then the outputs from the input 

units are sent to the hidden units in the hidden layer, which is the second layer, and so on, 

until finally the last layer of the hidden layers is reached, which is (L-1)
th

 layer. The outputs 

of this layer are fed to the output units in the L
th

 layer. The calculation of the network is as 

follows: 
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                   (2.3) 

    
  ∑                                  (2.4) 

  
         

        (2.5) 

Then the output value of the hidden layer will be calculated by sending the netj to an 

activation function where    is the transfer function. Then the activation of the output units (  

and l=1….No.) from the output layer are computed based on the hidden layer output   
 .   

    
   ∑    

   
                       (2.6) 

           
        (2.7) 

The performance of the MLP neural network is affected by various factors such as type of 

transfer function, number of hidden layers or number of hidden neurons. The determination 

of the neural network architecture includes the selection of number of hidden layers and the 

number of hidden units in each hidden layer. Consequently, the use of different transfer 

functions or neural network architectures will create different results. For example, 

researchers have claimed that applying an ANN with more than one hidden layer can improve 

the required task (Hertz et al. 1991). However, other researchers have argued that complex 

nonlinear patterns can be effectively modelled by an ANN with one hidden layer (Bishop 

1995; Ripley 1996). In terms of numbers of hidden neurons, no assumptions have been made 

about selecting an accurate number of hidden neurons for modelling tasks. Even if the 

required task is highly nonlinear, this does not mean that the neural network needs more 

hidden neurons (Gupta 2000). On the other hand, fewer hidden neurons might cause the 

neural network to learn the problem behaviour poorly and incompletely (Gupta 2000). 

However, the selection of the optimal numbers of hidden layers and hidden neurons for the 

required task is very challenging. 

2.4.2 The Higher order Neural Networks 

The higher-order neural network is a network with high order correlations of inputs to 

perform non-linear mappings with fewer layers. The higher order neural network exploits a 

higher combination of its inputs. There are different types of high order neural networks, such 

as functional link neural network, Pisigma neural network, and Ridge neural network. 
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Hussain et al. (2008) demonstrated that the Higher Order neural networks (HONNs) can 

successfully be used to predict financial time series. Their research involved various types of 

HONNs, such as functional link neural network (FLNN), Pi-Sigma neural network (PSNN), 

Polynomial neural network (RPNN) and novel polynomial pipelined network. These neural 

networks have been used to forecast several sets of exchange rate time series. Their result 

shows that the novel network can achieve best performance compared with other networks 

(Hussain et al. 2008). 

2.4.2.1 Functional Link Neural Networks (FLNNs) 

Giles and Maxwell (1987) first presented FLNNs as an addition to standard feed-forward 

networks. The FLNN architecture extends the feed-forward network, aiming to map non-

linear relationships between input and output data. As the architecture is simpler, it is planned 

to decrease the computational cost incurred in the training phase, whilst demonstrating good 

approximation  performance (Mirea & Marcu 2002). In spite of their otherwise linear nature, 

providing the input set is suitably descriptive, FLNN-architecture is able to offer a learning 

network with greater information capacity and complex learning ability (Cass & Radl,1996, 

Mirea & Marcu 2002).  

FLNNs have created a popular strand of research. Fei and Yu (1994) showed that FLNNs 

have more powerful approximation capability than back-propagation networks, and form 

suitable models for system identification (Mirea & Marcu 2002). Cass and Radl (1996) used 

FLNN in process optimisation, discovering that the training speed is improved significantly 

compared to traditional MLP networks, without a loss in computational capacity.  

However, FLNN architectures have some drawbacks. They suffer from weight explosion, 

with an exponential increase across the number of inputs.  

The output of FLNN is specified as follows:   
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                     (2.8) 

where X and Y are the input and the output of the network, respectively. In this case, σ is a 

nonlinear transfer function, and wo is the adjustable threshold.  
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2.4.3 Recurrent Networks 

Since the main objective of constructing a neural network is to simulate the biological 

nervous network, it must be taken into account that the human neural system is actually 

dynamic. The human neural system has the ability to memorise past information from 

previous problems to use it to solve or deal with the next one. From the previous section it 

can be observed that there are no “memory” units in feed-forward networks that can save the 

output generated earlier by the network. Therefore, the standard feed-forward neural network 

must be extended with a recurrent connection to allow temporal dynamics into the neural 

network; this is known as a recurrent neural network (RNN). The RNN is considered to be a 

type of feed-forward network with integration of units called “context units”; these context 

units will hold the activation output produced by hidden or output layers. Chapter 3 will 

introduce the recurrent neural network in more detail. 

2.5 Learning Algorithm 

The ANN is considered a modelling approach, since the model can be designed by the 

learning from a specific set of data, which are training data. Hence, the knowledge in an 

ANN is based on the adaptive interconnection weights between neurons on each layer. The 

training process is an important property of ANNs. The samples of the training set are 

iteratively fed into the network, and each sample is considered information of the ANN; this 

information can be integrated into the network structure during the training process. While 

the training is taking place, the neural network adapts weights of each computing unit in each 

layer based on a learning algorithm. This adaptive processing will be repeated until the 

network learns to achieve the desired response (Rojas 1996). Accordingly, the learning 

operators will improve the neural network performance over time (Subasia et al. 2005). This 

is considered a correction step. Once the learning is completed, the neural network becomes a 

fast and accurate model of the original problem at hand. The trained neural network model 

can therefore be used on the test data to provide the optimal answer to the task it has learned. 

Different types of learning algorithms have been established to train neural networks. The 

oldest and best-known learning algorithm is Hebbian learning. The Hebbian rule is a method 

of computing changes in connection strengths between neurons (Hebb 1949). The Hebbian 

rule states that, if two neurons are active at the same time, the connection between neurons 

should be strengthened (Hebb 1949).  
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Neural networks can learn using supervised or unsupervised learning algorithms. Supervised 

learning neural networks are trained using a desired set of responses; this is known as 

learning with a teacher. The best-known supervised learning algorithm is the back-

propagation learning algorithm, which is used to train multilayer perceptrons (MLPs). This is 

an attractive tool for prediction and classification tasks in many disciplines. On the other 

hand, in many cases the desired output and the right solution expected from the neural 

network are not provided. Therefore, unsupervised learning has been developed to deal with 

this kind of problem. Unlike with supervised learning, in unsupervised learning the desired 

response is unknown, so there are no teachers to help neural networks to learn. The best-

known unsupervised neural network is the self-organising map (SOM). The SOM network is 

the most popular network and it can be applied for clustering tasks, visualisation and feature 

selection (Haykin 1998).  The next sections will introduce these two types of learning. 

2.5.1  Supervised Learning  

In supervised learning, the neural network will be provided with input and output patterns 

during the training phase. In this type of learning, neural networks are taught to learn the 

pattern or behaviour of the input values in order to create an output that is already provided. 

Therefore, the learnt neural network will have the optimal weights, which will minimise the 

error function between neural network output and desired output on the training data set. The 

error function measures the difference between the network output and the desired output. 

Different error functions can be used to measure the performance of neural networks, such as 

the sum of squared errors for training data (Somers & Casal 2009; Werbos 1988). This error 

function has been used mostly in MLP.  

2.5.1.1 Back-propagation Algorithm 

As explained above, learning in neural networks means minimising the cost function by 

finding the optimal set of weights; this is achieved by the rule stating that, if the network 

output is not sufficiently close to the target, one should adjust the weights in the direction that 

will minimise the error. The most widely used learning algorithm for training a feed-forward 

multilayered network is called Back-propagation. This obtains the best set of weights for 

achieving the lower error by using gradient descent (Machado 1996; Rojas 1996). The main 

concept of this algorithm is to compute the effect of each weight in the network by using a 

training process.  
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 During the training process two set of values are passed through the network: 

Function values: the input values propagated from the input layer through the hidden layers 

until they reach the output layers, as shown in Figure 2.5.  

 

Figure 2.5: The Feed-Forward 

Error values: the errors are computed through the back-propagation algorithm. The error is 

computed from the output layer and propagated backwards from the output layer, through the 

hidden layers, until it reaches the input layer, as represented by Figure 2.6. Therefore, each 

layer returns its error back to the previous layer. 

 

Figure 2.6: The process of back-propagation 

 

The weights are modified based on the Delta rule. During training the network performance 

is evaluated by computing the error function. The output created by the network will be 

compared to the actual target, which is called the error function. It is quantified by: 

                                  (2.9) 

Where    represents the error between the actual target       and activation output       at 

time t. where k indicates the output unit. The weights are modified in order to make the 

network output close enough to the actual target. The error function to be minimised is: 
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               (2.10) 

E will be the sum of e(t) over all patterns in the training data. Then the error is fed backwards 

through the neural network layers. Thus, the weights are adjusted at each layer, launched by 

the output layer. Each       is updated by the negative of the gradient to reduce the error. 

The weight change          is calculated from the derivative of the errors with respect to the 

connections’ weights as given by: 

         
  

     
         (2.11) 

  

    
  

  

   
 

   

     
 

     

    
     (2.12) 

Where   is the learning rate and      is the weight from unit j to unit i, yi is the output of the 

units in the l layer, and      is computed as :             

     ∑                  (2.8) 

     

     
 

         

     
        (2.14) 

Derivative of the error with respect to the activation and where    is referring to the output of 

the output layer which is named here as y, then 
  

   
  will be: 

  

   
               (2.15) 

and if    is sigmoid function, then 
   

     
 will be computed as following: 

   

     
               (2.16) 

The value of the derivatives will used to decrease the error function by using the gradient 

descent as following: 

                   
  

     
       (2.17) 

The learning rate α is used to manage the learning process. It can be used to accelerate 

convergence to reach minimum error function; this can be done by increasing the learning 
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rate. However, using a very large learning rate will lead the network to drop into the 

oscillatory traps of learning algorithm and it may pass the local minimum. Meanwhile, a 

small learning rate can be stuck in a local minimum of error function (Rojas 1996; Ghazali 

2007). Therefore, the momentum term used to overcome this problem allows the decrease of 

oscillations in the training process (Rojas 1996), where   is the momentum term. 

         
  

     
                   (2.18) 

The error is minimised by using the gradient descent where the weights are modified along 

the negative direction of the gradient of error function E as illustrated in Figure 2.7, which 

shows the behaviour of error E with respect to one weights w. If the gradient of is E negative, 

then weight w must be increased. In contrast, the weight w must be decreased if the gradient 

of E is positive. Consequently, this will decrease the error at the next iteration (Holst 1997; 

Gupta 2000). 

 

Figure 2.7: The principle of gradient descent 

2.5.2 Unsupervised Learning 

In unsupervised learning neural networks, there are no demands for the desired output. 

Unlike supervised learning, the neural network learns patterns and behaviour of data sets and 

adjusts their weights without extra help (Rojas 1996). This is known as self-learning. The 

network therefore has to create and develop its own output from the input by calculating the 

suitable connection weights.  
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Researchers have offered different methods for this type of learning, one of which is the self-

organising map (SOM). This was designed by Kohonen in 1982, and his main objective in 

designing an unsupervised learning tool was to present a large set of inputs by a set of 

neurons. SOMs can be used to represent the topology nature of the data. It can incorporate 

multi-dimensional input vectors and can capture relations between them in a 2-dimensional 

matrix, as illustrated in Figure 2.8. 

Self-organising neural networks attempt to learn in order to recognise hidden patterns in 

unlabelled data. The self-organising map clusters the input data into groups and discovers 

features implicit in the problem. The centres of clusters in the sample distribution are 

represented by each neuron in the SOM. The clustering problem is known as categorisation, 

where the class labels and the exact number of classes are unidentified, and the samples must 

be clustered together in some reasonable way. The SOM has been used in a number of 

practical applications in different disciplines (Salhi et al. 2009). It has been utilised 

successfully for pattern recognition and image analysis (Huang & Wu 2009). 

 

Figure 2.8: The Self-organising Map structure (Lagerholm et al. 2000) 

2.5.2.1 Self-organised Map (SOM)   

The training in SOM is a type of competitive learning. Competitive learning is based on the 

idea that the neuron with a weight vector that is similar to the input data is adjusted towards 

the input data. This neuron is called the Best Matching Unit (BMU) or winning neuron. The 

best matching unit (BMU) is the neuron that wins the competition, which is shown in Figure 

2.9 as a red circle. The winner neuron and the neuron in the same area of the neighbourhood 

are adjusted. 
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Figure 2.9: The SOM learning algorithm  

 

For instance, let input data of vector X={x1,x2,x3,…} represent “xi” as input of unit i. Each 

input of x has been compared with neuron weights of the grid by finding its Euclidean 

distance to all weight vectors as follows: 

   ‖     ‖      (2.19) 

Then the winning c vector must be found, which minimised the measurement distance. 

                 (2.20) 

which represents the best matching unit (BMU), where the weight of this units is much 

similar to the input units. Then the learning rule will be applied to adjust the weights of the 

BMU neuron and the neuron close to the BMU. 

                     (2.21) 

Where   is learning rate and     is neighbourhood function, which minimise the distance 

between unit i and c on the map. The common neighbourhood function in the SOM is 

Gaussian function.     is a Gaussian function of the Euclidean distance d(i, c) between units i 

and c in the map with σ Gaussian width: 
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       (2.22) 

Since the weight vectors of the neurons are modified iteratively for all the training data, this 

will allow these weights to capture the distribution of the input data due to the neighbourhood 

updating, and when a new input arrives every neuron competes to represent it. Thus, the 

SOM learns without a supervisor. 

2.6 Chapter Summary 

Neural networks have received great attention from different researchers in many 

applications. In the literature review, neural networks have been applied widely to solve a 

variety of real-world problems. They have the capacity to provide solutions without complete 

knowledge of the data structure; this makes them suitable to solve real-world problems. This 

chapter has provided a brief overview of the neural network properties and architectures. 

Furthermore, the two types of neural network learning methods have been highlighted. The 

next chapter will focus on one of the neural network architectures, which is the recurrent 

neural network. 
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CHAPTER 3  RECURRENT NETWORKS 

3.1 Introduction 

The recurrent neural network (RNN) can model sequential data in order to deal with temporal 

processing tasks such as signal processing, system identification, control, pattern 

classification and sequence pattern recognition. It is especially appropriate for dynamic 

problems. A recurrent neural network (RNN) is also known as a dynamic neural network, or 

a neural network for temporal processing. The main aim of this chapter is to provide an 

overview of the recurrent neural network (RNN). The different architectures of RNNs will be 

presented. Each type of neural network has its own strengths and capabilities that can be 

applied in various types of problems ranging from signal prediction and pattern recognition to 

data classification. The Jordan and Elman networks are considered the best-known recurrent 

networks (Mahdi et al. 2010; Szkoła et al. 2011). In this chapter, various recurrent neural 

network architectures including the Jordan and the Elman networks will be investigated, in 

addition to the recursive Self-organised neural network. 

3.2 The Concept of Recurrent Neural Network (RNN) 

RNN is a type of neural network with a memory capable of storing information from past 

behaviours (Haykin 1998). Typically, real-world data, such as financial time series or 

biomedical signals, are often constructed as a sequence of observations in time dimensions. 

According to Kim (Kim 1998), there are a number of methods that can be used to present 

time in neural networks. These include the creation of a spatial or explicit representation of a 

temporal pattern by extracting features from temporal data, putting time delays into layers or 

their connections such as time-delay neural networks (TDNNs), applying recurrent links in 

RNNs, utilising neurons with activations summing inputs over time, and the last method is a 

combination of all the previous methods.  

The RNN enables the network to deal with static and temporal information in the input 

sequence, both for prediction and classification. In contrast to the feed-forward ANN, which 

only has connections from layer to layer moving forward from the input layer through the 

hidden layers to the output layer, the RNN has feedback loops. It has delayed feedback links 

that connect neurons on one layer back into the neurons of either the same layer or a previous 

layer. These connections will provide the network with the ability to incorporate the current 
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information as well as previous information. In the RNN, the activation output of each unit is 

passed to other units.  

        ∑                  (3.1) 

                      (3.2) 

Where     is weights that connect unit m to unit j.  The activation output of each unit is y(t) 

and t referred to time. 

3.3 The Properties of the RNN  

The problem of sequence patterns is that the different patterns are related to one another. In 

other words, data patterns occur in sequence; therefore, the order of the patterns is very 

important. In order to model this type of pattern, the model system needs a memory to hold 

the past information. It has been proved that neural network models are able to capture the 

temporal nature of any time series signal by using feedback links such as RNN. The RNN 

performs perfectly on this type of problem compared with the feed-forward neural network. 

Many experiments have proved that the RNN can deal with sequence patterns more than the 

feed-forward neural network (Burrows & Niranjan 1994). These recurrent links will provide 

the feed-forward networks with the capability of dynamic procedure, which means that the 

neural network learning process is based on previous information in addition to current input 

data. One of the most important applications of the RNN is to model or identify dynamical 

patterns, which are based on time factors (Chung et al. 2009). The time factor is very crucial 

for some real-world time series signals. Thus, the requirement of a feedback connection is 

important. In a RNN, the connections between neurons can appear as directed cycles and 

loops, which let the network represent very complex dynamical behaviour. Furthermore, 

these connections attempt to discover an appropriate temporal representation that can capture 

the properties of the input sequence.  

Furthermore, Kremer et al. (1995) mentioned that, since the 1960s, researchers have shown 

that recurrent artificial neural networks could approximate any finite state machine with the 

desired accuracy. Nonlinear hidden nodes provide the RNN with great approximation power. 

This allows the hidden neurons to integrate information over many time steps and store the 

information in an internal memory that saves past outputs, and uses them when creating the 

next outputs. This can be used to generate predictions with high accuracy (Sutskever et al. 
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2011). Moreover, once the RNN is combined with the nonlinear activation transform 

function, it is able to deal with and process complex spatiotemporal patterns ( Forney & 

Anderson 2011). Another advantage of using recurrent networks is that they do not need to 

select the specific length of the time series that must be stored in the memory, as occurs with 

the tapped-delay methods (TDNN). Furthermore, they show their ability to map between 

input and output in classification task (Übeyli 2010; Petrosian et al. 2001). They obtained 

high accuracy in the classification compared to feed forward neural network. RNNs can be 

useful for different applications, including filtering, prediction, pattern classification, 

stochastic sequence modelling, and associative memory.  

Time series prediction involves the use of the sequences of signals that vary during specific 

times to predict future values. Thus, problems such as predicting time series are very difficult 

to solve based on some sets of current inputs. Previous research has shown that recurrent 

neural networks are capable of generating better predictions by utilising previous and current 

values from the signal (Giles et al. 2001; Ghazali et al. 2009; Swarup et al. 2005). Recurrent 

links create memory to hold information of previous activation states (Hopfield 1982). 

Therefore, as Forney and Anderson (2011) asserted, RNNs will have the ability to learn tasks 

that require memory. These recurrent connections will improve the performance of the neural 

network, as Haykin stated (1998). However, the dynamic link in the neural network suffers 

from lack of stability of the network performance (Mishra & Patra 2008; Haykin 1998). 

Hence, stability of recurrent neural networks has been investigated extensively in number of 

studies (Voegtlin 2002; Zhang 2008; Mozer 1989; Campolucci 1998; Tsoi & Back 1994; 

Ghazali 2007; Atiya 1988; Barabanov & Prokhorov 2002; Kosmatopoulos & Christodoulou 

1994). 

3.4   Recurrent Neural Network Architectures 

There are a number of recurrent neural network architectures based on the purpose of 

application or structure of networks. They can be divided into two types, which are fully or 

partially connected. In fully connected RNNs, each unit in input, hidden and output layer is 

connected recurrently, while in partial RNNs the feedback links are connected partially. A 

fully recurrent neural network as shown in Figure 3.1 has feed-forward besides feedback 

links in any order; each of these connections is trainable (Ghazali 2007). The first fully 

recurrent neural network structure to use the physical principle of storing information in a 



30 

 

dynamically stable configuration was proposed by Hopfield (1982). Fully RNNs are general 

architectures and powerful for specific tasks (Campolucci 1998). Williams and Zipser (1989) 

have used fully recurrent network architecture, where the network has one hidden layer, for 

nonlinear adaptive filtering and pattern recognition. In spite of the advantages of using a fully 

recurrent network, it has some drawbacks: since each unit has connection weights, this means 

that, if the network consists of a set of n full connected neurons, (O(n
2
)) weights connections  

must be fed back to all neurons. This will lead to a more complicated structure (Ku & Lee 

1995). Furthermore, each of these weights is trainable, so the training process will be very 

slow and more complex (Tsoi & Back 1994). Fully connected RNN is very complicated 

when dealing with complex problems (Übeyli 2010). Although they are able to model very 

complex dynamical systems, simpler recurrent neural networks such as partial RNNs are 

preferable for some specific problems (Campolucci 1998). 

 

Figure 3.1: Fully Recurrent Networks 

 

In a partial RNN, the network is extended from the feed-forward network by adding 

“context” units to the structure of the network, which can be used for storing to hold some 

information about previous states within the network (the previous network activation). This 

type of recurrent neural network has the ability to remember cues from the previous inputs. 

However, the connection on a partial RNN does not noticeably complicate the structure and 

the training procedure of the network. The partial RNNs enjoy simpler training than fully 

recurrent networks. Simpler recurrent neural networks make use of available prior 

information and knowledge, which can be better (Mozer 1989). Therefore, partial RNNs can 

be preferred in some dynamic systems more than fully RNNs (Tsoi & Back 1994; Ku & Lee 

1995; Elman 1990; Mozer 1989; Campolucci 1998).  
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Since they can be used for time series prediction and modelling, a number of partially 

recurrent neural network architectures have been proposed in the literature. The  most popular 

types of recurrent neural networks are shown in Figure 3.2.  

 

Figure 3.2: Different structures of recurrent neural networks (Hussain & Liatsis 2002) 

Figure 3.2(a) represents the Elman recurrent neural network, 3.2(b) shows the Jordan 

recurrent neural network, 3.2(c) shows the model proposed by Stornetta et al, (1987) and 

3.2(d) shows the model proposed by Mozer (1989). The next subsection will introduces these 

types of recurrent neural network architectures. 

3.4.1 Elman Neural Network (ERNN) 

The Elman Recurrent Artificial Neural Network (ERNN) was designed by Jeffrey Elman in 

1990 in order to discover patterns in natural languages (Elman 1990). The ERNN architecture 

is similar to the feed-forward neural network with an input, hidden and output layer in 

addition to some context units. These context units store the past activation outputs from the 

hidden layer. Therefore, the recurrent connections in the ERNN are performed from the 

hidden layer to the input layer through the context-switching nodes.  

The recurrent link allows the ERNN to identify and generate temporal patterns and spatial 

patterns. These links allow the output of the hidden nodes at time t to influence the output of 

hidden units at time t+1. This means that the hidden units do not only detect the actual input 

but also take information on their own activation output at the last time step by the context 

units (Mashhadany 2012). This is done when interrelations between the current input and the 

internal context units are processed to generate the hidden layer output and send the relevant 

past information in the context units (Mankar & Ghatol 2009).  
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The context units are linked to the hidden layer (as shown in Figure 3.2(a)). The main benefit 

of feeding back the output of the hidden layer is that the context units hold the same 

dimension and representation as in the hidden layer. The context units store previous 

information that has been represented in the previous hidden units. This means that the 

ERNN will try to learn the mapping between the input and the context units to the output. 

Furthermore, these context units provide the ERNN with a short-term memory; this memory 

will support the ERNN to have the greatest ability to learn problems. The feedback links help 

the ERNN to detect patterns (Ghazali 2007). Since their appearance, ERNNs have been used 

effectively on a number of practical problems (Forney 2011). In addition to their successes 

recorded in different applications, ERNNs have proved to have universal approximates 

functions (Kremer 1995). In other words, ERNNs can learn sequences generated from a finite 

state machine (Kremer 1995;  Forney & Anderson 2011; Elman 1990; Huet 1993). The 

dynamic equations of the ELMAN networks are as follows:   

                     (3.3) 

                             (3.4) 

                 (3.5) 

Where    is the weight of the context unit, and Z(t) is the value of the context unit. ERNNs 

have been applied extensively for different applications including classification, regression, 

forecasting and generalisation of sequence data (E. M. Forney & Anderson 2011; Übeyli & 

Übeyli 2008; Szkoła et al. 2011; Mankar & Ghatol 2009). They have been used in different 

domains including medical fields, e.g. speech recognition, disease classification (Ilbay et al. 

2011; Übeyli & Übeyli 2008; Übeyli 2009; Übeyli 2010). The results of these different 

studies confirmed that the ERNN achieved high accuracy in biomedical data classification. 

Furthermore, they have been used in economic fields such as financial prediction (Giles et al. 

2001; Yümlü et al. 2005), and time series classification (Husken & Stagge 2003). Kremer 

presented a paper discussing the computational power of Elman (Kremer 1995). Ramadevi et 

al. (2012) presented a paper on finding the role of the hidden neurons in the ERNN. They 

used seven hidden layers; each layer had a number of hidden neurons. Their experiment used 

the network to classify Cavitation signals.  

Wang et al. (2013) designed a novel hybrid optimisation algorithm Elman recurrent neural 

network. The improved Elman network was developed based on using two types of particle 
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swarm optimisation algorithms: discrete particle swarm optimisation (DPSO) algorithm and 

improved particle swarm optimisation (IPSO) algorithm. A DPSO algorithm is used to 

determine the structure of a proposed network, while an improved particle swarm 

optimisation (IPSO) algorithm is used as a learning algorithm. This network combines the 

benefits of the two optimisation methods, which are DPSO and IPSO algorithms. The DPSO 

algorithm is employed to find the number of hidden units of the RNN, whereas the IPSO 

algorithm is adapted to adjust parameters (including weights, initial inputs of the context 

nodes) for each of the structures (particles) existing in the DPSO. The authors’ main aim was 

to develop an algorithm to automatically determine the best Elman network structure as well 

as its optimal parameters. Their network was utilised to predict three time series: real-time 

data of a thermal system in a 600-MW power plant, Mackey-Glass time series and CATS 

time series. The result from their experiment demonstrated that this proposed network has 

achieved higher prediction accuracy and improved the generalisation aspect of the Elman 

network. The experimental results demonstrated the ability of the proposed algorithm to 

automatically select the structure of Elman (number of hidden nodes) as well as adapt their 

parameters efficiently (Wang et al. 2013). 

3.4.2 Jordan Neural Network 

The Jordan neural network is similar to the feed-forward network with feedback links from 

output units to a set of context units. It was designed by Jordan (Jordan 1990), who used the 

network to find its ability to learn sequential tasks in language processing. The main aim of 

designing the Jordan network was to make a neural network capable of showing temporal 

variations and temporal context dependence (Jordan 1990). It can play a valuable role in time 

series prediction and controlling the system. In this network, the recurrent links are presented 

from the output layer to the input layer, in which the input units hold a copy of the values of 

the external inputs, while the context units hold a copy of the values of the feedback link 

from the previous output units, in addition to self-feedback connections from the context 

units to themselves, as illustrated in Figure 3.2(b). Therefore, the output units are linked to 

context units in the input layer; thus the network outputs at time (t–1) will also be the input at 

time t. The context units in the Jordan neural network are called state units. The dynamic 

equations of the Jordan neural network can be determined as follows: 
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                     (3.6) 

                            (3.7) 

                        (3.8) 

   represents the strength of the self-connection, and Z(t) represents the context unit. Since 

the Jordan network holds a copy of the past time series input and its own forecasts, this 

property has provided recurrent networks with the ability to discover information outside a 

limited time period (Pissarenko 2002). The Jordan network has been applied in many 

applications including spoken language understanding (Mesnil et al. 2013). 

Tellez (2013) presented a paper on improving the performance of the Jordan recurrent neural 

network for spoken digits recognition. Genetic algorithms have been used for optimising the 

performance of the Jordan recurrent neural network by finding the least number of hidden 

neurons necessary to get best performance. Three architectures of recurrent neural networks – 

Elman, Jordan and the combination of Elman and Jordan networks – were utilised in this 

paper in order to evaluate their performance with spoken Spanish digits. The result confirmed 

that the Jordan model gives the best recognition performance, which was 98.75% compared 

to Elman, which produced 93% (Tellez 2013). Another application of the Jordan network was 

presented by Silva et al. (2010). They used the Jordan network to reconstruct the missing data 

on a medical time series signal. They used a signal with a multivariate channel. In this paper, 

the Jordan network was trained to predict the missing data in order to recover the corrupted 

signal (Silva et al. 2010). 

3.4.3 The Stornetta and Mozer Recurrent Neural Networks 

There is another structure of recurrent neural network. The main difference between these 

recurrent neural networks and the above recurrent neural networks is that the context units are 

replaced on one single layer after the input layer. Therefore, network input only reaches the 

rest of the network via the context units. 

Figure 3.2(c) shows another structure of a partially recurrent neural network, which was 

developed by Stornetta (Stornetta et al. 1987). This network pre-processes the current inputs 

and the previous values of the context units themselves and feeds them to the network 

through the context layer.  
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                            (3.9) 

Where       is the output of the context unit at time t,        is the current input at time t,   is 

the input amplitude and  is the decay rate. Therfore, the context layer is fed by the current 

input as well as part of the previous values of the context layer itself. Hence, the network will 

have current input and the past history of the network input. This type of network has been 

used for financial forecasting (Shin & Han 2000) 

Figure 3.2(d) represents another recurrent neural network, which is designed by Mozer  

(1989). It has four feed-forward layers. The additional layer, which carries the context units, 

is called the context layer. It has feedback connections which allow the network to consider 

the context history. These feedback connections are trainable. Moreover, the units in the input 

and context layers are fully linked. The trainable context units perform as an integrator to 

keep the previous context states. Furthermore, the adjustable recurrent connections help the 

network to find a suitable decay rate to the context layer (Araújo & Darbo Jr. 1997). This can 

provide the network with the ability to learn and model the temporal domain of the current 

task (Huet 1993). The dynamic equation of this network is: 

       (       )    ∑               (3.10) 

Where        is the activity of the contxt unit i at time t,   is a decay weights,   is the 

sigmoid function, and        the input unit j. The weights from the input unit to the context 

unit are adjusted. The self-feedback connection gives the context units with inertia (Zhang 

2008).  

A number of learning algorithms were designed to train recurrent neural networks. Some of 

these algorithms were based on the gradient descent approach and the computation of the 

partial derivatives to train the recurrent neural networks. However, all of these developed 

learning algorithms are extended from the back-propagation learning algorithm (Rumelhart & 

McClelland 1986). These include real-time recurrent learning algorithm (Williams & Zipser 

1989), and back-propagation through time (Doya 1995). The next section will introduce some 

developed recurrent neural networks and their learning methods. 
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3.5 Advanced Recurrent Neural Networks  

There are a number of recurrent networks according to purpose of application or structure. In 

this section, some recurrent neural network architectures that have been used for financial or 

medical applications are introduced. Their learning algorithms and their applications will be 

highlighted.  

3.5.1 Combined Jordan and Elman Neural Network – Elman/Jordan 

This network was developed by combining the Elman and Jordan networks. This combined 

network was designed in order to develop the performance of the recurrent networks and to 

overcome their limitations. For example, the learning procedures in the Jordan network are 

very slow. Furthermore, this combination can improve the learning ability of the Elman 

network. 

The context unit will hold a copy of the activity of the hidden layer as well as a copy of the 

output layer. The weights in this network are adaptive dynamically using a back-propagation 

learning algorithm. The context units in this network have made the network able to extract 

temporal information from time series. This extra information has a great impact on the 

network performance. 

 

Figure 3.3: Structure of the trained Elman/Jordan neural network (Szkoła et al. 2011) 

The dynamic equation of this network is: 

      (∑   
     ∑    

       ∑               
                  )  (3.11) 
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Where          is the activation of the hidden unit j at time t-1,       is the input unit i at 

time t, and y(t-1) is the output of the network at previous time. The combination of the Elman 

and Jordan networks has been applied in different applications, speech recognition and signal 

filtering. Szkola et al. (2011) applied the combined Elman/Jordan to analyse speech signals in 

order to indicate the difference between normal persons and patients with larynx diseases. 

The features of patients’ speech signals are extracted by the average mean squared errors 

obtained by Elman/Jordan for the original signal. The task utilises speech signals of patients 

from the healthy group and those with two types of laryngopathies, namely Reinke's edema 

(RE) and laryngeal polyp (LP). Their experiment involved asking patients to separately 

pronounce different Polish vowels. Their proposed network has shown some improvement on 

the learning ability of the neural network and time speed. Their approach can be utilised as an 

initial step in making decisions about normal and disease states (Szkoła et al. 2011). 

Another application of the Elman/Jordan network was used without the self-recurrent 

connection in the output neurons. This study was presented by Mankar and Ghato (Mankar & 

Ghatol 2009), who used the Elman/Jordan network in order to remove noise from EMG 

signals. The noisy EMG signals were fed into the Jordan/Elman network. Their result showed 

that the combination of Jordan and Elman networks has successfully decreased the noise 

from the EMG signals. The performance was evaluated using mean squared error function 

(MSE) that had been computed between noisy EMG signals and the desired EMG signals; the 

network achieved 0.001 in MSE measure (Mankar & Ghatol 2009). Chowdhury et al. (2013) 

have also used this network for EMG noise removal. Their experiments confirmed that the 

performance of this network seemed to be a more exact achievement of the target pattern and 

it was faster. The main benefit of this combination is that it is capable of generalisation 

(Chowdhury, 2013). 

3.5.2 Echo Recurrent Neural Network (ESN) 

The recurrent network of an echo-state network involves an ‘echo-state’ characteristic 

(Verplancke et al. 2010). This ‘echo-state’ is utilised as a fading memory. The echo-state 

network was introduced by Jaeger et al. in 2001. The Echo state network (ESN) is considered 

as part of reservoir computing methods which are based on recurrent neural network 

(Verplancke et al. 2010). It involved two parts, as illustrated in Figure 3.4. The first part is a 

recurrent network with a number of units and weights that connect the units with each other, 
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and this part is called the dynamic reservoir. The input units are applied to the dynamic 

reservoir as shown in Figure 3.4. The reservoir in the network performs as a fading memory, 

which is where the echo state name comes from (Verplancke et al. 2010). The second part is 

output units which are connected to the neurons of the dynamic reservoir (Mashhadany 2012; 

Jaeger 2001). 

 

 
Figure 3.4: Echo State Networks  

 

Let the network involve Ni input units, Nr reservoir units and No output units. The input unit i 

at time t is xi(t), the internal unit j in the dynamic reservoir is uj(t), and of output units is y(t). 

The weight matrix that connects the input unit i to the reservoir unit j is     (t), the weights 

that connect the units in the dynamic reservoir are     , and the weight that connects the 

internal units and input units to the output units is     . In addition, there are weights that 

reconnect the output units to reservoir units,      . 

The activation of the internal units is computed as: 

                                        (3.12) 

Where  is the transfer function. The output units are collected as: 

                                 (3.13) 

The weights in the dynamic reservoir are trainable by back-propagation algorithm. However, 

the recurrent weights on the ESN network do not adjust during training.  
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The weight connections in this network must be selected carefully and have to be small 

enough to avoid growing oscillations (Mashhadany 2012). The network output units are 

recurrently feed-back to the units of the dynamic reservoir. The main aspect of the ESN is 

that not all weight connections should learn during training, only the connections from the 

dynamic reservoir to the output units, which are the output weights     , are adapted. The 

main benefits that can be derived from using the ESN is that their recurrent weights do not 

change during training (Husain et al. 2008; Mashhadany 2012). This will reduce the 

complexity and time of the network training process. The main concept of the ESN is that, 

with a large pool of hidden neurons, the ESN will be able to represent dynamics behaviour 

(Schmidhuber et al. 2007). 

ESNs are utilised in many applications as temporal pattern recognisers, pattern generators, 

predictors, and controllers. They are used for predicting movement data of people moving 

(Hellbach et al. 2008). They can be used for time series classification, being applied as a 

classifier in speech recognition (Skowronski & Harris 2006). ESNs are used to predict the 

Mackey-Glass time series (Jaeger, H. 2004). The first medical application of an echo network 

was by Verplancke et al. (2010), where an ESN was used to predict dialysis in intensive care 

unit patients (Verplancke et al. 2010) . 

3.5.3 Dynamic Ridge Polynomial Neural Network (DRPNN) 

Ghazali et al. (2009) have developed a new dynamic neural network architecture which 

includes a feedback connection in addition to the feed-forward Ridge Polynomial Neural 

Network. The Ridge Polynomial Neural Network is a generalisation of the PSNN network. 

The PSNN is a network with one hidden layer of summing units and product units in the 

output layer. 
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Figure 3.5: Dynamic Ridge Polynomial Neural Network of K-th (Ghazali 2009)  

 

The RPNN network consists of a number of pi-sigma neurons of increasing orders. The 

architecture that has been used in the DRPNN network is the same as in the Jordan network; 

hence there was a recurrent connection from the output layer. The recurrent link provides 

DRPNNs with the capability of having a memory. This memory will help the DRPNN to 

exhibit a rich dynamic behaviour. Therefore, the network outputs are based on the initial 

values of external inputs, and the entire history of the system inputs (Ghazali et al. 2010). 

Let N be the number of external inputs x(t) to the network and y(t-1) be the output of the 

DRPNN at previous time step. The inputs of the network are the combination between x(t) 

and y(n+1) and are referred to as U(t), 

      {
              

               
}   (3.14) 

The hidden layers are computed as equation: 

      ∑          
   
       (3.15) 

Where the       of the output layer are computed as: 

      ∏       
        (3.16) 

        ∑      
 
         (3.17) 
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Where k is the number of pi-sigma units used in DRPNN, and   is nonlinear activation 

function, and      ) is the output of each PSNN block. The cost function is the squared error 

between the real signal and the predicted signal, that is:  

     
 

 
∑      

  
           (3.18) 

                                   (3.19) 

And where d(t) is the actual output. The learning algorithm in the network is the real-time 

recurrent learning algorithm (Williams & Zipser 1989). Therefore, the change for      of 

the weights matrix is computed according to the following equation: 

           
  

     
              (3.20) 

Where   is the learning rate the value of 
  

     
  is computed as: 

  

    
  

  

     

     

     
           (3.21) 

  

    
      

     

    
                (3.22) 

     

    
  

     

     

     

    
            (3.23) 

     

     
    ∑   

 
      ∏      

 
        (3.24) 

     

    
     

    
       

    
              (3.25) 

Let           be as: 

          
       

     
          (3.26) 

And   is the Krocnoker delta, from Eq (3.24), (3.25) and (3.26)  
     

     
 is: 

       

     
     ∑   

 
      ∏      

 
    (                            (3.27) 

Then the update rule for          is: 
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                             (3.28) 

The DRPNN was utilised to predict the upcoming trends of financial time series signals. 

Extensive experiments were presented for the prediction of financial time series. Their results 

showed that the DRPNN showed advantages in capturing chaotic movement in the financial 

time series. The experiment results showed that the DRPNN produced better prediction value 

in terms of the annualised return for the prediction of the exchange rate signals. The 

experiments demonstrated that the DRPNN is suitable for predicting nonlinear and non-

stationary time series (Hussain et al. 2006; Ghazali et al. 2010; Ghazali et al. 2009). There is 

another application of this network to predict Standard & Poor’s (S&P) 500 stock index 

future signals. The result showed the ability of the DRPNN to forecast S&P signals with 

lower forecast error (Ghazali et al. 2010). 

3.6 Recurrent Neural Networks for Unsupervised Learning 

There are a number of unsupervised neural network structures for temporal pattern 

recognition; these neural networks are considered to be modified versions of self-organising 

maps (SOMs). They extended SOMs with additional feedback connections that allow for 

natural processing of time series (Tino et al. 2005). These networks include the temporal 

Kohonen map (TKM) (Chappell & Taylor 1993), the recurrent SOM (RSOM) (Koskela et al. 

1998), and the recursive SOM (RecSOM) (Voegtlin 2002). 

 

Figure 3.6: Recurrent unsupervised neural network types 

 

The next sections will introduce the three types of unsupervised recurrent networks that have 

been used widely in many applications. 

Recurrent Neural Network for 
Unsupervised Learning 

Temporal Kohonen Map 
(TKM) 

Recurrent SOM (RSOM) 
The Recursive SOM 

(RecSOM) 
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3.6.1 The Temporal Kohonen Map (TKM) 

The TKM is considered to be the first proposed feedback SOM. It appeared in 1993, designed 

by Chappell and Taylor (Chappell & Taylor 1993). This network is extended from Kohonen’s 

self-organising map. The TKM approach is based on establishing a leaky integrator in the 

output of each SOM unit. The leaky integrator is considered to be a low frequency linear 

filter. This is done by storing the output values of each unit and using them in the calculation 

of the next output value of that unit. Hence, it is considered different from the original SOM 

only in its output activities. In a TKM the final output of each unit is defined as 

                 
 

 
 ‖          ‖

 
    (3.29) 

Where x(t) is the input sequence and j refers to the unit on the map, the      is the neuron 

activation, at time t and a is refers as time constant which is between (0 and 1). The best 

matching unit (BMU) c in the TKM is the one that maximises the activity output  : 

                       (3.30) 

The learning rule of TKM is the same as SOM, which is computed as: 

                                  (3.31) 

Where     is the value of the neighbourhood function, which gives the excitation of unit j 

when the best matching unit is c. The common neighbourhood function in SOM is Gaussian 

function and   is learning rate. A TKM network is presented in Figure 3.7 showing the 

current activation of the neuron unit is based on previous activation. 

 

Figure 3.7: TKM network diagram (Sá et al. 2011) 

 



44 

 

In TKM according to Guimarães et al. (2002), only the magnitude of the output units will be 

saved, without any information about the direction of the error vector; this can limit the 

representation of sequences behaviour in the input data. Furthermore, representation 

capability is restricted just by the input data dimensionality. TKM cannot represent all 

automata (Strickert & Hammer 2005; Hammer et al. 2004). It has been presented by Koskela 

et al. (1998) that this network failed to learn temporal sequences of simple synthetic data.  

The next version of feedback SOM is designed by moving the leaky integrators from the 

unit’s outputs towards their entry. This network is called Recurrent SOM and it will be 

introduced in the next section. 

3.6.2 Recurrent SOM (RSOM) 

The Recurrent SOM (RSOM) was proposed in 1998 by Koskela et al. (Koskela et al. 1998) in 

order to defeat the TKM limitation. This network was designed by moving the leaky 

integrators from the output to the input as shown in Figure 3.8. As a result, the network 

memorises the magnitude and the direction of the error. The output for each unit is: 

                                          (3.32) 

      represents the leaked difference vector for unit j at time t, and x(t) is the input vector; 

the best matching unit c (BMU) in the RSOM is the one that minimises      ,  

           ‖     ‖      (3.33) 

and the updated rule are based on minimising the error function E in equation (2.17): 

The gradient direction of     with respect to        is       and the weight update rule for 

       to minimise error      is 
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                              (3.34) 

 

Figure 3.8: RSOM network diagram (Sá et al. 2011) 

 

Varsta et al. (2001) presented a paper in order to compare RSMO and TKM. They 

investigated the difference between their learning properties. They asserted that the main 

difference between RSMO and TKM is the leaked integrators computed in RSOM by finding 

the difference vector as an alternative of using squared norm that has been used in the TKM. 

Furthermore, the updated rule in RSOM is based on approximates gradient descent to 

minimise the error function. Since the output value in RSOM is a vector instead of a scalar,  

the direction of the error can be  captured and exploited in the modification of the weights 

(Koskela et al. 1998; Varsta et al. 2001).  The RSOM has shown the ability to capture 

temporal context in many time series including Laser time series, synthetic, even biomedical 

signals such as EEG signals (Koskela et al. 1998; Varsta et al. 2001). 

3.6.3 The Recursive SOM (RecSOM) 

The recursive SOM (RecSOM) was designed by Voegtlin (2002). The RecSOM is a 

dynamical neural network which involves a set of input units which contain current inputs 

and some previous inputs (Voegtlin 2002). The architecture of the RecSOM model is shown 

in Figure 3.9. 
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Figure 3.9: Recursive SOM architecture (Voegtlin 2002).   

 

The RecSOM networks involve input neurons x(t) where t refers to time step, and the neurons 

in the map are referred to as j ∈  {1,2,...,Nh}; each neuron in the map has two weight vectors 

connected with it: 

–      linked with an N dimensional input    (t) feeding the network at time t. and 

i={1,..,NI}. 

–    linked with the context units 

The context units hold map activations yj(t − 1) from the previous time step.   

The output of a unit i in the map at time t is calculated as  

                            (3.35) 

                                      
     (3.36) 

let α > 0 and β > 0 be model parameters which determine the influence of the input and the 

context, and norm is Euclidean distance. The best matching unit (BMU) is defined as the unit 

that minimises       ), where c is an index of the best matching unit at time t,  

          (      )     (3.37) 

After finding c, both weights      and    
 vectors can be updated using the same form of 

SOM learning rule: 
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                             (3.38) 

                             (3.39) 

and 0 < γ < 1 is the learning rate. Neighbourhood function     is a Gaussian function of the 

Euclidean distance d(j, c) between units j and c in the map with σ Gaussian width: 

          
      

  

 

       (3.40) 

RecSOM is quite demanding because the RecSOM has higher storage capacity compared 

with other recurrent SOM models (Hammer et al., 2004). This is because temporal context is 

represented by the activation of the entire map in the previous time step (Strickert & Hammer 

2005). The storage capacity can be enlarged by using more neurons in the map. This is 

because the RecSOM exceeds the simple local recurrence of leaky integrators of other 

models (Mourik 2006). As a result, the RecSOM can model very complex dynamic systems 

compared with other feedback SOM methods. As Hammer claimed, the RecSOM can 

characterise much richer dynamical behaviour (Hammer et al. 2004). Furthermore, the 

recursive SOM has shown its ability to categorise temporal inputs (Micheli 2003). In this 

research work, the RecSOM will be considered. The RecSOM training algorithm will be used 

to train the proposed network.  

The RecSOM has been investigated by a number of researchers. It has been proven that 

RecSOMs are capable of dealing with sequential data with significantly superior memory 

depth and topography preservation (Mourik 2006). Mourik used the RecSOM to create a 

Markovian map in three types of sequences data: stochastic automaton, laser data, and natural 

language (Mourik 2006). It has been used to learn complex sequence patterns such as natural 

language text (Tino et al. 2005). Furthermore, Hunag et al. (2009) have used the RecSOM in 

order to recognise human actions. They used the network to learn adapted representations of 

temporal context associated with human action sequences which were encoded to the 

network. The data was a Weizmann human action data set. The result in this paper has been 

compared with other papers that have used the same data set. From their result, it was 

demonstrated that the RecSOM achieved promising results in the average recognition rate: 

96.5%. Their experiments have demonstrated the effectiveness of the RecSOM for 

dimensionality reduction, clustering, and context learning in human action recognition 

(Huang & Wu 2009). Farkas and Crocker (2006) designed a network combining the RecSOM 
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and Sequential Activation Retention and Decay Network (SardNet), which they called 

RecSOMsard. This network was applied to word prediction tasks. They evaluated the 

performance of the network by comparing its performance with various prediction models. 

Their result demonstrated that RecSOM produced better accuracy and faster training when 

used to learn data with a temporal structure (Farkas & Crocker 2006).  

3.7 The Application of Recurrent Neural Networks 

RNNs have been used in a number of interesting applications including pattern classification, 

such as automated biomedical signals classification which uses Elman recurrent networks 

(Übeyli & Übeyli 2008), time series prediction (Giles et al. 2001; Khoa et al. 2006) and 

adaptive noise filtering. Furthermore, Dijk (1999) indicated that a dynamic neural network 

can learn to identify the dynamic pattern of a phoneme (Dijk 1999). He demonstrated that a 

recurrent neural network can perform better recognition of a voice than a static neural 

network. A number of studies have asserted that RNNs have the ability to analyse and predict 

time series (Giles et al. 2001; Silva et al. 2010; Hüsken & Stagge 2003; Yao et al. 2013; 

Rhaman & Endo 2008; Williams & Zipser 1989; Kremer 1995). Furthermore, it has been 

used in financial time series forecasting (Tenti 1996; Hussain et al. 2006; Ghazali et al. 2010; 

Ghazali et al. 2009).This is because they can represent time dependencies in time series data 

better than a feed-forward neural network. In addition, a number of unsupervised recurrent 

neural networks have been used for sequential data (Giles et al. 2001; Swarup et al. 2005). 

For example, Giles et al. (2001) developed a neural network that uses a self-organising map 

and grammatical inference with recurrent neural networks in order to address difficulties with 

non-stationary prediction. Their network has implemented the prediction of daily foreign 

exchange rates. For experimental results, their network has achieved predictive accuracy of 

up to approximately 46% compared to MLP network. Furthermore, unsupervised recurrent 

neural networks can deal with difficult natural language-processing problems of position 

variant recognition (Mcqueen et al. 2003).   RNNs have been proved to be powerful tools for 

modelling biological signals such as EEG signals (E. Forney & Anderson 2011). 

Furthermore, it has been used to classify the biomedical signals, which is been addressed  in 

chapter 6. 
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3.8 Chapter Summary 

Recurrent neural networks have received a lot of attention from the scientific society. They 

have been used in many applications such as speech recognition, forecasting, language 

understanding, medical diagnosis etc. Recurrent neural networks have proved their ability to 

deal with temporal processing, e.g. time series prediction, system identification, temporal 

pattern recognition and classification. They are able to learn the processing of sequential data. 

They have been recommended for use in time series analysis. The next chapter will introduce 

a novel dynamic neural network architecture developed during the course of this PhD study.  
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CHAPTER 4 DYNAMIC SELF-ORGANISED NEURAL 

NETWORKS INSPIRED BY THE IMMUNE ALGORITHM 

4.1 Introduction  

In this chapter, novel neural network architectures are proposed and presented. The proposed 

novel neural network is developed by incorporating feedback connections into the structure 

of a self-organised network inspired by the immune algorithm (SONIA) network. The self-

organised network inspired by the immune algorithm (SONIA) is a type of feed-forward 

neural architecture developed by Widyanto et al. in 2005 (Widyanto et al. 2005). This 

network has been designed to improve the recognition and generalisation ability of the back-

propagation neural network.  

In order to apply the dynamic link to the SONIA network, the partially recurrent networks 

have been used in this research work. This type of recurrent neural network has feed-forward 

links as well as a selected set of feedback links, as explained in Chapter 3. The feedback 

connection provides a memory to the network that will help the network to remember 

information from the past without complicating the learning excessively. Two different types 

of partially recurrent neural network topology have been utilised in order to develop novel 

networks. The first type is dynamic DSMIA based on the Jordan recurrent neural network 

where the feedback links will receive data back from the output layer. The second type is 

dynamic DSIA based on the Elman recurrent neural network where recurrent links are 

expected to receive information from the hidden layer. In the next sections the SONIA 

network and the two proposed networks are presented. The main motivation of these 

networks is to provide memory for the feed-forward self-organised network inspired by the 

immune algorithm.  

4.2 Artificial immune systems 

The main task of a biological immune system is to defend our body from infectious agents 

(such as viruses or bacteria) usually known as pathogens. This task involves a great pattern 

recognition ability that enables the immune system to define the unknown cells coming into 

the human body. The biological immune system has many properties that make it suitable for 

applying in the computational field such as self-organisation, memory, pattern recognition, 

anomaly detection and adaptive system. The adaptive property in the immune system allows 



51 

 

it to fight against any intruder that the innate system cannot remove and the immune system 

can, and also it can remember past incidents. The immune system consists of cells which are 

called B and T cells. These cells help to recognize and destroy specific substances, these cells 

are able to neutralise a predefined set of antigens. The antigen can be either a part of cells or 

an intruder of the organism itself. The immune system can be adaptive and this by extracted 

B cells in order to generate new antibodies and B cells to remove the infectious agent. 

(Timmis 2001). 

These properties are receiving a great deal of attention from a scientific perspective (Read, 

Andrews & Timmis 2011). Therefore, the Artificial Immune System has been designed to 

inspire the biological immune system. The artificial immune system (AIS) was first designed 

by Timmis (2001). The AIS is based on simulating the behaviour and the relation between the 

cell body and the antigen that been created by the immune system. It has been developed 

during the last decade and has been applied in different applications such as clustering, data 

mining and optimisation. There are different types of AIS algorithms and most of them have 

been developed based on three immunological theories which are clonal selection, negative 

selection and immune networks (Timmis, 2001). All AIS algorithms simulate the behaviour 

and properties of immunological cells, specifically B cells and T cells. Different of AIS 

algorithms have deferent applications. They have been used for optimization process 

(Widyanto et al. 2005, Freschi et al. 2006, Jiao et al. 2008). 

 

4.3 Self-organised Network Inspired by the Immune Algorithm (SONIA)

  

The SONIA network is a single hidden layer neural network, which uses a self-organising 

hidden layer inspired by the immune and back-propagation algorithms for the training of the 

output layer. The immune algorithm is simulated as the natural immune system, which is 

based on the relationship between its components which involve antigens and cells; this is 

called recognition ball (RB). The recognition ball in the immune system consists of a single 

epitope and many paratopes where the epitope is attached to the B cell, and paratopes are 

attached to antigens (Hussain & Al-jumeily, 2007). The B cell here will represent several 

antigens. Biologically, a B cell can be created and mutated to produce a diverse set of 

antibodies in order to remove and fight the viruses attacking the body (Shen et al. 2008). 
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Thus, the immune system can allow its components to change and learn patterns by changing 

the strength of connections between individual components. The inspiration of the immune 

system in the self-organised neural network will serve as a hidden unit created in the back-

propagation network. For the SONIA network, the input units are called antigens and the 

hidden units are considered as a recognition ball (RB) of the immune system. The recognition 

ball is used to create hidden units. The relation between the antigens and the RB is based on 

the definition of local pattern relationships between input vectors and hidden nodes. These 

relationships help SONIA to easily recognise and define the input data’s local characteristics, 

which increases the network’s ability to recognise patterns. In SONIA, the mutated hidden 

nodes are designed to deal with unknown data, which is test data, to develop the 

generalisation ability of the network. In what follows a brief description of the structure of 

the SONIA network will be presented. 

 

Figure 4.1: The structure of the proposed SONIA network (Widyanto et al. 2005) 

 

Figure 4.1 shows the structure of the SONIA network. The network consists of a single 

hidden layer, which uses a self-organising hidden layer inspired by the immune algorithm and 

the back-propagation algorithm for the training of the output layer. In Figure 4.1, the input 

vector is represented as an antigen and the hidden unit is considered as a recognition ball. The 

SONIA network consists of three layers; for example, consider that the first layer has a 

number of input units {1,….., NI}, the self-organised hidden layer has a number of hidden 
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units {1,…., Nh }, and the output layer has a number of output units {1,…, No}.  

The input xi, {i=1,….., NI} is normalised between 0 and 1, and the output of the first layer is 

  ∈  [0,1]; this will be fed as an input into the hidden layers.     is the output of the hidden 

layer which is computed by the Euclidean distance, as shown in the following equation:  

       √∑                
            (i=1,…..,NI ,j=1,…., Nh)           (4.1)  

The output of the hidden layer is calculated as follows:  

                   (j=1,…., Nh)    (4.2) 

    refers to the strength of the connection between the i
th

 input units to j
th

 hidden units, and 

    is a hyperbolic tangent sigmoid function in equation (4.2). This output will be used as the 

input for the output layers. The output can be computed as: 

          ∑     
  
                  (4.3) 

     refers to the strength connection between the j
th

 hidden unit and k
th

 output units of the 

output layers.     is a bias of the k
th

 output units and     is a nonlinear activation function 

which is a log sigmoid function. The overall aim of this training is to minimise the cost 

function that is: 

                                        (4.4) 

      
 

 
∑                            (4.5) 

Where d(t) and y(t) are the target and the network output at time t, respectively. Minimising 

the error value E is performed by updating the weights in the hidden and the output layers. 

The      and     which correspond to the output layer are updated by the back-propagation 

algorithm. 

           
     

        
         (4.6)             

          
     

        
     (4.7)                     
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4.3.1 B cell construction based on hidden unit creation 

The weights      in the hidden layers are updated using B cell creation (Steurer 1993),where 

the hidden unit is considered as a recognition ball in the immune algorithm. In the 

initialisation procedure, the first hidden unit (t1, wh1) is generated with t1 = 0, and wh1 is 

taken arbitrarily from the input vector. The procedure of the immune algorithm is used to 

create the hidden unit (Timmis 2001). This procedure will be repeated until all inputs have 

found their corresponding hidden unit (Widyanto et al. 2005): 

For m=1 until NI which is the number of inputs repeat the following procedure: 

1. For j=1 to NI  calculate the Euclidean distance between m
th

 input and the centroid of 

the j
th

 hidden unit  j={1,…,Nh } by: 

     
     √∑                

            (4.8) 

Where       is the i
th

 input unit of the input vector and       

2. Find the short distance Dc 

                      (4.9) 

3. Compare the Dc; if it is below simulation level, s1 where s1=[0 1], then the input has 

found its corresponding hidden unit. Then update the following parameters: 

tc=tc+1 

                            (4.10) 

Where   is the learning rate. 

4. If the shortest is bigger than the stimulation level, s1 adjust the following: 

Nh=Nh+1         (4.11) 

Then generate a new hidden unit, and set the value of tc to 0 and m to 1, then go to step 1. 

The SONIA network was first used for financial time series prediction by Hussain et al.( 

Hussain & Al-jumeily 2007; Mahdi et al. 2009), and physical time series (Mahdi, Hussain, & 



55 

 

Al-Jumeily, 2010).  Experimental results confirmed that the SONIA network could be applied 

successfully in financial time series prediction.  

4.4 The Dynamic Self-organised Multilayer network Inspired by the 

Immune Algorithm  

In this section, the novel neural network architecture will be discussed. The Dynamic Self-

organised Multilayer network Inspired by the Immune Algorithm incorporates two different 

architectures based on the Elman and the Jordan RNN, where the reconnection on the Jordan 

network occurs from the output layer to the context unit, while in the Elman network the 

connection takes place from the hidden layer to the context unit. The structure of the Jordan 

neural network has been employed in this thesis to deal with prediction. In contrast, the 

Elman recurrent neural network has been used to design the second proposed network in 

order to deal with the classification task. The next two sections will introduce these networks 

and their mathematical functions. 

4.4.1 The Proposed Dynamic DSMIA based on the Jordan Recurrent Neural Network 

In this section, the dynamic self-organised network inspired by the immune algorithm based 

on the Jordan recurrent neural architecture (DSMIA) is described. The DSMIA network has a 

recurrent link from the output layer. The main motivation of the proposed DSMIA is to 

predict time series. Generally, it works by passing times series as inputs and the target is the 

next sequence. So, the network output consists of future values (forecast output), which will 

be the next sequence.  

4.4.1.1 Properties and Network Structure of the DSMIA 

In time series data, the observation at a particular point in time, as cited by Mozer et al. 

(1994), is based not only on the current inputs, but also on the entire history of the data set, 

and sufficient memory to store previous behaviour is highly recommended (Mozer 1994). 

Accordingly, the recurrent link must enrich the performance of this DSMIA model by having 

a “memory” of past behaviour distributed to the network through temporal context units. The 

proposed network uses both input units and context units, where the context units hold a copy 

from the network’s previous output. The use of recurrent connection on the proposed network 

will allow the network outputs to depend on the initial values of external inputs, as well as on 

the entire history state of inputs. Consequently, this will enhance the proposed DSMIA 
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capability to deal with time-related patterns. The recurrent links of the proposed network are 

designed as a recursive unsupervised neural network (Voegtlin 2002). In the proposed 

network, the structure of the recurrent connection is the same architecture as the Jordan 

network (Jordan 1990), in which the output of the network is fed back to the inputs through 

the context nodes. As result, the model on the DSMIA network will be built based on the past 

time series inputs and its own prediction values.  

The structure of the Jordan recurrent neural network is illustrated in Figure 3.2. The proposed 

DSMIA network is illustrated in Figure 4.2. The DSMIA network has three layers: the input 

layer, the self-organising hidden layer, and the output layer with feedback connections from 

the output layer to the input layer. The input layer holds copies of the current inputs as well 

as the previous output produced by the network. This provides the network with memory. As 

such, the previous behaviour of the network is used as an input affecting current behaviour; 

the output of the network is fed back to the input through the context units. 

 

Figure 4.2: The structure of the proposed DSMIA network 

 

4.4.1.2 The Dynamic Equations for DSMIA based on the Jordan Network 

Suppose that NI is the number of external inputs x(t) to the network, and         is the 

output of the unit k at previous time step (t-1) with No representing the number of outputs. In 

the proposed DSMIA, the overall input to the network will be the component of x(t) and 

        and the number of inputs of the network is NI+No defined as U where the output of 

the input layer: 
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      {
               

                
    (4.12) 

The output of the hidden layer is computed as: 

        √∑                
               (4.13) 

        √∑      
            

      (4.14) 

                          (4.15) 

          (      )    (4.16) 

Where     is a nonlinear activation function, Ni is the number of external inputs, No is the 

number of output units,      is the weight corresponding to the external input while     
 is 

the weight corresponding to the previous output, and t is the current time step, while      are 

elected parameters with 0<  and     . 

         (∑            
  
   )     (4.17) 

Where     is a nonlinear activation function, which is the sigmoid function and      is the 

weight corresponding to output units. 

4.4.1.3 Learning Algorithm 

The first layer of the DSMIA is a self-organised hidden layer trained similarly to the 

recursive self-organised map (RecSOM) (Voegtlin 2002). In this case, the training rule for 

updating the weights of the context nodes     
 are also updated in the same way as the 

weights of the external inputs     . This is done by first finding  , which is the distance 

between the input units and the centroid of the j
th

 hidden units: 

        √∑                   
     √∑              

       
     (4.18) 

From       , the position of the closest match will be determined as: 



58 

 

                        (4.19) 

Where c(t) minimised       , it is called the best matching unit (BMU), which is the unit 

that wins the competition. Then the weight from the external input vector and the context 

vector are updated as follows: 

                            (4.20) 

    
          

              (4.21) 

Where     
 is the weight of the previous output and      is the weight for the external 

inputs, and   is the learning rate that is updated during the epochs. 

4.4.2 The Dynamic Self-organised network Inspired by the Immune Algorithm (DSIA) 

based on the Elman Recurrent Network  

In this section, the dynamic self-organised network inspired by the immune algorithm based 

on the Elman recurrent neural architecture is described. The DSIA network has recurrent 

links from the hidden layer. The main motivation of the proposed DSIA is for classification 

tasks. Generally, it works by passing some feature vectors as inputs and the target is the 

correct class label of these features. So, the network outputs represent the class. 

4.4.2.1 Properties and Network Structure of the DSIA based on the Elman Network 

The Elman Network architecture as discussed in Chapter 3 has been used for designing the 

structure of the DSIA. It consists of two parts, feed-forward part and a memory part, which is 

known as context units in the Elman network. The memory is stored the activation of the 

hidden units from the previous time step and fed back to the DSIA as additional input on the 

next time step. The feedback connection in the Elman neural network will enhance the 

classification performance (Arvind et al. 2010). In the learning phase, the feedback 

connection provides the network with more information during training. This will help the 

network to easily identify the important pattern. Furthermore, it will improve the 

generalisation ability (Hüsken & Stagge 2003). 



59 

 

 

Figure 4.3: The structure of the proposed DSIA network 

 

The proposed DSIA is illustrated in Figure 4.3. The DSIA network has three layers: the input, 

the self-organising hidden layer, and the output layer with recurrent connections from the 

hidden layer to the input layer. The input layer holds copies of the current inputs as well as 

the previous hidden unit produced by the network at previous time step (t-1). 

This network will be suitable for the classification task; the features that are extracted from 

the time series signals are fed into the DSIA network as inputs. The output units of the output 

layer in the DSIA represent the classes of the input. In other words, the number of output 

units is equal to the number of classes. The output unit with the highest value determines the 

classification result. The network training procedures are based on reduction of error 

function, which is measuring by mean squared error (MSE).   

4.4.2.2 The Dynamic Equations of DSIA based on the Elman Network  

Suppose that Ni is the number of external inputs x(t) to the network, and          is the 

activation of the hidden unit i at previous time step (t-1) with Nh  representing the number of 

hidden units. In the proposed DSIA, the overall input to the network will be the component of 

x(t) and         , and the number of inputs of the network is NI+Nh defined as U where  

the output of the input layer 
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      {
               

                 
    (4.22) 

The output of the hidden layer is computed as: 

        √∑                
         (4.23) 

        √∑      
             

      (4.24) 

                         (4.25) 

          (      )    (4.26) 

Where     is a nonlinear activation function, Ni is the number of external inputs, Nh is the 

number of hidden units,      is the weight corresponding to the external input while     
 is 

the weight corresponding to the previous hidden unit, and t is the current time step, 

while      are elected parameters with 0<  and     . 

         (∑            
  
   )    (4.27) 

Where     is the sigmoid function, Nh is the number of hidden units, No is the number of 

output units, and      is the weight corresponding to output units 

4.4.2.3 Learning Algorithm 

In the case of DSIA, each unit j on the map has two weights,      and    
where     the 

weights linking the map with input and    
 is the weights linking context unit which is the 

output of the hidden layer at the previous time step with the unit on the map. 

          ‖         ‖   ‖             
‖     (4.28) 

                       (4.29) 

With   >0 and    >0, || || denotes the standard Euclidean distance of vectors and    is a 

bipolar sigmoid function. The best matching unit is defined as the unit that minimised        
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                         (4.30) 

Then the learning rule is applied to update the weights of input units and context units: 

                          (4.31) 

   
         

              (4.32) 

Where    
 is the weight of the previous hidden unit and      is the weight for the external 

inputs, and   is the learning rate which is updated during the epochs.  

4.5 Chapter Summary 

This chapter has introduced dynamic self-organised networks inspired by the immune 

algorithm which were presented as an extension of the feed-forward self-organised network 

inspired by the immune algorithm. In order to represent the dynamic networks, two recurrent 

architectures were used. The first network, DSMIA was extended by adding a feedback 

connection from the output layer. Using recurrent links from the hidden layer extended the 

second network, which is called DSIA. The properties of these two architectures and their 

mathematical processes have been presented. The next two chapters will illustrate the 

implementation of these networks with two different scenarios.  
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CHAPTER 5 APPLICATION FOR FINANCIAL TIME 

SERIES FORECASTING 

5.1 Introduction 

Time series analysis is a fundamental subject that has been addressed widely in different 

fields. It has been exploited in biomedical, economic and industrial data as well as financial 

time series. The analysis of financial time series is of primary importance in the economic 

world. This chapter aims to provide an overview of time series analysis. This chapter will 

deal with forecasting of financial time series and will involve some background and issues 

related to financial time series. Furthermore, it will address the application of neural network 

and traditional forecasting methods, specifically with regard to the forecasting of financial 

time series. 

5.2 Time Series Data 

A time series is a collection of observations of a particular problem measured during a period 

of time. In theory, it is known as a sequence of variables ordered in time (Schwaerzel & 

Bylander 2006). Mathematically, for any given system, a time series can be referred to as x(t) 

or {x(t),t ∈ T}, and it contains two variables; the first one is the time variables (t) while the 

second one is the observation variables x(t), where x can be a value that varies continuously 

with t, such as the temperature and stock market, etc.  

In reality, there are many motivations for conducting time series analysis and modelling. It 

has recently gained much attention from scientists and researchers, whose interest has led to 

different types of time series in different applications worldwide. In industrial applications, 

time series can be used to monitor industrial processes (Roverso 2000; Mirea & Marcu 2002). 

Time series analysis also has important applications in economics. The main motivation of 

analysing financial time series is to gain the ability to identify and understand the internal 

structure that creates the data in time series. In other words, as Herrera (1999) asserted, it 

attempts to explore the underlying properties of sequences of observations taken from a 

system under examination. In addition, it helps find the optimal model to fit the time series 

data and apply this model to predict the future observations of data based on past data series 

(Ghazali et al. 2009). For example, financial market prediction by computations of the next 
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value of trade sales each month (Widrow et al. 1994; Shachmurove & Witkowska 2000; 

Yümlü et al. 2005).  

The main aspect of time series is actually that observation values are not created 

independently or ordered randomly; the data in time series are representing sequences of 

measurements arranged according to time intervals (Michael Falk, Frank Marohn, Rene 

Michel et al. 2011). Therefore, time variables are very important in time series analysis 

because they show when the measurements were recorded. Hence, Herrera (1999) asserted 

that the time values must be stored along with observations that have been taken, and they 

should be used with the time series as a second piece of information. Therefore, the model 

that will be used to fit and analyse the time series data must have the ability to process the 

temporal pattern of the time series. 

Two main features characterise time series data: the stationary and non-stationary concepts. It 

is very important to identify these two concepts before time series analysis, and this will help 

to find the best mathematical model to deal with this type of data. The simplest way to 

observe stationary and non-stationary data is the plotting of the observations.  

The concept of stationary in time series means that the probability distribution between data 

does not change when shifted in time. Hence, the statistical properties (e.g. mean, variance 

and autocorrelation) of the data are stable with respect to time (Pedersen 1997; Haykin 1998), 

such as climate oscillations (Mengistu et al. 2013). 

In mathematics, stationary can be defined as follows, when the distribution of (xt1 , . . . , xtn) 

is the same as the distribution of (xt1+k , . . . , xtn+k) where t1, . . . , tn is refers to time step, and 

k is an integer (Aamodt 2010). The behaviour of any intervals in this series is similar to one 

another, even if the segments have been taken from the beginnings of the time series or the 

ends (Pollock 1987). Therefore, this type of time series is easy to model.  

Non-stationary characterises another type of time series. It means that parameters of the 

information (e.g. mean and variance) of the data always change over time (Haykin 1998; 

Ghazali et al. 2009). Therefore, behaviours of the signals are changing from one interval to 

the next. Most real-world time series are non-stationary, such as financial time series data 

(Giles et al. 2001; Ghazali et al. 2009) or biomedical signals (Chendeb et al. 2010; Arafat 

2003; Bazregar & Mahdinejad 2013). Non-stationary time series are difficult to deal with. 



64 

 

However, some models require the application of a pre-processed method in order to smooth 

out the noise and reduce the trend of the non-stationary data. Therefore, they can be 

transferred from non-stationary to stationary (Herrera 1999; Thomason 1999; Box et al. 

1994).  

5.3 Time Series Analysis 

In the literature, there are a number of methods for analysing time series. In this thesis, two 

types of time series analysing tasks will be discussed: classification and prediction. These two 

tasks are quite different in their aims and processes. The target data of such tasks refer to 

different types of information. For classification tasks, the targeted data show the classes to 

which the data belong. Therefore, the task is to identify the class of signal. Furthermore, the 

values in the classification represent attributes or features. On the other hand, in the phase of 

time series prediction, the task is to predict future values of a signal from its past values. 

Therefore, the target data in this task are the future values. In this chapter the prediction task 

will be presented. The classification task will be presented in the next chapter. 

5.3.1 Time Series Prediction 

Recently, the ability to predict future observations has received great attention from various 

research disciplines, such as medicine, economics, speech recognition, etc. Researchers are 

interested in the ability to make well-defined decisions about certain situations (Ghazali et al. 

2009; Chen & Leung 2005). These decisions must be created based on an understanding of 

their consequences. This can be done by predicting the consequences of decisions made or, in 

other words, predicting the future (Herrera 1999). Therefore, time series prediction is 

considered an important task for time series analysis. It is defined as the estimation of future 

values of the series based on some past observed values (Bishop 1995). The predictor is able 

to discover approximate functions between the input and the output values (Petridis et al. 

2001; Yümlü et al. 2005). This function can be used to forecast the future value. The 

predictor can be achieved by using linear and nonlinear mathematical models.  

During the last few decades, the importance of investigating and exploring times series data 

has been widely recognised in financial and other fields. This has led to the appearance of a 

number of prediction models. All predictors exist in order to discover functions or 

relationships between the past observations and then use these functions to predict the time 
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series in the future (Herrera 1999). The prediction can be expressed mathematically as 

follows. Let x(t)  represent a time series where t=0,1,….Nt. In order to predict the value of x 

at time t+1:  

          (                           )        (5.1) 

Where d<Nt are sampled data values, d is time steps back from t, and    refers to a delay 

time. The embedding dimension of the time series denotes the number of degrees of freedom. 

However, the differences between these models are based on the techniques that have been 

used to approximate the unknown function f. 

In the early days, most of the prediction time series models were linear; these include the 

Autoregressive (AR) model, which is based on the simple principle that time series data are 

highly correlated; therefore, previous observations of the data series are used to predict future 

observations (Box et al. 1994). The AR model of a random process x(t) in time t is defined by 

the following: 

      ∑                   
      (5.2) 

Where a are the coefficients of AR, m is the order of the model, ε(t) is random error. 

The moving average (MA) measures the mean of a set of previous observations in the time 

series in which the mean values are used to predict future observations of the time series 

(Dunis & Williams 2003). The MA model of a random process x(t) in time t is defined by the 

following: 

X(t)= ∑             
      (5.3) 

Where   are are the mean values of the series, and m are the order of the model MA. 

The Autoregressive-moving-average model (ARMA) is based on both the AR and MA (Box 

et al. 1994). The type of time series assumed in the previous models is stationary. The 

random process x(t) is an autoregressive moving average process (ARMA) (p,q) in time t and 

is defined by the following: 

 x(t) = ∑                   
  ∑             

      (5.4) 
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Where p q, denote to p autoregressive and q moving average. For non-stationary time series 

data, the autoregressive integrated moving average (ARIMA) was developed by Box and 

Jenkins (1976) and proposed to fit this type of time series. This model is an extended model 

of ARMA, consisting of autoregressive (AR), integrated (I) and moving average (MA) parts 

(Box et al. 1994). In ARIMA, the time series must be integrated before the forecasts are 

created so that the predictions are expressed in values matching the input data (Alnaa & 

Ahiakpor 2011). The ARIMA model assumes that the data can be stationary after 

differencing (Sfetsos 2000). It has been considered the basis for time series analysis and has 

been widely used in financial predictions (Porter-hudak 1990; Ho et al. 2002).  

Despite the wide applications and easy implementation of the traditional forecasting models, 

their ability to understand time series is very limited (Box et al. 1994; Herrera 1999; Faraway 

& Chatfield 1998) as they suffer certain limitations. They assume that the relations between 

data in time series are linear, and they are utilised under stationary conditions (Herrera 1999; 

Box et al. 1994; Faraway & Chatfield 1998). In practice, relations in most time series are 

complex and nonlinear in nature (Pedersen 1997; Huang, Lai and Nakamori 2004). For 

example, time series of stock markets are complex, nonlinear, dynamic and chaotic. 

Traditional linear prediction methods are very poor at capturing the optimal prediction 

functions and therefore need to be improved (Pedersen 1997). Furthermore, there is an 

increasing requirement to find more robust and powerful prediction methods that can 

overcome the traditional prediction models’ limitations.  

Consequently, the use of nonlinear flexible methods as predictors is in great demand. These 

extend the power of time series analysis to cover systems with nonlinear behaviour (Herrera 

1999). As shown in Chapter 2, models based on ANNs have been known as nonlinear 

flexible models that are able to model any relationship and behaviour of the time series 

(Somers and Casal 2009; Castiglione 2008; Mirea and Marcu 2002; Zhang et al. 2001). 

Therefore, ANNs can overcome the limitation of the statistical methods. On the other hand, 

the employment of adaptive learning models that are able to generalise the model to predict 

new data, such as neural network models, can thereby increase the probability of producing 

correct predictions (Herrera 1999). Moreover, in real-life research, no information is 

available on the system that generates time series data sets (Castiglione 2008). Therefore, the 

predictor model must have the ability to discover the correct internal presentation and capture 
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the hidden pattern of time series (Hill, T. & Lewicki 2007; Ho et al. 2002; Chen & Leung 

2005; Pedersen 1997).  

As a result of these properties of ANNs, they have been taken into account in forecasting 

economical and other types of time series. In order to deal with time series problems, ANNs 

need to be modified in such a way that the input data presented to the neural network are 

drawn from a number of sequential previous inputs, rather than single inputs, and the rest of 

the network is implemented and learned just like other problems based on the adaptation of 

weights to minimise the forecasting error (Hill, T. & Lewicki 2007). The ANNs most widely 

utilised as time series predictors are MLP (Cao & Tay 2003b; Rout et al. 2012), and Elman 

neural network (ERNN) (Zhang et al. 2013; Forney & Anderson 2011; Elman 1990). A 

number of studies have proved that using ANN in modelling and predicting time series can 

produce acceptable results. The next section will introduce one type of time series: financial 

signals. 

5.4 Financial Time Series 

The analysing of financial time series has an economic importance. It is a promising and 

crucial task for any future investment used for making decisions in different areas, such as 

businesses and financial institutions (Kamruzzaman, 2004). Financial time series involve 

different time scales such as intraday (high frequency), hourly, daily, weekly, monthly, or 

yearly. The distance between variables in financial time series is influenced by real economic 

activity (Espinoza et al. 2009). The effect of this activity has been represented by a mixture of 

high and low values in financial time series charts (Leondes 2010). Thus, the prediction aims 

to forecast these activities. The variations in financial time series could be trend, cyclic, 

periodic and day-to-day variations. The trend represents a recognisable long-term regular 

variation in a time series. The cyclic and periodic variations are monitored either by the 

business cycles in the economy or by seasonal patterns. Short-term and day-to-day variations 

seem to be random and difficult to forecast; however, they are usually considered as a 

resource of the financial trading gain and loss (Leondes 2010).   

Financial data analysis usually provides the fundamental basis for decision models 

(Kamruzzaman & Sarker 2003) to achieve good returns, which is the first and the most 

important factor for any investor. This can help to improve companies’ strategies and 

decrease the risk of potentially high losses (Krollner 2011). Furthermore, it can help investors 
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to cover the potential market risk to establish some techniques to progress the quality of 

financial decisions. Different approaches have been utilised to study and analyse the financial 

data, which include: technical analysis and fundamental analysis.  

Technical analysis is a method based on studying the change in price movement of a stock 

and using this study to forecast future stock price movements. So, it can predict the right time 

to buy or sell a stock. Each type of price movement would be translated as a time series 

signal to either buy or sell a stock. The information about a stock signal can be presented on 

charts that contain technical data like price, volume, and highest and lowest prices per 

trading. It is known as univariate signals. This method is a very common method used to 

predict price. It is very simple to use for forecasting future values (Aamodt 2010; Huang, Lai, 

and Nakamori 2004).  

On the other hand, fundamental analysis attempts to determine the factors that affect price 

movement directions. It studies issues that can affect the performance of the company’s 

business and its future prospects. It is considered to be a physical study of a company in 

terms of its product sales, manpower, quality, infrastructure, etc. Therefore, it demonstrates 

the company’s financial statement and current economic activity (Ghazali 2007). The 

fundamental data are considered as multivariate signals. They include information about the 

current market statement, in addition to other information referred to (Hellstrom & 

Holmstrom 1997). This type of data is more difficult to deal with as it involves a more 

complete picture of the financial environment (Aamodt 2010; Huang, Lai and Nakamori 

2004).  

5.4.1 Financial Time Series Prediction 

Financial time series prediction has been widely addressed by many researchers. Its most 

important feature is enabling administrators to look to the future and thus take precautions, 

which helps to develop companies more strongly and safely (Ghazali et al. 2009). 

Furthermore, forecasting helps to show the right decision and route those financial and 

business institutions must follow to achieve their goals. Prediction can help to improve the 

design of a company’s aims. Thus, financial data prediction has attracted many financial 

organisations and companies (Hammerstrom 1993; Shachmurove & Witkowska 2000; 

Deistler 1996) . The forecasting of the stock market is one example of financial time series 

prediction. The fluctuations of the stock market are produced by complex activity and their 
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moves are translated into a blend of gains and losses that are represented in time series 

(Ghazali 2007). The aim of stock market forecasting is to forecast the future values of the 

price. This process will provide essential information about the actual stock price movement 

direction and its trends. This information will benefit the investors, enabling them to make 

the right choice about buying/selling strategies (Ristanoski & Bailey 2011); in addition, it 

will help build a profitable trading strategy. Therefore, the importance of analysing financial 

time series in the economic world is significantly increasing.  

However, financial time series prediction is considered to be a challenging task because of 

the structure of financial time series data (Castiglione 2008). As explained by Deistler (1996), 

many financial time series involve complex behaviours. Financial time series involves 

various characteristics which are listed below: 

 Noise: it contains high levels of noise especially when the variation type in financial 

time series is day-to-day variation (Hussain et al. 2008) due to random external 

driving forces. 

 Incomplete: in any time series, there are usually some missing data.  

 Non-stationary: the non-stationary characteristic in financial data indicates that the 

trends in their means and variances vary over time (Ghazali et al. 2009). 

 Nonlinearity: the nonlinearity in the financial data indicates that the relations between 

some observations are nonlinear (Bansal et al. 1993). 

 Outlier’s data: this means that there are some values in financial time series that do 

not appear to be consistent with other values on the same time series. These values are 

referred to as irregular values. 

5.4.2 The Problem with Financial Time Series Prediction 

Financial time series modelling and predicting have fundamental importance to several 

practical areas. Financial time series such as the movements of market prices is not random 

and predictable (Man-chung et al. 2000). Financial data are naturally dynamic, nonlinear, 

nonparametric, complex, and chaotic (Tan et al. 2005).  Financial time series such as the 

stock market are facing dramatic changes, as well as rapid information exchange all the time 

(Lin & Yu, 2009). Hence, the prediction of  economic activity in the future is extremely 

challenging (Ahmadifard et al. 2013). On the other hand, there are several economic factors 
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that complicate the process of predicting change in large financial data sets, including: 

institutions’ performance and policies, general economic conditions such as stock prices of 

other countries, gross domestic product, bank rate, exchange rates, interest rates, current 

account, money supply, employment, general economic conditions, commodity price index, 

bank rate, bank exchange rate, investors’ expectations, institutional investors’ choices, 

movements of other stock markets, psychology of investors, etc. (Ahangar et al. 2010; 

Kurihara 2006; Agrawal et al. 2010). Furthermore, Yao et al. (1996) identify that there are a 

number of interrelated factors influencing the direction of the price movement on the stock 

market, besides the economic factors, which are political factors and psychological factors 

affecting both powerful decision-makers and individuals or consumers. Even traditional 

economics studies tell us that microeconomic drivers can affect demand consumption 

patterns and vice versa; thus, forming a very complicated, highly interrelated system is very 

challenging (Yao et al. 1996; Ghazali 2007). Therefore, a number of difficulties can be faced 

by researchers when handling time series forecasting (Schwaerzel & Bylander 2006). Hence, 

the selection of an appropriate model for solving the time series prediction problem has been 

considered by many scholars and public investors (Zhang et al. 2001). The main purposes of 

using these models are to discover some rules and hidden information in stock price 

fluctuation by analysing trading behaviours. Then, these models will be used to accurately 

predict the future values of the time series. Numerous techniques have been applied to 

perform financial time series forecasting, as detailed in the next section. 

5.4.3 Conventional Prediction Methods for Financial Time Series  

The early studies on time series prediction used traditional statistical models. In the literature, 

there are a variety of linear time series models. The most standard models are described in 

detail by Box and Jenkins (1978).  

In spite of the extensive applications of linear models in financial forecasting, these models 

suffer from some limitations in capturing some types of economic behaviour such as non-

stationary, or economic performance, at specific periods of time (Clements et al. 2004; 

Kamgaing 2005). These models adopt the idea that the underlying relationship among the 

past and the future values of a time series is linear, and some of them assume that times series 

are stationary (Herrera 1999; Cao & Tay 2001; Chen et al. 2006).  
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However, financial time series show nonlinear characteristics, and specific dynamic 

behaviour (Dablemont et al. 2007). The volatility in time series is not constant over time 

(Dunis and Williams, 2002; Yao and Tan, 2000; Hellstrom and Holmstrom, 1998). Thus, 

from the perspective of forecasting, there is plenty of reason to look at nonlinear prediction 

models. Clements et al. (2004) published a paper to address the reasons for considering the 

nonlinearity model for forecasting financial time series. Furthermore, they show that the 

forecasting ability of linear models is not accepted. It is therefore not surprising that 

nonlinear methods such as neural networks are receiving an excessive amount of attention in 

financial time series prediction literature.  

5.4.4 Neural Networks in Financial Time Series 

A number of different artificial intelligent (AI) methods have been developed and used to 

overcome these limitations of traditional forecasting methods. Various AI techniques such as 

artificial neural network architectures (ANNs) have been proven to be extremely successful 

for predicting nonlinear and non-stationary time series (Kamruzzaman 2004; Dunis & 

Williams 2002; Castiglione 2008; Lin & Yu 2009; Chen et al. 2006: Tawfik et al.,2014). This 

section will provide a literature review of using neural networks on financial forecasting. 

The first application of a neural network for stock market predictions was established by 

Kimoto et al. in 1990; they applied a neural network to forecast the Tokyo stock exchange 

index (Kimoto et al. 1990). Since Kimoto et al.’s initial research, neural networks have been 

considered in the financial domain. During the last decades, a number of neural network 

architectures have been studied in this regard. According to Zekic (1998), neural networks 

have different applications to financial time series analysis, which include classification of 

stock market, recommendation of trading, predicting price changes of stock indexes, stock 

price forecasting and modelling the time series of stock markets. ANNs have been used in 

various tasks such as forecasting the exchange rates between currencies (Walczak 2001; Yao 

et al. 1996; Giles et al. 2001; Yao & Tan 2000) and forecasting the sign of price increments 

(Castiglione 2008). Other studies have demonstrated that neural networks can capture the 

underlying information and rules of the movement in currency exchange rates (Yao & Tan 

2000; Chen & Leung 2005; Yao et al. 1996; Ghazali et al. 2009). Dase and Pawar (2010) 

presented a literature review on using ANNs to forecast world stock markets. ANNs have 

proved extremely successful in predicting nonlinear and non-stationary time series 
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(Kamruzzaman 2004; Chen et al. 2006).  The most common neural network is the traditional 

multilayer perceptron neural network with back-propagation learning. A number of studies 

have compared the performances of traditional forecasting models with neural networks, 

including Bansal et al. (1993), Yao et al. (1996), Vojinovic et al. (2001) Dunis and William 

(2002; 2003), Pissarenko (2002), Aryal and Yao-wu (2003), and Kamruzzaman (2003; 2004). 

Empirical results reported in various studies indicate that the performances of neural 

networks are better than linear regression techniques using financial evaluation functions or 

forecasting error measures (Bansal et al. 1993; Ahangar et al. 2010; Deniz and  Karım 2013; 

Dunis 2012; Giovanis 2010). Kamruzzaman et al. (2003) have investigated the performance 

of three ANN models that aimed to forecast foreign exchange rates; they were the standard 

MLP network trained with the back-propagation learning algorithm, the scaled conjugate 

gradient network, and Baysian regression. The experiments attempted to predict six foreign 

currencies against the Australian dollar. The results also showed that ANNs outperform 

ARIMA statistical techniques. Aryal and Yao-Wu’s (2003) study compared the performance 

of an MLP network with statistical techniques such as ARIMA to forecast the Chinese 

construction industry. Their result showed that the cost function root mean square error 

(RMSE) achieved by the MLP is 49% lower than the ARIMA. Bagherifard et al. (2012) have 

confirmed that neural networks perform better than the ARIMA model in financial time 

series prediction in terms of statistical or financial matrices.  

Furthermore, ANNs forecast future currency with approximately up to 60% accuracy (Steurer 

1993; Walczak 2001), and consequently are being widely used to model the behaviour of 

financial data and to forecast future values for time series (Widrow et al. 1994; Hammerstrom 

1993). Empirical results were reported in Bansal et al. (1993), which indicated that the 

performance of neural networks is better than linear regression techniques using financial 

evaluation criteria such as the payoff measure. Furthermore, the performance of ANNs may 

be better in terms of traditional predictive accuracy such as the proportion of response 

variation (R2), especially when the relationships within the data set are nonlinear (Bansal et 

al. 1993). Vojinovic et al. (2001) studied the ability of the Radial Basis function neural 

network model (RBF) to forecast the daily US/NZ closing exchange rate. Their result proved 

that the RBF neural network is able to predict the directional change of exchange rate with 

76% accuracy, while the traditional linear autoregressive model made only achieved 21% 

accuracy of predictions. Dunis and Wiliams (2002) compared the performance of a neural 
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network with a number of traditional prediction models including moving average 

convergence/divergence (MACD) strategy, ARMA, logit estimation and Naïve strategy. 

Their study was based on predicting the foreign exchange rate on EUR/USD time series. 

Their results proved the ability of neural network to forecast financial time series. The 

interesting point in all those works is that different neural network models achieved a very 

high accuracy in forecasting the market in comparison with the traditional models. 

 Huang et al. (2004) published a survey of research using ANNs for forecasting foreign 

exchange rates. Their study also demonstrated the factors that can affect the performance of 

the neural network. These factors are the selection of data, pre-processing data, selection of 

the input and output variables, structure of the neural network, and other factors. ANNs can 

stand noise and chaotic features in time series better than most of the other models (Masters 

1993). Therefore, ANNs can deal with the complexities and characteristics of financial time 

series. 

The advantage of using a neural network as a prediction tool is that it includes automatic 

learning of dependencies on data and it can be adapted to any type of data (Bagherifard et al. 

2012). The training process on neural networks can help to learn complex relationships 

between input and output variables without requiring any assumption of the nature of the 

relationship. The training algorithm in a neural network is able to discover and model hidden 

dependencies, then use them to forecast future values (Jayarekha & Nair 2009). In addition, 

ANNs have the ability of generalisation: their ability to forecast future values of unseen data 

(testing data set) in which they have not been trained. Utilising a neural network to forecast 

financial time series such as a stock market has a number of advantages including: saving 

investors’ time when making financial decisions, and aiding them to decrease investment loss 

and risk caused by stock market fluctuation (Lin & Yu 2009). In 1991, the banks started 

utilising neural network models to help them make conclusions about the loan application of 

financial prediction (Pissarenko 2002). Several large investment banks (including Goldman 

Sachs and Morgan Stanley) currently have departments dealing exclusively with the neural 

network for their business investment models (Shachmurove & Witkowska 2000). 

Unfortunately, the most difficult task in time series prediction is to produce high-quality 

predictions.  
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Several models and techniques have already been developed to enhance the forecasting 

ability of neural networks, in order to understand the complex characteristics and natural 

dynamics in financial time series. Hussain et al. (2008) applied various types of HONNs to 

predict financial time series, such as functional link neural network (FLNN), Pi-Sigma neural 

network (PSNN), Polynomial neural network (RPNN) and novel polynomial pipelined 

network. These neural networks have been used to forecast several sets of exchange rate time 

series. Their result shows that the novel network can achieve best performance compared 

with other networks (Hussain et al. 2008). Mahdi et al. (2009) used the self-organising 

multilayer perceptron inspired by immune algorithm (SMIA) to forecast ten financial time 

series. Their results show that the SMIA network achieved profit using stationary data. 

However, when using non-stationary data, the neural network failed to generate any profit. 

Furthermore, their experiment results for the stationary signals demonstrated that the SMIA 

achieved better performance on the profit compared to the MLP neural network.  

Despite the great applications of the feed-forward neural network, it does not consider the 

dependence of an individual input on the inputs processed previously (Pacifici 2010). Time 

series are generated by dynamic complex systems (Herrera 1999). This means that their state 

changes over time. Prediction is considered a temporal signal processing problem. Therefore, 

using a temporal model such as a recurrent neural network can achieve the prediction task 

with the desired accuracy. The recurrent neural network can address the temporal relationship 

of the inputs by maintaining an internal state (Giles et al. 2001). It is considered an alternative 

method of time series forecasting through the use of dynamic memory (Zhang et al. 2013). 

The memory of the previous values generated by the neural network is kept in the context 

layer; the values are then fed back to the neural network to predict the next values (Pedersen 

1997). As result, the predicted values will rely on the current values as well as the previous 

neural network outputs. This can help the neural network to learn the dynamic information 

involved in time series.  

Zhane et al. (2013) attempted to compare the performance of a seasonal autoregressive 

integrated moving average (SARIMA) model with three neural networks (MLP, RBFNN and 

ERNN) in order to forecast typhoid fever incidence in China. Their study proved that ANNs 

achieved better values in three different cost functions – mean absolute error (MSE), mean 

absolute percentage error (MAPE), and mean squared error (MSE) – than the traditional 

prediction model. Ghazali et al. (2009) designed a novel neural network called a dynamic 
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ridge polynomial neural network. They proved that their novel neural network performed 

very well in financial time series forecasting. Tenti (1996) investigated the forecasting ability 

of three variations of RNNs to forecast exchange rates. Three types of were Jordan, Elman 

recurrent network. In the third RNN the context units hold the input layer’s contents. He 

demonstrated that RNNs are useful for forecasting foreign exchange markets. He asserted 

that these different architectures of RNN are equally applicable to other types of financial 

time series.  

5.5 Chapter Summary 

Forecasting financial time series is considered to be one of the most challenging problems in 

economic societies. A number of studies have shown that neural networks have the greatest 

ability to forecast time series in general. Different studies have confirmed that neural 

networks are considered to be promising tools for predicting financial time series. These 

studies have proven their ability compared to traditional static methods. 

The next chapter will introduce another type of time series signal. It is a biomedical signal: 

uterine Electrohysterogram (EHG) signals. These signals are recorded from women during 

their pregnancy. The next chapter will show the difficulties and the issues related to this type 

of times series. 
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CHAPTER 6 MEDICAL TIME SERIES ANALYSIS 

6.1 Introduction 

The development of medical information systems is playing an important role in medical 

societies. The aim of such development is to improve the utilisation of technology in medical 

institutions (Shortliffe et al. 1990). Expert systems and different Artificial Intelligence 

techniques for classification have been used to improve decision support tools for medical 

societies. One of the most widely used tools in classification techniques is the neural network, 

which has been used to identify different types of diseases and illnesses.  

In the literature, many research works have addressed the problem of classification of 

medical data. The medical issue that is considered in this research investigation is Preterm 

cases classification from EHG signals. 

This chapter concentrates on using EHG classification to identify whether delivery will be 

preterm or term. It will provide a brief overview of the medical time series analysis, and also 

present a literature review of using artificial neural networks, specifically the recurrent neural 

network, for medical time series classification.  

6.2 Medical Time Series  

Medical time series has received a great deal of attention from medical specialists and 

scientists, whose concern has led to the existence of different types of time series in the 

medical area. For example, medical scientists attempt to monitor biological signals from 

patients using an electroencephalogram (EEG) to record brain activity waves for the purpose 

of detecting diseases related to brain functions (Subasia et al. 2005; Übeyli 2009; Lehnertz et 

al. 2001; Szkoła et al. 2011; Shoeb 2009). They also use an electrocardiogram (ECG) to trace 

electrical activities of the heart in order to detect heart disease (Übeyli 2010; Balli & 

Palaniappan 2010; Chowdhury et al. 2013). Electromyograms (EMGs) have been used to 

record the electrical activity of muscle contractions, and these signals have been recorded 

from various parts of the human body in order to understand the body’s behaviours under 

normal and pathological conditions (Konrad 2005) (e.g. wrist, uterus, the human forearm, 

femoris muscle, Gait analysis, etc) (Graupe 2010; Diab, El-Merhie, El-Halabi 2010; Moslem 

et al. 2012; Miller2008; Chowdhury et al. 2013b; Ilbay et al. 2011). In other cases, patients’ 
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speech signals are recorded in order to recognise specific types of disease such as larynx 

diseases (Szkoła et al. 2011). Furthermore, time series analyses can be used to assess 

progresses of the patient's status over time (Machado 1996). The analysis of the medical time 

series aims to investigate biomedical signals. Such investigations are based on analysing the 

variation of observations taken with the measurement tools with respect to time (Chiang 

2010), and identifying the differences between these signals. These differences can help to 

classify between normal and abnormal signals to identify diseases. 

6.3 Medical Time Series Classification 

Classification is the process of finding out which object belongs to which class. There are 

different types of tasks from an extensive range of areas that can be referred to as 

classification in the medical field, such as diagnoses and detection. The main task with which 

this thesis is concerned is the medical diagnosis task. However, classification in medical time 

series signals is considered a challenging task. The most important and difficult question is 

how to represent the signals to be classified (Holst 1997; Haykin 1998; Chen et al. 2010). 

This is considered problematic because variables in medical time series are highly correlated 

and related to the time domain (Verplancke et al. 2010). Therefore, the requirement to 

capture both spatial and temporal information of medical signals is highly important. 

Furthermore, the time series signals operate at a very high dimension, which makes them 

difficult to classify. It is necessary to utilise some feature extraction methods that transform 

large time series signals into a small number of features that optimally discriminate that set of 

signals from other signals and allow a classifier to group the signals with the related class 

(Miller 2008). For a classifier to be computationally able to distinguish between different 

signals recorded in different situations or for different people, certain steps must be taken into 

consideration, including pre-processing signals, and feature extraction.  

6.4 Pre-processing of Medical Signals 

In reality, most of the recorded signals that represent time series in different applications 

contain noises. These noises may be due to measurement error or temporary incident, or they 

may be related to problems with the recording tools (Herrera 1999). For example, the 

biomedical signal of a patient may be interrupted by the patient’s movements or breathing, or 

by the patient electrocardiogram (ECG) (Herrera 1999; Rabotti 2010; Rosa et al. 2007; 

Chowdhury et al. 2013a; Rabotti et al. 2008). Hence, the signal characteristics are buried 
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away in the noise (Liu et al. 2005). Therefore, the researchers need to filter these signals to 

remove or at least reduce these noises in order to measure the true properties of the series 

(Baghamoradi et al. 2011). Filter techniques play an important role in extracting the signal of 

interest and removing the unwanted effects of noise. The literature describes a number of 

filtering methods that have been designed, such as the band-pass filter, which allows 

specified frequencies to pass. For example, Balli and Palaniappan (2010) have used a band-

pass filter to remove high-frequency content and baseline noise on the ECG signals. It has 

been used on EMG signals to filter different parameters (Rosa et al. 2007; Moslem, Karlsson, 

et al. 2011; Rabotti et al. 2008; Eswaran et al. 2002; Kavsek and Pajntar 1999; Phinyomark et 

al. 2012). An EEG signal (Akrami et al. 2005; Übeyli 2009; Shaker 2005) has its own 

optimal parameter to be used with the filter. For example, the most relevant information in 

EEG is contained in the range of 20-500 Hz (Chen et al. 2010; Konrad 2005) while heart rate 

effects can be eliminated with a low of 100 Hz. However, there are no perfect filters to 

remove unwanted artefacts (Fergus et al. 2013). Fele-Zorz et al. (2010) showed that 0.3-3 Hz 

is the best for classifying between preterm and term delivery (Fele-Zorz et al. 2008). 

Nevertheless, the frequency range of the motion noise is 1–10 Hz (Chowdhury et al. 2013). 

6.5 Feature Extraction 

Biomedical signals can be classified using assets of attributes or features. The features can be 

computed using feature extraction methods. Feature extraction is known as a conversion 

process of signals to features, and these features can characterise the properties of the signal 

(Wang et al. 1997; Übeyli 2009). A number of techniques have been used to represent and 

extract features from biomedical signals in order to improve the classification (Forney and 

Anderson 2011; Subasia et al. 2005). Various frequency and temporal analysis measures have 

been utilised to represent signals (Song 2010). Time domain analysis can be conducted using 

statistical characteristics including autoregressive coefficients (AR), zero crossing, waveform 

length, and root mean square (RMS) (Rosa et al. 2007; Chen et al. 2010; Fele-Zorz et al. 

2008; Phinyomark et al. 2012). For frequency analysis, the methods include the Fourier 

transform technique, which divides signals into sinusoidal components of different 

frequencies (Shaker 2005). This is done by applying discrete Fast Fourier Transform (FFT) to 

the signal and then finding the signal amplitude, power and energy (Sarbaz et al. 2011; 

Chiang 2010).  
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Although the field of spectral analysis has been dominated by the use of the Fourier 

transform method, some studies have shown that features extracted in the frequency domain 

are considered the best for recognising mental tasks based on EEG signals (Liu et al. 2005), 

and they have been used to classify uterine  EMG signals into labour or non-labour and term 

or preterm classes (Moslem et al. 2011; Bazregar and Mahdinejad 2013; Fele-Zorz et al. 

2008; Garfield et al. 2005). However, that method suffers from high noise sensitivity 

(Majumdar 2009). Fele-Zorz et al. (2008) used Power Spectral Densitt (PSD) to generate 

features of the uterine signals. PSD actually represents only the assessed power across a 

range of frequencies (Forney & Anderson 2011). However, this method produces good 

results, but the Fourier functions do not sufficiently deal with non-stationary signals (Liu et 

al. 2005; Chowdhury et al. 2013b). In reality, most biomedical signals are highly non-

stationary signals such as EMG (Tsuji et al. 2000; Moslem et al. 2010).  

Another method that can be used for such a process is wavelet transform, which is based on 

the time-frequency domain (Shaker 2005). Wavelet transform allows the transformation of 

signals into smaller waves (Sifuzzaman et al. 2009), which is often used in EMG and has 

produced good results (Eswaran et al. 2002). Although the frequency and time analysis 

methods provide the benefits of physical interpretation and convenient computation (Chen et 

al. 2010), these types of methods have suffered from the ability to obtain both spatial and 

temporal information from biological signals (Forney and Anderson 2011; E. M. Forney & 

Anderson 2011). They ignore the essential nonlinear dynamics behaviour of signals (Übeyli 

and Guler 2007; Balli and Palaniappan 2010). Successful classification depends on utilising 

signal representation that captures the crucial information from signals needed to estimate the 

correct classes. In reality, most biological and biomedical signals have nonlinear dynamic 

properties with complex behaviour (Meng et al. 2010; Chen et al. 2010; Meng et al. n.d.; 

Tsuji et al. 2000). These types of signals are considered chaotic (Guler et al. 2005; Übeyli et 

al. 2008; Übeyli & Guler 2007). Therefore, nonlinear dynamic measures can be used as 

clinically useful parameters to capture salient information about signals (Rezek & Roberts 

1998). These nonlinear methods are able to measure complexity (Abasolo et al. 2006; Costa 

et al. 2003; Costa et al. 2005; Pincus et al. 1993; Radhakrishnan & Gangadhar 1998; 

Radhakrishnan et al. 2000; Rezek & Roberts 1998; Richman & Moorman 2000; Xu et al. 

2007; Zhang et al. 2001). 
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During the last few decades, the use of nonlinear analysis techniques to determine the 

character of biological signals’ properties has increased significantly. A number of measures 

are available to discover nonlinear characteristics in signals. In the literature, they have been 

used in nonlinear biosignal analysis such as EEG (Übeyli & Guler 2007), ECG (Übeyli 2010) 

and EMG (Fele-Zorz et al. 2008;  Diab et al. 2012; Hassan et al. 2009; Balli & Palaniappan 

2010; Meng et al. 2010). Among the nonlinear features are Lyaponov exponents, which are 

quantitative measures for estimating the chaos in a signal (Fele-Zorz et al. 2008). The 

approximate entropy is another nonlinear feature. Various studies have proved that these 

features can properly represent the biomedical signals and that, by using these features, a 

good distinction between classes can be achieved (Fele-Zorz et al. 2008; Balli and 

Palaniappan 2010; Übeyli 2010;  Diab et al. 2012). One study confirmed that the progress of 

the labour can be evaluated using sample entropy features (Vrhovec 2009). Moreover, there 

are other nonlinear feature measures such as correlation dimension. These can be used to 

distinguish between term and preterm labour, as proved by Fele-Zorz et al. (2008). However, 

it should be taken into account that each feature represents a different classification power for 

different problems. Therefore, feature extraction methods are playing an important role in 

improving the discriminative performance of classifiers (Moslem et al. 2011). For example, 

in neural networks the selection of (ANN) inputs is the most essential factor in designing the 

neural network model based on pattern classification because the best classifier will perform 

poorly if the inputs are not selected carefully (Übeyli 2010). 

In some cases of feature extraction, the features vectors will be high dimensional, which will 

increase the computational difficulty. This is related to the presence of irrelevant and noisy 

features that can affect the classification performance. For a high dimensional data set, the 

commotion time for measuring and calculating similarity between data becomes more 

complex, and has led to misunderstandings of the data structure. Therefore, the high 

dimensionality of the extracted feature vectors must be reduced using feature selection 

techniques. This can be achieved by finding new space that is a lower dimension space than 

the dimension of the original data. It is used to improve the ability of the ANN in 

classification (Khemphila & Boonjing 2012). It has been confirmed that ANN classification 

accuracy can be improved by reducing the number of unnecessary features that are recorded 

from patients. Feature selection has two types: (1) feature transformations, where the data are 

projected onto a lower dimensional space, such as principal component analysis (PCA) and 
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independent component analysis (ICA); and (2) selecting the set of inputs that best represents 

a given pattern and can be utilised based on certain statistical features such as the mean or the 

maximum or minimum of the feature values. 

6.6 Recurrent Neural Network for Pre-Processing 

Human biological signals are naturally characterised by complexity, dynamism and the 

inherent nonlinearity. These characteristics of biological signals make their analyses very 

difficult. Since variables in medical time series are related to the time domain (Verplancke et 

al. 2010), therefore, the necessity of using techniques that are able to deal with both spatial 

and temporal information on medical time series data is highly essential. The recurrent neural 

networks have enjoyed very important properties which make them good for pattern 

recognition. One of their powerful properties is finite state machine approximation, which 

makes recurrent neural network learning both temporal and spatial patterns (Forney & 

Anderson 2011). This kind of network is very useful for real-time application like biomedical 

signal analysis. Some of the various RNNs developed were designed in order to detect 

patterns in biological signals. Certain research work has proved that RNNs are a very 

powerful tool for modelling biomedical signals such as EEG signal (Forney & Anderson 

2011).  Forney and Anderson (2011) have shown that the Elman RNN is able to detect mental 

tasks. It has shown its ability to forecast the EEG signal. Their process was based on 

Classification via Forecasting (CVF). Each EEG signal is recorded from a person while 

he/she imagines mental tasks. ERNN has been trained to forecast the signals of each of these 

imagined mental tasks. The forecasting errors of ERNN are fed to the classifier as features; 

then the label of class is selected with the ERNN model that obtained the lowest forecasting 

error. This experiment has been performing very well, and has achieved up to 93% 

classification accuracy. This is related to the dynamical link on the ERNN, which holds some 

of the temporal information from the EEG signal. 

There are some existing studies which are based on the investigation of the recurrent neural 

network’s ability to model systems to generate time series signals of some diseases. Sarbaz et 

al. (2011) investigated the ability to produce a model for basal ganglia structure. The basal 

ganglia are a collection of nerve cells in the brain which are strongly interconnected. The 

researchers’ proposed models exist in order to generate gait time intervals for healthy patients 

and those with Parkinson’s disease. They have used the Elman recurrent neural network to 
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build their models. Their experiments concluded that the recurrent neural network is capable 

of simulating conditions of healthy patients and those with Parkinson’s disease. Furthermore, 

RNNs have the ability to generate the behaviour of different persons as healthy or unhealthy 

patients (Sarbaz et al. 2011). 

The recurrent neural network has also been utilised for filtering and signal detection in order 

to reduce the noise associated with biomedical signals. Erfanian and Mahmoudi (2005) 

utilised a nonlinear adaptive noise canceller (ANC) filter for ocular artefact cancellation. 

Their motivation was based on filtering EEG recordings by removing noises that affect the 

eye blink or eye movement. Their proposed work uses an ANC filter based on using the 

recurrent neural network to remove the Electrooculogram (EOG) interference from EEG 

signals. The EEG signals were recorded at frontal site F3, and the EOG signals were recorded 

by using two pairs of electrodes; the first pair was placed above and below the eye to record 

the vertical Electrooculogram (EOG), and the second pair was placed at the left and right 

outer canthi to record the horizontal EOG. Then, EOG signals were added to the EEG signals 

to obtain the main signals. After that, the main signals were passed to the nonlinear recurrent 

neural network as inputs. The recurrent neural network filter achieved a signal to noise ratio 

(SNR) of 27 dB. Their experiments  confirmed that the nonlinear ANC filter based on the 

recurrent neural network has a high ability to detect the EOG to EEG signals and to perfectly 

remove ocular artefacts from the main signals (Erfanian & Mahmoudi 2005). 

Another RNN-based approach was investigated in 1996 by Cheron et al. Their main objective 

of using dynamic recurrent neural networks was to find the connection between the arm 

kinematics and the muscle EMG activity. The neural network that was used in their study 

consists of fully interconnected neurons and their experiments show that this RNN is 

perfectly able to identify muscle activity EMG signals. It can identify the complex mapping 

between the upper-limb kinematics and the muscle EMG activity during complex actions 

(Cheron et al. 1996). 

Chowdhury et al. (2013) presented a number of experiments using neural networks to reduce 

the noise on the EMG signals. In their study, a number of neural network were applied in 

EMG signals to check their performances based on mean square error and correlation 

coefficients. Their result showed that the recurrent neural network is able to reduce noise on 

EMG signals with MSE 0.009, compared to MLP which achieved 0.01. From their 
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experiments, the authors suggested that using recurrent neural networks as noise removal 

methods is highly useful. 

6.7 Classification 

The importance of classification techniques in the medical community, especially for 

diagnosis purposes, has gradually increased. The important reason for improving medical 

diagnosis is to enhance the human ability to find better treatments, and to help with the 

prognoses of diseases to make the diagnoses more efficient (Akay 2009), even with rare 

conditions (Machado 1996). The classification task involves the following: each object in a 

data set is represented by a number of attributes or features, and each of these objects can be 

determined according to a number of classes to which it belongs. The features can be 

assembled into an input vector x. The classifier will be provided by a number of previous 

objects (training set), each involving vectors of feature values and the label of the correct 

class. The aim of the classifier is to learn how to extract useful information from the labelled 

data in order to classify unlabelled data. Various methods have been employed for the 

classification task. They are categorised into two groups: linear and nonlinear classifiers.  

The linear classifiers are represented as a linear function of input feature x.  

                (6.1) 

Where w is a set of weight values and b is a bias. For two classes, problem c1 and c2, the input 

vector x is assigned to class c1 if g(x)>=0 and to class c2, otherwise. The decision boundary 

between class c1 and c2 is simply linear. In the previous studies, several traditional linear 

classifiers were designed and applied to perform classification in different areas such as 

Linear Discriminant Analysis. 

Nonlinear classifiers involve finding the class of a feature vector x using a nonlinear mapping 

function (f), where f is learnt from a training set T, from which the model builds the mapping 

in order to predict the right class of the new data. The most popular nonlinear classifier is the 

neural network. As a classifier, the ANN has a number of output units, one of each probable 

class. Nonlinear neural networks are able to create nonlinear decision boundaries between 

dissimilar classes in a non-parametric approach (Haykin 1998; Chen et al. 2010). Zhang 

(2000) asserted that neural networks have the power to determine the posterior probabilities, 

which can be used as the basis for establishing the classification rule. 
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ANN achievements have covered different types of medical applications such as the analysis 

of EEG signals (Guler et al. 2005). Diab et al. (2010) have used the ANN to classify uterine 

EMG signals for preterm deliveries and deliveries at term according to their frequency 

domain (Diab, El-Merhie, El-Halabi 2010). Tsuji et al. (2000) have used the ANN to classify 

non-stationary EMG signals during continuous motions over a short period of time.  

6.8 Recurrent Neural Network for Medical Classification 

Classification in medical time series signals is considered a challenging task. In recent years, 

the analysis of dynamic behaviour in biological and biomedical signals has received great 

attention (Dingwell 2006). In the literature, a number of studies have sought to improve the 

classification accuracies of these signals by employing different pre-processing, feature-

extraction approaches and ANN architectures in order to improve diagnosis (Forney & 

Anderson 2011). The difficulty of classifying signals could be solved by a dynamic system 

such as a recurrent neural network (RNN) (Szkoła et al. 2011).  

In the literature, it has been shown that RNNs have the ability to discover the hidden structure 

of the medical data. Existing studies have indicated that RNNs have the ability to perform 

pattern recognition in medical data and have obtained high accuracy in the classification of 

medical data (Übeyli and Übeyli 2008; Verplancke et al. 2010; Ilbay et al. 2011; Übeyli 

2009; Petrosian et al. 2001). In addition, it has been shown that RNNs have the ability to give 

an insight into the feature used to represent biological signals (Übeyli 2009). Therefore, the 

employment of a dynamic tool to deal with time series data classification is highly 

recommended (Hüsken and Stagge 2003).  

The most popular recurrent neural network used for medical classification tasks is the Elman 

neural network (ERNN) (Elman 1990). The Elman network has the ability to detect and 

classify temporal constructions (Elman 1990). This network has been used widely in medical 

classification. According to some studies, the recurrent links of the RNN help to remember 

the past information without causing any complexity in the learning process (Guler et al. 

2005).  

In the last couple of years, various medical applications based on RNNs have been 

implemented. One of the most prominent applications of the RNN is pattern recognition, such 

as automated diagnostic systems (Übeyli and Übeyli 2008). The RNN can utilise nonlinear 
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decision boundaries and process memory of the state, which is crucial for the classification 

task (Guler et al. 2005; Petrosian et al. 2001; Petrosian et al. 2000). A number of studies have 

confirmed that RNNs have the ability to distinguish linear and nonlinear relations in the 

signals. In addition, they have proven that RNNs enjoy signal recognition abilities (Petrosian 

et al. 2001). Different research works have attempted to investigate the ability of RNNs to 

classify biological signals (e.g EEG, ECG and EMG). The procedure for signal classification 

is performed in two stages: extracting features which were used as input to the RNN 

classifier, then classifier techniques can be performed.  

Currently, most research work is based on using recurrent neural networks for EEG signal 

classification (Koskela et al. 1998), and others have addressed the utilisation of recurrent self-

organising map (RSOM) to EEG signals for epileptic patients. It has been applied to detect 

the activity of epilepsy on EEG signals. The features that have been used in this experiment 

are spectral features. Wavelet transform was used to extract signals from each window, and 

sixteen energy features from the wavelet domain have been computed for each window. The 

RSOM network has been run to classify the EEG signal to normal or epileptic activity. Their 

results show that the RSOM achieved a better clustering result than the SOM. The authors 

conclude that using context memory for detecting the EEG epileptic activity has enhanced the 

classification performance of the SOM (Koskela et al. 1998). 

Another study was presented based on using the Elman network to classify mental diseases 

on EEG signals combined with wavelet pre-processing. Petrosian et al. (Petrosian et al. 2001; 

Petrosian et al. 2000) investigated the ability of RNN employed with wavelet pre-processing 

methods for diagnosis of epileptic seizures in EEG signals (Petrosian et al. 2000) and for the 

early detection of Alzheimer’s Disease (AD) in EEG signals (Petrosian et al. 2001). For the 

diagnosis of epileptic seizures in EEG signals analysis task, Petrosian et al. (2000) examined 

the ability of recurrent neural networks (RNN) combined wavelet transformation methods to 

predict the onset of epileptic seizures. The recurrent neural network was trained based on the 

decoupled extended Kalman filter (DEKF) algorithm. In Alzheimer’s disease in the EEG 

signals detection task, the RNN has been used to distinguish between AD and healthy groups. 

In that study, the authors have used a network training algorithm based on the Extended 

Kalman Filter (EKF) algorithm. The signals were obtained from ten healthy persons and ten 

early AD patients. The EEG signals were recorded using nine channels with two min length 

and with 512 Hz sampling rate. EEG has been recorded to monitor the subject during the eyes 
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closed resting state. The Fourier power spectra methods have been used to analyse the row 

EEG signals. The band-pass FIR filter has been used to filter each EEG signal into four sub-

groups: delta, theta, alpha and beta. Furthermore, the fourth level wavelets filter has been 

used on raw EEG signals. In the study, the inputs of the RNN were the original channel 

signals and the derived delta, theta, alpha and beta for each signal as well as their wavelet 

filtered sub-bands at levels 1-6. From their experiments, the best RNN result was achieved 

using parietal channel P3 raw signals as well as wavelet decomposed sub-bands at level 4 as 

inputs. The RNN achieved a high performance to classify AD with 80% sensitivity and 100% 

specificity. Petrosian et al. (2001) have proved that the combination of RNN and wavelet 

approach has the ability to analyse EEG signals for early AD detections.  

Guler et al. (2005) have also investigated the diagnostic ability of the recurrent neural 

networks (RNNs) to detect EEG signals of epileptic seizures. The EEG signals used in that 

experiment were recorded from five healthy volunteers with their eyes open, five epilepsy 

patients in the epileptogenic zone during seizure-free interval and epilepsy patients during 

seizures. Lyapunov exponent methods have been applied to extract features. One hundred and 

twenty-eight Lyapunov exponent features have been calculated for each EEG segment. The 

statistical methods were used to reduce the dimensionality of the features. This was done by 

computing maximum, minimum, mean and Standard deviation of the Lyapunov exponents 

for each EEG signal. The result achieved in this study confirmed that RNNs are able to 

classify EEG signals better than MLP. The classification accuracy percentages of the RNN 

were approximately 97% for the healthy subjects, 96.88% for seizure-free epileptogenic zone 

subjects and 96% for epileptic seizure subjects, while MLP classified the healthy subjects, 

seizure-free epileptogenic zone subjects and epileptic seizure subjects with 92%, 91% and 

90.63%, respectively (Guler et al. 2005).   

Another study attempted to evaluate the diagnostic accuracy of the recurrent neural networks 

(RNNs) by utilising eigenvector methods to extract features of EEG signals of epileptic 

seizures (Übeyli 2009). Consequently, the data involved five groups: two containing healthy 

people and three containing people with an epilepsy diagnosis. Each set contains 100 single-

channel EEG signals of 23.6 s period. The signals were filtered using a Band-pass filter with 

0.53–40 Hz. This research used three eigenvector methods (Pisarenko, multiple signal 

classification, and Minimum-Norm) to calculate the power spectral density (PSD) of signals. 

Frequencies and power levels of signals have been obtained by these eigenvector methods. 
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After extracting the features, the feature selections are proposed by finding the logarithm of 

the PSD values of each eigenvectors method. Then two types of neural network have been 

used to classify the signals, the MLP and the Elman recurrent neural network (ERNN). The 

result indicates that the ERNN has succeeded in classifying the EEG signals. This network 

provided the best classification performance, with an accuracy of 98%. The ERNN 

outperformed the MLP, which had an accuracy of 92% (Übeyli 2009). From these 

experiments, it has been concluded that the margin between eigenvector methods and RNN 

approach can be used to discriminate between the other biomedical signals. 

Another biomedical signal that has been used to investigate the RNN ability for classification 

is ECG signal. Übeyli and Übeyli’s (2008) study has also used a RNN to diagnosis ECG 

signals of partially epileptic patients. The RNN has been applied to classify non-arrhythmic 

ECG waveforms as normal or partially epileptic. The ECG signals involve two types of beats, 

normal and partial epilepsy, and they were collected from the MIT-BIH Database which was 

created by the Massachusetts Institute of Technology (Al-Aweel, Krishnamurthy , Hausdorff 

, Mietus , Ives , Blum , Schomer 1999). The features were extracted by using wavelet 

coefficient and Lyapunov exponents. Also, in the ECG experiment the authors have used 

statistical methods to reduce the dimensions of the extracted features. The trained ERNN 

obtained high classification accuracy of 98% compared to MLP, which achieved 93%.  

In addition, Übeyli (2010) used the ERNN to distinguish the differences in beats on 

electrocardiogram (ECG) signals. An ECG signal involves four beats (normal beat, 

congestive heart failure beat, ventricular tachyarrhythmia beat, and atrial fibrillation beat). 

The ECG signals contain 48 signals with 30 min length. In the experiment, the electrode was 

placed on the subject’s chest. The band-pass filter was used to digitalise signals at 360 Hz. 

The features were extracted used a nonlinear dynamic method which is Lyapunov exponents. 

The Elman recurrent neural network with Levenberg-Marquardt leaning algorithm was 

applied in order to classify the ECG signals. The result of the study has confirmed the ability 

of the ERNN to classify ECG signals with 94.72% accuracy (Übeyli 2010). 

Another biomedical signal that has been used to examine the RNN capacity for classification 

is EMG signal (Arvind et al. 2010). This study focused on the automated detection of 

Parkinson’s disease (PD) by using a recurrent neural network to classify EMG signals. The 

Elman recurrent neural network (ERNN) has been used to classify the health and PD states. 
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The EMG signals were recorded from the extensor carpi radialis muscle during rest and 

activated motion. The resting motion signals were obtained from abnormal PD patients, and 

muscular contractions signals were obtained from healthy persons. The signals’ duration was 

30 min with sampling frequency of 100 Hz. In order to distinguish the EMG signals, the 

authors have used the power spectral density features. The statistical measures, which are 

mean and maximum of PSD, were computed as features. From their experiments, their result 

shows that the ERNN can classify EMG signals with 95% classification accuracy (Arvind et 

al. 2010). Other studies have attempted to classify different types of conditions related to 

human muscles. For example, Ilbay et al. (2011) used the Elman recurrent neural network 

(ERNN) for automated diagnosis of Carpal Tunnel Syndrome (CTS). It has been applied to 

patients suffering from various Carpal Tunnel Syndrome symptoms such as right CTS, left 

CTS and bilateral CTS. In this experiment, the study collected EMG signals from 350 

patients who suffered from CTS (left, right and bilateral) symptoms and signs. Nerve 

conduction study (NCS) was applied by using surface electrodes to record the EMG signals 

on both hands for each patient. NCS measures how fast electrical signals can be sent through 

nerves. Therefore, they are able to diagnose Carpal Tunnel Syndrome and the results of this 

test are used to evaluate the degree of any nerve damage. 

Furthermore, the RNN has been used to classify the signals recorded from the Doppler 

system. For example, (Übeyli and Übeyli (2008) evaluated the diagnostic ability of the Elman 

recurrent neural network (ERNN) employing Lyapunov exponents to classify arterial disease. 

In that study, signals were collected from a Doppler ultrasound. The Doppler ultrasound 

method has been used to evaluate blood flow in both the central and peripheral circulation 

(Evans et al. 1989). The main motivation of the study was to obtain nonlinear dynamic 

features from the ophthalmic arterial (OA) and internal carotidarterial (ICA) Doppler 

ultrasound signals. One hundred and twenty-eight Lyapunov exponent features have been 

calculated from each OA and ICA Doppler signal segment (256 discrete data). However, 

these features have been reduced using statistical methods to represent signals for 

classification. The trained ERNN in this feature obtained high classification accuracy with 

97% for OA Doppler signals and ICA Doppler signals.  

The next sections will introduce the medical issue that has been considered in this research 

work, which is Preterm cases’ classification from EHG signals.  
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6.9 Introduction to Preterm  

One of the most challenging tasks currently facing the healthcare community is the 

identification of premature labour (Maner 2007). Premature birth occurs when the baby is 

born before 37 weeks of pregnancy. A term birth occurs when the baby is born after the 37-

week gestation period. 

The number of preterm births is increasing gradually; it badly affects healthcare 

development. The increase in preterm labour contributes to rising morbidity. It has been 

recorded that, in 2011, the percentage of babies born as preterm was 7.1 % in England and 

Wales, according to the Office for National Statistics (2013). Approximately 50% of all 

perinatal deaths are caused by preterm delivery (Baker and Kenny 2011), with those 

surviving often suffers from health problem caused during birth.  

6.9.1 The Negative Effects of Preterm Labour 

Preterm birth has a great impact on new babies’ lives, including health problems or increased 

risk of death. One million preterm babies die each year according to the World Health 

Organisation (WHO) (2012). An earlier delivery has a significantly negative impact on 

babies’ later lives. Preterm infants are usually born at low weights of less than 2500 grams 

compared with full-term babies (Garfield and Maner 2007). In their future lives, they might 

suffer from more neurological, mental and behavioural problems compared with full-term 

infants ( Maner 2007). In other cases, preterm birth leads to increased probability of asthma, 

hearing and vision problems; some preterm infants may have difficulty with fine-motor and 

hand-eye coordination (WebMd 2012). An early delivery impacts the development of the 

kidneys and their function in the infant’s future life (Heijden 2012). Furthermore, 40% of 

survivors of extreme preterm births may be affected by chronic lung disease (Greenough 

2012).  

On the other hand, preterm births also have a negative effect on families, the economy, and 

community (Fergus et al. 2013). According to the World Health Organisation, more than 

three-quarters of premature babies can only be saved with very high-level effective care 

(WHO 2012), which results in more infant hospitalisations and a lot of healthcare 

expenditure. Preterm infant needs intensive care, which will raise the cost of hospital care to 

$1500 a day (Garfield and Maner 2007). Furthermore, the reduced gestation duration 
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increases the number of days spent in hospital. As a result, preterm births have a negative 

economic effect (Shi et al. 2008). According to Mangham et al. (2009), in 2009, in England 

and Wales the total cost to the public sector of preterm births was valued at £2.95 billion. 

However,  attempting to have a better understanding of preterm deliveries can help to create 

the right decision and prevention strategies to reduce the negatives effects of  preterm 

deliveries on babies, families, societies and healthcare services (Muglia and Katz 2010; 

Fergus et al. 2013; Iams 2003). 

6.9.2 The Factors for Preterm 

Significant progress has been made in understanding the process of labour, and research on 

premature labour has attempted to discover the risk factors (Chen et al. 2011; G. Fele-Zorz et 

al. 2008). A number of investigators have found many factors leading to preterm delivery. 

According to Baker and Kenny (2011), approximately one-third of preterm deliveries 

occurred because of the membranes rupturing prior to labour. Another third might happen 

due to the increasing of spontaneous contractions (termed preterm labour or PTL) (Fergus et 

al. 2013; Greenough 2012). Lastly, preterm birth can occur because of medical indication 

towards the best interest of the mother or baby. Moreover, there are still doubts about which 

of these factors can increase the risk of preterm birth. On the other hand, there are some 

reasons for preterm labour which ultimately may or may not end in preterm birth (Baker & 

Kenny 2011). These reasons may relate to the mother’s illnesses, congenital defects of the  

uterus and cervical weakness (Rattihalli et al. 2012; Goldenberg et al. 2008; Goldenberg et al. 

2008). Other factors of preterm labour could be related to  health and lifestyle of the mothers; 

these factors include uterine abnormalities, short cervix, recurrent antepartum haemorrhage, 

illnesses and infections, any surgery, underweight or obese mother, diabetes, stress, smoking, 

social deprivation, long working hours/late nights, alcohol and drug use, and folic acid 

deficiency. However, in some situations, the cause of preterm delivery is undetectable (Diab, 

El-Merhie & El-Halabi, 2010). 

6.9.3 The Prediction of Preterm Birth and Labour 

The medical community has made significant progress in alleviating the effects of preterm 

birth and preterm labour, improving the care of immature babies. Effective diagnosis of 

preterm labour could contribute to appropriate lifestyle and medical interventions in saving 

the lives of many infants (Muglia & Katz 2010). It can help medical specialists to stop the 
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labour’s progress or give effective treatment to decelerate it, or at least make careful 

preparation for preterm infants (Shi et al. 2008; Garfield & Maner 2007). The prediction of 

preterm birth and diagnosing preterm labour obviously has important consequences for 

healthcare and the economy. During pregnancy, early prediction of preterm birth can help to 

select the relevant necessary treatments (Rabotti et al. 2007). However, incomplete 

understanding of the physiology of the uterus and parturition means that premature labour 

prediction is a difficult task ( Fele-Zorz et al. 2008; Leskošek & Pajntar 2002). The reason for 

this may be that the initial symptoms of preterm labour occur commonly in normal 

pregnancies (Iams 2003). There is some misclassification in regard to recognising full-term 

and preterm labour; approximately 20% of women who are identified as reaching full-term 

labour actually deliver prematurely (Iams 2007). Therefore, there is great demand for early 

accurate diagnosis of preterm labour.  

A number of clinical methods have been implemented to predict labour, such as uterine 

contraction measurements using an elastic belt (external tocography), cervical change test, 

salivary estriol, fetal fibronecti, and intrauterine pressure. Unfortunately, these methods have 

not proved to be accurate in predicting preterm delivery (Maner 2007). The importance of 

understanding uterine activity and the processes underlying labour in order to diagnose the 

true path of labour and predict the delivery time has contributed to the appearance of different 

techniques to monitor the contractions, including the internal uterine pressure (IUP), 

tocodynamometer, and Electrohysterography (EHG). A tocodynamometer records 

contractions by using a pressure transducer, and an external belt fastened around the 

abdomen. The IUPC measures the pressure inside the uterus. IUP is done by an intrauterine 

catheter to measure the most complicated deliveries. This type of measurement is considered 

unsafe because it can damage the foetus (Rabotti 2010; Rabotti et al. 2008). However, the use 

of an external tocodynamometer only provides information that is related to contraction 

frequency (Rabotti 2010). Furthermore, the  problem of using  tocodynamometry in detecting 

preterm labour is that it does not measure the contraction duration and amplitude, which ends 

up in giving poor analytical results for predicting preterm delivery (Eswaran et al. 2002; 

Rabotti 2010). 

The Electromyography (EMG) technique is considered to be a helpful and effective method 

to detect preterm labour. EHG is very efficient measurement to record electrical activity, 

because it measures the contraction directly, rather than the physical response to contractions, 
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which may get lost amongst other physical noise and disturbance (Leman et al. 1999). Hence, 

Electromyography is considered in this thesis. The next section gives a brief introduction to 

EMG and especially Electrohysterography (EHG).  

6.9.4 ElectroHysteroGram (EHG) 

It has been recorded that electrical activity of the uterus muscle has been known for a long 

time, since at least the late 1930s (Bozler 1938). However, it is only in the last twenty years 

that formal techniques have been available to record these activities (Cheung 2012). The 

activity is recorded as signals. The method that has been used to record such signals in a time 

domain is called Electrohysterography (EHG). EHG is a technique for measuring electrical 

activity of the uterus muscle during pregnancy, through uterine contractions (Garfield et al., 

2005; Marshall, 1962). EHG is one form of electromyography (EMG), the measurement of 

activity in muscular tissue.  

The uterine muscle is like skeletal muscles. In smooth muscles, as Rabotti (2010) asserted, 

the way the contraction occurs is by the process of propagation of electrical activity over the 

muscle cells in the appearance of an action potential (AP). The spreading of electrical activity 

in the action potential (AP) through the myometrium cells causes uterine contractions. 

Therefore, EHG is the measurement of the AP propagating through the myometrial cells. 

Figure 6.1 represent the contraction that happens on muscle. The woman’s body will slightly 

increase the number of electrical connections (gap junctions) between uterine cells (Fergus et 

al. 2013). 

 

Figure 6.1: Schematic representation of the smooth cell contraction (Rabotti 2010) 

From a medical point of view, the strengthening and increasing of uterine contractions over 

time is a sign of imminent labour and birth (WelcomeBabyHome 2006), and shoots up 
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particularly in the last four days before delivery (Lucovnik et al. 2011). During parturition, 

the increasing of the contractions will help the body to prepare for the final stage of labour 

and parturition (Cheung 2012; Fergus et al. 2013). They will help to shorten the cervix and 

force the foetus to descend into the birth canal. Therefore, the main function of uterine 

contractions is to generate the force and synchronicity that are necessary for true labour. 

Over the last few decades, EMG has been used in two ways: the older method is an invasive 

one involving the insertion of needle electrodes into the uterus; however, this method is 

painful and uncomfortable for patients. Hence, it is unwanted. The second method is a non-

invasively one which places electrodes on the woman’s abdominal surface. Many 

experiments have used non-invasive EHG signals in order to study the pregnancy process and 

predict labour in both humans (Maner 2007; Fele-Zorz et al. 2008) and animals (Shi et al. 

2008; Marque et al. 2007).  

EHG signals have been recorded by placing bipolar electrodes on the abdominal surface. 

These electrodes are spaced out at a horizontal, or vertical, distance of 2.5cm to 7cm apart. 

The numbers of electrodes that have been used for recording EHG have been chosen 

differently in various studies. One study utilises two (Doret 2005) while other studies 

managed to use EHG signals that recorded from four electrodes (Fele-Zorz et al. 2008; 

Cheung 2012; Fergus et al. 2013). Other studies used sixteen electrodes to obtain EHG 

signals (Moslem et al. 2011; Diab, et al. 2011; Moslem, Khalil, et al. 2012; Moslem and 

Khalil 2011b), and a high density grid of 64 small electrodes was used in Rabonetti et al. 

(2010).  

The results of these different studies have confirmed that EHG records are different from 

woman to woman, depending if she is in true or false labour and whether she will deliver 

term or preterm (Hassan et al. 2010). Therefore, EHG can be used to predict and diagnose 

preterm birth. 

In the literature, a number of research studies have confirmed the importance of EHG 

recordings to analyse the uterine contraction during pregnancy and parturition (Rabotti et al. 

2008; Buhimschi and Garfield 1996). Analysis of the EHG provides a strong basis for 

understanding and identifying the progress of labour (Devedeux, et al., 1993; Fele-Zorz et al. 

2008; Gondry, Marque & Duchene 1993; Maner et al. 2003). Furthermore, Gondry et al. 
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(1993) recognised uterine contractions from EHG records as early as 19 weeks of the 

pregnancy period.  

6.9.5 Literature Review of Preterm Labour  

Many research studies have used EHG for prediction or detection of true labour in term and 

preterm cases. Many pattern classification techniques have been used to classify groups of 

patients according to their EMG parameters. The different studies that focused on classifying 

the EHG signal will be presented in this section. 

Fele-Zorz et al. (2008) presented a study that compared linear and non-linear signal 

processing techniques to efficiently classify EHG signals in order to separate different classes 

of EHG records into term and preterm classes. They presented a set of data called The Term-

Preterm EHG Database (TPEHG), and used a statistical analysis method to study the 

differences in EHG. Their database set was used in this thesis and will be described in 

Chapter 7. Fergus et al. (2013) have used same uterine EHG signals which were collected 

from Physionet but with different filter parameters. They used 0.3 to 1 HZ. Leman et al. 

(1999) used a statistical analysis approach to observe the disparity in the EHG parameters and 

the possibility of such parameters in allowing discrimination between preterm and term 

classes. In contrast, Diab et al. (2007) have used two methods of classification. The first 

method is based on unsupervised statistical classification (USCM) combined with the pre-

processing method of Wavelet Transform while the second method is based on the 

Autoregressive model (AR) and k-nearest neighbour model (KNN). The basis of USCM is 

the Fisher Test and k-Means methods. The pre-processing techniques that were used in their 

study were AR modelling and wavelet transform.  

The objective of their study was to classify contractions from 16 women and divide them into 

three groups. The first group (G1) contained women who had their contractions recorded at 

29 weeks, and then delivered at 33 weeks; the second group (G2) had their contractions 

obtained at 29 weeks, but they delivered at 31 weeks; and the third group (G3) were recorded 

at 27 weeks and delivered at 31 weeks. The first classification task is to classify G1 and G2; 

the second classification task is to classify G2 and G3. The study result demonstrated that the 

wavelet transform, combined with USCM, could achieve a classification error of 9.5% when 

discerning G1 against G2, and 13.8% when classifying G2 against G3. In contrast, AR 

accompanied with the k-NN achieved classification of 2.4% for G1 against G2 and 8.3% for 
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G2 against G3. Therefore, it can be concluded from their results that the AR and k-NN 

methods achieved better results than the USCM. Furthermore, the classification accuracy of 

G1 against G2 was always lower than the equivalent G2 to G3 classifications. This suggests 

that it is easier to distinguish between pregnancies recorded at different stages of gestation 

than it is to distinguish between the times of delivery.   

In the literature, a support vector machine (SVM) has been used to classify pregnancy and 

labour contractions (Moslem et al. 2012; Moslem & Khalil 2011b). Their works are based on 

classifying contractions into labour or non-labour, by using different sites on the abdomen. 

Their approaches were tested on a multichannel EMG signal recorded from 16 electrodes. 

The power of the contractions was used in these studies, and the median frequencies were 

extracted from the signals corresponding to each channel. In Moslem and Khalil (2011a), 

Moslem and Khalil (2011b) and Diab et al. (2012), the researchers have proved that the 

classification of multichannel uterine signals can be improved by using the fusion rule. The 

global accuracy of the studies using SVM combined with the Data Fusion Approach was 78% 

to 88%. Furthermore, SVM has been used to prove that reducing the number of channels can 

also increase the classification accuracy to diagnose between pregnancy and labour 

contractions, as shown by Diab et al. (2012); their result demonstrated that the combination 

of four channels from 12 channels of uterine signals yields the best classification accuracy of 

84%.  

6.9.6 Artificial Neural Networks in Medical Applications 

Artificial neural networks have been used extensively in medical diagnosis application (Al-

shayea 2011). They have been applied for a number of different tasks in biomedical research. 

They are used for diagnosis, prognosis, or clustering of medical data (Machado 1996). ANN 

is a very active research field in medicine, and many studies have attempted to investigate the 

application of neural networks in typical disease classification such as Alzheimer’s Disease 

(Joshi et al. 2010), cancer (Singh & Gupta 2011) and heart disease (Khemphila & Boonjing 

2011). ANN can also be used as a pre-processing method of medical data. In this section of 

the thesis, summaries of ANN application of classifying uterine EHG signal are presented.  

Neural networks for medical classification are simply based on presenting a set of attribute 

values (features) as input and these values might be continuous, e.g. “temperature”, or 

discrete, e.g. “gender/ sex, age”, and the neural network concludes whether the person is 
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normal or abnormal. In our case, the preterm cases will be considered as abnormal and term 

cases will be normal. 

ANNs have been used in a large number of studies to classify uterine EMG signals (Diab et 

al. 2012; Shi et al. 2008; Baghamoradi et al. 2011; Chen et al. 2011; Marque et al. 2007; 

Diab, El-Merhie, El-Halabi 2010; Garfield and Maner 2007). The use of EMG with ANN has 

shown its ability to diagnose term and preterm births (Baghamoradi et al. 2011; Diab, El-

Merhie & El-Halabi 2010; Marque et al. 2007). Other studies have used ANN to identify true 

labour (Diab, et al. 2011; Shi et al. 2008; Maner 2007; Charniak 1991; Doret et al. 2005), 

regardless of whether they were term or preterm. In Shi et al. (2008), it was shown that ANN 

can efficiently identify true labour in term and preterm on animal EMG signals and uterine 

pressure data. In term births, the classification has been made with 100% accuracy; however, 

the preterm delivery was 92% for the labour group and 86% for the non-labour group. 

Maner et al. (2007) used the Kohonen ANN on human uterine signals to distinguish between 

term and preterm and the labour/non-labour classes. The study comprised 134 term and 51 

preterm pregnant women. The global classification accuracy was 80%. Diab et al. (2011) 

have applied ANN on EMG signals collected from 16 electrodes placed on the abdomen in 

order to classify each channel into labour/non-labour classes. The results have proved that the 

classification accuracy of each of the 12 sensors differs from one to another. However, the 

informative combination from different sensors can improve and strengthen the classification 

result. Diab et al. (2011) have used the data fusion rule to make decisions about each channel; 

after the fusion procedure, the ANN classification has obtained better results than a single 

channel could have provided.   

Baghamoradi et al. (2011) used cepstral check analysis to differentiate between term and 

preterm births. They used the TPEHG database (Fele-Zorz et al. 2008) to estimate 

classification accuracy. The uterine signal in this experiment was recorded from four 

electrodes. The features used in this study were thirty cepstral coefficients and sample 

entropy, which were calculated from each channel. The sequential forward feature selection 

and Fisher’s discriminant have been applied before the classification task to select the 

optimal features. A multilayer perceptron neural network classified the records into term and 

preterm. The selection of informative features leads to improved classification accuracy from 

53% to 73%.  
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Lu et al. (2007) used a MLP to classify between term and preterm signals. The signals were 

filtered using wavelet packet transform. The feature was average wavelet packet energy of 

the whole signal. Their results demonstrated that MLP can classify term and preterm labour 

signal with 64% accuracy. 

Maque et al. (2007) used MLP to diagnose the risk of contractions leading to preterm labour; 

their result showed that the early diagnosis of preterm labour can be detected very early, in 

the 27
th

 week of pregnancy. Another study has also used ANN to discover the risk elements 

leading to preterm birth (Chen et al. 2011). A number of studies used single layer, whereas 

others used multilayer networks. However, the overall accuracy of using ANN to predict 

preterm birth on these different studies was from 72% to 97% (Cheung 2012; Chen et al. 

2011; Diab, El-Merhie & El-Halabi 2010;Moslem, Diab, et al. 2012). 

6.10 Chapter Summary 

Medical Time series analysis has recently gained much attention from scientists and 

researchers in medical society. This chapter presents the issues that are related to medical 

time series classification including pre-processing, filtering, feature extraction and 

classification. Neural networks have been applied widely to analysis of biomedical signals. 

They are ideal for recognising diseases. There are a number of advantages of using the ANN 

as a classifier since it has the ability to generalise; it does not require a prior understanding of 

the data pattern. Furthermore, many existing research works have demonstrated the success 

of recurrent neural networks to pre-processing or classification of medical data. Chapter 7 

will present the simulation results and discussion of our research work.   
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CHAPTER 7 THE SIMULATION RESULTS 

7.1 Introduction  

In this chapter, the simulation results using the proposed neural network architectures will be 

presented. The dynamic self-organised neural network inspired by the immune algorithm 

using the concept of the Jordan network architecture is utilised for the prediction of financial 

time series such as the exchange rate time series and the oil prices.  

The dynamic self-organised neural network inspired by the immune algorithm using the 

concept of the Elman network architecture is utilised for the classification of term and 

preterm subject in EHG signals. 

7.2 Financial Time Series 

Ten noisy financial time series were studied and used to evaluate the performance of the 

DSMIA neural network architectures. The results of the proposed DSMIA have been 

benchmarked with the other standard neural network architectures. Figure 7.1 shows the 

proposed schematic for forecasting financial time series. 

 
Figure 7.1: Proposed method for the prediction of financial time series 

7.2.1 Experimental Designs  

The procedures of financial time series predication are considered to be challenge. A number 

of steps must be taken into consideration before applying neural networks for prediction. 
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These steps are the selection of the input-output variables, the choice of data, the initial 

weight state, the stopping criterion during the learning phase, the selection of the activation 

function, selection of the best parameters such as learning rate, momentum term, and the 

number of nodes in the hidden layers (Ghazali 2007; Huang, Lai, and Nakamori 2004). All 

these factors are very important for improving the accuracy of the forecasting. This section 

will provide an overview of the pre-processing and methodology that has been used to apply 

the proposed DSMIA for financial time series prediction.  

7.2.2 Financial Time Series Data Sources  

Three different types of financial time series are applied in this research work: the exchange 

rate prices, stock opening and closing prices, and the oil price. The exchange rate time series 

and the stock prices are daily time series for the period from 1
st
 July 2002 to 11

th
 November 

2008, giving 1,605 trading days, as shown in Table 7.1. The oil price data is monthly data and 

covers the period between 1
st
 January 1985 and 1

st
 November 2008, with a total of 389 

trading months. The source of the data can be found at http://www.economagic.com/ecb.htm.  

Table 7.1: Time Series Data Used  

No Time Series Data Total 

1 US dollar to EURO exchange rate (USD/EUR) 01/07/2002 - 13/11/2008 1607 

2 US dollar to UK pound exchange rate (USD/UKP) 01/07/2002 - 13/11/2008 1607 

3 Japanese yen to US dollar exchange rate (JPY/USD) 01/07/2002 - 13/11/2008 1607 

4 Dow Jones Industrial Average stock opening price (DJIAO) 01/07/2000 - 11/11/2008 1605 

5 Dow Jones Industrial Average stock closing price (DJIAC) 01/07/2000 - 11/11/2008 1605 

6 Dow Jones Utility Average stock opening price (DJUAO) 01/07/2000 -11/11/2008 1605 

7 Dow Jones Utility Average stock closing price (DJUAC) 01/07/2000 -11/11/2008 1605 

8 NASDAQ composite stock opening price (NASDAQO) 01/07/2000 -12/11/2008 1606 

9 NASDAQ composite stock closing price (NASDAQC) 01/07/2000 - 12/11/2008 1606 

10 Oil price of West Texas Intermediate crude (OIL) 01/01/1985 -01/11/2008 389 

 

Since most of the published papers about financial time series prediction have focused on 

exchange rate prediction (Ghazali et al. 2009; Mahdi et al. 2009; Al-Aweel, Krishnamurthy, 

Hausdorff, Mietus, Ives, Blum, Schomer 1999; Dunis & Williams 2002), this research has 

used exchange rate time series, as shown in Table 7.1. The foreign exchange market is 

considered to be the largest market, with more than $1 trillion traded every day (Yao & Tan 

2000; Huang, W., Lai, K.K., and Nakamori 2004). The US dollar is the most significant 

currency in the market and it has been used as a reference currency. Another time series used 

in this research is the West Texas Intermediate (WTI) crude oil prices. Crude oil is well 

http://www.economagic.com/ecb.htm
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known as a central source of energy. The future oil price has a great impact on governments, 

industries and companies’ activities (Alexandridis & Livanis 2008). 

7.2.3 Modelling DSMIA for Prediction 

In this section the structure of the neural network models will be explained. This section will 

focus on the determination of the number of variables that have been used as input and output 

for the neural network, and the pre-processing and scaling methods that have been used in 

this thesis. Furthermore, the section will introduce the quality measures that have been used 

to evaluate the performance of the neural network for prediction. 

7.2.3.1 Data Preparation 

The selection of a suitable forecasting horizon is the first step that must be taken before 

financial forecasting can begin. From a trading principle, Cao and Tay (2003a) asserted that a 

long forecasting horizon could avoid over-trading resulting in extreme transaction rates. 

However, if the forecasting horizon is very long, that might increase the complexity of the 

forecasting procedure. On the other hand, predictors have claimed that the forecast horizon 

must be sufficiently short as the persistence of financial time series is for a limited period 

(Ghazali 2007). However, using a very short forecast horizon might not be sufficient and 

might decrease the forecasting accuracy; this is due to the large amount of noise existing in 

the financial time series (Jurik 1999). As Thomason (1999a) recommended in his work, the 

optimal choice of forecasting horizon for the daily data is five days. From the trading and 

prediction view, this experiment applies two forecast horizons: one day ahead and five days 

ahead predictions  

7.2.3.2 Data Pre-processing 

Financial time series are a non-stationary, high noise type of data. The noise variables in data 

are identified as harmful variables in neural network learning (Mahdi 2010). Therefore, it is 

crucial to have a pre-processing method to deal with data before passing them to the neural 

network. The original raw non-stationary signals are transformed into stationary signals 

before sending them to the neural network, by a transformation technique known as Relative 

Difference in Percentage of price (RDP) (Thomason 1999), which is used by a number of 

researchers in this field (Sundareshan et al. 1999; Cao & Tay 2003a; Ghazali et al. 2009; 

Mahdi et al. 2009). It creates a five-day measure of the relative difference in price data. In 
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this transformation, the signal is expected to be more symmetrical and closely follow the 

normal distribution; consequently it can improve the prediction process (Cao & Tay 2003a). 

Ghazali et al. (2009) mentioned that RDP helps to reduce the influence of trends on financial 

time series, smoothing the data and helping to reduce noise. The input variables are computed 

from four lagged RDP values based on five-day periods (RDP-5, RDP-10, RDP-15, and 

RDP-20) and one transformed signal (EMA15), which is computed by subtracting a 15-day 

exponential moving average from the raw signals (Cao & Tay 2003a). The reason for 

selecting a 15-day average is that, according to a number of studies (Ghazali 2007; Cao & 

Tay 2001; Ristanoski & Bailey 2011), the best length of the moving day should be more than 

the prediction horizon. The main reason for applying an exponential moving average of 15 is 

to maintain useful information contained in the original signal, which might be removed by 

the RDP method. Furthermore, using EMA to produce input variables can improve the 

prediction performance (Ghazali 2007; Cao & Tay 2001; Cao & Tay 2003a). The 

computation of the inputs is presented in Table 7.2. 

Table 7.2: The data pre-processed into a stationary series where α is the weight factor which is 

experimentally determined in these experiments as 0.85, P(i) is the values of signal for the ith day, and h is 

a horizon of one or five step ahead prediction. 

 Indicator Calculations 

Input variables 

EMA15  

 

RDP-5  

RDP-10  

RDP-15  

RDP-20  

Output variable RDP+k 
 

 

 

Another pre-processing method applied to the data is scaling. This method has been used in 

order to reduce the range differences in the data as well as to decrease the computational 

time. All input and output variables are scaled between upper and lower bounds of the 

network transfer function. The scaled method is done by using the minimum and maximum 

normalisation method as follows: 
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                 (
      

         
)          (7.1) 

Where      is referring to the normalised value and           are the minimum and 

maximum values of the original signal.           refer to the wanted minimum and the 

maximum values of the new scaled series and x is the original values of the signal.  

In this experiment the sigmoid transfer function has been used in the output layer. Therefore, 

all input and output values of RDP are scaled into the range of [0.2, 0.8], which is same 

interval that has been used in Mahdi et al. (2009). Consequently, the neural network output 

values will be closer to the endpoints of the output layer activation function.  

7.2.3.3 Selecting Inputs and Output Variables 

The amount of input units must be selected carefully. According to Huang et al. (2004), there 

is a step that must be taken when using a neural network to predict financial time series. This 

step is determining what and how many variables should be used for the input and output of 

the neural network. As has been discussed before, the type of data used in this research are 

univariate data; so, variables taken into account are historical data. Therefore, neural network 

inputs for this type of data are represented as lagged values and the output values are 

corresponding to the future value. The input layer will hold the time series data points of N 

days, and the output layer will produce the prediction values for next days “(N + 1)
th

” day. 

As has also been discussed before, using too many past periods as input will lead to much 

difficulty in training the ANN, whereas too few periods may not be enough to train the ANN. 

In this research work, the number of inputs is set to five, as recommended by a number of 

studies (Mahdi et al. 2009; Ghazali et al. 2009). Since the number of the output units in time 

series forecasting is related to the forecasting horizon, two types of forecasting horizon have 

been used in this research, the one day ahead and five days ahead predictions. 

7.2.3.4 Selection of Neural Network Parameters 

In terms of selecting the number and size of the hidden layers in the ANN and other neural 

parameters such as learning rate and momentum, it has been recommended that trial and error 

is needed to determine the optimal structure of the neural network. The best way to evaluate 

the performance of the ANN learning is to split the raw data not only into training and test 

sets, but also a separate validation set. Therefore, the time series was divided into three parts, 

the first 50% of the data are used for the training set; the second 25% for the validation set, 
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used to estimate the neural network parameters, and the third 25% is selected for testing the 

performance of the network. The testing period is kept for final performance evaluation and 

comparison. This has been done in order to evaluate the accuracy of the model for 

understanding the past, present and future data sets. The initial weights are selected between 

[-0.5, 0.5]. The momentum term and the learning rate parameters are selected experimentally. 

The best values for these parameters are based on the training data set. The values of α and β 

are model parameters that respectively impact the effect of the input and the context unites, 

which are considered to be vital parameters for the network performance. The selection of 

α is a sign of the value of the current entry and β parameters determine the importance of the 

previous output. To insure the stability, the β value must be very small, according to Voegtlin 

(2002). From the experiments, the effects of the context vector must be small; thus the value 

of β parameters must be small, which is selected as β = [0.1 0.3], while α = [0.95 2].  

The main concern with financial time series prediction is not to evaluate the predictive 

capability of the network, but to focus on the profitable value that the neural network 

achieved, consequently, the neural network structure achieving the best accuracy of financial 

functions on the test data set is chosen as the best model. 

7.2.4 Performance Measures 

There are different evaluation functions that have been applied to estimate the network 

performance; some of them are related to financial measurement and some of them are 

statistical methods. The performance of the proposed network is measured with four financial 

metrics (Dunis & Williams 2003) and five statistical metrics (Cao & Tay 2003b) which 

measure the accuracy of the prediction signal.  

7.2.4.1 The Statistical Measures 

These have been used to evaluate the performance of the neural network prediction model, 

which includes the functions listed below: 

1. Normalised Mean Square Error (NMSE) 

NMSE is an estimator of the overall deviations between target and predicted 

values. The lower NMSE values show that the prediction signals closely follow 

the trend of the actual target. 
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Where N is the total number of data patterns, y and ŷ . 

2. Mean Square Error (MSE) 

MSE is computed by finding the square of the error between the target and 

predicted values. This measure is very popular for evaluating the forecasting 

ability of a neural network. 
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3. Mean Absolute Error (MAE) Mean 

The MAE produces the mean absolute error value of the deviation between the 

actual and forecasted values. The smaller the value of MAE, the closer the 

predicted time series to the actual values. 
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4. Correct Directional Change (CDC) 

CDC determines the ability of a prediction model to accurately forecast the 

subsequent actual change of a forecast variable. 
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5. Signal to Noise Ratio (SNR) 

It is a measurement used to compare the amount of information on a desired 

signal to the amount of background noise. The highest ratio of SNR means the 

signal levels are higher than the noise level. SNR is measured in dB. 
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7.2.4.2 The Financial Functions 

Since the main aim of financial time series forecasting is to achieve the trading profits rather 

than to evaluate the forecasting accuracy, the financial measures must be used to evaluate the 

performance of the neural network for predicting the financial time series. In order to 

measure profit generated from the network’s prediction, a simple trading strategy has been 

used in this research, which is based on: if the network forecasts a positive change for the 

next k-day price for non-stationary or stationery signal, a buy signal is sent, otherwise a sell 

signal is sent if the network forecast negatives change for the next day. 

The application of these measures may be a better standard for determining the quality of the 

forecasts (Dunis & Williams 2002). These measurements are listed below: 

1. Annualised Return (AR) 

AR measures the ability of neural networks to be used as traders. It is a scaled 

calculation of the observed change in time series value. The higher value of AR 

shows the better prediction model. 
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2. Maximum Drawdown (MDD) 

The maximum drawdown (MDD) measure is another financial evaluation which 

refers to the maximum drop of the asset price within a given time period. It measures 

less risk or less loss, so a high value is required (Vecer & York 2006). 
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3. Annualised Volatility (AV) 

VOL is the function that estimates the investment risk and profit possibilities; so, a 

small value of volatility is considered to be a better result. 

    √    √
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       (7.16) 

4. Sharp Ratio (SR) 

It is a function to calculate the risk-adjusted return. SR determines the relation 

between the Annualised Return and the volatility evaluation. In this measurement, a 

high value is demanded. The higher value of SR shows the higher the return and the 

lower the volatility. 

      (7.17) 

7.2.5 Regularised DSMIA Network (R-DSMIA) 

In this section, the regularisation technique has been used on DSMIA to develop the 

performance of the proposed network. The regularisation has been addressed to improve the 

generalisation and to solve the over-fitting problem; also, the elimination of the weights leads 

to a reduction in the complexity of the training network and makes the learning process easier 

(Siwek & Osowski 2001). the procedure of regularization is process that attempt to 

smoothing the cost function and reducing variance by pruning some weights besides keeping 

the functional capability necessary to solve the problem (Larsen et al., ,1998). This is the 

procedure of regularisation. Regularisation is the technique of adding a penalty term Ω to the 

error function, which can help obtain a smoother network mapping. It is given by: 

Ereg = Estd + Ω      (7.18) 

Where Estd represents one of the standard error functions such as the sum-of-squares error and 

the parameter  controls the range of the penalty term Ω in which it can influence the form of 

AV

AR
S R
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the solution. The network training should be implemented by minimising the total error 

function Ereg (Bishop 1995). One form of regularisation is called weight decay (Krogh & 

Hertz 1995). It has been shown that it can help to avoid over-fitting the network to training 

data; as such, improving the network (Duda et al., 2001). This form is based on the sum of 

the squares of the adaptive parameter in the network. 

  

Ω= 
 

 
∑   

 
 

       (7.19)

 

The idea is that every wi weight, once updated, is simply decayed or shrunk as follows: 

                )      (7.20) 

Where   0<< 1. The weight decay is performed by adding a bias term to the original 

objective function Estd; thus the weight decay cost function is determined as follows (Steurer 

1993):  

Ereg = Estd + (/2) B             (7.21) 

Where  is the weight decay rate and B represents the penalty term. The simplest form of 

calculating the penalty term B is: 

B =  W
2

ij      (7.22) 

Where wij is the weight connections between the i
th

 units and j
th

 nodes in the next layer. In the 

R-DSMIA network the weight decay was used to adjust the weights between the hidden 

nodes and output units. The change of weights using the weight decay method could be 

calculated as follows: 

∆wojk =  
  

     
 -  wojk        (7.23) 

Where, ∆wojk is the updated weights that connected hidden units and output units. This will 

improve the neural network performance. Since the number of weights to be computed in the 

DSMIA network can be quite large in some problems, there is a need to eliminate some 

weights from the network without losing the functional ability required to solve the problem. 

The R-DSMIA network is used to examine the effect of the regularisation technique and to 

enhance the performance of the DSMIA network in time series prediction. 
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7.2.6 Simulation Result and Analysis 

In this section, the simulation results using DSMIA with other benchmark networks are 

presented. In this research work, the networks were tested in two different sets of signals, 

stationary and non-stationary. One and five step ahead predictions of financial time series 

were utilised. In the case of the non-stationary signal, all the data presented in Table 7.1 are 

passed directly to the neural network. On the other hand, for the stationary signal, the original 

signals have been transformed using RDP.  

The main interest in those experiments is to consider the profitability value of the network 

and consequently the network that generates the highest percentage of Annualised Return 

(AR) is considered the best model. In contrast, for the Annualised volatility (AV) a small 

value of volatility is considered as a better result. In the sharp ratio (SR) measurement, the 

high value is demanded. The main reason for considering the financial measurement to 

evaluate the predicting models is that, from a trading aspect, the models must be generating 

profit. Therefore, it is significantly important for the predicting model such as a neural 

network to predict the correct direction change of signals.  

7.2.6.1 Prediction of Stationary Signals 

This section represents the experiments result of the stationary prediction of the ten financial 

time series signals. The original ten signals have been transformed to stationary signals. The 

simulation results for one step ahead and five step ahead predictions are discussed.  

One step ahead Prediction using Stationary Signals 

Tables 7.3 to 7.8 summarise the average result of 30 simulations obtained on testing data sets 

from ten signals using six types of neural networks. These networks are MLP, SONIA, 

DSMIA, R-MLP, R-SONIA and R-DSMIA. The simulation results are based on achieving 

the best profit values, which are generated by using different structures of neural networks. 

The best neural network model for financial forecasting is selected based on generating the 

highest percentage of annualised return. 

Simulation Result 

In the case of evaluating the percentage of Annualised Return (AR), the proposed network 

successfully made the best profit return when compared with MLP and SONIA networks, as 
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is presented in Tables 7.3 to 7.8. The result of the Annualised return from Tables 7.5 and 7.8 

showed that the proposed DSMIA and R-DSMIA achieved the highest profit on return 

compared to all networks, except the US/EU exchange rate and the NASDAQC stock closing 

price. In the case of predicting the US/EU and NASDAQC signals, R-SONIA has achieved 

the highest profit return, as shown in Table 7.7.  

In addition, the comparison between the performance of the DSMIA network and 

regularisation technique with the R-DSMIA has achieved the best profit return on five time 

series namely NASDAQO, DJIAO, DJIAC, DJUAO and OIL compared to DSMIA. For the 

rest of the signals, DSMIA has achieved a better result than R-DSMIA network.  

In terms of the other financial measures such as the maximum drawdown and volatility, it can 

be observed that DSMIA achieved the highest value of maximum drawdown when predicting 

the USD/UKP exchange rate, DJUAC stock closing prices, and OIL time series compared to 

MLP and SONIA networks. The MLP and SONIA produced better results in four time series: 

USD/EUR, NASDAQO, NASDAQC, and DJIAC. 

In addition, the comparison between the performance of the DSMIA network and 

regularisation techniques with DSMIA network based on the maximum drawdown value, 

from Tables 7.5 and 7.8, it can be observed that R-DSMIA has got the best profit return on 

six time series: USD/UKP, USD/EUR, NASDAQO, DJIAO, DJIAC, and OIL compared to 

DSMIA. For the rest of the signals, DSMIA has achieved a better result than the R-DSMIA 

network. 

For the volatility values, the comparisons between the neural networks are based on 

achieving the lowest value of volatility. It can be observed that the proposed DSMIA network 

and R-DSMIA have lower values than other networks expect for USD/EUR time series. The 

R-SONIA has achieved better value on volatility when predicting the USD/EUR time series. 

In term of evaluating the Sharp Ratio measure, the higher value of SR is desired. From Tables 

7.3 to 7.8, it can be noticed that the best value of SR was produced by the proposed DSMIA 

and R-DSMIA networks, except for USD/EUR, NASDAQC and OIL time series. For the 

Signal to Noise Ratio criterion, the higher value of SNR demonstrates that the predictor has 

read signals with less noise re-write. Tables 7.3 to 7.8 show that the proposed DSMIA and R-

DSMIA obtained the best values when used to predict USD/UKP, DJIAC, DJUAO and 
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DJUAC time series. The R-SONIA has produced the best SNR value on JPY/USD, 

USD/EUR, NASDAQO and OIL time series. The MLP network achieved the highest value 

of SNR on DJIAO time series. 

For the correct directional change, the R-MLP produced the best value of CDC when 

forecasting USD/UKP, JPY/USD, NASDAQC, DJIAC, DJUAO and DJUAC time series. 

The SONIA achieved the best value of CDC on USD/EUR and Oil time series. However, 

from Table 7.7, it is clear that the R-SONIA obtained the best value on two types of stock 

opening prices, which are NASDAQO and DJIAO signals, compared to other networks. 

In the case of forecasting error measures NMSE, MSE and MAE, it can be observed that the 

DSMIA and R-DSMIA networks outperform all other networks with the lowest forecasting 

errors, while MLP produced the highest value of forecasting error measures except for 

DJIAO time series. These results confirm the forecasting ability of the proposed networks. 

Figure 7.2 illustrates the result of Annualised return measures, which has been forecasted by 

six neural network architectures.   

Table 7.9 represents the number of hidden units that have been used on neural networks to 

generate the better prediction results for the AR. The simulation results indicated that using 

12 to 22 hidden nodes in DSMIA and R-DSMIA networks can obtain the best result of 

profits. On the other hand, MLP needs five to eight hidden units to produce the best average 

results. However, it can be observed from Table 7.9 that SONIA requires a higher number of 

hidden nodes, which is between 12 to 25 units. 

Table 7.3: The result of one step ahead prediction using stationary signals on MLP network 

 

 

 

 

 

 

 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 65.14634 -1.4304 4.526048 14.50009 20.35 67.97 0.75775 0.005956 0.059229 

JPY/USD 64.72067 -1.5806 5.717462 11.36989 21.75 62.59 0.781611 0.003491 0.042648 

USD/EUR 69.91986 -1.7923 4.666936 15.00254 22.29 62.95 0.610187 0.003835 0.046202 

NASDAQO 60.5218 -4.8447 13.27316 4.575426 23.7 65.87 0.784347 0.002685 0.035463 

NASDAQC   62.32483 -4.8762 12.58836 4.955069 22.83 64.53 0.663549 0.003322 0.041591 

DJIAO 59.49555 -4.4906 11.18889 5.322315 24.45 63.36 0.646463 0.002166 0.023119 

DJIAC 58.85693 -2.9165 11.27457 5.22938 23.26 64.88 0.844715 0.002789 0.037976 

DJUAO 52.97216 -6.1459 12.48506 4.267582 23.84 63.34 0.831784 0.002309 0.033269 

DJUAC 52.01663 -5.6157 12.56166 4.169173 23.9 64.61 0.833803 0.002318 0.033309 

OIL 51.19201 -19.024 67.3681 0.766643 21.03 61.36 1.016665 0.00283 0.042386 
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Table 7.4: The result of one step ahead prediction using stationary signals on SONIA 

 

Table 7.5: The result of one step ahead prediction using stationary signals on DSMIA network 

 

Table 7.6: The result of one step ahead prediction using stationary signals on R-MLP network 

Table 7.7: The result of one step ahead prediction using stationary signals on R-SONIA network 

 

Table 7.8: The result of one step ahead prediction using stationary signals on R-DSMIA network 

 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 73.15769 -1.51535 4.346859 16.83866 21.93 66.09 0.522666 0.004108 0.048544 

JPY/USD 76.19371 -1.24388 5.424529 14.04827 23.41 62.35 0.530438 0.002369 0.034869 

USD/EUR 71.00268 -2.69518 4.63746 15.34295 23.04 63.07 0.506081 0.00318 0.039536 

NASDAQO 62.66176 -8.84982 13.20117 4.742449 24.14 66.82 0.70604 0.002417 0.030737 

NASDAQC   63.35985 -8.32449 12.53349 5.057593 22.75 62.39 0.673079 0.00337 0.038363 

DJIAO 63.71905 -6.60512 11.00119 5.800506 23.61 61.92 0.785339 0.002631 0.032257 

DJIAC 62.29099 -7.99077 11.12426 5.610039 23.53 62.98 0.792066 0.002616 0.032189 

DJUAO 67.0127 -3.55542 11.93661 5.614729 25.02 60.48 0.631187 0.001752 0.028335 

DJUAC 68.02663 -4.17998 11.94297 5.678424 25.03 59.95 0.640598 0.001718 0.02866 

OIL 72.16195 -8.32751 60.15546 1.20381 22.2 62.76 0.78583 0.002187 0.039051 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 76.401946 -1.29011 4.256646 17.951165 22.43 65.88 0.465058 0.003655 0.046061 

JPY/USD 76.287889 -1.50278 5.420273 14.083690 23.36 59.77 0.537780 0.002402  0.034772 

USD/EUR 72.941440 -1.91315 4.590001 15.897520 23.08 62.80 0.501631 0.003153 0.039662 

NASDAQO 66.466713 -6.89071 12.999914 5.117712 24.49 67.62 0.650886 0.002228 0.029922 

NASDAQC   64.77886 -6.40323 12.450211 5.207525 22.86 62.34 0.6562777 0.0032860 0.0382681 

DJIAO 64.859029 -7.57360 10.951396  5.928563 23.72 60.38 0.765907 0.002566 0.031713 

DJIAC 66.071119 -6.60576 10.952866 6.038112 23.67 61.65 0.766192 0.002530 0.031569 

DJUAO 69.986696 -3.66422 11.787191 5.937937 25.31 60.56 0.591318 0.001641 0.027465 

DJUAC 70.593948 -3.41091 11.802643 5.981827 25.35 61.11 0.596172 0.001658 0.027371 

OIL 73.352611 -7.08040 59.745353 1.228245 22.69 61.67 0.692816 0.001928 0.035963 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 69.87597 -1.14692 4.434009 15.76153 21.64 68.42 0.56236 0.00442 0.05143 

JPY/USD 69.11974 -1.38279 5.621507 12.30291 22.5 63.74 0.656447 0.002932 0.03997 

USD/EUR 72.43294 -1.3342 4.604267 15.73393 23.38 62.78 0.469033 0.002943 0.04065 

NASDAQO 61.31236 -4.58009 13.23235 4.649596 23.68 67.07 0.788035 0.002697 0.03559 

NASDAQC   63.32054 -5.12025 12.53594 5.053141 23.22 65.07 0.605016 0.003029 0.0391 

DJIAO 60.396 -2.82338 11.1544 5.416199 22.98 56.24 0.909105 0.003046 0.03947 

DJIAC 57.27957 -2.98009 11.34621 5.051273 23 66.01 0.897256 0.00263 0.03919 

DJUAO 53.52269 -3.85035 12.51297 4.28039 24.27 64.33 0.751373 0.002086 0.03232 

DJUAC 56.41693 -3.54951 12.45137 4.531404 24.5 64.67 0.724093 0.002013 0.03166 

OIL 54.96625 -17.3305 65.8069 0.857579 21.46 61.33 0.935372 0.001703 0.032536 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 73.63894 -1.14585 4.334805 16.98832 22.28 66.74 0.481713 0.003786 0.047653 

JPY/USD 75.08265 -1.37047 5.457777 13.75739 23.4 62.46 0.531308 0.002373 0.035949 

USD/EUR 74.79281 -1.24481 4.539692 16.47533 23.42 61.54 0.463063 0.00291 0.039707 

NASDAQO 63.4887 -4.19713 13.15954 4.82642 24.59 68.73 0.635346 0.00217 0.030901 

NASDAQC   66.11718 -4.14573 12.37758 5.341885 23.18 62.7 0.609063 0.00305 0.037929 

DJIAO 62.14083 -3.10446 11.07906 5.610178 23.97 63.6 0.721802 0.002418 0.03321 

DJIAC 63.69784 -5.62573 11.06588 5.760461 23.95 63.84 0.719279 0.002375 0.032265 

DJUAO 69.75802 -3.29048 11.79905 5.912536 25.13 60.7 0.615357 0.001708 0.028379 

DJUAC 69.74614 -3.3862 11.84642 5.888317 25.12 61.1 0.627945 0.001746 0.028874 

OIL 73.578 -6.76682 59.63936 1.234447 23.23 61.73 0.611774 0.001703 0.032536 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 75.552307 -1.145854 4.281168 17.649052 22.45 65.83 0.462755 0.003637 0.046711 

JPY/USD 76.199110 -2.006950 5.424258 14.050502 23.14 59.61 0.565199 0.002525 0.034462 

USD/EUR 72.223068 -1.870829 4.607536 15.693625  23.02 62.58  0.508964 0.003199 0.039765 

NASDAQO 67.736511 -6.679803 12.933600 5.240688 24.56 67.42 0.641108 0.002194  0.029937  

NASDAQC   61.817786  -8.434717  12.618953   4.900625 22.70 62.15  0.681348  0.003412 0.038382 

DJIAO 69.501792 -4.122863  10.730026  6.478727  24.10 62.51 0.700827 0.002348  0.031286 

DJIAC 67.27255 -5.997100 10.891160 6.185754 23.97 63.22 0.716507 0.002366  0.031486 

DJUAO 70.250021 -3.789960 11.772569 5.968616 25.10 61.11 0.619493 0.001720 0.028111 

DJUAC 69.652083 -3.479243 11.850855 5.878571 25.24 59.92 0.610930 0.001699 0.028103 

OIL 74.342906 -6.750138  59.281248 1.255279 23.17 59.09 0.619850 0.001725  0.032856 
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Table 7.9: Number of hidden nodes in the MLP, SMIA and DSMIA for  

one step ahead stationary signals 

Time Series 
one step for stationary signal 

MLP SONIA DSMIA 

USD/UKP 8 12 12 

JPY/USD 8 24 21 

USD/EUR 8 19 17 

NASDAQO 8 18 16 

NASDAQC 8 21 19 

DJIAO 8 19 16 

DJIAC 7 19 16 

DJUAO 8 25 22 

DJUAC 8 23 20 

OIL 5 13 13 

 

 
Figure 7.2: Annualised return on stationary signals for the prediction of one step ahead 

 

Five Step ahead Prediction using Stationary Signals 

In this section the result of the simulation for five step ahead forecasting using stationary 

signals are presented. The main objectives of these experiments are to show the predictive 

ability of the proposed networks and the benchmarks networks to forecast five steps ahead. 

Tables 7.10 to 7.15 represent the average result of simulation obtained from the test data set 

using 10 financial signals for six different neural network architectures.  

Simulation Result 

In terms of evaluating the performance of the network based on Annualised return measures, 

the proposed DSMIA and R-DSMIA have obtained the highest percentage compared to the 

benchmark networks except NASDAQC time series. The R-SONIA has achieved the best 
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values of AR on this time series. From Tables 7.10 to 7.12, it can be shown that the DSMIA 

network outperformed the SONIA and MLP networks. These results demonstrate that the 

DSMIA achieved the best profits on average for all 10 time series when compared to MLP 

and SONIA networks. On other hand, from Tables 7.12 and 7.15, the comparison between 

the performance of DSMIA and R-DSMIA networks showed that using regularisation 

techniques on the R-DSMIA network has significantly improved the performance of the 

DSMIA. The R-DSMIA successfully obtained the best profits in comparison to the DSMIA 

network when forecasting USD/UKP, USD/EUR, NASDAQO, DJIAO, DJIAC, DJUAO, 

DJUAC and OIL time series.  

Table 7.10: The result of five step ahead prediction using stationary signals on MLP network 
Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 84.72936 -3.15533 16.24499 5.246373 23.14 63.7 0.0660456 0.003232 0.0411 

JPY/USD 81.19235 -3.54864 17.56791 4.62544 22.56 62.18  0.377454 0.002881 0.0407 

USD/EUR 91.46321 -1.78913 15.69251 5.829595 26.71 64.65  0.175615 0.001367 0.02773 

NASDAQO 77.57114 -10.1308 37.68809 2.063196 24.46 61.47  0.481259 0.001557 0.02869 

NASDAQC 83.09106 -7.34318 36.53018 2.278035 24.93 59.92  0.376718 0.001462 0.02844 

DJIAO 74.77388 -8.24405 33.66308 2.225729 23.73 61.92  0.668271 0.002005 0.03216 

DJIAC 65.96346 -13.0605 35.11867 1.888711 23.09 61.45  0.76142 0.002287 0.03444 

DJUAO 74.07559 -11.1968 38.27525 1.941499 24.53 60.86  0.543456 0.00145 0.02664 

DJUAC 68.93831 -20.4777 39.02029 1.786946 24.21 59.66  0.58564 0.001572 0.02748 

OIL 75.89575 -8.03638 194.2871 0.390889 20.24 56.88 1.171494 0.003058 0.04623 

 

Table 7.11: The result of five step ahead prediction using stationary signals on SONIA network 
Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 88.15049 -3.2779 15.87492 5.561351 24.98 65.49 0.420061 0.002056 0.28749 

JPY/USD 87.17208 -2.72278 16.76482 5.199892 23.02 63.16 0.429469 0.002515 0.03654 

USD/EUR 91.84363 -1.39054 15.6362 5.873841 23.41 65.09 0.375141 0.00292 0.033599 

NASDAQO 85.16167 -6.19597 35.93796 2.369793 25.22 62.49 0.38383 0.001242 0.023329 

NASDAQC 85.02744 -7.36317 36.06489 2.357881 24.33 59.48 0.416113 0.001615 0.002624 

DJIAO 85.3598 -8.41446 31.63171 2.699558 24.81 62.91 0.509205 0.001527 0.023769 

DJIAC 84.89345 -8.37277 31.78481 2.672691 24.68 62.99 0.52398 0.001574 0.023998 

DJUAO 81.28562 -7.78359 37.03390 2.564821 26.28 61.72 0.354277 0.000945 0.02222 

DJUAC 86.66031 -3.70212 36.27336 2.389255 27.27 62.97 0.280906 0.000754 0.019388 

OIL 91.82156 -12.60818 157.372 0.584465 25.37 60.06 0.357378 0.000933 0.025845 

 

Table 7.12: The result of five step ahead prediction using stationary signals on DSMIA network 

 

 

 

 

 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 89.047661 -2.963665 15.757916 5.661860 24.85 65.93 0.429909 0.002104 0.028496  

JPYUSD 87.201969 -2.722772 16.760712 5.202832 22.30 63.48 0.388892 0.002968 0.039623 

USDEUR 92.028790 -1.432039 15.607786 5.896499 23.38 65.23 0.377785 0.002941 0.033627 

NASDAQO 86.323692   -6.109268  35.637459  2.422628   24.93  61.85   0.411139  0.001331   0.023618 

NASDAQC 85.105993 -7.658861 36.041823  2.361925 24.00 59.39  0.449935  0.001747   0.026903 

DJIAO 86.629872 -9.305728 31.347378 2.766082 24.72 63.27 0.520153 0.001560 0.023078 

DJIAC 86.106254 -9.268669 31.426138 2.754751 25.62 63.54 0.432033 0.001298 0.022549 

DJUAO 87.135184 -3.357676 35.864341 2.429673 27.10 62.35 0.292279 0.000780 0.019636 

DJUAC 87.517079 -3.410785 36.089621 2.425167 27.36 62.41 0.274922 0.000738 0.019372 

OIL 92.039333 -11.644154 156.745293 0.588284 25.02 61.21 0.387805 0.001012 0.026859 



114 

 

Table 7.13: The result of five step ahead prediction using stationary signals on R-MLP network 

 

Table 7.14: The result of five step ahead prediction using stationary signals on R-SONIA network 

 

Table 7.15: The result of five step ahead prediction using stationary signals on R-DSMIA network 

 

In terms of the maximum drawdown measure, it can be shown that R-DSMIA and DSMIA 

achieved the highest value of maximum drawdown when predicting the USD/UKP, 

NASDAQC, NASDAQO, DJIAO, DJIAC, DJUAO and DJUAC time series. While on 

JPY/USD exchange rate signals, the four neural networks – which are R-MLP, R-SONIA, 

DSMIA, and R-DSMIA networks – produced the same value on MDD measure. The R-

SONIA produced better results when it was used to predict USD/EUR signals. On OIL 

signal, the MLP has produced the highest value compared to the other networks. 

In addition, looking at the comparison between the performance of the DSMIA network and 

regularisation techniques with the DSMIA network based on the maximum drawdown value, 

from Tables 7.12 and 7.15 it can be observed that R-DSMIA has lower maximum loss in 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 87.1223 -2.45425 16.01374 5.441671 26.59 66.02 0.28828 0.001411 0.02807 

JPYUSD 83.74337 -2.72277 17.240726 4.857615 23.46 63.58 0.297567 0.002271 0.03626 

USDEUR 90.66374 -2.555499 15.812136 5.735123 25.87 64.57 0.214152 0.001667 0.03039 

NASDAQO 77.94086 -9.173755 37.578259 2.079828 25.27 61.52 0.392295 0.00127 0.02618 

NASDAQC 84.49206 -7.024514 36.195788 2.335423 25.5 60.69 0.322956 0.001254 0.02656 

DJIAO 74.35885 -8.166544 33.752804 2.20523 24.04 62.12 0.620153 0.00186 0.03118 

DJIAC 69.99318 -10.711946 34.536964 2.032267 23.77 62.3 0.65989 0.001982 0.03222 

DJUAO 76.14721 -12.706323 37.978064 2.005844 25.07 62.05 0.471418 0.001258 0.02555 

DJUAC 75.9389 -13.174437 38.347615 1.98104 24.94 61.1 0.48512 0.001302 0.02587 

OIL 81.74823 -57.254185 180.79057 0.46131 22.02 54.7 0.851406 0.00222 0.03846 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 90.07944 -1.77722 15.64255 5.758673 25.68 66.16 0.354363 0.001734 0.027244 

JPY/USD 86.87133 -2.72277 16.80812 5.168465 23.5 64.07 0.29506 0.002252 0.035276 

USD/EUR 91.62076 -1.35824 15.67015 5.846852 23.61 65.02 0.358039 0.002787 0.033194 

NASDAQO 85.4554 -6.3989 35.86336 2.382872 23.82 61.59 0.37723 0.001221 0.023468 

NASDAQC 86.29109 -7.08089 35.73558 2.414784 24.67 59.75 0.386041 0.001499 0.026094 

DJIAO 83.8411 -7.00081 31.95809 2.623515 24.99 62.31 0.487654 0.001463 0.023946 

DJIAC 85.13061 -6.72123 31.74464 2.681791 24.99 62.86 0.486933 0.001463 0.023834 

DJUAO 86.84489 -3.4824 35.92529 2.417534 27.42 62.59 0.270406 0.000721 0.019334 

DJUAC 86.55567 -4.75658 36.2965 2.384731 27.03 61.98 0.296947 0.000797 0.020296 

OIL 91.28559 -13.3041 158.8773 0.575535 25.36 60.03 0.358022 0.0000934 0.025879 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 90.313820 -1.4801296 15.612071 5.78492965 25.48 66.56 0.37023 0.00181 0.02693 

JPY/USD 86.89212 -2.722772 16.804883 5.17086372 22.78 65.47 0.3480072 0.0026563 0.037818 

USD/EUR 92.77733 -1.452800 15.492416 5.988683 23.87 65.51 0.337786 0.002630 0.032606 

NASDAQO 87.03317 -5.90720 35.453549 2.454971 24.88 60.41 0.415961 0.001346 0.023746 

NASDAQC 84.74664 -7.054415 36.136873 2.345472 24.51 60.10 0.400550 0.001555 0.026497 

DJIAO 87.71156 -5.915513 31.118235 2.819477 25.47 62.94 0.436948 0.001311 0.022956 

DJIAC 88.80179 -6.29735 30.920888 2.872796 25.26 64.49 0.458317 0.001377 0.022437 

DJUAO 87.57334 -3.088121 35.770111 2.448449 27.36 63.52 0.275195 0.000734 0.019251 

DJUAC 87.72027 -2.834078 36.0466 2.433627 27.37 62.01 0.2737 0.000734 0.0193 

OIL 93.43971 -10.42434 152.72823 0.612524 25.51 59.85 0.345309 0.000901 0.025388 
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compression with DSMIA networks when it was used to forecast all signals except 

USD/EUR exchange rate signal. 

For the Annualised Volatility values, the results are shown in Tables 7.10 to 7.15. It can be 

observed that the proposed DSMIA networks have lower volatility compared to other 

networks except USD/UKP and NASDAQC time series. The R-SONIA has achieved the best 

value on volatility when predicting these two time series. However, looking at the 

comparison between the performance of the DSMIA network and regularisation techniques 

with the DSMIA network based on AV value, from Tables 5.12 and 5.15, it can be observed 

that R-DSMIA has lower volatility in comparison with DSMIA networks when forecasting 

the USD/UKP, USD/EUR exchange rate and when it was used to forecast three time series of 

stock opening price and closing price namely, NASDAQO, DJIAO DJIAC, DJUAC and 

DJUAO, in addition to OIL price signal. In the rest of the signals, DSMIA has achieved 

better value than the R-DSMIA network. 

In term of evaluating the Sharp Ratio measure, the result that has been presented in Tables 

7.10 to 7.15 shows that the best value of SR was produced by the proposed DSMIA and R-

DSMIA networks except for the NASDAQC and DJUAO time series. The R-SONIA 

network has produced the highest value of SR on NASDAQC time series. For DJUAO stock 

opening price time series, the SONIA has obtained the best result. 

 For the Signal to Noise Ratio, Tables 7.10 to 7.15 show that the proposed DSMIA and R-

DSMIA obtained the highest value of SNR when they were used to predict DJIAO, DJIAC 

and DJUAC and OIL time series. The R-SONIA has produced the best SNR value on 

DJUAO time series. The MLP and R-MLP networks achieved the highest value of SNR on 

the rest of the time series. 

In the correct directional change measurement, the best value was achieved by the R-SONIA 

network for predicting USD/UKP time series. The DSMIA and R-DSMIA achieved the 

highest value of CDC when predicting USD/UKP, USD/EU, DJIAO, DJIAC, DJUAO and 

OIL time series, while SONIA obtained the best value on NASDAQO and DJUAC signals 

compared to the other networks. 

As can be observed from Table 7.16, the network structures for MLP that obtain the best 

result are realised with networks of five to eight hidden units. Meanwhile, the DSMIA 
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network needs more hidden units, which are selected between 12 to 22 hidden units. For the 

SONIA network, the best average profit is achieved using 12 to 25 hidden units. 

 

Figure 7.3: Annualised return on stationary signals for the prediction of five steps ahead 

 

Table 7.16: Number of hidden nodes in MLP, SONIA and DSMIA  

for five step ahead stationary signals 

Time Series 
Five step for stationary signal 

MLP SONIA DSMIA 

USD/UKP 5 12 12 

JPYUSD 6 24 21 

USD/EUR 8 19 17 

NASDAQO 8 18 16 

NASDAQC 8 21 19 

DJIAO 8 19 16 

DJIAC 8 19 16 

DJUAO 7 25 22 

DJUAC 8 23 20 

OIL 8 13 13 

 

7.2.6.2 Prediction of Non-Stationary Signals 

The simulation results of the non-stationary prediction of 10 financial time series are 

presented in this section. For non-stationary signals, all data signals are presented to the 

networks directly, without any transformation.  

One step ahead prediction using non-stationary signals 

Figure 7.3 summarises the results achieved from all neural networks. The results were taken 

from the 30 simulations of testing the data set. The result of the Annualised Returns from 
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Tables 7.17 to 7.22 shows that the proposed DSMIA and R-DSMIA obtained the best profit 

return compared to all other network models in seven time series data, namely JPY/USD, 

NASDAQO, DJIAO, DJIAC, DJUAO, DJUAC and OIL signals. The R-DSMIA achieved the 

highest profit on JPY/USD, DJIAO, DJUAO and OIL time series. Meanwhile, DSMIA 

obtained the best average of profit on DJIAC, and DJUAC signals. R-SONIA achieved the 

best profit on USD/UKP and NASDAQC signals, while R-MLP produced the best result on 

USD/EUR signals compared to the other networks. 

In terms of other financial measures, when measuring the maximum drawdown, it can be 

detected that the proposed DSMIA and R-DSMIA networks achieved the lowest maximum 

loss on four time series, which are JPY/USD, NASDAQC, DJUAC and DJIAO signals. 

In the cases of evaluating the CDC obtained by all networks, DSMIA achieved the highest 

values in five out of 10 signals, which are the NASDAQC, DJIAO, DJIAC, DJUAC and 

DJUAO, while the R-DSMIA produced the highest value on JPY/USD signals. Meanwhile, 

R-SONIA obtained the best average of CDC on USD/UKP NASDAQO and OIL time series. 

For demonstration purposes, the Annualised Return achieved by all neural networks is 

illustrated in Figure 7.4.  

Table 7.17: The result of one step ahead prediction using non-stationary signals on MLP network 

 

Table 7.18: The result of one step ahead prediction using non-stationary signals on SONIA network 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 6.669613 -14.957188 11.403352 0.585399 16.3 52.78 1.5066392 0.015878 0.117558 

JPY/USD -0.473902 -22.500975 12.802219 -0.037 17.68 47.7 0.592037 0.010555 0.086176 

USD/EUR 7.703251 -11.293929 10.106966 -0.762452 13.41 52.34 4.343417 0.029857 0.15849 

NASDAQO -6.27845 -15.470936 30.732116 -0.20439 17.74 47.6 1.368523 0.011319 0.095453 

NASDAQC -10.20173 -70.907413 30.476655 -0.3351 19.38 48.06 0.935094 0.007854 0.078606 

DJIAO -9.977635 -63.928973 27.480595 -0.36342 12.7 48.41 2.909061 0.034668 0.172562 

DJIAC -12.48747 -73.355125 27.88965 -0.44844 13.07 47.66 2.62701 0.032062 0.165596 

DJUAO -7.6654061 -67.988187 29.921184 -0.25648 14.19 49.04 5.944246 0.025324 0.150641 

DJUAC -6.666097 -67.160675 30.590123 -0.21824 14.94 48.58 4.871031 0.01188 0.13792 

OIL 4.151457 -13.563781 33.256952 -0.000123 19.08 51.34 0.996917 0.004017 0.05088 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 2.073759 -19.83157 11.39914 0.182488 20.5 50.31 0.626626 0.006592 0.06683 

JPY/USD -8.271959 -32.49779 12.77795 -0.64743 27.04 45.45 0.078149 0.001395 0.02496 

USD/EUR 2.414358 -13.22568 10.10582 0.239181 13.97 52.79 4.852491 0.033364 0.1375 

NASDAQO -3.619703 -64.55476 30.73380 -0.1177 19.83 47.77 1.512596 0.012511 0.08605 

NASDAQC 3.531254 -49.69712 30.47249 0.115987 16.05 50.55 2.380055 0.019991 0.11615 

DJIAO -15.34971 -88.91595 27.36166 -0.56231 16.97 46.1 1.312162 0.015638 0.10414 

DJIAC -15.34804 -92.87567 27.77387 -0.55418 18.51 45.56 1.212927 0.014767 0.09252 

DJUAC -5.201504 -45.16187 30.64218 -0.16979 16.88 47.63 3.722834 0.016193 0.11578 

DJUAO -5.068463 -40.01279 29.9737 -0.16912 16.51 48.16 3.819412 0.016272 0.11806 

OIL 24.68917 -50.27416 128.1977 0.193607 11.44 57.1 2.890821 0.046991 0.18384 
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Table 7.19: The result of one step ahead prediction using non-stationary signals on DSMIA network 

 

Table 7.20: The result of one step ahead prediction using non-stationary signals on R-MLP network 

 

Table 7.21: The result of one step ahead prediction using non-stationary signals on R-SONIA network 

 

Table 7.22: The result of one step ahead prediction using non-stationary signals on R-DSMIA network 

 

 

 

 

 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 8.6514328 -12.67 11.37 0.7617414 17.0 51.82 1.2859 0.0134828 0.101301 

JPY/USD -4.069113 -25.57624 12.794142 -0.318106 24.24 47.46 0.173247 0.003092 0.032686 

USD/EUR 5.498935 -10.78767 10.101788 0.544569 11.97 51.40 6.279409 0.043175 0.168811 

NASDAQO -1.201741 -51.47693 30.738439 -0.039112 15.45 49.20 2.568989 0.021249 0.119179 

NASDAQC 7.886264 -35.41700 30.495996 0.259041 17.87 52.25 1.429705 0.012009 0.083217 

DJIAO -3.891887 -64.33177 27.500631 -0.141980 14.87 51.67 2.043707 0.024356 0.127939 

DJIAC 4.078142 -61.63275 27.869717 0.146780 13.07 51.10 2.655057 0.032324 0.160880 

DJUAC -1.449810 -48.2815 30.64368 -0.047426 12.72 50.92 8.587276 0.037352 0.179645 

DJUAO 0.355431 -34.4738 29.98155 0.011822 12.92 51.48 8.51384 0.036272 0.174691 

OIL 26.76248 -43.9429 128.00130 0.209142 11.26 57.32 2.951938 0.047984 0.183241 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 0.470592 -22.72943 11.41861 0.041302 15.04 50.48 0.78955 0.008322 0.08495 

JPY/USD -1.08558 -20.85247 12.80468 -0.08487 19.38 46.06 0.3966 0.007071 0.0700 

USD/EUR 13.39764 -8.21238 10.07715 1.329773 16.23 53.37 2.29262 0.01576 0.1141 

NASDAQO -5.15092 -49.74936 30.77493 -0.16743 20.86 47.42 0.65789 0.005455 0.0648 

NASDAQC -2.75681 46.53370 30.59627 -0.09014 21.62 49.8 0.5355 0.004508 0.05872 

DJIAO -2.12597 -36.2518 27.56866 -0.07724 13.56 50.6 2.39523 0.028616 0.15632 

DJIAC -5.46303 -48.1665 27.96083 -0.19588 13.77 49.58 2.23022 0.027219 0.15244 

DJUAC -7.75481 -52.47248 29.98587 -0.25877 17.44 47.64 2.78005 0.011869 0.10290 

DJUAO -8.15845 -55.99526 30.625883 -0.26628 17.81 46.55 2.51131 0.010947 0.09856 

OIL 9.53221 -70.0853 130.31572 0.074606 10.88 52.29 3.24083 0.052305 0.191319 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 13.222424 -11.377406 11.370933 1.163817 16.4 53.43 1.479572 0.015595 0.111146 

JPY/USD 0.109788 -15.434371 12.807689 0.00857 20.34 47.92 0.3144 0.005605 0.044706 

USD/EUR 10.548035 -9.23998 10.084079 1.046945 11.51 52.33 6.581025 0.045239 0.196167 

NASDAQO 5.048035 -30.243216 30.777562 0.164053 15.17 51.45 2.348151 0.019469 0.125064 

NASDAQC -1.929973 -40.470801 30.597727 -0.6314 17.07 50.55 1.59496 0.013426 0.101682 

DJIAO -1.448578 -31.948202 27.580758 -0.05255 16.88 50.25 1.202832 0.01437 0.109019 

DJIAC -3.431984 -14.144426 27.984762 -0.12285 15.65 49.62 1.611291 0.019665 0.125119 

DJUAC -7.377525 -51.271605 29.992723 -0.24607 14.3 47.28 5.613782 0.023967 0.147707 

DJUAO -0.69999 -44.666601 30.664225 -0.02314 13.91 51.48 6.051142 0.026377 0.154649 

OIL 24.824701 -51.651684 126.72161 0.196018 11.09 65 3.123595 0.050429 0.190329 

Time Series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 7.961360 -11.99492 11.386540 0.698326 19.04 50.75 0.866705 0.009135 0.077785 

JPYUSD 4.117505 -12.73740 12.802085 0.321687 15.74 51.88 0.936123 0.016690 0.109100 

USD/EUR 4.79326645 -9.637221 10.102186 0.474795 16.15 50.60 2.807111 0.019296 0.106179 

NASDAQO -4.559185 -49.91566 30.769507 -0.14822 14.63 51.15 3.715639 0.0255475 0.088114 

NASDAQC 3.7920 -10.68990 10.104513 0.37547 14.39 49.92 4.0264272 0.0276844 0.1340 

DJIAO 0.363890 -26.91238 27.582999 0.013194 20.66 51.48 0.547829 0.006545 0.067739 

DJIAC 0.227811 -31.03056 27.998842 0.008123 16.05 50.43 1.409024 0.017197 0.116045 

DJUAO 0.049041 -50.14233 30.014484 0.001550 16.42 48.20 3.441886 0.014694 0.115271 

DJUAC -0.760969 -40.29130 30.67966 -0.0248 13.42 50.85 6.848141 0.029851 0.162966 

OIL 38.573172 -24.26994 125.75972 0.306841 14.39 60.86 1.594795 0.025739 0.132382 
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Table 7.23: Number of hidden nodes in SONIA and DSMIA 

for one step ahead non-stationary signals 

Time Series 

One step for Non-

stationary signals 

MLP SONIA DSMIA 

USD/UKP 8 5 4 

JPY/USD 7 6 4 

USD/EUR 8 7 4 

NASDAQO 6 7 3 

NASDAQC 6 7 3 

DJIAO 6 7 2 

DJIAC 6 6 3 

DJUAO 8 8 4 

DJUAC 8 8 4 

OIL 7 8 2 

 

 

Figure 7.4: Annualised return on non-stationary signals for the prediction of one step ahead 

 

Five step ahead prediction using non-stationary signals 

The results were taken from the 30 simulations of testing the data set. Figure 7.5 summarises 

the result achieved from all neural networks. The result of the annualised returns from Table 

7.24 to 7.29 show that the proposed DSMIA and R-DSMIA obtained the best profit return 

compared to all other network models in all-time series data. The R-DSMIA achieved the 

highest profit on USD/UKP, DJIAC, NASDAQC and OIL time series. Meanwhile, DSMIA 

obtained the best average of profit on the rest of the signals.  
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By looking at the other financial measures such as the maximum drawdown, volatility and 

sharp ratio the result showed that most of the best values were obtained by DSMIA and 

RDSMIA networks. The R-DSMIA achieved the highest values in five of 10 signals when 

evaluating the correct directional change; these are the USD/UKP, JPY/USD, DJIAC, 

NASDAQC and OIL signals. In the same measure, DSMIA made the highest CDC when 

forecasting five of the signals, namely the USD/EUR, NASDAQO, DJIAO, DJUAO and 

DJUAC signals. When evaluating the NMSE, MSE and MAE, it can be detected that DSMIA 

and R-DSMIA outperform other neural networks in some of the signals. 

Table 7.24: The result of five step ahead prediction using non-stationary signals on MLP network 

 

Table 7.25: The result of five step ahead prediction using non-stationary signals on SONIA network 

 

Table 7.26: : The result of five step ahead prediction using non-stationary signals on DSMIA 

 

Time series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP -0.559585 -14.8441 11.42579 -0.049097 14.7 52.27 2.07635 0.02193 0.13984 

JPY/USD -3.59391 -20.2364 12.8158 -0.28073 16.34 47.95 0.7863 0.014011 0.09782 

USD/EUR 1.117382 -11.8548 10.1309 0.11028 13.22 50.79 4.535523 0.031171 0.161433 

NASDAQO -2.40269 -37.1925 30.8166 -0.07803 16.54 48.44 1.7835 0.014823 0.109801 

NASDAQC 1.65726 -34.1537 30.5985 0.054188 17 49.79 1.5557 0.013096 0.103413 

DJIAO -0.321544 -37.7277 27.5912 -0.011719 12.39 52.28 3.0879 0.036984 0.17838 

DJIAC -0.555403 -40.42709 27.5927 -0.020069 12.42 51.27 3.071542 0.036788 0.177886 

DJUAO -3.439273 -49.0705 29.9932 -0.11477 14.07 49.57 5.95375 0.025418 0.001689 

DJUAC -3.523605 -51.062871 30.70504 -0.114946 15.49 49.44 4.265581 0.018631 0.129215 

OIL 0.01561 -88.71052 131.6793 -0.000611 10.6 49.42 3.471954 0.055847 0.199564 

Time series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP -1.48508 -17.776 11.41287 -0.13091 16.83 53.2 1.30044 0.013707 0.107113 

JPY/USD 2.839703 -19.8414 12.7995 -0.22183 21.66 50.98 0.23189 0.004134 0.050603 

USD/EUR 2.819784 -8.63958 10.11326 0.278768 13.32 51.89 5.38194 0.036996 0.149088 

NASDAQO -5.12982 -38.6083 30.77346 -0.16675 19.94 48.05 0.99797 0.008274 0.075397 

NASDAQC -1.00699 -32.3624 30.59728 -0.1253 17.1 48.41 1.63071 0.013727 0.099345 

DJIAO 2.440176 -20.558 27.58149 0.088481 16.83 52.54 1.3179 0.015745 0.105434 

DJIAC 1.880855 -22.1424 28.00402 0.067178 17.14 52.36 1.13388 0.013839 0.100822 

DJUAO 2.857381 -35.7076 29.9849 0.095616 13.38 50.15 8.12858 0.034703 0.171216 

DJUAC 1.735058 -34.5416 30.67759 0.056716 14.88 49.83 6.35314 0.027693 0.148254 

OIL -6.13704 -90.0799 130.3251 -0.04803 10.92 49.03 3.22148 0.051992 0.195043 

Time series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 1.824697 -13.364766 11.417538 0.159847 15.30 51.52 1.813762 0.019118 0.128763 

JPY/USD 4.883264 -14.536049 12.797590 0.381776 22.04 51.52 0.228185 0.004068 0.044344 

USD/EUR 5.924942 -8.593920 10.109854 0.586446 11.57 52.27 6.985444 0.048019 0.182709 

NASDAQO 0.102613 -37.366685 30.767597 0.003337 16.73 50.45 1.715399 0.014223 0.102406 

NASDAQC -0.645413 -32.550353 30.602293 -0.021085 18.99 49.45 1.104145 0.009295 0.076422 

DJIAO 2.444301 -21.343170 27.579252 0.088642 19.07 52.73 0.937367 0.011199 0.086451 

DJIAC 2.555257 -20.984023 28.001119 0.091279 12.83 51.60 2.789213 0.034041 0.167456 

DJUAO 4.642005 -30.055884 29.992023 0.154933 13.48 51.13 7.056958 0.030128 0.162958 

DJUAC 4.005996 -30.602317 30.662968 0.130994 13.76 50.33 6.438469 0.028065 0.157004 

OIL 11.290324 -87.792361 130.448316 0.087339 10.78 53.00 3.357866 0.054193 0.194540 
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Table 7.27: The result of five ahead prediction using non-stationary signals on R-MLP network 
Time series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP -3.09729 -16.877584 11.43124 -0.271036 15.85 54.27 1.58986 0.016787 0.122338 

JPY/USD -3.309134 -19.066487 12.807072 -0.258545 16.15 48.69 0.830921 0.014806 0.1023303 

USD/EUR 3.733809 -8.871813 10.130352 0.368653 13.41 51.38 4.274036 0.029372 0.157885 

NASDAQO -4.589262 -39.692504 30.813032 -0.148991 20.5 48.22 0.699381 0.005812 0.066495 

NASDAQC -1.772365 -39.37541 30.635332 -0.057879 20.61 51.01 0.794322 0.006702 0.0681 

DJIAO -4.65767 -42.126048 27.587913 -0.168913 13.31 51.87 2.523355 0.030222 0.160633 

DJIAC -4.517743 -14.89301 28.014315 -0.161395 13.41 51.09 2.401935 0.029386 0.158422 

DJUAO -3.079075 -49.765621 30.050515 -0.102547 17.32 49.58 2.853534 0.012208 0.104095 

DJUAC -3.133686 -25.975362 30.717461 -0.10209 17.63 49.05 2.600441 0.011358 0.100258 

OIL 0.113113 -82.687761 131.81674 0.000935 10.82 49.71 3.34083 0.053146 0.192832 

 

Table 7.28: The result of five ahead prediction using non-stationary signals on R-SONIA network 
Time series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 1.79951 -15.08815 11.42942 0.157756 14.11 51.4 2.392466 0.025269 0.14951 

JPY/USD 2.034985 -14.67284 12.8153 0.159264 16.19 46.34 0.811097 0.014453 0.1007 

USD/EUR 3.813749 -11.57839 10.13094 0.376467 11.37 51.93 6.722933 0.046658 0.19983 

NASDAQO -1.92625 -39.49456 30.82329 0.062527 16.13 47.64 1.877175 0.015601 0.11217 

NASDAQC -3.73281 -40.71476 30.62114 -0.1219 16.56 51.41 1.674038 0.014124 0.10597 

DJIAO -1.96245 -40.93965 27.59616 -0.07122 14.9 51.19 1.945163 0.023297 0.13512 

DJIAC -1.52512 -37.91129 28.01929 -0.05443 12.47 51.91 2.965914 0.036285 0.17679 

DJUAO 0.054411 -48.78379 30.06198 -0.001792 17.15 49.74 3.008243 0.01287 0.10657 

DJUAC 2.001813 -44.45037 30.72487 -0.065155 16.52 49.67 3.476785 0.015186 0.11555 

OIL -1.24209 -76.71338 132.1194 -0.00939 10.99 52.61 3.196299 0.051413 0.19085 

 

Table 7.29: The result of five ahead prediction using non-stationary signals on R-DSMIA network 
Time series AR MDD AV SR SNR CDC NMSE MSE MAE 

USD/UKP 5.056818 -13.46734 11.42431 0.443006 15.83 55.24 1.599081 0.016889 0.120819 

JPY/USD 3.433556 -17.12925 12.81203 0.268642 14.08 52.03 1.311543 0.023371 0.130662 

USD/EUR 6.0058482 -9.565491 10.09772 0.5950839 15.59 50.49 2.864027 0.0196921 0.115550 

NASDAQO -0.527541 -46.57787 30.82325 -0.017188 16.94 47.69 1.563239 0.012992 0.099038 

NASDAQC 3.584825 -28.57183 30.62947 0.117098 17.21 53.32 1.445291 0.012194 0.094748 

DJIAO -0.104052 -36.79902 27.60053 -0.003778 10.62 50.10 9.546326 0.114335 0.26430 

DJIAC 9.405722 -52.77260 27.778877 0.340198 12.32 53.83 3.266775 0.039771 0.182715 

DJUAO 3.019954 -39.93085 30.04967 0.100646 14.59 49.90 5.905766 0.025267 0.14669 

DJUAC 2.096306 -35.07649 30.72332 0.068255 14.99 49.47 4.817698 0.021042 0.136444 

OIL 14.81964 -73.74407 127.788520 0.118494 11.43 55.42 2.902436 0.047179 0.17917 

 

Table 7.30: Number of hidden nodes in SONIA and DSMIA 

 for five step ahead non-stationary signals 

Time Series 

Five step for Non-
stationary signals 

MLP SONIA DSMIA 

USD/UKP 8 4 4 

JPY/USD 7 5 4-3 

USD/EUR 7 7 4-2 

NASDAQO 5 5 2 

NASDAQC 7 8 2-3 

DJIAO 5 5 2 

DJIAC 7 5 3-2 

DJUAO 7 6 4 

DJUAC 8 7 4 

OIL 5 6 2 
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Figure 7.5: Annualised return on non-stationary signals for the prediction of five steps ahead 
 

Table 7.31: The learning rate for DSMIA network 

Time Series Stationary Non-stationary 

One step Five step One step Five step 

USD/UKP 0.9/0.01 0.9/0.1 0.5/0.5 0.9/0.5 

JPY/USD 0.9/0.1 0.6/0.09 0.1/0.5 0.1/0.5 

USD/EUR 0.9/0.01 0.9/0.01 0.9/0.5 0.5/0.5 

NASDAQO 0.9/0.1 0.7/0.1 0.1/0.01 0.1/0.1 

NASDAQC 0.6/0.5 0.6/0.5 0.1/0.1 0.9/0.5 

DJIAO 0.1/0.5 0.1/0.5 0.9/0.2 0.9/0.01 

DJIAC 0.9/0.1 0.9/0.1 0.1/0.2 0.1/0.2 

DJUAO 0.9/0.01 0.9/0.1 0.9/0.5 0.1/0.1 

DJUAC 0.9/0.01 0.1/0.4 0.1/0.1 0.1/0.1 

OIL 0.1/0.001 0.1/0.01 0.1/0.1 0.1/0.1 

 

7.2.7 Financial Discussion 

This section summarises the simulation result that been showed above. The motivation of this 

section is to discuss some issues, which have arisen due to the comparison of the results 

achieved by the networks discussed previously.  

-8
-6
-4
-2
0
2
4
6
8

10
12
14
16
18
20

MLP

SONIA

R-MLP

R-SONIA

DSMIA

R-DSMIA



123 

 

7.2.7.1 Comparison between the Proposed DSMIA network and the SONIA in 

Stationary Signals 

The simulation results using stationary prediction indicated that the proposed network 

generates slight improvements using the various evaluation measures. The neural networks 

have learnt the signals very well; this is related to the fact that noise points of the non-

stationary signals have been smoothed by using the Relative Difference in Percentage of 

Price. The DSMIA generates a good result in comparison to the SONIA neural network. For 

five step and one step ahead prediction, the result of the Annualised Return (AR) as shown in 

Figure 7.6 demonstrated that the proposed model attained high profit values in some data 

series compared with the SONIA neural network.  

By looking at the Maximum Drawdown (MDD) and Volatility (AV) for one and five step 

ahead predictions for stationary signals, simulation results as indicated in Tables 7.3 to 7.15 

clarify the advantages of the proposed DSMIA network.  

 

Figure 7.6: Annualised return result of the proposed DSMIA network and the SONIA in stationary 

signals 

 

7.2.7.2 Comparison between the Proposed DSMIA network and the SONIA in Non-

Stationary Signals 

The analysis of the non-stationary signal, in terms of one step ahead prediction results as 

illustrated in Tables 7.3 to 7.9 and Figures 7.4 and 7.5, shows that the different evaluation 

measures vary for the various data series. In some cases, the proposed DSMIA managed to 
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generate better profit values than the rest of the networks. On the other hand, for five step 

ahead prediction, the proposed DSMIA network has been shown to generate more profits 

than most of the benchmarked neural networks. The results of the Annualised Return are 

illustrated in Figure 7.7 and demonstrate that the proposed model attained high profit values 

in all 10 series data when compared with the SONIA network. This really confirmed the 

success of the proposed network to predict the financial time series in order to achieve high 

profit value.  

 

Figure 7.7: Annualised return result of the proposed DSMIA network and the SONIA in non-stationary 

signals 

 

7.2.7.3 The Conclusion for Forecasting Results of the Non-stationary Signals for all 

Networks utilised in this Research 

From the research experiments, the simulation results showed that the prediction of non-

stationary financial signals is very difficult since the signals are highly noisy and volatile. 

These instable behaviours lead to signals changing and falling sharply at some point during 

the network training. During the training, the neural networks are attempting to learn the 

price values of the non-stationary signals; however, their responses are not sufficient. This is 

related to the fact that the behaviour of price values is not stable. Although the prediction for 

the non-stationary signals usually presents inconsistent results, the extensive experiments of 

this research confirmed that the proposed DSMIA and R-DSMIA achieved the best profit 

values compared to other networks. This has been clearly represented in Tables 7.17 to 7.29. 
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7.2.7.4 The Benefits of using DSMIA and R-DSMIA for Forecasting Stationary and 

Non-Stationary Signals 

As can be observed from Tables 7.3 to 7.29, in most cases the proposed DSMIA neural 

network generates profit when used for the prediction of one step and five step ahead 

predictions for both stationary and non-stationary signals. From the various experiments, the 

simulation results indicated that the proposed DSMIA has shown improvements in the 

prediction of financial time series when benchmarked with feed-forward neural networks. 

The proposed network shows highly nonlinear dynamical behaviour provided by the 

recurrent feedback, consequently allowing a better input-output mapping and a better 

prediction. These recurrent connections make the neural network based on the external inputs 

as well as inter history of the system inputs. This can confirm that these connections stored 

the information about the previous values of the signal and hence better prediction was 

attained in comparison to feed-forward neural network architectures. Furthermore, the 

proposed network significantly helps to improve the result of profit return. In addition, the 

learning process in the DSMIA network is centred on the local properties of the signal; the 

self-organising hidden layer is specifically programmed to adapt to these properties. As such, 

DSMIA architecture networks have a more detailed mapping of the underlying data structure, 

enabling them to respond better to the data changes or structural shifts common in non-

stationary signals. It can be concluded that the experiments’ results indicate that the proposed 

network generates slight improvements in some of the financial time series data. 

Furthermore, using the weight decay method in the DSMIA network has improved the 

generalisation ability of the network. The prediction results for one step and five step ahead 

prove that the application of R-DSMIA models is considered as a promising tool for 

nonlinear financial time series prediction, as illustrated in Figures 7.8 and 7.9. 
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Figure 7.8: Annualised return result of the proposed DSMIA network and the R-DSMIA in stationary 

signals 

 

 

Figure 7.9: Annualised return result of the proposed DSMIA network and the R-DSMIA in non-

stationary signals 

 

In accordance with the number of hidden neurons that have been used in the neural networks, 

it is vital to judge a network’s parsimony and simplicity. From Tables 7.9, 7.16, 7.23 and 

7.30, it can be observed that the proposed network requires fewer hidden units when 

compared with the SONIA network for the prediction of one and five step ahead predictions. 

This will help to reduce the computational complexity, and will improve the network 

generalisation ability, as can be observed from Table 7.32, which means that the recurrent 
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link in the network has provided and enhanced the ability of the network to learn the pattern 

of signals with fewer hidden units compared with other networks that have been used in these 

simulations. However, this enhancement was reached at the expenses of longer processing 

and training time, as shown in Table 7.33. 

Table 7.32: The average result for MSE 
 One ahead prediction using 

Stationary signals 

Five ahead prediction using 

Stationary signals 

One ahead prediction using 

Non-stationary signals 

Five ahead prediction using 

Non-stationary signals 

MSE 

trainin

g 

MSE 

Testing 

MSE 

validatio

n 

MSE 

Trainin

g 

MSE 

Testing 

MSE 

Validatio

n 

MSE 

Trainin

g 

MSE 

Testing 

MSE 

Validatio

n 

MSE 

Trainin

g 

MSE 

Testing 

MSE 

Validatio

n 
USD/UKP 0.0037 0.003655 0.0029 0.0010 0.00210

4 

7.7454e-

04 

1.7153

e-04 

0.01348

2 

0.0041 4.0859

e-04 

0.01911

8 

0.0049 

JPY/USD 0.0016 0.002402  0.0014 0.0014 0.00296

8 

0.0016 4.7066

e-04 

0.00309

2 

0.0044 9.1795

e-04 

0.00406

8 

0.0016 

USD/EUR 0.0031 0.003153 0.0019 0.0017 0.00294

1 

8.6123e-

04 

1.2812

e-04 

0.04317

5 

4.7616e-

04 

0.0004

9 

0.04801

9 

7.5966e-

04 
NASDAQ

O 
0.0011 0.002228 4.9229e-

04 

7.9912

e-04 

0.00133

1  

3.1220e-

04 

9.4954

e-04 

0.02124

9 

0.0126 3.2749

e-04 

0.01422

3 

0.0011 

NASDAQ

C  
0.0022 0.003286

0 

8.3629e-

04 

0.0011 0.00174

7  

8.1516e-

04 

4.1464

e-04 

0.01200

9 

0.0053 3.0324

e-04 

0.00929

5 

0.0018 

DJIAO 0.0010

1 

0.002566 4.0168e-

04 

6.0977

e-04 

0.00156

0 

2.1980e-

04 

0.0011 0.02435

6 

0.0116 4.6189

e-04 

0.01119

9 

0.0106 

DJIAC 0.0010 0.002530 3.9837e-

04 

7.8794

e-04 

0.00129

8 

2.6511e-

04 

9.6443

e-05 

0.03232

4 

0.0066 5.6379

e-04 

0.03404

1 

0.0057 

DJUAO 0.0011 0.001641 5.9834e-

04 

8.5756

e-04 

0.00078

0 

3.2458e-

04 

0.0018 0.03735

2 

0.0040 0.0011 0.03012

8 

0.0079 

DJUAC 0.0011 0.001658 6.3052e-

04 

6.1468

e-04 

0.00073

8 

4.4068e-

04 

4.8806

e-04 

0.03627

2 

0.0169 4.7149

e-04 

0.02806

5 

0.0113 

OIL 0.0026

4 

0.001928 0.0023 0.0027 0.00101

2 

0.0032 0.0069 0.04798

4 

0.0037 4.9769

e-04 

0.05419

3 

7.5966e-

04 

 

However, the proposed network has not shown any improved results on some financial data. 

Nevertheless, it must be taken into account that this might be related to the raw data, since the 

data are affected by several factors such as the threat of war, good or bad economic climates, 

announcements of company earnings, and the advertisement of economic statistics. 

Table 7.33: A comparison between the times required to complete  

the simulation using the SONIA and the proposed DSMIA network 

Time series SONIA DSMIA 

USD/UKP 25.2207  64.0190 

JPY/USD  33.2589  79.6417 

USD/EUR  30.1757  72.6679 

NASDAQO  28.9414  42.1859 

NASDAQC  30.7793 71.9675 

DJIAO  29.6505  36.7067 

DJIAC  29.3825  70.2133 

DJUAO  34.0757 81.5248 

DJUAC  32.6150  70.8630 

OIL  4.9141  10.7170 
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7.3 Medical Time Series 

In this section, the proposed network will be evaluated and compared with several machine 

learning classifiers by using an open data set, involving 300 records (38 preterm and 262 

term) (Fele-Zorz et al. 2008).  EHG signals have been pre-processed, and features have been 

extracted from signals in order to classify them into term and preterm subjects.  

7.3.1 Uterine EMF Signal Sources 

The data used in this research were recorded at the Department of Obstetrics and 

Gynaecology, Medical Centre, Ljubljana between 1997 and 2006 (Physionet.org 2010). In 

the TPEHG database, there are 300 records of patients, as shown in Table 7.34. These records 

are openly available, via the TPEHG data set, on the Physionet website. The signals in this 

study had already been collected by Fele- Zorz et al. (2008). Each record was collected by 

regular examinations at the 22
nd

 week of gestation or around the 32
nd

 week of gestation. The 

signal in each record is 30 minutes long, has a sampling frequency (fs) of 20 Hz, and has a 

16-bit resolution over a range of ±2.5 millivolts.  

Prior to sampling, the signals were sent through an analogue three-pole Butterworth filter, in 

the range of 1 to 5 Hz. Each record is obtained from three channels, Channel 1, Channel 2 

and Channel 3. The Channel 1 signal was measured between E2 and E1, Channel 2 was 

recorded between E2 and E3 and the Channel 3 signal was recorded between E4 and E3.  

 

Figure 7.10: Placement of electrodes on the mother’s abdomen. (Baghamoradi et al. 2011) 

The recording time shows the gestational age. Each recording was classified as a full-term or 

preterm delivery, after birth. Figures 7.11 and 7.12 show two examples of EHG signals from 

different records. The preterm birth used in this signal is referred to as birth following a fully 

completed 37 weeks. The recordings were categorised into four types as follows: 
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1. Early – Term: Recordings made early, signed as a term delivery 

2. Early – Preterm: Recordings made early, signed as a preterm delivery 

3. Late – Term: Recordings made late, signed as a term delivery 

4. Late – Preterm: Recordings made late, signed as a preterm delivery 

 

 

Figure 7.11: Row Data Plot for the uterine EHG signals – Preterm subject 
 

 

Figure 7.12: Row Data Plot for the uterine EHG signals – Term subject 

 

Table 7.34: The various recording for the Term-Preterm  

Electrohysterogram data set 
 Number of recordings Time of recordings Deliveries 

Term 

262 recodes 

143 22.7 39.7 

119 30.8 39.6 

Prematurely 

38 records 

19 23.0 34.2 

19 30.2 34.7 

 

7.3.2 The Data Pre-processing 

Since the EHG signals are recording from the muscle, their quality is affected by different 

factors, such as the movement of the body, or movement of the foetus – breathing, and 

heartbeat. However, in order to reduce these effects, a step should be taken before analysing 

or classifying the EHG signals. This step is pre-processing and it consists of a number of 

methods which are: filtering, de-noising, and automatic recognition of bursts (Fergus et al. 

2013). Recently, a number of studies have focused on filtering the EHG raw signals to allow 

frequencies between 0.05 Hz to 16 Hz (Leman et al. 1999; Verdenik , Pajntar 2001; Maner et 
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al. 2003; Marque et al. 2007; Maner 2007). Some researchers have filtered EHG signals as 

high as 50 Hz (Buhimschi et al. 1997). However, it is not recommended to use uterine EHG 

with such a wide range of frequencies; this is because more interference can affect the signal 

(Cheung 2012). It was documented that the uterine EMG signals’ content ranges from 0 to <5 

Hz (Devedeuxet al.  1993). 

In the TPEHG data set, the signals were filtered using three different 4-pole digital 

Butterworth filters. Signals have been filtered twice in both backwards and forwards 

directions in order to overcome the phase-shifting that can occur when utilising these filters. 

The band-pass filters were as follows: 

 Filter 1: 0.08-4Hz 

 Filter 2: 0.3-4Hz 

 Filter 3: 0.3-3Hz 

Fele-Zorz et al. (2008) used 0.08-4 Hz in order to compare their outcomes to earlier studies 

(Verdenik, Pajntar 2001). In addition, they increased the lower limit on frequency cut-off and 

selected 0.3-4 Hz. They used this filter in order to test the elimination of noise in lower 

frequencies, due to skin stretching and breathing. The third filter was selected to remove 

higher frequencies.  

7.3.3 The Data Features 

The next step for analysing EHG signals is extracting features. A number of techniques have 

been applied to capture the most important information of biological signals and to extract the 

features of interest for the classification task. These techniques are based on spectral and 

temporal analysis measures (Barrios 2010). Characterising biological signals such as EHG 

can be very challenging. This is because it requires a suitable method to consider when 

choosing a feature representation for EHG classification. First of all, EHG signals naturally 

involve information that is both spatial and temporal. The way that biological signals such as 

EHG are recorded is through the process of placing electrodes on the body surface. 

Therefore, any feature testing that neglects the patterns either across the electrode or through 

time may abandon some important pattern in the signal.  
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Furthermore, EHG has relatively high temporal resolution, normally between 128 and 1002 

samples per second, producing a numerous amount of data to process. The importance of 

exploring the biological time series has contributed to the proposed number of featured 

methods that can be used to discover important properties of the biological time series 

signals. They are categorised into two types of methods: linear and nonlinear techniques. A 

number of researchers have explored the characterisation ability of linear and nonlinear 

features on biological time series (Lehnertz et al. 2001; G. Fele-Zorz et al. 2008; Balli & 

Palaniappan 2010)  

7.3.3.1 Linear Features 

This section will discuss linear signal processing techniques provided with the TPEHG data 

set (Physionet.org 2010). This feature has been applied to uterine EHG signals in order to 

distinguish between preterm and term patients. Three linear signal processing techniques 

were used: Root Mean Square (RMS) (Rosa et al. 2007; Pajntar et al. 1998), Median 

Frequency (MF), and Peak Frequency (PF) (Fele-Zorz et al. 2008). The last two features were 

determined from power spectra densities. The RMS value of the EHG signal will change 

before the labour starts (Verdenik I, Pajntar M 2001). Hence, it can be used to detect true 

labour. Leskošek et al. (2002) applied RMS of EHG signals to find the similarity between 

human and mammal contraction. Fele-Zorz et al. (2008) found that Median Frequency (MF) 

parameters are efficient to identify preterm labour. In addition, Verdenik and Pajntar (2001) 

found that an increase in gestational age leads to a decrease in median frequency. However, it 

has been shown that the values of RMS and MF of uterine EHG signal are affected by the 

placement of electrodes on the abdominal exterior (Kavsek G, Pajntar M 1999). Moslem et 

al. (2011) indicated that the median frequency feature can identify contractions better than the 

other frequency parameters such as mean frequency and peak frequency. It has been shown 

that MF has a sensitivity of 0.83 and a specificity of 0.69, which are higher than the other 

frequency-related parameters. Moreover, MF has shown the highest classification 

performance. Studies report that Mean frequency has the most potential to distinguish 

between preterm and term subjects. Nevertheless, root mean squares and peak frequencies 

have had conflicting results. However, some research has indicated that these linear features 

are suitable for discriminating between preterm and term subjects (Fergus et al. 2013). 

Despite the fact that linear analysis is very simple to apply and interpret, it is unable to 

discover information on nonlinear relation of biological signals (Diab et al. 2012). Therefore, 
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using nonlinear analysis techniques would be reasonable in obtaining an improved 

characterisation of EHG signals.   

7.3.3.2 Nonlinear features 

Recently, there have been great efforts to define nonlinear parameters to characterise the 

dynamic behaviour of biological signals. These studies (Hassan et al. 2009; Mars and Lopes 

da Silva 1983; Akay 2000), have indicated that the relation between biomedical signals is 

nonlinear. Consequently, the application of nonlinear processing signals is highly 

recommended (Fele-Zorz et al. 2008). In the last decade, a number of nonlinear methods have 

been studied for analysis of EEG biological signals collected from physiologic and pathologic 

conditions (Lehnertz et al. 2001) or EMG ( Diab et al. 2012; Cunha & de Oliveira 2000). 

Many investigators concluded that nonlinear features are useful for classification of 

biological signals. Fele-Zorz et al. (2008) have proved that nonlinear features had more 

satisfactory results than linear features. One nonlinear measure, sample entropy, was shown 

to offer good information about uterine EHG signals (Hassan et al. 2010). According to 

experiments (Fele-Zorz et al. 2008; Baghamoradi et al. 2011), the sample entropy features are 

well suited to distinguishing between term and preterm records. Mars, Lopes and Silva 

(1983) confirmed that, when labour is in progress, the sample entropy values decrease. 

Hence, they can be used to evaluate the progress of the labour (Vrhovec 2009). In addition, it 

has been shown that the values of sample entropy for full-term labour records are higher than 

those for preterm labour (Fele-Zorz et al. 2008). In this study, four types of features are used, 

three linear and one nonlinear. The selection of these features is based on the previous study, 

which was conducted by Fele-Zorz et al. (2008). 

7.3.4 Experiments 

This section will involve two experiments that are proposed to classify EHG signals. This 

study is only interested in whether the records are preterm or term. The aim of this section is 

to evaluate the effectiveness, and efficiency, of using the SONIA network and the proposed 

DSIA network for medical classification. Novel recurrent neural network architecture based 

on the immune algorithm and the self-organised neural network is proposed for the 

classification of Electrohysterography signals into term and preterm. Figure 7.13 shows the 

proposed schematic for classifying the EHG signals. 
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Figure 7.13: Proposed method for classifying Preterm and Term classes using Uterine EHG signals 

 

The proposed network (DSIA) was benchmarked with three feed-forward neural networking 

models (MLP, SONIA and Fuzzy SONIA) and Elman recurrent neural network. Following an 

analysis of the literature, simple yet powerful algorithms, which give good results, will also 

be considered in our experiments. These are K-Nearest Neighbour Classifier (KNN), 

Decision tree classifier (treec) and Support Vector Classifier (svc). 

Initially, for simplicity, the 0.3-3 Hz filter on the third channel was selected in this 

experiment, since it had been considered by Fele-Zorz et al. (2008) as one of the filters that 

provided more probability of discrimination between the classes of premature or term 

deliveries.  

Experimental observations have pointed out that the classification of biological signals can be 

improved by gathering linear and nonlinear features. Balli and Palaniappan (2010) showed 

that such a combination of linear and nonlinear features has slightly increased the 

classification accuracy with an average improvement of up to 20% to detect the ECG signal 

for heart diseases. In this thesis, the combined features of linear and nonlinear methods are 

considered. Therefore, the data set sets were generated by extracting three linear features – 

root mean squares, peak frequency and median frequency – and one nonlinear feature – 

sample entropy.   
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7.3.4.1 Removing Outliers 

By initially reviewing the features in the TPEHG data set, using quantile-quantile plots (Q-Q 

Plots), for each of the features, normal distributions were not evident, as illustrated in Figure 

7.14. From the plots, it can be shown that there are likely outliers in the data. This is 

particularly happening with root mean squares, median frequency and peak frequency, as 

there are significant departures from the reference line for several observations. These 

outliers could be shown as a result of the movement of the mother or the baby, or the 

interference of other equipment around the hospital room where the signals were captured. 

 

Figure 7.14: Outliers in Uterine EHG data 

The outlined data have been removed based on the upper and lower limits for each feature. 

This transpired across all records that reside outside the body of records in the data set. For 

example, in the root mean squares feature, most of the records reside within 1.5 and 7. All 

records with root mean square values higher than 7 and lower than 1.5 have been removed. 

This process was carried out for median frequency (values bigger than 0.7 and less than 0.3 

have been removed), peak frequency (values bigger than 0.5 and less than 0.25 have been 

removed) and sample entropy (values bigger than 1.0 and less than 0.5 have been removed). 

This makes sure the removal of values is furthest from the sample mean, as can be seen from 
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Figure 7.15. So, the data have been reduced to 215 samples (32 preterm data, and 183 term 

data).  

 

Figure 7.15: Uterine EHG data with Outliers removed 

 

7.3.4.2 Performance Measures  

The performances of each classifier have been evaluated by computing the sensitivity, 

specificity, positive, negative predicted values and area under the ROC that each neural 

network produced to separate the groups of uterine EHG signals. The formulas used to 

measure sensitivity, specificity and accuracy are defined as follows: 

                             ⁄           (7.24) 

                     ⁄     (7.25) 

                     ⁄     (7.26) 

                        (7.27) 

                           (7.28) 
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Where TP is true positive and it refers to correctly detect preterm subjects. TN is true 

negative, which refers to correctly detected term subjects. FP (false positive) and FN (false 

negatives) refer to the number of uncorrected detections of term and preterm subjects 

respectively. These have been chosen since they are appropriate evaluation measures for 

classifiers, which produce binary output (Lasko et al. 2005).  

ROC analysis 

The Receiver Operating Characteristic (ROC) curve shows the cut-off values for the true 

negatives and false positives. ROC analysis was used in a significant number of studies. They 

have been criticised for the selection of a specific threshold value, which leads to subjectivity, 

as well as their inability to demonstrate whether the model has a good fit to the data (Lobo et 

al. 2008). The ROC curve is a two-dimensional measure of classification performance. ROC 

is mostly used in biomedical research to perform a diagnostic test through graphical analysis. 

The diagnostic tests evaluate the curve in the plot of sensitivity against specificity from the 

application of thresholds to the system output (Witten & Frank, 1999; Zhou & Harezlak, 

2002). In other words, the ROC curve can be calculated through positive fraction vs. the false 

positive fraction, and the x-axis represents false positive (1-specificity) and true positive 

(sensitivity) is represented in the y-axis. If the testing of the classification using the ROC 

performs well, the upper right-hand corner of the graph rapidly rises towards 1.0 area in the 

graph, but if it is lower than 0.5 it means that the result of the test is incorrect.  

The Area Under the Curve (AUC) has also been used to evaluate the performance of all 

classifiers. The AUC shows the probability of correctly identifying the positive subject which 

is preterm higher than a randomly chosen negative subject which is term subjects (Hanley & 

Mcneil 1982).   

7.3.4.3 Fuzzy-similarity-based self-organized network inspired by immune algorithm 

(F-SONIA) 

This methods introduced by Widyanto et al. (2006). It is an extension of SONIA network 

(Widyanto et al. 2005). They apply fuzzy similarity to SONIA in order to improve the 

classification ability of SONIA network. They have been proposed this method as an artificial 

odor discrimination system to classify three mixture-fragrances. Form their experiments, they 

conclude that using the fuzzy similarity as input to the SONIA classifier can improve the 
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accuracy of the classification and achieved (100 %, 98.33 %, 94.17 %) classification 

accuracy which is higher than the basic SONIA network which achieved on the three mixture 

fragrances (90.83 %,98.17% , 90.83 %) .  

The fuzzy similarity measure applied in fuzzy SONIA is applied to find the relationship 

between the inputs and weights on the self-organised map units. This is computed by finding 

the maximum value of the intersection region between the fuzzy set of the input vectors and 

the weights of the hidden units. The average value of the     values of the intersection are the 

output of the fuzzy- hidden units.  

7.3.4.4 Simulation Result and Analysis 

In this section, the simulation results using DSIA with other benchmarks networks are 

presented. It will involve two experiments. 

Simulation result of oversampling data 

Since there is a lack of preterm data compared to term data in the TPEHG data set, the neural 

network will not have enough cases of preterm data from which to learn (32 preterm 

samples), in contrast to term data (183 term samples). Therefore, the oversampling method 

has been used to generate another 87 items of preterm data. The generation has been done 

randomly between minimum and maximum value of each feature in the 32 preterm data, 

resulting in 119 preterm samples. The newly generated data are mixed with the original data 

set. 

Results for 0.3-3 Hz TPEHG Filter on Channel 3 with RMS, MF, PF, and Sample 

Entropy with Oversampling 

This evaluation uses the 0.3-3 Hz filtered signals on Channel 3 with seven classifiers. The 

performance for each classifier is evaluated using Sensitivity, Specificity, Negative and 

Positive predicted values with 30 simulations. The data have been split up as follows: 40% of 

the data has been selected randomly as training data, with 20% for validation and 40% as 

testing data. The experiments have been run 30 times to generate the average results. The 

learning rate of the DSIA network parameter, initially set to 0.1, decreased over time, but did 

not decrease below 0.01. Table 6.39 showed all the parameters that were selected to build 

four neural networks. 
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Classifier Performance 

Evaluation of the neural networks’ classification of oversampling data is summarised in 

Tables 7.35 and 7.36. Table 7.35 shows the average performance for all the classifiers used in 

this experiment. 

First of all, the performance of the proposed DSIA will be evaluated. The results 

demonstrated that the proposed DSIA network showed the best accuracy with 73% compared 

to all classifiers. Furthermore, the results in Table 7.36 show the best values obtained by the 

DSIA network in terms of mean error, standard deviation compared to the other networks. 

The simulation results indicated that the sensitivity for preterm records obtained with the 

DSIA network is slightly better than other classifiers; the sensitivity is also higher than the 

SONIA. This means that the DSIA network has the ability to predict the true positive value of 

the preterm class; it can also predict the true negative value, which is the term class. 

However, the DSIA shows the highest values for Sensitivity and True Positives with slightly 

lower values for Specificity and True Negatives.  

Secondly, the novel application of SONIA will be evaluated. The sensitivity (preterm) 

obtained by the SONIA network is slightly better than that obtained by the MLP; the 

specificity is also higher than the MLP. This means that the SONIA network has the ability to 

predict the true positive value of the preterm class; it can also predict the true negative value, 

which is the term class. The results in Table 7.36 show the best values obtained by the 

SONIA network in terms of mean error, standard deviation and classification accuracy 

compared to the MLP network. 

Table 7.35: Classifier Performance Results for the 0.3-3Hz Filter 

 Sensitivity Specificity True Negative True Positive AUC 

MLP 0.6481 0.5691 0.6261 0.6205 0.5089 

SONIA 0.6316 0.6920 0.7959 0.6073 0.78 

KNNC 0.6944 0.6388 0.6764 0.6578 0.45 

TREEC 0.5833 0.6111 0.5945 0.6000 0.58 

SVC 0.666 0.6388 0.6571 0.6486 0.54 

DSIA 0.7660 0.6809 0.7269 0.7241 0.8168 

Fuzzy_SONIA 0.8642 0.4566 0.7647 0.6227 0.70 

Elman 0.4928 0.5816 0.564 0.543 0.53 
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Table 7.36: Mean Error, Standard Deviation and Classifier Accuracy 

 Mean error Std Error Accuracy 

MLP 0.3073 0.0369 61.60% 

SONIA 0.2244 0.0031 70.3472 % 

KNNC 0.4000 0.0424 66% 

TREEC 0.3907 0.0565 59% 

SVC 0.4292 0.0476 65% 

DSIA 0.1807 9.3409e-05 73.06% 

Fuzzy_SONIA 0.2287 0.0015 66.41 % 

Elman 0.2584 0.0187 53.8% 

  

ROC Analysis 

The receiver operator characteristic (ROC) curve in Figures 7.16 illustrates the trade-off 

between a classifier’s true positives rate (sensitivity) versus its false positives rate (1-

specificity). Figure 7.16 shows that the DSIA performance is better than the SONIA, which 

indicates that the DSIA curve is close to the upper left-hand corner and its area is greater than 

the SONIA curve; this confirms that the DSIA has greater power for classification than other 

neural networks. Figure 7.16 shows that the Elman network performance is lower than other 

networks. The simulation results indicated that the proposed DSIA network showed the best 

AUC with 81%; this is slightly better than the SONIA, which achieved 71%. From Table 

7.35, it can be seen that the AUC of the DSIA network is greater than the other classifiers. 

 

a) ROC for SONIA              b) ROC for DSIA       c) ROC for fuzzy_SONIA       d) ROC for Elman 

Figure 7.16: ROC curve for two best performing classifiers 
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Simulation result for the extended features 

Each EHG signal record contains clinical information relating to the patients; this consists of: 

the pregnancy duration at the time of recording, maternal age, number of previous deliveries 

(parity), previous abortions, weight at the time of recording, hypertension, diabetes, bleeding 

first trimester, bleeding second trimester, funnelling, smoker. These 11 items of clinical 

information are added to the four features of TPEHG. However, some information was 

missing for some of the women, which led to unknown features on some recorders. Hence, 

the records with unknown information have been removed, thereby reducing the number of 

samples in the data set. These new data with extra features contain 19 preterm data samples 

and 108 term data samples. As before, the 19 preterm records are oversampled using a 

min/max technique to generate the 104 preterm data items. This technique allows a new data 

set to be constructed that provides an even balance between term and preterm records. 

Results for 0.3-3 Hz TPEHG Filter on Channel 3 with RMS, MF, PF, and Sample 

Entropy with Clinical Data and Over-Sampling 

These 11 items of clinical information are added to the original TPEHG feature set (RMS, 

MF, PF and Sample Entropy). The data set consists of 104 preterm data samples and 108 

term data samples. The performance for each classifier is evaluated using Sensitivity, 

Specificity, Negative and Positive predicted values with an average of 30 simulations. The 

data have been split up as follows: 40% of the data has been selected randomly as training 

data, with 20% for validation and 40% as testing data. 

Classifier Performance 

The evaluated results for the proposed DSIA network are illustrated in Tables 7.37 and 7.38. 

The experiment results confirm that extending the number of features to 15 has significantly 

improved the classifiers’ performance. These features have provided classification methods 

with enough information for each record to allow them to obtain better values in all of the 

evaluation functions. 

The simulation results from Table 7.37 demonstrated that the SONIA model scored the 

highest in all evaluation parameters, followed closely by the proposed DSIA model. 

However, DSIA achieved the higher value of the AUC compared to other classifiers. In term 
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of other neural networks, Elman network has achieved good result compared to MLP and 

Fuzzy_SONIA networks. The results in Table 7.38 shows that the best values obtained in 

terms of mean error, standard deviation and classification accuracy are by the SONIA 

network followed by the DSIA network.  

Table 7.37: Classifier Performance Results for the 0.3-3Hz Filter 

 Sensitivity Specificity True Negative True Positive AUC 

MLP 0.8070 0.8627 0.8000 0.8803 0.88 

SONIA 0.9123 0.9451 0.9060 0.9490 0.92 

KNNC 0.6830 0.6408 0.6471 0.6853 0.6619 

TREEC 0.8846 0.7619 0.8421 0.8214 0.8673 

SVC 0.8076 0.8571 0.7826 0.8750 0.9029 

DSIA 0.9123 0.8954 0.9013 0.9070 0.93 

Fuzzy-SONIA 0.8401 0.7881 0.8561 0.7673 0.92 

Elman 0.9092 0.8159 0.8837 0.8247 0.9009 

 

Table 7.38: Mean Error, Standard Deviation and Classifier Accuracy 

 Mean Error Std  Error Accuracy 

MLP 0.1681 0.0491 84.87% 

SONIA 0.0741 0.0011 92.7778% 

KNNC 0.2260 0.0505 66.3137% 

TREEC 0.2433 0.569 82% 

SVC 0.1761 0.0549 83% 

DSIA 0.0870 0.00054 90.1852 % 

Fussy-SONIA 0.1535 0.0025 81.1728 

Elman 0.1295 0.0675 85.9302 % 

 

ROC Analysis 

The ROC curves in Figure 7.17 show an improvement in the performance of the classifiers 

compared to the ROC curve illustrated in Figure 7.16. The area under the curve for DSIA is 

0.93 which is higher than SONIA, which was 0.92. Extending the number of features to 15 

has significantly improved the classifiers’ performance. These features have provided 

classification methods with enough information from each record to allow them to obtain 

better values in all of the evaluation functions. 
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a) ROC for SONIA           b) ROC for DSIA            c) ROC for Fuzzy_SONIA    d) ROC for Elman 

Figure 7.17: ROC curve for two best performing classifiers 

 

Table 7.39: The parameters selected to build four neural networks 

15 Featuers Time /Second Hidden Epoch 

MLP 0.785411 40 1000 

SONIA 18.6423 55 700 

DSIA 25.4202 20 1500 

Fuzzy_SONIA 26.8386 47 500 

Elman 0.6875 5 1000 

4 Featuers Time /Second Hidden Epoch 

MLP 0.9521 20 1000 

SONIA 19.4 36 700 

DSIA 21.3324 7 1500 

Fuzzy_SONIA 27.8386 18 500 

Elman 0.3658740 5 1000 

  

In order to ensure stability of DSIA, as suggested by Voegtlin (2002), the value of    must be 

small and hence it has been set to 0.1 and   =0.9. The number of epochs is selected to be 

1000-1500. It has been shown from Tables 7.37 and 7.38 that the result from DSIA 

outperforms some models. Table 7.39 shows that the number of hidden units in the DSIA 

network is very low compared to the SONIA network. This means that DSIA discovered the 

information and mapped the data by using a limited number of hidden units compared with 

other feed-forward neural networks. However, in the second experiment for additional 

features SONIA performed better than DSIA and this might be related to the extra features 

being completely different between each individual woman in the same classes. 
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7.3.5 Discussion Section 

In this section, some of the issues faced by the comparison of different neural networks are 

addressed. This section attempts to elaborate on the observations resultant from all the 

experiment results. 

Most of the uterine EHG signal studies concentrate on predicting true labour, which is based 

on the last stage of the pregnancy duration. This thesis has studied the uterine EHG signals of 

women in order to classify the preterm and term deliveries from the early stages of the 

pregnancy. It has been suggested that ANN is a better solution for nonlinear medical decision 

support systems than traditional statistical techniques (Li et al. 2000). Therefore, this 

experiment is based on applying five different types of neural networks, and three of them are 

applied on medical data for the first time. These neural networks include SONIA, 

Fuzzy_SONIA, and the newly proposed DSIA neural network.  

The evaluation of the classifiers’ performance in these experiments has been measured using 

sensitivity and specificity as the performance evaluation parameters, because these are 

suitable evaluation measurement for medical classification and specifically for binary output 

(term, preterm). This study uses sensitivity, which was selected as the true positive detection 

rate of preterm classes. In terms of specificity, this relates to the detection rate of true 

negatives or of term classes. In addition, the classifiers have been distinguished using the 

ROC curve, which is commonly used in medical decision-making. It is a useful method for 

visualising classifier performance. 

7.3.5.1 Neural Network Models compared with the Traditional Statistical Methods for 

Medical Data Classification 

From the two experiments – oversampling and extending the features – the proposed neural 

network models performed consistently better than the traditional statistical methods in terms 

of the area under the curves and the accuracy, as presented in Tables 7.35 to 7.38. For the 

sensitivity and specificity values, we can see that a sensitivity of 76-91% and specificity of 

68-89% can be found in the ROC curve of the proposed DSIA model in oversampling and 

extended features’ experiments, respectively. In the SONIA model, a sensitivity of 72-91% 

and specificity of 69-94% can be found in the ROC curve. On the other hand, the highest 
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result achieved by statistical models rendered a sensitivity of 58-88.46% and a specificity of 

61-76.19% in its ROC curve. 

7.3.5.2 The Self-Organised Hidden Layer Immune Systems’ Networks Compared with 

the MLP  

The results obtained from the oversampling data show that the performance of self-Organised 

hidden layer immune systems and dynamic links improved the predictive capabilities of the 

classifiers. The simulation results indicated that the sensitivity and specificity for preterm 

records obtained with the SONIA network is slightly better than when using the MLP 

network. This means that the SONIA network has the ability to predict the true positive value 

of the preterm class; it can also predict the true negative value, which is the term class. More 

importantly, the proposed DSIA model shows promising results and outperformed the other 

classifiers. DSIA is a good method of classification, providing better values on almost all the 

cost functions. This improvement can be associated with the novel combination of supervised 

and unsupervised learning techniques used in the DSIA model and neural networks in general 

(Weijters et al. 1997). This has helped to overcome the limitations often found in back-

propagation learning. This collaboration of self-organised hidden layer immune systems and 

recurrent links has overcome the limitation in generalising knowledge of BP learning. The 

DSIA network has performed well in the classification of uterine EHG signals because it has 

used SOM unsupervised methods in the hidden layer and the recurrent links. The hidden 

layer can cluster the input nodes to the centroids of the hidden units, which gives the local 

network pattern of the input data. The Euclidean distance was utilised to compute the 

distance between the input units and the centroids of hidden units (Widyanto et al. 2005). 

Thus, DSIA is able to exploit locality characteristics of the data 

In order to evaluate the generalisation ability of SONIA and the proposed DSIA networks, a 

validation set has been used to compose vectors that are not in the training set and not in the 

test set. Furthermore, to avoid overfitting of the model to the training data the cost function 

must minimise the error of the validation data set instead of the training data set. Table 7.40 

demonstrates that the DSIA network helps to improve generalisation capabilities of the 

SONIA network. 

Experimental results confirmed that the proposed recurrent neural network improves 

discrimination and generalisation powers. This is related to using memory in the DSIA 
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network, which saves the output of the hidden units. In general, in cases of binary 

classification using multilayer feed-forward neural networks, the hidden units learn to explore 

the useful information from the input pattern and the units in the output layer learn to separate 

the information given from the hidden layers. Therefore, it is reasonable to provide more 

information to the hidden units in order to improve the classification performance of the 

neural network. 

7.3.5.3 The Issues Relating to the Neural Networks 

There are some issues that have been faced and managed with neural networks, which are:  

1. Network Size: generally, all neural networks that have been applied in this experiment 

contain one hidden layer. The problem we faced was selection of the number of 

neurons in the hidden layer. Table 7.39 shows the optimum number of neurons in the 

hidden layer that has been used for each neural network that provides the average 

result.  

2. In terms of comparing the number of hidden units that have been used in the four 

neural network classifiers, DSIA has the least number of hidden units. This might be 

related to the existence of the feedback links that allows the hidden layer to explore 

the hidden pattern with fewer hidden units. The associative memory in the DSIA is 

trained to store information efficiently.  

3. Time: More time was required to build the Fuzzy _SONIA network compared to the 

DSIA, SONIA and MLP networks. 

Table 7.40: The parameters for neural networks 

15 Features MSE Training MSE Validation Std training Std validation Lr mom 

DSMIA 0.1308 0.1372 0.0657 0.0637 0.001 0.9 

SONIA 0.0706 0.0768 0.0281 0.0275 0.01 0.9 

Fuzzy_SONIA 0.1353 0.1428 0.0422 0.0342 0.0195 0.9 

Four Features MSE Training MSE Validation Std training Std validation Lr mom 

DSIA 0.2208 0.2336 0.0087 0.0062 0.005 0.9 

Fuzzy_SONIA 0.2424 0.2412 0.0088 0.0096 0.002 0.9 

SONIA 0.2227 0.2336 0.0015 0.0062 0.005 0.9 

 

The neural network exhibits the most powerful discriminate capability when combining a 

self-organised hidden layer with an immune algorithm. In other words, the increase in 

performance has been achieved by these networks compared with the MLP network. The 

results report that the three networks that were extended from self-organised hidden layer 
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combined with immune algorithm are the best compared to other classifiers that were used in 

this experiment. The outcome of the comparison yields that, by applying memory in the 

SONIA network, it has enhanced the explorative aspect of the hidden layer. Determining the 

optimal number of hidden units in the hidden layer is very crucial for the learning. These 

networks involve the immune system which has the ability to automatically decide the best 

number of hidden units; furthermore, they select the best values of the weights associated 

with each hidden unit. However, it must be mentioned that the proposed neural network 

needs more time for learning. 

7.3.5.4 The Oversampling and the Additional Extended Feature Experiments 

The initial classification with the data set in its original form achieved very low sensitivity, 

below 20%, while the specificity is higher. This means that the classifiers were classifying 

most of the cases into the majority class, which are term subjects. The main reason for the 

ineffective classification was the unequal amount of term records to preterm records. 

Therefore, in these experiments, the oversample method has significantly improved the 

sensitivity and specificity rates for all classifiers. 

It was noticed that the TPEHG database record used in this experiment is an unbalanced data 

set of 262 terms and 38 preterms. This means that, if the unbalanced data set was run on the 

eight classifiers, the results are more likely to be biased. However, to resolve this problem, 

the oversampling method has been used. This technique generates an equal amount of data 

and even split between term and preterm records, enhancing the classifier to perform 

effectively. Furthermore, the first publication of the TPEHG data set was in 2010. However, 

in 2012, clinical data became freely available. During this experiment, additional features 

from the TPEHG database which clinical data was considered when analysing the data set. 

The final experiment results demonstrate that the general performance of classifiers is 

significantly improved further by comprising the information from the clinical data set, as 

illustrated in Figure 7.18. The results suggest that these new features were incorporated into 

the original data set to help enhance the classifier capability in differentiating term and 

preterm records.  
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Figure 7.18: The accuracy results for classifiers 

 

Generally, these experiments achieved better results than those in Verdenik and Pajntar 

(2001), where their results were as follows: a sensitivity of 47%, specificity of 90%, and an 

error rate of 25%. In addition, the experiments’ results are better than those of certain other 

authors (Baghamoradi, Naji, & Aryadoost, 2011; a. Diab, Hassan, Marque, & Karlsson, 2012; 

M. O. Diab, Moselm, Khalil, & Marque, 2012; Hassan et al., 2012; B Moslem, Diab, Marque, 

& Khalil, 2011; B Moslem, Karlsson, Diab, Khalil, & Marque, 2011; B. Moslem, Diab, 

Khalil, & Marque, 2011, 2012; Bassam Moslem, Khalil, Diab, Chkeir, & Marque, 2011; 

Bassam Moslem, Khalil, Diab, & Marque, 2012; Bassam Moslem & Khalil, 2011).  

However, the findings in Diab, et al. (2010) produced a very high result on the sensitivity rate 

of 100% and the specificity rate of 94%. Diab et al. (2010) have used several alternative 

techniques, including artificial neural networks and autoregressive models. However, the data 

size is much smaller than the data size utilised in these experiments, with 15 preterm and 15 

term.  

The neural network models developed in this study provided quite acceptable results. The 

DSIA neural network achieved the higher value of AUC (81-93%) compared to other 

classifiers; thus, this network can potentially be applied to medical decision support systems.  

The experiments’ results demonstrate that using Dynamic neural network techniques with a 

context unit is effective in classifying and analysing real-life data with high confidence: 
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whether an expectant mother is likely to have a premature birth or have a term birth. 

Dynamic SONIA has proven that it can be used as an explorative tool to find statistical 

dependencies between EMG signals. The unsupervised learning in DSIA enables the neural 

network to determine the statistical properties of input data. Furthermore, the effectiveness of 

the proposed DSIA in supervised pattern recognition is encouraging for its use on other data 

sets with a high proportion of accuracy. This network has the ability to produce a more robust 

classification with better generalisation ability. Learning behaviour of the neural network 

model enhances the classification properties. 

7.4 Chapter Summary 

This chapter has presented extensive simulation results of a number of neural network 

architectures. The first sets of experiments are based on stationary and non-stationary 

prediction of ten financial time series to forecast the one step and five step ahead predictions. 

The next sets of experiments are based on using the proposed network to classify and model 

Uterine EHG signals. The neural network models developed in this thesis provided 

acceptable results in the two experiments. In the next chapter, the overall outcome of this 

research work will be presented with suggestions for future works. 
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CHAPTER 8 CONCLUSION AND FUTURE WORK 

8.1 Introduction 

This work presents a novel neural network architecture based on the recurrent links and the 

immune algorithm and its application for financial and medical data analysis.  

For financial time series prediction, the research work underlines the important contribution 

of a new recurrent self-organising multilayer neural network inspired by artificial immune 

systems based on the Jordan network. In this study historical data of financial time series was 

utilised with ten data sets. The proposed network performs well in both stationary and non-

stationary predictions. This relates to the fact that the proposed network is able to look at the 

temporal locality of the signal and extract the required information while other networks such 

as the feed-forward neural networks are more capable of predicting the overall trends in the 

signals. In terms of applying a regularisation scheme to the DSMIA network, the network 

provides encouraging results using a weight-decay between the hidden and output nodes.  

For medical data analysis, the EHG signals are used, which present uterine contraction during 

pregnancy duration. This research utilises these signals using the proposed dynamic self-

organised network inspired by the immune algorithm based on the Elman recurrent network 

to classify the EHG signals. These signals were pre-processed and features were extracted 

before using neural networks classifiers. The main aim in this study was to classify between 

the potentially preterm and term subjects. This study has proved the ability of the proposed 

network to perform binary classification. About 76-91% of the preterm subjects were 

correctly classified using DSIA.  

From the number of experiments that have been proposed in this thesis, it can be concluded 

that the different application of dynamic neural networks for analysis of time series signals 

was highly successful and promising. 

8.2 The Contribution 

The construction of the proposed dynamic self-organising multilayer neural network inspired 

by artificial immune systems is the main contribution and novelty in this research work. The 

unique characteristics of the dynamic self-organising multilayer neural network inspired by 

artificial immune systems which combine the properties of supervised and unsupervised 
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networks as well as the recurrent neural network make it suitable and useful for forecasting 

and classification. The purpose of the proposed network was to look at the improvement 

achieved when using recurrent links to the structure of the SONIA network. From the number 

of experiments that have been addressed in this thesis, it can be concluded that the recurrent 

links have enhanced the performance of the network.  

The network has shown its advantages in forecasting both stationary and non-stationary 

signals, particularly regarding temporally local training behaviour. The proposed recurrent 

connections give the network a memory, enabling it to recall past behaviours and hence the 

network produced better results for time series forecasting in comparison to the benchmarked 

networks. These connections can detect useful predictions for stationary and non-stationary 

time series data. Although the financial time series is volatile, so it will make more mistakes, 

the proposed network is able to catch up with the trend in time series. Furthermore, the 

network generated profits (using the annualised return as a financial measure) for the non-

stationary data prediction while most benchmarked networks fail to do so. Therefore, the 

proposed neural network is a promising tool. From the experiment results, it can be seen that 

the current study can be a great tool for many forecasters of stock prices or oil prices, as it 

suggests DSMIA can be effectively used as a financial forecasting tool. The use of DSMIA in 

financial time series forecasting has demonstrated that the proposed network is possibly 

beneficial for technical trading to predict daily financial time series.  

From the EHG classification result, the suitability of the proposed network for medical data 

classification has been shown. It indicated that the recurrent neural network is a promising 

tool for medical classification. The results of this work can encourage more extensive use of 

recurrent neural networks in different types of medical applications such as classification, and 

that this use of recurrent neural networks can produce models that are more accurate than the 

currently used feed-forward neural networks or traditional statistical models. This study has 

shown the benefits to support and advance some aspects of the healthcare system. The 

proposed network can be used as a diagnostic tool to support medical experts to make the 

correct decisions about their patients. 
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8.3 Future Direction of This Research Work 

With the success of the proposed network, there are some further research directions, 

involving improvements to the proposed network and extending its application approach. 

These are discussed below. 

Different techniques 

Future work will be based on applying different techniques to the DSMIA network in order to 

improve its performance. One of the major limitations of the proposed network is 

computational performance. Hence, another direction of research must be taken which 

investigates the best choice of network architecture and this includes the number of inputs 

and the use of higher order terms in the input units. The utilising of high order terms in the 

neural network, as suggested by Knowles et al. (2005), can provide reduced computational 

time and reduced number of input units in the ANN. This may improve the performance of 

the proposed network. In addition, improving the efficiency of the prediction methods and 

procedures can be done by combining Elman and Jordan architectures in the proposed 

network. This combination can enhance the network performance. Future direction will 

include the use of fuzzy logic in the structure of the proposed dynamic self-organised neural 

network to improve the classifier performance. Another problem that has been faced is that 

selection of the best values for the learning rate and momentum parameters that are used in 

the neural networks is challenging, as there is a need to carefully test for many variables 

manually by trial and error. One direction for future improvement in this problem is to use 

some type of genetic algorithm to automatically find suitable neural network parameters. 

Utilising the proposed network for unsupervised learning 

Since clustering methods have been widely used in different applications of data mining, the 

adaption of unsupervised learning in the proposed network might serve these different 

applications, such as medical diagnostics and pattern recognition for large databases, with 

many attributes. The structure of the proposed network can be adapted for clustering tasks by 

changing the back-propagation algorithm in the output layer which is supervised learning 

algorithm to unsupervised learning algorithm. This can extend the application of the proposed 

network to analyse very complex and large data sets. 
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DSMIA for pre-processing methods 

Since the literature review showed that the RNN can be used to reduce noise from biomedical 

signals and improve the quality of signals, this can broaden the scope of the medical 

applications that can benefit from recurrent neural network models to filter and model the 

biomedical signals. The further work will show the ability of the proposed network to be used 

as signals pre-processing methods. It will use the network to filter the EHG signals in order to 

remove noise and improve signal noise ration of the signals. 
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Appendix 1: Histogram for the USDUKP signals after and before pre-processing 

 

Appendix 2: Histogram for the JPYUSD signals before and after pre-processing  
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Appendix 4: Histogram for the NASDAQO signals after and before pre-processing  

 

Appendix 5: Histogram for the NASDAQC signals after and before pre-processing  

 

Appendix 6: Histogram for the DJIAO signals after and before pre-processing  
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Appendix 7: Histogram for the DJIAC signals after and before pre-processing  

 

Appendix 8: Histogram for the DJUAO signals after and before pre-processing  

 

Appendix 9: Histogram for the DJUAC signals after and before pre-processing  
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Appendix 10: Histogram for the OIL signals after and before pre-processing  
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Appendix 11:The best forecasting on stationary data for the prediction of one  step ahead 
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Appendix 12:The best forecasting on stationary data for the prediction of five step ahead 
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Appendix 12: The best forecasting on nonstationary data for the prediction of one step ahead 
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Appendix 13: The best forecasting on nonstationary data for the prediction of five step ahead 
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Appendix 14: The confusion Matrix for DSIA classifier for four features 

 

 

Appendix 15: The MSE value for training and validation set for DSIA classifier 
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Appendix 16: The confusion Matrix for DSIA classifier for 15 features 

 

 

Appendix 16: The MSE value for training and validation set for DSIA classifier 
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