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Abstract 

With the advance of technology, the Internet has become a medium tool used for 

many malicious activities. The presence of bot traffic has increased greatly that 

causes significant problems for businesses and organisations, such as spam bots, 

scraper bots, distributed denial of service bots and adaptive bots that aim to exploit 

the vulnerabilities of a website.	  Discriminating bot traffic against legitimate flash 

crowds remains an open challenge to date.  

In order to address the above issues and enhance security awareness, this thesis 

proposes an interactive visual analytics system for discovering bot traffic. The 

system provides an interactive visualisation, with details on demand capabilities, 

which enables knowledge discovery from very large datasets. It enables an analyst 

to understand comprehensive details without being constrained by large datasets. 

The system has a dashboard view to represent legitimate and bot traffic by 

adopting Quadtree data structure and Voronoi diagrams. The main contribution of 

this thesis is a novel visual analytics system that is capable of discovering bot 

traffic. 

This research conducted a literature review in order to gain systematic 

understanding of the research area. Furthermore, the research was conducted by 

utilising experiment and simulation approaches.  The experiment was conducted by 

capturing website traffic, identifying browser fingerprints, simulating bot attacks 

and analysing mouse dynamics, such as movements and events, of participants. 

Data were captured as the participants performed a list of tasks, such as responding 

to the banner. The data collection is transparent to the participants and only 

requires JavaScript to be activated on the client side. This study involved 10 

participants who are familiar with the Internet. To analyse the data, Weka 3.6.10 

was used to perform classification based on a training dataset. The test dataset of 

all participants was evaluated using a built-in decision tree algorithm. The results 

of classifying the test dataset were promising, and the model was able to identify 

ten participants and six simulated bot attacks with an accuracy of 86.67%. Finally, 

the visual analytics design was formulated in order to assist an analyst to discover 

bot presence. 

Keywords: visual analytics, application-layer, bot traffic. 
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Chapter 1 Introduction 

1.1 Background 

Application layer attacks are on the rise, and the majority of them target the 

Hypertext Transfer Protocol (HTTP). A recent study by Incapsula reported that bot 

traffic has increased up to 61.5% of all website traffic, of which 30.5% is likely to 

perform malicious activities [1]. Another study by Arbor Networks highlighted a 

growing trend in the attack threat, impact and frequency [2]. Interestingly, the 

Cloud Security Alliance listed Distributed Denial of Service (DDoS) as one of the 

top notorious threats to the Internet	   [3]. Therefore, a defence system relying on 

machine learning and artificial intelligence alone is insufficient in defeating 

adaptive adversaries. In a world of persistent threats, there will always be an open 

door to new attacks. Attacks that target zero-day vulnerabilities are unstoppable by 

nature. Similarly, application layer HTTP DDoS attacks, scrapper bots and social 

bots are relatively new types of attack. These attacks are difficult to mitigate 

because they possess legitimate requests [13, 14]. They are able to perfectly mimic 

legitimate human behaviour in order to evade detection [6, 7]. However, their 

sources of addresses are exposed because a complete Transmission Control 

Protocol (TCP) handshake is required [15]. Although they consume less 

bandwidths, orchestrated attacks can slow down or even disrupt a network, and 

they can render the victim website inaccessible with very limited resources [13, 

14]. In the presence of genuine flash crowds, a condition where a large number of 

users are accessing the website simultaneously [34], victims may not even realise 

that they have been targeted.  

Orchestrated bot attacks produce vast amounts of data, and a command line 

interaction is not an efficient way in responding to these threats. Normally, 

filtering out the log file in a primitive way, such as line-by-line processing, can be 

overwhelming. Even an automatically generated script could not provide a 

measure of certainty in order to determine the final destiny of an incoming packet. 

Automated blocking will result in a high rate of penalised access for legitimate 

users. Therefore, actions need to be taken in an effective and efficient manner. 

Visual analytics, in contrast, allows an insight for understanding complex data 

with the visibility of attack patterns at multiple scales [44]. The end result 
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enhances situational awareness for a better decision-making process [45]. Visual 

analytics is a multidisciplinary field that exploits analytical reasoning techniques, 

which support innovative visualisation in order to gain insight and reasoning from 

large dataset [11]. 

1.2 Research Challenges and Questions 

Discriminating bot traffic against legitimate flash crowds remains an open 

challenge to date. The increasing rate of malicious bot attacks has attracted many 

researches to address this challenge. One way of defence against bots is to use the 

Completely Automated Public Turing test to tell Computers and Humans Apart 

(CAPTCHA) [37], which enforces human responses to answer a given question 

and to determine whether the user is a human. On the other hand, previous studies 

by Yu, Shui et al. have demonstrated that by using statistic based techniques, bots 

could generate attack traffic that poses similar behaviour to legitimate traffic [4]. 

Such manipulated traffic follows the patterns based on statistical distributions. The 

result of this study has shown the difficulties of using statistic based methods to 

distinguish legitimate traffic against bot generated traffic [4, 5]. In addition, Lee, 

Myungjin et al. developed AjaxTracker that automatically imitates a human 

interaction [6]. The tool provides automatic workload generation to test specific 

web applications. Jin, Jing et al. developed an evasive web bot system based on 

human behavioural patterns [7]. Their system provides a flexible and extensible 

framework to ensure direct interactions with a web browser. It enables automatic 

event generation aimed at the application user interface. Guo, Song et al. have 

demonstrated that “it is almost impossible to detect mimicking attacks from 

statistics if the number of active bots of a botnet is sufficient” [8]. These studies 

have demonstrated that legitimate browsing behaviour can be perfectly imitated to 

evade detection [4, 5, 6, 7, 8]. 

The studies presented so far provide evidence that bots are able to perfectly mimic 

human behaviour. In order to address these challenges, the following two research 

questions are raised for this research to answer: 

Question 1. Can we find a new solution to classify bot presence against 

legitimate traffic, without requiring too many user interventions? 
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Question 2. By using visual analytics, how can the result of classification be 

presented in a decision-oriented way? 	  

	  
1.3 Research Methodology 

The research was conducted by utilising experiment and simulation approaches. A 

number of participants were invited in the experiment. The experiment was 

conducted by capturing website traffic, identifying browser fingerprints, simulating 

bot attacks and analysing mouse dynamics, such as movements and events, of a 

participant. A novel visual analytics system was proposed in order to discover bot 

traffic and provide a measure of certainty for the decision making process. 

	  

Figure 1.1. Research Methodology 

Figure 1.1 illustrates the activities of the research work. In the data acquisition 

phase, participants’ data were collected transparently. The objective is to extract 

certain characteristics of legitimate visitor and simulated bot attacks. Their 

browsing behaviour data were captured. The implementation of the data 

acquisition was written using C, PHP and JQuery. 

The next phase is the pre-processing, which reads all the data obtained by the 

previous phase and performs Attribute-Relation File Format (ARFF) conversion. 

The objective of this phase is to segment and map every input into a probability 

value. This is to enable the classification to process data. 

These data were then normalised and analysed. An initial training dataset was 

generated by comparing the activity patterns of the participants’ legitimate 

behaviour against simulated bot attacks. To analyse the data, Weka 3.6.10 was 

used to perform classification based on a training dataset. The chosen algorithm 



	  

	   	   4	  

was J48 Decision Tree C4.5 algorithm [57]. Finally, the visualisation was rendered 

by using D3.js, a comprehensive JavaScript library for data-driven visualisation.  

1.4 Research Aims, Objectives and Novelties 

1.4.1 Aims 

The aim of this research is to investigate the effectiveness of visual analytics in 

order to provide a defence mechanism and to discover bots traffic efficiently. 

1.4.2 Objectives 

The objectives of this research are summarised as follow: 

• to collect the data from participants versus the simulated bot attacks in order 

to obtain a threshold limit value, 

• to develop an initial training dataset in order to best classify between 

legitimate traffic and bots traffic, 

• to build an initial model and evaluate the model using a decision tree 

classifier algorithm, 

• to formulate a visual analytics design that is capable of discovering 

unexpected bots traffic. 

1.4.3 Novelties 

This research’s main contribution is a novel visual analytics system that is capable 

of discovering bot traffic and providing a measure of certainty for the decision 

making process. Overall the result of this research contributes to these following 

novelties: 

• VATRIX, a visual analytics system for discovering bots presence. 

A custom algorithm is implemented for generating a voronoi diagram of 

connected components, which takes a Quadtree data structure. 

• X-Map, a standardised method for separating flash crowds from bots traffic. 

An observation input model is developed based on a decision tree 

algorithm, that analyses user interaction in the application-layer, such as 

website heatmap data and banner reaction results. 

The proposed methods aim to overcome low and slow bandwidth attacks that 

exploit the vulnerability of an application layer. Several attempts have been made 
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on the transport and network layers, but they are not specifically designed to 

mitigate mimicking attacks that masquerade as flash crowds. 

All these approaches were incorporated into a single system for interactive visual 

analytics design in order to overcome the limitations of current approaches, which 

are not specifically designed to mitigate mimicking attacks that exploit the 

vulnerability of an application layer. 

1.5 Research Scope 

CAPTCHA and other automated Turing test methods are effective in restraining 

the presence of bots [37]. However, an adaptive adversary can evade those 

protections by hiring human labours to solve the test. This phenomenon has shown 

that even the most sophisticated CAPTCHA technology will fail to guarantee 

protection [9, 10]. As a result of this phenomenon, organised labour attacks are 

outside the scope of this research. This research studies causal relationships of 

legitimate participants and simulated bot attacks to be identified and analysed. 

Finally, this research presents the prototype of our visual analytics design. 

1.6 Project Results 

Data were collected as the participants performed the set list of tasks and while the 

simulated bot attacks were running. The threshold value for each website page was 

measured according to all page requests, where the value will be used to indicate a 

normal legitimate page request and preliminary comparison against simulated bot 

attacks, as to be described in Section 6.2. The objective is to find the total number 

of HTTP requests made for each page. A minimal threshold value was then set to 

indicate the acceptance level of legitimate page requests. An initial training dataset 

was built based on an observation input model in order to classify incoming 

traffic. 

This research was taken in a fully controlled and structured environment, which 

will be discussed in Chapter 5. The following are the steps for this research 

project: 

1. Initial website capable of tracking visitor data. 

2. Simulated bot attacks 
3. Building the machine learning model 

4. Constructing the Quadtree data structure 
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5. Generating the Voronoi diagram 
6. Evaluating the system 

The results of classifying the test dataset were promising, and the model was able 

to identify ten participants and six simulated bot attacks with an accuracy of 

86.67%. Finally, the visual analytics design was formulated in order to assist an 

analyst to discover bot presence. The main contribution of this thesis is a novel 

visual analytics system that is capable of discovering bot traffic. Two methods 

have been developed. The first is VATRIX, a visual analytics system for 

discovering bots presence. The second one is X-Map, a standardised method for 

separating flash crowds from bots traffic, which employs a classification technique 

to make accurate detection based on visitors’ past observations. 

The research presented in this thesis was also published in the following 

conference: 

• Herlambang, I. H., Shi, Q. and Zhou, B., Interactive Visual Analytics for 

Discovering Bots Traffic, PGNet, The Annual Postgraduate Symposium on 

the Convergence of Telecommunications, Networking and Broadcasting, 

pp. 89-94, Liverpool, UK, June 2014. 

1.7 Thesis Outline 

The remaining chapters of this thesis are organised as follows. Chapter 2 discusses 

the literature review in order to carry out a systematic understanding of the 

research domain. Chapter 3 presents the proposed visual analytics system. Chapter 

4 presents the classification method. Chapter 5 describes the research settings and 

outlines the overall experiment of the simulation. Chapter 6 provides the evaluation 

of the system. Finally, Chapter 7 concludes this thesis by highlighting the main 

contributions and discussing directions for future research. 
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Chapter 2 Literature Review 

The presence of malicious bots has emerged as real threats to the Internet.  

Previous studies have demonstrated that legitimate browsing behaviour can be 

perfectly imitated to evade detection [4, 5, 6, 7, 8]. This research is focused on 

discriminating bots traffic against legitimate traffic, which can be applied to 

mitigate malicious bot attacks. The objectives presented in this thesis are suitable 

for discovering bots traffic, including visualisation. One major problem with 

application layer attacks is to transparently detect orchestrated bot attacks. The 

challenges of visualisation are associated with large and complex data. 

Using a classification algorithm to distinguish between legitimate traffic and bot 

traffic has been an interesting research area. With the objective to automatically 

learn to make accurate predictions based on visitor past observations, this research 

used browser fingerprint, banner advertisement and other techniques to achieve its 

goal. 

The remaining sections of this chapter provide the background of the research and 

describe an overview of current work in the area of visual analytics and malicious 

bots. It discusses the use of a website heatmap, browser fingerprint, banner 

advertisement and proof-of-work system in order to transparently discriminate 

bots traffic against legitimate traffic, which is one major challenge in application 

layer attacks. In addition, the application of visual analytics in the security domain 

is presented.	  

2.1 Visual Analytics 

Visual analytics is a new emerging scientific field. In 2008, Keim et al. published 

a book in which they described the definition of visual analytics, “Visual analytics 

combines automated analysis techniques with interactive visualizations for an 

effective understanding, reasoning and decision making on the basis of very large 

and complex data sets” [11]. Visual analytics tackles the information overload 

problem and aims to turn them into an opportunity [12]. The broad use of visual 

analytics is to discover knowledge through visualisation and analytical reasoning. 
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Figure 2.1. Visual analytics integration [11] 

Relationship between visual analytics and scientific disciplines has been widely 

investigated. Keim et al. described that Visual analytics has wide combinations of 

interdisciplinary research fields, such as data mining, data management and 

statistics [11]. The integration of these scientific disciplines, as illustrated in 

Figure 2.1, provides a broader way of analytic reasoning. However, there are a 

number of important differences between visual analytics and information 

visualisation. Visual analytics aims to break the barriers of information 

visualisation limitation by enhancing the knowledge discovery algorithms [11]. In 

contrast to information visualisation, visual analytics employs the strengths of data 

analysis algorithms to support interactive analysis tasks [11]. The application areas 

of visual analytics are significantly different from those of information 

visualisation, especially, in gaining insight by processing large amounts of data 

[12]. 

The visual analytics process has different stages and transitions, which is more 

extensible compared to conventional information visualisation. As illustrated in 

Figure 2.2, these are to provide interactions and increase interoperability between 

stages [12]. The end result will enable users to acquire new knowledge from vast 

amounts of raw data.  



	  

	   	   9	  

 

Figure 2.2. Visual analytics process [12] 

The initial phase requires data sources integration before visualisation 

representation [12]. Prerequisite steps need to be taken before going further for 

applying automated data analysis. Initially, it will preprocess and transform the 

data in order to gain insight for further analysis. [2]. The preprocessing tasks 

consist of data cleaning, normalisation, grouping or data source integration [12]. 

Once the data has been processed and transformed, the next step can progress 

further to either visualisation mapping or model building. The interactions with 

automatic methods are characterised through parameter refinement and analysis 

algorithms selection [12]. This step enables a user to evaluate the model by using 

data mining techniques in order to verify preliminary results. Key characteristics of 

this visual analytics process include being able to discover misleading results to 

ensure a measure of certainty. However, this requires an advanced user to confirm 

an initial hypothesis that is matched to the automated analysis to reveal hidden 

results. Finally, the new knowledge can be discovered, by using automatic analysis 

the interactions between visualisation and model can be performed by human 

analyst to support their task“ [12]. 

2.2 Malicious Bots 

An Internet bot, also identic with robot or bot, is automated software that performs 

specific tasks. A website crawler, such as Googlebot, is an example of a bot. 

However, this kind of bot is specific to website indexing tasks and can be regarded 

as a non-malicious bot. In a world of persistent threats, there are many other 

malicious bots that can be found on the Internet. 
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The evolution of scrapper bots, social bots and distributed denial of service bots 

has a significant impact resulting in financial and reputation consequences. These 

malicious bots presence has emerged as real threats to the Internet.  Large and 

growing bot traffic has increased up to 61.5% of all website traffic according to a 

study by Incapsula, which 30.5% of the traffic are likely to perform malicious 

activities [1]. 

 

Figure 2.3 Application layer attacks [2] 

Adaptive and persistent attacks have proven to evade detection and prevention 

system, hardware devices, such as firewall and IPS, are insufficient and susceptible 

to DDoS attacks [2]. Previous study, conducted by Moustis and Kotzanikolaou, has 

reported that “more recent DDoS attacks targeting at the HTTP layer can be very 

effective even with a small number of infected bots” [13]. Their study has 

demonstrated that application layer attacks can be deployed with a very limited 

resource, which only require a small size botnet to disrupt web servers. They 

examined HTTP SYN-flooding DDoS attacks with a small number of bots by using 

Slowloris [13]. A similar study, conducted by Zargar et al., has identified several 

key difficulties in mitigating application layer attacks, because the new adaptive 

application layer DDoS attacks require small number of bandwidth and target the 

vulnerabilities of application layer protocol. [14]. Moreover, Durcekova et al. 

investigated sophisticated attacks aimed at the application layer [15]. They 

proposed two detection mechanisms for monitoring web traffic in order to discover 

abnormal burst traffic.  
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Interestingly, a study by Juniper Networks revealed that DDoS attacks could be 

purchased with a little cost [16]. The new breed of slow and low application-layer 

DDoS attacks can stay under a threshold limit of detection systems. A similar study 

by Prolexic reported that the peak attack bandwidth in 2014 has increased 133% 

compared to the previous year [17]. The new reflection and amplification attacks 

are the most prevalent and disruptive compared to the traditional botnet infection 

method, generating peak traffic of more than 200 Gbps and 53.5 Mpps, [17]. These 

attacks constitute a real threat to industries. Figure 2.4. illustrates the distributions 

of attacks targeting key industries, in which 49.80% of the attacks target the media 

and entertainment industry. This provides insight into the motivation of attackers, 

which is for press exploitation in order to effectively reach out and recruit others to 

join their cause [17]. 

 

Figure 2.4. Distribution of attacks [17] 

A relationship exists in showing the effectiveness of application layer attacks and 

their impact on service availability. Together these studies provide important 

insights into the disastrous results of application layer attacks that can be launched 

effectively. 

2.3 Website Heatmap 

Recently, there are various cloud-based services that offer a website heatmap 

solution. The open source JavaScript library that produces real-time website 

heatmaps are also widely available [18]. A website heatmap provides an effective 

tool in order to analyse visitor behaviour. The technique aims to produce a 

graphical image that represents visitor interactions with each section of a certain 
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page. These interactions, for instance, are mouse movement, click density, form 

usability and scroll movement. An advance website heatmap enables usability 

study for many mobile and table specific devices. 

 

Figure 2.5. Website heatmap [18] 

The flexibility of this technique allows data to be created from many different 

types, such as mouse and keyboard tracking, to enhance usability and design 

study. One of the limitations with this technique is that it requires JavaScript to be 

enabled in the browser side, while some requires a HyperText Markup Language 

(HTML) version 5 enabled browser. Recent Online Social Network (OSN), 

however, demands significant usage of JavaScript. 

A study by Huang and White discovered the correlation between mouse movement 

and search results, which will be examined by a visitor [19]. Although the website 

heatmap technique could predict high presence of a human, but currently it is not 

widely applied for detecting bots presence. However, previous studies have 

demonstrated that legitimate browsing behaviour can be perfectly imitated to 

evade detection [4, 5, 6, 7, 8]. Currently, no empirical studies on the potential 

benefits of website heatmaps have been conducted to detect the presence of bots.  

2.4 Browser Fingperint 

Tracking users can vary in techniques, such as generating browser cookies or using 

browser fingerprints. Previous study by Eckersley has shown that web browser 

attributes can be used to transparently fingerprint clients, even when browser 

cookies are disabled by default [20]. The result indicated that browser 

fingerprinting enables web browser identification without relying on User Agent 

string headers. Browser fingerprinting provides a method to discriminate machines 
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behind a single source address, such as Network Address Translation (NAT) and 

proxy server. 

 

Figure 2.6. Browser fingerprint [23] 

The approach is based on research study that at least one in 286,777 browsers 

shares the same fingerprint [20]. The demonstration estimates that under current 

active session only one in 3,987,090 browsers will share the same fingerprint [23]. 

The browser fingerprinting technique allows browsing sessions to be linked 

together. The finding suggests that browser fingerprint can be effectively used to 

replace browser cookies in order to track visitor uniqueness [20]. A similar study, 

conducted by Mulazzani et al., confirmed the reliability and efficiency of browser 

fingerprinting in terms of bandwidth and computational overhead [21]. Moreover, 

Mowery et al. study has shown that it is difficult to simulate or impersonate 

browser fingerprint unique session that belongs to other user. [22]. 

However, browser attributes are constantly changing, due to plugin installation 

and setting configuration. In making decisions based on dynamic attributes, it is 

important to present to the analyst the results and impact of that uncertainty. This 

is to ensure unique identification between clients. 

2.5 Banner Advertisement 

Website banner advertisement is becoming pervasive, and the ability to attract 

customers has been adopted by online news websites, such as Forbes and 

InformationWeek [24, 25]. The banner can be in a form of full page or only at a 

small fraction of size. Typically, a banner resides in a floating area, while others 

prefer an embedded banner in a single page. A banner has a closing or a skip link, 

which forces a visitor to close them in order to continue browsing the website. A 

proof-of-concept demonstration of this situation is taken from the 
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InformationWeek website, as illustrated in Figure 2.7 below. This condition 

requires the visitor to respond or wait in order to access the main news. 

 

Figure 2.7. Banner advertisement [25] 

So far, several studies have been conducted to investigate visitor behaviour 

towards advertisement [26, 27]. Similarly, Kitts et al. proposed a method for click 

fraud bot detection, by calculating mix adjusted traffic and bot signatures [28, 29]. 

However, no empirical studies of the potential benefits of user tracking 

advertisement reaction have been conducted to provide a measure of certainty of a 

human presence. Such methods would have a high possibility to replace 

CAPTCHA in the future [29]. While the results are still uncertain, however, this 

allows a combination of security protection with the opportunity of banner 

advertisements, which can lead to beneficial revenue behind them.  

2.6 Proof-of-work System 

Kaiser and Feng defined the goal of a proof-of-work system, it aims to maximize 

the amount of workload that adversaries must conduct and minimize the 

legitimation process on the server side. [30]. Typically, a proof-of-work system 

enforces clients in committing their computational resources. According to a study 

conducted by Pandey and Rangan, it has been shown that this technique 

effectively protects system resources against denial of service attacks [31]. In their 

study, a variety of algorithms, Token Bucket and Fair Queue Algorithm, were used 

to prevent brute force attacks. However, a previous study by Laurie and Clayton 

argues that proof-of-work itself can be a better solution for e-mail spams [32]. 
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They examined the approach from both economic and security perspectives. Their 

study indicated that an uncomplicated scheme for email challenge-response is not 

a guaranteed solution to mitigate spams. Despite the wide usage of the proof-of-

work system for security purposes, however, determining how much processing 

power and how much work are required in order to provide stability remains 

uncertain. An active monitoring system, that supports visualisation, would be an 

ideal solution in providing insight. Figure 2.8 illustrates challenge-response - a 

part of the proof-of-work system. 

 

Figure 2.8. Challenge-response [33] 

In the application of user behaviour tracking, the proof-of-work system can be 

combined with session tokens or One Time Password (OTP). This is to ensure 

protection against brute force and replay attacks. A randomly generated JavaScript 

code, containing the task to solve, can be securely delivered to the client by using 

Secure Socket Layer (SSL). Hardening methods such as code obfuscation can also 

be applied. However, the key challenge is to maintain integrity of each session in 

order to ensure such accuracy.  

2.7 Discriminating Bots against Legitimate Flash Crowds Traffic 

The increasing rate of malicious bot attacks has attracted many researches to 

address this challenge. One major difficulty in application layer attacks is to 

distinguish bots from legitimate flash crowds traffic, “A flash crowd is a surge in 

traffic to a particular Web site that causes the site to be virtually unreachable” 

[34]. Several attempts have been made on the transport and network layers to 

provide solutions. Yu et al. reported the effectiveness of their method by using 

flow correlation coefficient [35]. The result of Thapngam et al.’s study reported 

that linear discriminant analysis could approach the problem with a high rate of 

accuracy [36]. However, these methods are not specifically designed to mitigate 
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mimicking attacks that exploit the vulnerability of an application layer [4, 5, 6, 7, 

8].  

A number of studies on the application layer have been conducted in order to 

discriminate bots against legitimate flash crowds traffic. Kandula et al. developed 

Kill-Bots in order to guard web servers against DDoS attacks [37]. During intense 

traffic spikes, Kill-Bots enforces clients to solve graphical tests before allowing 

them access to the server. One major drawback of this approach is that the method 

requires CAPTCHA puzzles to be solved.  

Xie and Yu proposed their method based on user browsing behaviour [38, 39]. 

Their method applied a Hidden Semi-Markov Model to detect anomaly of a user 

browsing behaviour. The browsing behaviour was observed by the request rate, 

page viewing time and request sequence. The result presented in their study reveals 

the effectiveness of defence against application layer DDoS attacks. However, 

previous studies have demonstrated that legitimate browsing behaviour can be 

perfectly imitated to evade detection [4, 5, 6, 7, 8]. 

Oikonomou and Mirkovic proposed their method by using human behaviour 

modelling [40]. They investigated request dynamics of a human interaction in 

order to learn request patterns. In addition, a deception approach, by embedding 

invisible objects, was used to detect bots presence. However, their method cannot 

effectively defence against flash crowds attacks. Yu et al. have demonstrated the 

difficulties to detect mimicking attack, especially when the number of active bots 

is massive [8].  

2.8 Visual Analytics Applications 

Visual analytics approach can significantly support the process of knowledge 

discovery from very large and complex datasets. Considerable amounts of 

literature have been published on the topic of visual analytics. 

Zhang and Huang studied visual analytics model to detect DDoS flood attacks [41]. 

They proposed Density-Workload Model with three coefficients in order to 

investigate the attacks and their impact level. Their study analyses the relationship 

between system performance and attack density by using clustered visualisation. A 

graph model, consisting of nodes and edges, was mainly used to represent the flood 

attacks. The result has shown that the model produces high accuracy to measure 
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different types of flood attacks. However, their method of visual analytics model 

has a number of limitations. This model lacks the ability to identify bot attacks and 

flash crowd attacks, which have different traffic patterns with flood attacks. An 

interactive respond to handle flood attacks is missing in their study. In the absence 

of intense traffic spikes, it is very difficult to identify low-bandwidth and slow 

HTTP attacks with this technique. They limited issue with this method is that it 

does not identify legitimate flash crowds traffic against flood attacks. 

Zhao et al. developed NetSecRadar, a real-time visual analytics system to monitor 

network security events [42]. A radial graph, composed of hosts and attack 

correlation, was mainly used to aid monitoring Intrusion Detection System (IDS) 

alerts. Their system supports filtering, animation and direct interaction with the 

user. Preliminary result has shown the ability to illustrate attacks and visually 

correlate the events. However, NetSecRadar is IDS dependent. The ability to 

identify malicious bot attacks largely depends on the IDS database. Therefore, a 

key feature to discriminate flash crowds against DDoS attacks is missing.  

Fischer et al. developed VisTracer, a visual analytics tool to investigate routing 

anomalies [43]. They introduced novel glyph-based and graph-based visual 

representations. The interesting part of their study is the ability to distinguish 

between legitimate routing changes and malicious activities from legitimate 

addresses. However, the visualisation is only specifically designed to detect routing 

anomalies on large traceroute datasets, which has not been applied to discriminate 

malicious bots traffic.  

Keim and Fischer developed VACS, a novel visual analytics suite for cyber security 

[44]. The system allows visual exploration to identify suspicious host behaviour by 

using Graph Viewer and Hierarchical ClockMap. Their study has demonstrated the 

ability to identify and explain unusual activities in the network by using visual 

analytics. The evidence presented in this study suggests that VACS is best used on a 

large display to enhance situational awareness. However, no explanation is given 

on how to detect unusual happenings inside the network. 

Shurkhovetskyy et al. studied visual analytics for network security [45]. The study 

investigated visualisation tools to assist network forensic analysts. They use a 

combination of multiple interactive visualisations to provide a global and detailed 
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view of network activities. However, the visualisation makes no attempt to 

differentiate between various types of DDoS attacks. Another weakness is that the 

detection method for suspicious events inside the network was not fully described. 

Yassem presented a visual analytics approach to network security hygiene [46]. 

The research investigated visualisation methods and techniques to enhance 

situational awareness. The visualisation implements a stacked bar chart, 

hierarchical edge bundle and Hilbert curve into a single dashboard. However, it is 

unclear how situational awareness can be enhanced from an analyst perspective. 

The research fails to fully define what types of attacks were detected by the 

visualisation. Another weakness is that the visualisation fails to provide user 

interactions, which is an important feature for visual analytics.  

Mansmann et al. presented a real-time visual analytics system for dynamic event 

data streams  [47]. A loosely coupled modular visual analytics system was 

introduced. The extensible framework allows internal threats identification and 

suspicious events investigation. The result has shown that “it can be used to 

smoothly switch between historic events and the most recent events for monitoring 

purposes and relate incoming data with historic events” [47]. The visualisation 

system enables suspicious user behaviour tracking and recognises abnormal 

patterns. Although this is the most comprehensive modular system of visual 

analytics produced so far. However, there are limits to how far the idea of burst and 

anomalous behaviour can be identified, which is missing in this framework. In this 

study, no attempt was made to classify malicious bot attacks.   

2.9 Summary 

After conducting the above literature review, the following shows a summary of 

the identified weaknesses with the existing work: 

• Several attempts have been made on the transport and network layers, but 

they are not specifically designed to mitigate mimicking attacks that exploit 

the vulnerability of an application layer. 

• Some existing solutions such as Kill-Bots offer effective protection but this 

relies on CAPTCHA puzzles to be solved. This method only focuses on 

preventing DDoS attacks that masquerade as flash crowds, which is not 

suitable for low bandwidth attacks. 
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• Most of the existing solutions still rely on the use of statistic-based methods 

that can be perfectly imitated to evade detection. 

• The existing solutions lack the ability to identify bot attacks and flash 

crowd attacks, which have different traffic patterns with flood attacks. 

• In the absence of intense traffic spikes, it is very difficult to identify low-

bandwidth and slow HTTP attacks with the existing solutions. 

This chapter has outlined the literature review and explained the necessary 

understanding of the visual analytics, malicious bots, website heatmap, browser 

fingerprint, banner advertisement and proof-of-work system. It was found that 

related studies have been conducted in the domains of visual analytics and 

malicious bot attacks. Although these studies did not evaluate specific 

classification methods for adaptive bot attacks, they provide valuable insight for 

our research study. A combination of visual analytics and traffic discrimination 

techniques could provide a measure of certainty and give a strong indicator of 

human or bot presence, which is missing in the current proposed methods. 

Therefore, the limitations of current approaches have motivated this research. 

There are several studies on the effective use of CAPTCHA in order to 

discriminate the presence of bots. However, existing studies have not dealt with the 

use of banner advertisement to predict the presence of a legitimate visitor, based on 

the response behaviour. The next chapter will describe our research methodology, 

which was defined using experiment and simulation approaches for undertaking the 

research to fill these gaps. 
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Chapter 3 VATRIX 

In the previous chapter, an overview of visual analytics and malicious bots attacks 

has been introduced. In addition, the challenges of this research area have been 

discussed. Furthermore, the applications of visual analytics and the technique used 

in order to discriminate bot traffic have been identified. Recent work in the 

domain of visual analytics and network security has presented techniques that 

allow an analyst to monitor network security events, such as analysing the flow of 

DDoS flood attacks. However, the prior work in network security visualisation 

mostly applies graphs directly without the use of any classification technique. 

On the other hand, visual analytics is an emerging scientific field with the ability 

of interactive visualisation to provide collaboration among analysts. The approach 

presented in this chapter aims to create an interactive visual analytics system, 

VATRIX, that automatically discriminates bot traffic and provides a rich user 

interface in a multiple dashboard view. VATRIX embraces the use of a Voronoi 

diagram, Quadtree data structure and priority queuing technique in order to 

provide a defence mechanism and to allow an analyst to gain insight from large 

amounts of data. VATRIX also employs X-Map in order to classify incoming 

traffic and discriminate them against bot traffic, which will be discussed in 

Chapter 4, whilst also producing a system that observes visitor behaviour. 

3.1 Introduction 

This chapter presents the visualisation techniques employed in VATRIX - Visual 

Analytics Through Responsive Interactive X-Map, which was mainly developed 

during this research study. It covers the user interface, mapping specification and 

architecture of the entire system. The aim of VATRIX is to provide a defence 

mechanism, by using interactive visual analytics, with fair allocation across all the 

visitors in the presence of attacks. By using advanced interaction the advantage is 

that it does not increase the amount of representation complexity. Therefore, 

action can be taken more effectively and efficiently. The next section will present 

the VATRIX architecture. The architecture consists of two main parts and three 

stages, the data acquisition and visualisation. Data acquisition was used to collect 

computing and network resource usage data. On the other hand, visualisation 

presents interactive graph to the end user in order to explore the large datasets. 
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VATRIX is a web application using HTML5, JavaScript, mixed libraries and 

several toolkits. To produce the visualisation D3.js was used. 

 

Figure 3.1. VATRIX architecture 

Stage 1, the data acquisition stage aims to gather all traffic entering the network. It 

filters all incoming HTTP and HTTPS requests inside the network. It is expected 

to handle over millions of packets per second. Several raw data are extracted to 

provide details on demand in the visualisation stage, for instance IP address and 

source port. In the application layer, visitor data, such as website heatmap, 

browser fingerprint and other attributes are also extracted. This stage is constantly 

comparing current profile with previous history profile to avoid duplication and 

performance overhead. 

Stage 2, the classification objective is to classify incoming network traffic, 

especially HTTP and HTTPS requests. The classification is based on visitor 

behaviour training data set. It analyses previous patterns to identify legitimate or 

illegitimate behaviour and combining the results with details on demand 

information to provide a measure of certainty. The result of this classification will 

be visualised according to the final class.  

Stage 3, the visualisation stage renders all the classification results. This stage 

provides interaction to the analyst. Analyst is now able to discover bots presence. 

Analyst can quickly block or route suspicious requests from the interface to divert 

malicious bots activities, for example forwarding requests to puzzle server with a 

banner challenge. All other legitimate requests will not be affected.  
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3.2 Quadtree Data Structure 

A data structure for visualization is of significant interest in representing elements 

including points, areas and lines. A quadtree data structure is “a tree data 

structure in which each internal node has exactly four children [68]. The node has 

a similarity with a binary tree. The partitioning of this data structure suits well for 

mapping multiple IP addresses, as illustrated in Figure 3.2. Each leaf node of the 

data structure has four branches, which each region represents a partition of one 

octet of a valid IP address. 

 

Figure 3.2. An example of Quadtree representation 

The data structure allows adding, deleting or replacing elements dynamically 

according to practical situation. By using this data structure, the disadvantage of 

redundant IP address mapping can be enhanced because current visualisation tools 

are restricted to represent constraints of massive list of IP addresses. Thus, the 

rendering for the Voronoi diagram can be grouped into four different regions 

making the first octet of the IP address to be adjacent for each group. 

3.3 Voronoi Diagram 

Voronoi diagrams are considered to be the most useful technique in the area of 

visualisation and computational geometry, “a Voronoi diagram is a way of 

dividing space into a number of regions.” [69]. The definition of a Voronoi 

diagram consists of a set of n distinct points, P = {P1, P2, P3 …, Pn} [69], where 

the P set can be defined as the division of a region. The diagram can be presented 
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as the division of a plane into multiple regions showing vertices and edges. A 

connected line segments of the boundary regions are the voronoi edges and each 

endpoints of the edges would represent voronoi vertices [78]. The application of 

the diagram can be plotted to the bound cells for the points of a dataset to 

represent all elements that will be visualised. This enables interactive visualisation 

to be presented into multiple regions and manage in a more compact way. Figure 

3.3 illustrates a typical Voronoi diagram also known as a point diagram. 

	  
Figure 3.3. A typical Voronoi diagram 

The division of space for any point that lies in the region has a site that is nearest 

to each other for rendering the final visualisation. This is to enable linking of 

multiple points, such that all points in the region are closed to each other. Thus, it 

supports grouping and filtering for a large dataset because a Voronoi diagram 

provides a useful representation for generating a minimal number of elements 

[69]. For all layers in the Voronoi diagram, the following requirements apply: 

• The region contains at least one point to represent the first octet of the IP 

address. 

• The layer contains a finite number of points. 

• The diagram is represented in a two dimensional grid. 

• Each point that is closest to each other contains a unique value, which is 

the first octet of the IP address. For instance, the same first octet of the IP 

address that will be grouped together will be adjacent to each other. 
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3.4 Generating Voronoi Diagram 

Generally, constructing a Voronoi diagram is time-consuming, especially for a 

large dataset with a huge number of pixels. In this section, a custom, fast and 

efficient algorithm is implemented for generating a Voronoi diagram of connected 

components, which takes a quadtree data structure, as illustrated in Figure 3.4. The 

proposed algorithm for constructing the area of a Voronoi diagram is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.4. Construct Voronoi 

To illustrate the above algorithm, the steps can be visualised as follows: 

 

Figure 3.5. Constructing Voronoi diagram 

procedure ConstructVoronoiArea 
 1: v ← initialiseArea  

 2: I ← parsePacketQueue 
 3: for each incoming_packet of I do 
 4:   h ← parseHeader(I) 
 5:   Q ← quadtree_grow (h) 
 6:   if firstEntry == null then 
 7:     merge-data-points [h] 
 8:     group-into-clusters [h] 
 9:     calculate_timing 
10:   else 
11:     appendNewVertices(v) 
12:     appendNewCoordinates(v) 
13:   endif 
14: end for 
15: r = API_generateVoronoi(v, Q) 
16: if r >= 1 then 
17:   API_drawDiagram(v, Q) 

   18: endif	  
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The Voronoi diagram takes a quadtree data structure, which is a group of four 

different regions, for all IP address entries as computed by using a decision tree 

algorithm to perform the classification task for making detection based upon past 

observations. The chosen algorithm was J48 Decision Tree C4.5 algorithm. Then 

the Voronoi diagram is calculated in an optimal time for every created layer. 

Therefore, in the generated Voronoi diagram of all dataset the vertices are 

presented, where a region label indicates the first octet of the IP address. By using 

these vertices, multiple layers of Voronoi diagrams can be generated to provide 

visualisation interaction. These layers are stored in main memory, which can be 

used when required. In order to plot an IP address into the diagram, the initial step 

is to obtain all octets from the quadtree data structure (set IP). To generate the first 

order of the block in the diagram, it starts with first IP set and mapped each cell 

found in the structure of X = {x1, x2, x3, x4}, where the order of the cell will follow 

the structure of the quadtree data structure. For a given set of IP address, the 

farthest-point divides the plane into several cells where the same point of the octet 

will be adjacent to each other. For instance, an entry of IP address in class C 

network will be adjacent and formed together into one single group of cell. 

The role is to divide continuous space into mutually disjoint subspaces according 

to the nearest rule. Therefore, a selection of multiple regions, containing multiple 

layers, is possible by decomposing the space into regions around each point. 

3.5 Priority Queuing Method 

One of the most time-consuming aspects of analysing visitor behaviour is to 

prioritise incoming traffic. The system must capture every behaviour and perform 

classification. For instance, a huge amount of traffic may be taken before decision 

can be made. In order to optimise the task, in this section, the priority queuing 

method is presented to classify visitor behaviour. The method has a role to 

prioritise incoming request patterns of a legitimate visitor by controlling the order 

of activities. The queue is implemented in an abstract data type, which has 

functionality for enqueuing and dequeuing operations. Figure 3.6 illustrates the 

queuing and dequeuing process. 
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Figure 3.6. Priority queue 

The result of the priority queuing method enables traffic to be grouped in one 

object and constructed in a prioritised way. Thus, classification can be performed 

more effectively, especially for large datasets. There are several implementations 

of First In First Out (FIFO) queues which have more advantage over fixed length 

arrays, such as a singly or doubly linked list [73]. This enables new elements to be 

added dynamically without any capacity constraint. To construct the priority 

queue, it can be visualised as follows: 

1. A buffer starts with an empty element. 

2. An object is added into the queue. 

3. The object will be processed to perform classification. 

4. The object will be removed from the queue upon successful classification. 

This shows how the queue buffer is managed to support classification. The data 

structure of an object can be defined as follow: 

typedef	  struct	  {	  
	  	  	  	  int	  	  	  	  	  	  	  	  	  size;	  	  	  	  
	  	  	  	  int	  	  	  	  	  	  	  	  	  first;	  
	  	  	  	  int	  	  	  	  	  	  	  	  	  last;	  	  	  
	  	  	  	  vType	  	  	  	  	  	  	  *elems;	  	  }	  QueueBuffer;	  

3.6 VATRIX Interactive User Interface 

Our research in visual analytics combines interactive information visualisation and 

automated analysis techniques. This allows the development of an interactive user 

interface and the ability to render large amounts of data. The purpose of the user 

interface in VATRIX is to allow an analyst to interactively gain insight from large 

amounts of data. The diagrams presented in this section use Voronoi diagrams, a 

Quadtree data structure and priority queueing method in combination with d3.js 

for the presentation. 

In the absence of intense traffic spikes, it is very difficult to justify whether a 

system is under attack. As network traffic produces vast amounts of data, using 
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conventional visualisation tools alone, as illustrated in Figure 3.7, can be difficult 

to grasp a good feel of the data, especially when trying to identify the class of the 

traffic. 

 

Figure 3.7. An example of conventional network traffic visualisation 

The VATRIX visual analytics system provides a main dashboard view to represent 

human, bots and unclassified traffic. This behaviour is rendered in a real-time 

mode by the help of X-Map. It visually represents the current network traffic. 

Therefore, the visualisation in VATRIX is presented as illustrated in Figure 3.8, so 

that fast interactive responses can be made, such as blocking all bots traffic or 

taking further investigation. Using this mechanism, it allows a high-level traffic 

priority for legitimate users accessing the website. It can help to get further 

insights into the structure of data and interactively explore each plot. 

 

Figure 3.8. Vatrix interface 

Given vast amounts of network traffic, an analyst could interactively select part of 

the data to determine its destiny or visualise it in detail. The analyst could grasp 

more comprehensive details without being constrained by large data.  

The output of the current selection, as presented in Figure 3.9, can be exported in a 

CSV or text format containing the source of addresses and observation data. This 

brings a simple action without changing the representation of the overall 

visualisation. 
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Figure 3.9. Bot selection 

From the current selection, there are other features that can be made, such as: 

è Export to CSV 
è Export to Text 
è Block Traffic 
è Redirect Traffic 
è Run Custom Script 
è Assign Class 
è Expand Visualisation 

Each of its pixels represents a single client connection. The colour of a pixel 

represents the maximum value of activities; the dark colour of the pixel represents 

a high peak of activities. The pixels are arranged so that connections are close to 

each other; adjacent traffics are mapped to adjacent pixels. This gives fair 

visualisation allocation when flash crowds might occur in a network. The flash 

crowds activities shown in Figure 3.10 below illustrate all possible drawn pixels 

when incoming network traffic is in high load. The diagram shows overcrowded 

activities, which are intended to improve by using Quadtree and Voronoi 

diagrams. 

 

Figure 3.10. Flash crowds activities 
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 The next section describes the details on demand feature. It gives an analyst 

information details and control over an incoming network connection. The graph 

is produced by using a heatmap diagram. 

3.6.1 Details on Demand 

Another feature that is supported by the user interface is details on demand 

capability, which is the key for the visual analytics system. Details on demand can 

show which activities are intense. The prototype interface follows a visual 

analytics approach by using a two-dimensional representation of a graphical 

heatmap. It aims to provide a better understanding to show the intensity requests 

of the current situation.  

As illustrated in Figure 3.11, pixels cycle their colours over their lifetime, and the 

animation speed level depends on their activities.  The pixel colour is used for 

showing the intensity of an activity; a darker colour represents an active request. 

Therefore, it is possible to see exactly how request loads are progressing according 

to their pixel colours. Suppose an analyst wants to explore the data payload. He 

could then select the interesting part of an unusual network traffic pattern; 

represent it in pixels; explore the header with its payload for further checking. 

This heatmap view acts as a complement for the VATRIX main dashboard view 

and it represents an overall incoming connection coming to the network. It aims to 

reduce the drawing complexity as illustrated in the previous Figure 3.10. 

 

Figure 3.11. Heatmap view rendered with d3.js 

The procedure starts by initialising the heatmap graph using the third party library, 

D3.js [58]. It actively monitors incoming requests. Each connection will be 
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rendered on a different pixel location according to its request load, which can be 

differentiated by its colour. The following procedure is presented to generate the 

heatmap view: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12. Heatmap View 

The heatmap view is firstly initialised before any pixels are appended to the 

diagram. For each incoming connection, it will be represented and drawn to the 

heatmap element.  Each new incoming connection will cycle through the graph 

where the intensity of the request rate will determine the colour of its pixel. An 

analyst can view further details of the connection regarding the probability score, 

which will be presented in the next section. This enables an analyst to gain insight 

regarding the current connection that traverse through the network. 

3.6.2 Weight Score 

The weight score is a collection of calculated values for each visitor data, where 

the value ranges between 0 and 1. The score is generated based upon visitor 

observation, which will be discussed in Section 5.3. An entry of each incoming 

connection corresponding to a certain task can be interpreted as an activity score to 

be classified and rendered by the system. The graph contains connection 

information details, which are rendered by the previous Heatmap view. The graph, 

which is produced by using d3.js, aims to complement the Heatmap view by 

adding weight scores for all pixels. For instance, a high score on user interaction – 

between 0 and 1 - represents a higher likelihood that the traffic belongs to human. 

procedure GenerateHeatmapView 
 1: H ← API_drawHeatmap() 
 2: while(conn[] = grabIncomingRequest()) 
 3: for each conn of I do 
 4:   for x=1 to MAX_ROW 
 5:     for y=1 MAX_COL 
 6:        if conn.requestRate > HIGH then 
 7:          H.drawPixel(x, y, COLOR.DARK) 
 8:        else 
 9:          H.drawPixel(x, y, COLOR.LIGHT) 
10:        endif 
11:     end for 
12:   end for 
13: end for 

   14: end while	  
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These techniques provide a measure of certainty and can assist an analyst to 

emphasise that the current traffic belongs to a particular class. It determines the 

intensity level of activities, for example the value of request load. On a mouse 

hover event, the behaviour activities are presented with a activity weight score 

graph, as illustrated in Figure 3.13. This type of representation can be extended 

with a custom ordering of rows and columns, such as colour-based grouping. It 

allows expanding and collapsing of pixels to allow deeper exploration. 

 

Figure 3.13. Weight score selection 

A further breakdown on visitor behaviour can be generated, as illustrated in Figure 

3.14 below. By using external heatmap Javascript plugin [18], this provides the 

current view of a visitor mouse interaction on a certain page.  

 

Figure 3.14. Website heatmap using plugin [59] 

3.6.3 Extended View 

Additionally, a VATRIX calendar view provides summarized traffic activities for 

each month, as illustrated in Figure 3.15. A lighter green colour indicates a high 

human presence. As opposite, a darker colour indicates a higher bot presence. This 

mixed colouring approach provides a better understanding of trend discovery for 

large amounts of data. 
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Figure 3.15. Calendar view 

To explore the calendar view for further details, the system will render a histogram 

view to provide a graphical representation of the data distribution for a single or 

multiple date selection. Total requests are accumulated for each category. It 

calculates the total hits made by each category - human, bot and unclassified, as 

illustrated in Figure 3.16. For example, an analyst could select a specific date, 

month or year to summarize the overall connections for each category, which will 

be represented in a histogram view as shown below. 

 

Figure 3.16. Histogram view 

The histogram view is dynamically created according to the selected date range. 

This is to enable an analyst to view the accumulated requests made for each 

category. The following procedure is presented to generate the extended view:	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17. Generating View 

procedure GenerateExtendedView 
 1: xmap ← XMapClassify 
 2: for each request_sequence of I do 
 3:   sum[] ← frequency(xmap) 
 4:   human ← sum[0] 
 5:   bot ← sum[1] 
 6:   unclassified ← sum[2] 
 7: end for 
 8: c = API_drawCalender() 
 9: date = API_getDateRange(c) 

   10: API_drawHistogram(date)	  
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3.7 VATRIX Response 

The data collection task of the system is generated by using an external Apache 

module, mod_status module, which provides a way to monitor the internal 

performance of an Apache web server. However, the original development of this 

module does not support process states visualisation. It only renders the 

connection information into a tabular field. Often, important details are difficult to 

grasp by manually traversing the tabular field alone. VATRIX enhances this by 

providing a response and to monitor these process states in order to render them 

into a diagram. The following sub-sections will discuss about the Apache web 

server with the process states and how the visualisation will be produced based on 

a predefined matrix model. 

3.7.1 Apache Web Server 

Apache is an open source and cross-platform web server software system. It is an 

industry leading web server that is widely used in production servers. As a fast and 

secure web server software system, Apache supports multi-threading that can 

handle millions requests at once [60]. It contains several compiled modules that 

can be extended to any functionality. According to a survey conducted by 

Netcraft, “nearly two thirds of all Internet domains use Apache” [61]. 

As highlighted by Li and Lu on performance optimization [62], the performance of 

the web server can be tuned by adjusting some important parameters dynamically. 

Their study examined system performance usage as the main measurement metrics 

and a combination of control theory and system model. They proposed a multiple 

input and output approach to model the web server. The result has indicated that 

Apache can be well fit for performance optimization. 

One of the primary advantages of Apache is that it enables requests logging for 

information visualisation. All instances can be used to collect HTTP traffic at any 

given period. As default, an Apache web server records all incoming HTTP 

requests to a log file [63]. The format of the log file is highly configurable. During 

client requests, Apache also records error and diagnostic information. Apache has 

very comprehensive and flexible logging capabilities.  It offers a wide range of 

options for controlling the log format. It is also capable of writing log files into a 

pipe of another process. 
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The ability to visualise HTTP traffic has always been both important and difficult. 

The main purpose is to detect traffic spikes, resource usage and attacks. In this 

case, a visualisation system must be able to discover and represent incoming 

requests in the network. Besides, it must be able to get more detailed information 

on each flow. The research conducted by Xiaojun in a remote monitoring system, 

presented a web-based centralised monitoring solution [64]. The study 

demonstrated a tool to efficiently link utilisation in flow-based networks by 

capturing and analysing control messages between servers. The result indicated 

that the proposed monitoring platform is suitable for heterogeneous network 

environment [64]. 	  

3.7.2 Process Mapping 

Normally, an application server, such as Apache, is executed as a background 

process. It runs continuously for a long period of time. A process can increase or 

decrease its CPU usage, memory usage, and thread process since the startup of the 

application. Within this condition, a process thread may change its state, such as 

accepting connection, reading request, busy, idle, sending reply, waiting or closing 

connection. Figure 3.18 and 3.19 illustrate these states. 

 

Figure 3.18. Apache server-status 

These states provide an insight regarding the health of a process, a low traffic 

spikes but with a full of connection reading would indicate that resource 

exhaustion is happening, which may lead to a declined service.  
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Figure 3.19. Apache scoreboard key 

For a better understanding, it is useful to conceptualize these process states into a 

MxN matrix. A row represents a client connection, while a column represents a 

group of the web server instances. Each element in the matrix corresponds to a 

sum value of process identifier states, which shows the intensity of the requests. 

For example, the total of each state request for waiting connections (W) will be 

calculated and mapped to the MxN matrix element, which is dependent on the 

order of the incoming request. This concept enables better understanding of 

relationships between a process thread and its state, making each element to be 

listed in an efficient manner and represented in a very compact way. Periodically 

updating the value in real time for a given element in the matrix provides a 

possibility to estimate risk impact. Before any rendering is made, the value will be 

held in the matrix model as illustrated in Figure 3.20. Furthermore, the output of 

the rendering process will be shown as illustrated in Figure 3.21, which describes 

the status of the process group. The specific elements of a matrix can be denoted 

by a variable, in which a higher value will indicate a vast amount of requests.  

 

Figure 3.20. MxN matrix 
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Many different types of process state can be rendered as illustrated in Figure 3.21. 

Filtering and grouping states is possible, and each plot can be adjusted effectively 

to any circumstance. The visibility of each group can be determined according to 

preference. This technique enhances awareness especially when many Apache 

instances are running across multiple clusters. Flooding requests could be spotted 

directly. An action can be taken quickly, and by selecting a given group state, an 

analyst can determine the final destiny of these requests. 

 

Figure 3.21. Process state visualisation using nvd3.js [65] 

	  
3.8 Summary 

The evolution of scrapper bots, social bots and distributed denial of service bots 

has become an important issue. In order to secure networks from bot attacks and to 

discover incoming malicious bot activities, visual analytics may help to inform an 

analyst to gain insight from large amounts of data. Visual analytics provides better 

understanding, reasoning and decision making from very large and complex 

datasets.  

In order to enable an analyst to derive insights from large amounts of data, several 

facilities are required. The first is a data structure to represent a large list of IP 

addresses. We use a Quadtree data structure that enables structuring of the data, 

which focuses on the data mapping that can be transformed and represented 

visually. In addition, a priority queuing technique is necessary in order to manage 

and process incoming traffic sequences. The second is a diagram that divides 

space into a number of regions. For this, we employ a Voronoi diagram that 

enables interactive visualisation to be presented into multiple regions and managed 
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in a more compact way. The presentation included in a single dashboard with 

multiple views enables automatic classification for legitimate and bot traffic. 

Finally, in the absence of intense traffic spikes, locating the root cause of attacks is 

the key in order to respond efficiently. VATRIX enhances this by providing a 

response and to monitor web server process states in order to render them into a 

diagram. Current visual analytics systems lack the ability to respond interactively 

in the presence of attacks. Key features that need to be visualised, such as dynamic 

process states, are missing. Therefore, VATRIX, in contrast, provides clarity to 

allow ambiguous network traffic and dynamic process states to be clearly 

understood. It aims to discover unexpected orchestrated bot attacks by providing 

details on demand with the multiple views feature. 
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Chapter 4 X-Map 

New malicious bot approaches have led to an increasing rate of DDoS attacks [1, 

2]. This increase has attracted many researches to address the problem. However, 

one major difficulty in application layer attacks is to identify the presence of bots 

against legitimate flash crowds traffic. X-Map approaches this by making 

predictions based on visitor past observations, which uses the J48 Decision Tree 

C4.5 algorithm as the main classification algorithm. The result of X-Map is used 

for the visualisation purpose, as discussed in the previous chapter. 

X-Map architecture allows client(s) to lookup single or multiple IP addresses and 

receives result asynchronously. X-Map attempts to overcome scalability and 

performance issues in large-scale network by implementing system caching with 

large hash table. X-Map can be implemented into shared machine or dedicated 

machine that are only built to be X-Map server. 

 

Figure 4.1 X-Map Architecture 

4.1 Classification 

Classification is the task of identifying input objects based on a training dataset 

containing past observations. The training dataset contains a set of supervised 

trained classes, each of which consists a pair of input objects with their desired 

class values. It holds a set of data records describing each attribute and class. The 

goal is to learn a classification model from the data records to predict future 

instances. The most commonly used classification algorithm is decision tree 

learning [74]. As one of the well-known supervised machine learning algorithms, 

the purpose is to make a classification based on a training dataset. The final result 

might be in one of the given categories or classes. There are two separate results 

associated with classification – binary classification and multiclass classification 
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[75]. For binary classification only two classes are recognised for the output, 

whereas for multiclass classification the final object result will fall into one of 

several classes [75].  

Decision tree learning has several advantages, such as easy interpretation, fast 

fitting speed and low memory usage [76]. However, when using a decision tree 

learning algorithm, it requires a compact and accurate training dataset to be able to 

increate the accuracy of the classification result. One well-known issue with a 

decision learning tree is when significant difference occurs between the training 

dataset and target dataset, it results in a result inaccuracy and might prevent the 

algorithm to work properly [75]. Therefore, to optimise the supervised learning 

process, its steps are divided into two different phases, the training and testing 

phases. The training phase will learn a model using a training dataset, and the 

testing phase will test the model using unknown test data to assess the model 

accuracy. 

One example application of a classification task, in the security domain, is to 

predict high-risk web traffic and discriminate them from low-risk web traffic. A 

decision is needed on whether to reject or allow the traffic to pass into the 

network. In the next following sections, X-Map will be presented along with the 

proposed algorithms, which use multiclass classification to make accurate 

predictions based on visitor past observations. Finally, the result will be discussed 

in the evaluation chapter. 

4.2 Decision Tree Learning 

X-Map uses decision tree learning as the main machine learning algorithm for 

classification. It aims to automatically learn to make accurate predictions based on 

visitor past observations. X-Map attempts to predict a response or class Y from 

observation inputs X1, X2, X3, …, Xn by efficiently growing a binary tree. By 

using this technique, it emphasises on the method that can handle large datasets 

while reducing the computation complexity.  

Table 4.1 below represents a sample predictive model used by X-Map, which 

maps observations based upon visitor behaviour in order to classify into the final 

target value. For instance, a high probability score on Heatmap – between 0 and 1 

- represents a higher likelihood that the traffic belongs to human. The data 
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collection listed in the table is the features that will be extracted in the patterns of 

visitor behaviour. By using a machine-learning technique and decision tree 

classification model of visitor behaviour, it is possible to predict and classify a 

visitor from the collected data. 

Observation Input Probability Score 
Heatmap 0.4 
Banner reaction 0.3 
Browser fingerprinting 0.2 
Simultaneous request 0.1 
Proof of work result 0.3 
HTTP request behaviour 0.2 
Authenticated session 0.6 
Form submission frequency 0.4 
Screen resolution 0.3 
Header 0.6 

Table 4.1. Predictive Detection model 

This predictive model gives a valuable insight that can be generated based upon 

expert knowledge. It is expected to have a high accuracy rate describing current or 

previous visitor situations in order to determine the preference of classifier 

outcomes. The model was able to identify ten participants and six simulated bot 

attacks with an accuracy of 86.67%, which will be discussed in Section 6.6.3. The 

procedure starts by parsing the IP address of every incoming request. It will then 

observe visitor behaviour data based on the active session. A threshold calculation 

is executed to check whether the visitor is under a normal threshold value, the 

process to obtain all threshold values will be described in Section 6.2. The 

following procedure is presented to observe a visitor: 
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Figure 4.2. Observe Visitor 

To illustrate the algorithm, the following scenario will attempt to depict a visitor 

observation based upon visitor behaviour in order to classify into the final target 

value. 

 

Figure 4.3. Prediction model 

Given a sample data as depicted in Figure 4.3 above, the process of visitor 

observation is based on its IP address over several time steps until certain 

conditions are satisfied. It is an iterative process. First the visitor has NULL values 

for all observation probability scores. After the second step, only few observation 

data can be gathered, which is still not sufficient enough to justify – if the process 

stops, the classification, which uses the J48 Decision Tree C4.5 algorithm, will 

render the visitor as unclassified.  

According to the observation, the visitor requested a page under the normal 

threshold limit and capable of generating sufficient user-interface interaction with 

procedure ObserveVisitor 
 1: ip ← parseIPAddress() 
 2: for(i = 0; i < totalObservedData; i++) 
 3:   data[i] = VisitorData[ip, i]; 
 4:   if(data[i] == null) 
 5:     continue 
 6:   else if 
 7:     for each data of d do 
 8:   if (data[d] > (threshold = 
capturesThreshold)) 
 9:         return bot 
10:       else 
11:         return normal 
12:       end if 
13:     end for 
14:   end if 
15: end for 
16: if (!data[0] && !data[1] && !data[2] && 
!data[4]) 
17:   return unclassified 
18: end if 
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a proper heatmap and browser fingerprint value. In addition the visitor signifies a 

legitimate authenticated session. Therefore, on the third step, X-Map is able to 

identify the visitor as a valid human based on a training dataset presented in Figure 

4.4 below. 

	  
Figure 4.4. A possible training dataset 

A possible classification tree is given below in Figure 4.5. It represents a top-down 

induction of the decision tree. First, it assigns the best decision attribute for the 

next node.  It then assigns a probability score as a decision attribute for the node. 

For each highest score, create a new descendant of the node. It will sort training 

examples to leaf nodes. Finally, if training examples are perfectly classified, then 

stop, and otherwise iterate over new leaf nodes. 

	  
Figure 4.5. A possible classifier 

Here are the assumptions used: each internal node tests one attribute of the 

observation input; each branch from a node extracts one value for observation 

input; finally, each leaf node makes a prediction where the accuracy rate will 

depend on the tree size and the size of the training dataset.  
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Since not all of the Internet bots will perform malicious tasks, therefore, in 

addition to the previous diagram, if the final classification states that it is a bot 

(0x7001), then the next decision will be to determine the malicious level. Figure 

4.6 illustrates the concept. 

 

Figure 4.6. Classifying bot 

This classification process will also be iterated if the final classification result is 

half human and half bot (0x7002). The iteration will rely on several metrics such 

as the browser string header, source of address, proxy address and request load 

intensity level. Therefore the decision can be made precisely, assuming that those 

values remain intact. 

4.3 Proposed Algorithm X-Map 

The proposed algorithm attempts to discover relationship between the observation 

input attributes and the target attributes. This algorithm is used for predicting the 

value of a target attribute, e.g. to distinguish machines behind a single IP address 

and to observe the behaviour of visitors based on their heatmap signatures. The 

algorithm uses a general tree data structure and a populated training dataset for 

classification. The unique idea of the algorithm is to combine key-value hashing 

caching into the decision tree process. It enables faster processing without 

requiring unnecessary redundant lookup. In particular, it can be adjust into map 

reduce job to support faster processing for massive dataset. 

As the classification tree is a supervised learning structure, the algorithm requires 

different attributes for each field of the training dataset. These attributes are 

denoted by the following V sets. 
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Figure 4.7. Attribute set 

An observation step consists of an n-dimensional vector (V1, V2…, Vn), where x 

represents features being observed. The training data is a set of P = (P1, P2…, Pn) 

[79]; which denotes an observation input as described in Section 5.3 (e.g., heatmap 

and fingerprint). The observation input has a probability value from the uniform 

distribution on the interval (0, 1]. For example, if P1 equals to HTTP Request 

Behaviour, then a high value would indicate a strong abnormal request. 

The following algorithm is proposed for growing the smallest possible tree in 

order to classify a visitor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

procedure Initialize (I, V) 
 1: T = API_g_tree_new_full (I, V) 
 2: return (T) 

procedure LearnFromDataset (I, V) 
 1: n   
 2: training-dataset [1 … n] 
 3: split given training-dataset 
 4: if best splitting metric <= threshold then 
 5:   for each training-subset of V do 
 6:     API_g_tree_grow (V) 
 7:     find best value 
 8:     R = API_g_tree_traverse (I) 
 9:   end for 
10: endif 
11: return R 

procedure ClassifyTraffic (I, V) 
 1: P  LearnFromDataset (I, V) 
 2: if result found then 
 3:   MapToHashtable (I, P) 
 4: endif 
 5: return  

procedure ObserveBehavior (I, V) 
 1: for each observation-input do 
 2:   (+thread) store visitor data behavior to 
BigData 
 3: end for 

    4: return	  
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Figure 4.8. Traffic classification 

The tree complexity is measured by these following parameters: the attributes, 

observation input and training dataset. It will determine the total number of nodes 

and leaves, and tree depth. Therefore, it must be explicitly controlled by stopping 

criteria, and otherwise, the tree growing phase will enter an infinite loop.  

The tree data structure and operations, such as creation, traversal, and growing, are 

handled by third-party libraries, which provide the external functions. The main 

training dataset is divided into several subsets. Each subset will be checked against 

a visitor’s behaviour, according to the data collection, to determine the best value. 

It will start to grow the tree structure once it has been found. The process iterates 

until all observations are done. Once the result has been obtained, it will be stored 

into the hashtable. Figure 4.9 below illustrates the flowchart diagram.  

	  
Figure 4.9. System Flowchart 

procedure MapToHashtable (I, P) 
 1: connect to memcached server 
 2: parse traffic classifier table 
 3: store key-value pair (I, P) 
 4: disconnect 
 5: return  

procedure Destroy (T) 
 1: if T != NULL then 
 2:   API_g_tree_destroy(T) 
 3: endif 

    4: return	  
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4.4 Proposed Algorithm for Machine Identification 

Methods that use CAPTCHA such as [37] will not be able to provide puzzles to 

their visitors when they are using a Command Line Interface (CLI) browser. X-

Map overcomes this by using machine identification that uses a browser 

fingerprinting method. The approach is based on research study that at least one in 

286,777 browsers shares the same fingerprint [20]. The demonstration estimates 

that under current active sessions only one in 3,987,090 browsers will have the 

same fingerprint [23]. This method is effective for identifying CLI, mobile and TV 

browsers based on their screen resolutions via JavaScript AJAX posts. It provides 

a method to distinguish machines behind a single IP address. 

The following algorithm is proposed for identifying machines. It stores data in a 

key-value pair of an IP address (I) and a browser fingerprint signature (B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.10. Machine identification 

Initially the hashtable is created, it is produced by using third-party libraries. Each 

visitor will be tracked by their unique browser fingerprint, which will be described 

in Section 5.3.9 and Appendix A –Browser Fingerprint. The visitor IP address will 

procedure InitHashTable () 
 1: H = g_hash_table_new () 
 2: for each table of H do 
 3:   H g_init_hash() 
 4:   H g_str_hash() 
 5: end for 
 6: return (H) 

procedure ParseIPDataset (I, B) 
 1: parse-dataset = |IPSet| 
 2: B  fingerprint_browser(I) 
 3: for each parse-dataset of IP Set do 
 4:   g_map_element (H, IP Set) 
 5:   H g_hash_table_insert (I) 
 6:   H g_hash_table_insert (B) 
 7: end for 
 8: return 

procedure LookupFP (I) 
 1: if ip-dataset != NULL then 
 2:   H g_set_active_hash 
 3:   R  g_hashtable_lookup(I) 
 4:   return R 

    5: endif	  
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be parsed and stored in the hashtable. Finally, the system is able to identify all 

visitors fingerprint based on their IP address. 

Figure 4.11 below illustrates the flowchart diagram. The key-value pair of IP 

addresses is mapped into one hashtable, consisting of an IP address as the key and 

a fingerprint signature as the value, which is created when the system runs for the 

first time.	  

	  
Figure 4.11 Machine identification flowchart 

4.5 Proposed Algorithm for Heatmap Tracker 

Methods that use CAPTCHA such as the one in [37] requires active visitor 

response and waste times. On the other hand, a website heatmap is very effective 

at uncovering usability issues throughout the web to improve page design. This 

solution combines security protection with the opportunity of usability study. It 

provides a transparent method to detect the presence of human interaction. 

Heatmap representation uses three-dimensional data. The two dimensions 

represent x and y Cartesian coordinates, and the third dimension represents the 

intensity of a data point, which is usually presented as a minimum or maximal 

integer value. Thus, the heatmap model can be presented in the following matrix. 



	  

	   	   48	  

 

Figure 4.12. Matrix model of heatmap 

In the above example, the values of 2, 2, 15, 14, 12, 21, 16 and 24 represent the 

sums of intensity levels for the mouse click event activities in the page region. 

Every mouse activity is recorded for each page. The zero value indicates that there 

is no activity within the region of the page. Each page is divided into four regions, 

which will be used to record and observe visitor behaviour based on a matrix 

model. 

The following algorithm is proposed for identifying human presence based on 

their heatmap dataset.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

procedure ObserveHeatMap (I) 
 1: parse-dataset = |IPSet| 
 2: D  map-data 
 3: D  matrix-conversion(D) 
 4: if (D.value > 50) 
 5:   inform enough activities 
 6:   threshold = getThreshold 
 7: else 
 8:   insufficient activities 
 9:   return 
10: endif 
11: for(i = 0; i < totalMatrixRow; i++) 
12:   for(j = 0; j < totalMatrixCol; j++) 
13:     if D.sum threshold then 
14:       inform insufficiency of dataset 
15:       return 
16:     endif 
17:   end for 
18: end for 
19: for each matrix-conversion of IP do 
20:   parse data map 
21:   CSV conversion 
22:   give each element a rating map 
23:   convert to (0,1] uniform distribution 
interval 
24: end for 
25: J48.train(D) 
26: P  model.predictAll(D) 
27: return P 
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Figure 4.13. Heatmap tracker 

In order to check the visitor activities, all regions inside the page are mapped into 

a matrix model. The region is a <div> tag, which defines a division in an HTML 

document with a unique identifier. The values are extracted by mapping all of 

these elements together. The conversion process is used to calculate mouse 

activities into a matrix model. If there are sufficient activities, it is assumed that 

the visitor has a legitimate browsing behaviour. Figure 4.14 below illustrates the 

flowchart diagram. 

	  
Figure 4.14 Heatmap tracker flowchart 

4.6 Proposed Technique for Banner Reaction 

X-Map exploits this feature to combine security protection with the opportunity of 

company advertisements. It provides advertising support, which can lead revenue 

behind them.  

The proposed technique, which was developed during this research, uses active 

and passive banner reaction observations. As opposed to Kill-Bots [37], under 

periods of heavy load, which is detected by VATRIX, X-Map redirects visitors to 

a different secure server and presents them with a page full of advertisements. X-

Map then analyses how the visitors close banners, and observes their interaction 

heatmaps. A successful reaction will be granted with a valid website access. This 
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condition is only applied to visitors who have not been classified by X-Map in 

order to grant them services. Therefore, redirecting all visitors is not necessary. 

Under passive observation, at a random time interval, X-Map presents visitors 

with a small portion of advertisements. Successful reaction will be regarded as a 

valid visitor. This technique is used along with other observation methods in order 

to accurately classify human.  

4.7 Summary 

X-Map opens new opportunities for small and medium enterprises to combat 

application layer HTTP DDoS attacks and spam bots. X-Map combines security 

protection with the opportunity of usability study. X-Map also combines security 

protection with the opportunity of company advertisements, which can lead 

beneficial revenues behind them. Combined with other methods, X-Map provides 

a transparent method to detect the presence of human interaction. To summarize, 

in this chapter the problems with the existing solutions have been discussed. The 

method of X-Map has been introduced. The proposed algorithms of X-Map have 

been covered thoroughly. Finally, the next chapter will cover the experiment 

settings of our work presented in this and previous chapters. 
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Chapter 5 Experiment Settings 

5.1 Introduction 

The use of statistic-based techniques to mitigate bot attacks remains a debatable 

subject. Therefore, the increasing rate of malicious bot attacks has motivated this 

research to provide fair allocation across all the visitors in the presence of attacks.  

The novel contributions, as outlined in Chapter 3 and Chapter 4, demonstrated 

how legitimate and bots traffic can be discriminated. Chapter 3 focused on the 

visual analytics system, which provides a monitoring mechanism in the presence 

of attacks. The system provides a dashboard view to represent legitimate and bot 

traffic by adopting a Quadtree data structure and Voronoi diagrams. Chapter 4 

described the classification technique in order to support the visualisation process. 

The classification technique, which uses the J48 Decision Tree C4.5 algorithm, 

requires a training dataset – with current total size of 2010 instances - so that the 

features can be extracted. In this instance, a sample of raw data contains a heatmap 

value, banner respond, intensity requests and request behaviour. This process 

resulted in the creation of the visualisation diagram. 

In realising the aims and objective of this research, as presented in Chapter 1, this 

chapter discusses the experiment settings, in which our research was conducted by 

utilising experiment and simulation approaches. This research study was taken in a 

fully controlled and structured environment. This is to enable the causal 

relationships of legitimate participants (n=10) and simulated bot attacks to be 

identified and analysed. Due to the limitation of time and no compensation 

available to participants, only 10 participants with the age range from 28 to 35 

were employed to represent legitimate visitors. 

The remaining sections of this chapter describe the experiment method with the 

test environment. It also provides the description about the participants. In 

addition, the tools used for simulating the attacks are presented. Finally, the data to 

be collected are also explained. 

5.2 Experiment Method 

The experiment was conducted by capturing website traffic, identifying browser 

fingerprints, simulating bot attacks and analysing mouse dynamics such as 
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movements and events of the participants. Data were captured as the participants 

performed a list of tasks, such as responding to the banner. The data collection is 

transparent to the participants and only requires JavaScript to be activated on the 

client side. The 10 participants are familiar with the Internet. To analyse the data, 

Weka 3.6.10 was used to perform classification based on a training dataset.  

The experiment process can be outlined as follows: 

1. Developing the initial website capable of tracking visitor data. 

2. Inviting participants to visit the website. 

3. Simulating bot attacks. 

4. Collecting and evaluating the data. 

5. Building a machine learning model. 

6. Testing the accuracy of the machine learning model. 

7. Performance evaluation. 

8. Formulating visual analytics design. 

All the legitimate participant behaviour data were captured. The characteristics of 

the simulated bot attacks were analysed. These data were then collected and 

evaluated using J48 classification for a decision tree. The initial training dataset 

was generated by comparing the activity patterns of the participant legitimate 

behaviour against simulated bot attacks. Finally, the proposed visual analytics 

design was rendered. 

5.2.1 Test Environment 

The attack simulation and experiment were performed under a Virtual Private 

Server (VPS) environment, running the Linux 64 Bit operating system with its 

own static Internet Protocol (IP) address. The chosen Linux distribution was 

CentOS 6.5 equipped with 2 GB of Random Access Memory (RAM) and 50 GB 

of hard-disk space. A new instance of Apache 2.2.15 was deployed along with 

PHP 5.3. The connection is capable of handling an unlimited bandwidth up to 100 

Mbit traffic without forced throttling.  

To demonstrate, a new dummy website imitating an online shop was implemented 

by using an open-source e-commerce solution, PrestaShop 1.6.0 [48], and Leo 

Sport Shoes Theme 1.0, a free responsive theme [49]. 
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5.2.2 Participants 

The experiment was launched with the 10 participants to observe their browsing 

behaviour, as listed in Table 5.1. Participants were invited to join by posting a 

message on Online Social Network (OSN) asking for their contribution to visit the 

dummy website. All of the participants are familiar with the Internet. Each 

participant spent approximately 10 – 15 minutes with the experiment. The data 

were collected transparently from four different pages over multiple sessions. Each 

session generated data files with each ranging in size from 700 KB to 900 KB. For 

all participants a unique browser fingerprint was generated as the page loads. This 

is to ensure their unique identity when combined with their IP addresses. 

Characteristics Amount 
Sample size 10 

Male 7 
Female 3 

Age (28 – 35) 10 
Education (BSc – MSc) 10 

Safari 7.0.2 4 
Firefox 28 3 
Chrome 33 3 

Screen resolution 1280x800 10 
IT background 6 

Non-IT background 4 

Table 5.1. Participant characteristics 

5.2.3 Attack Simulation 

To study the behaviour of malicious bot attacks, this research project used a list of 

low-bandwidth attacking tools to represent the key characteristics of such attacks. 

These tools pose serious threats especially if some of them are integrated into a 

single command running on large botnets [13]. This attack simulation model is 

meant to show the eventual real effects of bot attacks by using alternative 

conditions. Table 5.2 summarizes the types of attacks used in this simulation.  

Attack Tool Detail 
slowloris Partial HTTP requests attack 

slowhttptest Slow HTTP attack 
r-u-d-y HTTP POST/GET flood 

THC-SSL-DOS SSL renegotiation flood 
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ApacheKiller Multiple byte ranges attack 
PhantomJS Interface workload generator 

Table 5.2. Attack simulation tools 

Slowloris exploits HTTP vulnerabilities by sending partial HTTP requests. It has 

the ability to perform an attack with minimal bandwidth. Slowloris aims to abuse 

the server by keeping as many active connections as possible [50]. 

Slowhttptest provides low bandwidth application layer DoS attacks. It can perform 

a slow attack that exploits the flaw of the TCP persist timer. It aims to send 

legitimate HTTP requests and abuse the server by reading the response slowly 

[51]. 

R-U-Dead-Yet is a HTTP DoS attack. It exploits the long form field submissions 

vulnerability. It can automatically detect forms within given URL [52]. 

THC-SSL-DOS exploits the vulnerability of SSL renegotiation. It aims to trigger 

thousands of renegotiations to overwhelm servers with multiple requests. This tool 

can be launched via single TCP connection [53].  

ApacheKiller exploits HTTP range header vulnerability by sending multiple 

overlapping byte ranges. It works by stacking an HTTP header to the server with 

multiple ranges request [54].  

PhantomJS is a tool that can run a script to mimic human interaction on a given 

URL. It is suitable for generating user interaction workloads to test and monitor 

specific website [55]. 

5.3 Data Collection 

Data collection was written using C, PHP and JQuery. It transparently collects 

visitor data, as listed in Table 5.3. It aims to extract certain signature 

characteristics in the patterns of visitor behaviour. By using a machine-learning 

technique and decision tree classification model of visitor behaviour, it is possible 

to predict and classify a visitor from the collected data, based on their weight 

value. There are several steps to calculate the weights: 1) calculate initial score for 

each observation, 2) sort the weight data, 3) Assign a weight value to each 

observation within each corresponding group of visitor behaviour. Appendix A 

provides a detailed account of the data collection script. 
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Observation Input Implementation 
IP and TCP header libpcap, C 
HTTP header and request behaviour C, PHP 
Proof of work PHP, JQuery 
Form submission frequency PHP 
Authenticated session PHP 
Website heatmap PHP, JQuery 
Banner reaction PHP, JQuery 
Screen resolution JQuery 
Browser fingerprint JQuery 

Table 5.3. Data collection 

5.3.1 IP and TCP Header 

Data such as IP addresses and port numbers were extracted from IP and TCP 

headers. These data were collected to provide information of a visitor’s originating 

address. The implementation was written using C and libpcap. These data will not 

be mapped since they are only used for visualisation and request checking 

purposes. Therefore, the constant weight value will remain flat at 0.5. This value is 

to ensure that the decision making process will not be made based on this data. 

Therefore, this record will be ignored by the system. 

5.3.2 HTTP Header and Request Behaviour 

Data such as the HTTP method and content length used were extracted from 

HTTP headers in order to provide details on demand visualisation. A counter was 

implemented to calculate the number of simultaneous connections made. These 

data were collected as a supplementary mechanism to discriminate between 

legitimate visitors against bot attacks. The implementation was written using C 

and PHP. If the value reaches a certain threshold limit, the weight value will be 

greater than 0.6, a customised constant where a high value would indicate a 

stronger abnormal request. The assumption is based on the fact that bots usually 

generate abnormal HTTP requests.  

5.3.3 Proof-of-work 

Each visitor is provided with a task to compute a MD5 hash of a given randomised 

string. The results of proof-of-work data were collected as a supplementary 

mechanism to ensure unique identification of a visitor. The implementation was 
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written using PHP and JQuery. If the timing indicates a low response and a wrong 

answer was given, the weight value will be less than 0.2 where a low value would 

indicate a failed response. 

5.3.4 Form Submission Frequency 

A counter was implemented to calculate HTTP POST requests. These data were 

collected as a supplementary mechanism to discriminate between legitimate 

visitors against bot attacks. The implementation was written using PHP.  If the 

value reaches a certain threshold limit, the weight value will be greater than 0.6, 

where a high value indicates a stronger submission frequency. 

3.3.5 Authenticated Session 

Each visitor session was checked from the authenticated session variable. These 

data were collected as a supplementary mechanism to discriminate between 

legitimate visitors against bot attacks. The implementation was written using PHP.  

If a visitor is successfully authenticated, the weight value will be greater than 0.6. 

A high value indicates that the visitor is legitimate. 

5.3.6 Website Heatmap 

A website heatmap is a graphical image that represents visitor interactions with 

each section of a certain page. These data were collected as a supplementary 

mechanism to discriminate between legitimate visitors against bot attacks. The 

implementation was written using PHP and JQuery. If a visitor is generating a 

sufficient website heatmap data, the weight value will be greater than 0.6. High 

value would indicate that the visitor is producing a sufficient quantity of 

interaction. 

5.3.7 Banner Reaction 

The banner reaction data were captured on the client side, and the analysis was 

conducted on the server side. These data were collected as a supplementary 

mechanism to discriminate between legitimate visitors against bot attacks. The 

implementation was written using PHP and JQuery. If a visitor responds to the 

banner advertisement correctly, the weight value will be greater than 0.7. High 

value would indicate that the visitor has a legitimate respond. 
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5.3.8 Screen Resolution 

Screen resolution or display resolution is “the number of distinct pixels in each 

dimension that can be displayed” [77]. This data along with browser window 

resolution was collected to ensure the integrity of a website heatmap. The 

implementation was written using JQuery. If the value indicates normal screen 

resolution, the weight value will be greater than 0.6. High value would indicate 

legitimate screen resolution setting. 

5.3.9 Browser Fingerprint 

Browser fingerprinting is a technique to identify a web browser. These data were 

collected as a supplementary mechanism to ensure unique identification of a 

visitor. The implementation was written using the JQuery browser fingerprint 

plugin. If the value is not NULL, the weight value will be greater than 0.6. This 

value would indicate that the visitor is not producing a sufficient browser 

fingerprint. 

5.4 Data Pre-processing 

Data pre-processing was implemented using PHP 5. It reads data generated by data 

collection and performs Attribute-Relation File Format (ARFF) conversion. ARFF 

“is an ASCII text file that describes a list of instances sharing a set of attributes” 

[56]. “ARFF files have two distinct sections. The first section is the Header 

information, which is followed by the Data information” [56]. Each of the 

observation inputs was segmented and mapped into a probability value, as 

previously described. The variable represents a weight value from the uniform 

distribution on the interval of 0 and 1. 

An example of the ARFF Header looks like the following: 

@RELATION name 
 
@ATTRIBUTE req   NUMERIC 
@ATTRIBUTE pow   NUMERIC 
@ATTRIBUTE freq  NUMERIC 
@ATTRIBUTE auth  NUMERIC 
@ATTRIBUTE class {A,B} 

An example of the ARFF Data records look like the following: 

0.4,0.6,0.4,0.4,A 
0.6,0.4,0.2,0.2,B 
0.2,0.3,0.3,0.2,B 
0.5,0.6,0.1,0.4,A 
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0.8,0.5,0.2,0.1,B 
0.7,0.1,0.6,0.5,B 
0.9,0.7,0.3,0.2,B 
0.3,0.2,0.2,0.3,B 
0.1,0.9,0.1,0.4,B 

The subsequent columns for each row represents data collection as described in 

Section 5.3, and finally the last column would represent the class, which the traffic 

belongs to. The subsequent rows are the full training dataset records for the 

machine learning model. 

5.5 Data Analysis 

Data analysis was performed in Weka 3.6.10 by utilising decision tree 

classification - decision tree C4.5 algorithm using J48 classifier. The result will be 

discussed in Chapter 6. 

The performance of the classification algorithm, Decision Tree J48, was evaluated 

using: 

• Training set, “The classifier is evaluated on how well it predicts the class 

of the instances it was trained on” [57]. 

• Cross-validation, “The classifier is evaluated by cross-validation, using 

the number of folds that are entered in the Folds text field” [57].  

• Percentage split, “The classifier is evaluated on how well it predicts a 

certain percentage of the data which is held out for testing. The amount of 

data held out depends on the value entered in the % field” [57]. 

5.6 Training Dataset 

The banner puzzle training dataset was generated using Safari 7.0.2 by simulating 

correct and incorrect scenarios. The main classification training dataset was 

generated by comparing the activity patterns of the participants’ legitimate 

behaviour against simulated bot attacks. Appendix B provides all the dataset. This 

predictive model gives valuable insight that can be generated based upon expert 

knowledge. It is supposed to have a high accuracy rate describing current or 

previous visitor situations in order to determine the preference of classifier 

outcomes. 
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5.6.1 Dependent and Independent Variable 

The result of the classification will be a dependent variable. This value relies upon 

the observation inputs, as described in Section 5.3. The observation inputs, which 

influence the value of the dependent variable, are independent variables. 

5.6.2 Data Cleaning 

The data cleaning process includes: (1) Removing unnecessary records that are not 

related to the experiment, and (2) Checking inaccurate records from a test dataset. 

This is to ensure the integrity and consistency of the test dataset format with the 

main training dataset. 

5.7 Visual Analytics Requirements 

Monitoring network traffic involves huge amounts of data to be collected by 

packet capture throughout the network.	   The	   packet capture is a mechanism to 

collect raw traffic data from a network. Visualisation was produced using these 

raw traffic data. The classification result was obtained using J48 Decision Tree. 

The prototype of the visualisation was rendered using D3.js, “a JavaScript library 

for manipulating documents based on data” [58].  

In order to satisfy the requirements of visual analytics, the following conditions 

must be met [11, 12]: 

1. Interactive visualisation, the design should support interactive 

visualisation.  

2. Large datasets, the design should support in understanding, reasoning 

and decision making from very large datasets. 

3. Knowledge discovery, the design should be able to assist analysts in 

order to gain new knowledge. 

4. Information overload, the design should be able to turn information 

overload into an opportunity. 

The next chapter will provide a detailed account of the visual analytics method 

used. 

5.8 Limitations 

Key issues in this experiment include generating flash crowds phenomenon. The 

simulation in this research project is only designed to work effectively for client-
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server models. HTTP itself is a protocol that uses a client-server model. This 

research project focuses on Internet Protocol version 4 (IPv4).  Currently, there is 

only one banner advertisement puzzle and largely depends on the screen resolution 

setting. In practice, more banner puzzles could be generated on various screen 

resolutions along with the training dataset. For the visual analytics design, it is 

assumed that the analyst has a foundation understanding regarding network traffic 

and web servers, especially with Apache. Currently, the experiment conducted in 

this research was using only one instance of Apache. The HTTP methods that 

were tested include GET and POST methods. Furthermore, the attack simulation 

tools’ capabilities described in Section 5.2.3 are quite limited. The simulation 

study lacks the tools for testing the system with adaptive persistent attacks.  

5.9 Summary 

This chapter has described the research methodology used in this study. The 

experiment approach has been covered along with the test environment, participant 

characteristics and attack simulation. A comprehensive explanation of the data 

collection, data pre-processing, training dataset and data analysis was given. This 

chapter has explained the processes necessary in preparing the data for analysis 

using Weka. In addition, the research limitations have been discussed. Finally, the 

next chapter will discuss the evaluation used in this research. 
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Chapter 6 Evaluation 

6.1 Introduction 

In the previous chapter, the experiment settings have been discussed, which 

detailed the features needed to be extracted in order to observe visitor behaviour. 

The experiment was conducted by capturing raw data from website traffic, 

identifying browser fingerprints, simulating bot attacks and analysing mouse 

dynamics such as movements and events of the participants. Also in the previous 

Chapter 4, it discussed the classification technique to discriminate between 

legitimate against bot traffic in order to completely render the visualisation. The 

result, which will be discussed in Section 6.6, uses the J48 Decision Tree C4.5 

algorithm that requires a training dataset where the processing format was already 

defined in Section 5.4. 

This chapter describes a detailed account of the evaluation, in which the research 

was conducted by utilising the experiment and simulation approaches described 

earlier. The main purpose of the evaluation was to validate the system and to 

demonstrate how the system is able to discriminate between legitimate visitors (10 

participants) against simulated bot attacks. All the legitimate participants’ 

behaviour data were captured. The characteristics of the simulated bot attacks 

were analysed. These data were then collected and evaluated using J48 

classification for a decision tree. This is to enable the causal relationships between 

legitimate participants and simulated bot attacks to be identified and analysed. 

Finally, our visual analytics evaluation is presented along with the discussion. This 

chapter aims to demonstrate the results that have been obtained. 

To support the evaluation, the analysis results were obtained by using these 

following tools: 

1. Weka 3.6.10, “Weka is a collection of machine learning algorithms for 

data mining tasks” [66]. 

2. YSlow 3.1.8, “YSlow analyzes web pages and suggests ways to improve 

their performance based on a set of rules for high performance web 

pages” [67].  
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6.2 HTTP Requests 

The experiments below were performed by loading landing, product detail, 

category and login pages. The objective is to find the total number of HTTP 

requests made for each page. The pages were hosted under a dummy website. The 

results and threshold values used were generated by the YSlow 3.1.8 plugin for 

Firefox 28 in order to signify abnormal behaviour. The results were obtained 

manually by checking YSlow console outputs. 

The following sections will show the results of HTTP requests from four different 

pages of a dummy website. A probability metric then was built for the training 

dataset according to these threshold values. Therefore, these threshold values 

could be used as a preliminary comparison between participants and simulated bot 

attacks. However, there can be several occasions when legitimate visitors might 

reach beyond these threshold values, such as reloading a page many times or 

opening multiple tabs in the browser within the same URL. Another possible 

reason is when multiple visitors are behind a proxy server.  

6.2.1 Landing Page 

The diagram in Figure 6.1 illustrates the total number of HTTP requests made to 

load the landing page. The screenshot for the landing page can be found in 

Appendix C – Landing Page. Based on this result, a specific threshold value, 90 ≤ 

w ≤ 99, was adjusted to indicate a normal legitimate landing page request. 

However this value will not be used as the main classification criterion, as there 

are other metrics (listed in Section 5.3) to be used for final decision. 

 

Figure 6.1. Landing page 
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6.2.2 Product Detail Page 

The diagram in Figure 6.2 illustrates the total number of HTTP requests made to 

load the product detail page. The screenshot for the product detail page can be 

found in Appendix C – Product Detail Page. Based on this result, a specific 

threshold value, 87 ≤ x ≤ 96, was adjusted to indicate a normal legitimate product 

detail page request. However this value will not be used as the main classification 

criterion, as there are other metrics (listed in Section 5.3) to be used for final 

decision. 

 

Figure 6.2. Product detail page 

6.2.3 Category Page 

The diagram in Figure 6.3 illustrates the total number of HTTP requests made to 

load the category page. The screenshot for the category page can be found in 

Appendix C – Category Page. Based on this result, a specific threshold value, 87 ≤ 

y ≤ 96, was adjusted to indicate a normal legitimate category page request. 

However this value will not be used as the main classification criterion, as there 

are other metrics (listed in Section 5.3) to be used for final decision. 
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Figure 6.3. Category page 

6.2.3 Login Page 

The diagram in Figure 6.4 illustrates the total number of HTTP requests made to 

load the login page. The screenshot for the login page can be found in Appendix C 

– Login Page. Based on this result, a specific threshold value, 72 ≤ z ≤ 81, was 

adjusted to indicate a normal legitimate login page request. However this value 

will not be used as the main classification criterion, as there are other metrics 

(listed in Section 5.3) to be used for final decision. 

 

Figure 6.4. Login page 

6.3 Overall Performance Score 

The overall performance score was obtained by running a YSlow test on each 

page, both with and without mouse tracking installed. YSlow is a browser add-on 

plugin that calculates the total HTTP requests made by the client. The score was 

computed depending on the performance load of each page, which results into a 

final grade, as illustrated in Figure 6.5. All pages were loaded individually while 
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running the YSlow add-on to obtain the final score. A higher score indicates a 

good grade of page performance. The results indicated a degradation of 

performance when the mouse tracking feature is enabled. However, their 

differences are very low. 

 

Figure 6.5. Overall performance score 

6.4 AJAX Request Timing 

Figure 6.6 below illustrates the value of AJAX request timing made by 

participants (n=10). These values were obtained by using data a collection script 

defined in Appendix A – AJAX Request. 

 

Figure 6.6. AJAX request timing 
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6.5 Simultaneous Requests 

In order to gain a certainty level of maximum simultaneous requests per second, 

the server should appropriately handle Apache Benchmark (see Appendix D), 

which was launched ten times to obtained an average value. The average value 

represents a high number of successful responses received and minimum failed 

requests. 

Test	  #	  
Test	  time	  

(sec)	  
Requests	  

/sec	  
Time	  per	  

request	  (ms)	  
Transfer	  rate	  
(Kbytes/sec)	  

1	   61	   16.39	   3904.428	   3.55	  

2	   22	   44.73	   1430.965	   9.71	  

3	   85	   11.69	   5473.194	   2.54	  

4	   139	   7.15	   8949.181	   1.56	  

5	   22	   44.32	   1443.975	   9.61	  

6	   34	   29.13	   2196.904	   6.32	  

7	   45	   21.86	   2927.084	   4.74	  

8	   27	   36.51	   1752.786	   7.92	  

9	   26	   38.34	   1669.335	   8.31	  

10	   151	   6.61	   9692.308	   1.43	  

AVERAGE	   61.2	   25.673	   3944.016	   5.569	  
 

Table 6.1. Apache benchmark results 

As presented in Table 6.1, the average value of requests per second was 25.673. 

This value indicates significant positive correlation and still below the allowed 

threshold value of maximum simultaneous requests per second made by 

participants, which is 99 as described in Section 6.2.1. 

Participant	  #	   Requests	  /sec	  
1	   8	  
2	   5	  
3	   7	  
4	   6	  
5	   4	  
6	   6	  
7	   5	  
8	   8	  
9	   8	  

10	   6	  
 

Table 6.2. Participants requests /sec 
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As presented in Table 6.2, it was found that, on average, legitimate participants 

requested no more than 8 simultaneous connections per second. Therefore, a 

preliminary training dataset was built according to these results. 

6.5.1 Attack Simulation 

In order to disrupt the web server, it was found that the attack simulation tools 

were generating requests between 400 – 1000 of simultaneous connections from a 

single connection. The following are the results for attack simulation as specified 

in Appendix D. These values were obtained by using the netstat command in 

Appendix A – Simultaneous Request. 

 

Figure 6.7. Attack simulation 

R-u-d-y was tested on the search page, while the other tools were tested on the 

landing page. THC-SSL-DOS was tested on the secure connection on port 443. All 

of these attacking tool sessions were not authenticated, because it is assumed that 

the adversary does not have a valid credential. From all these attacking tools, only 

PhantomJS was capable of generating user interface interaction, proof-of-work, 

screen resolution and browser fingerprint data. However, PhantomJS failed to 

respond correctly on the banner advertisement. By using slowhttptest alone, it can 

be seen that the server stops responding after 6 seconds (see Appendix D – 

Slowhttptest Output). Therefore, to automate the decision making process, the 

visitor page requests will be checked to see whether it is beyond the normal 

threshold limit. Then, if a visitor has a high rate of concurrent connections and is 
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not capable of generating proof-of-work, it will be marked for the next decision 

process. Additional checking of user interaction, screen resolution, browser 

fingerprint data and banner reaction will also be performed. Finally if a visitor 

signifies a workload of form submission frequency, based on this observation by 

using J48 classification for a decision tree, the traffic will be classified as a bot. 

6.6 Classifier Performance 

This section presents the results of classifier performance using several supervised 

machine learning algorithms. These results were produced using Weka on a 

training dataset as described in Appendix B – Traffic Training Dataset. Decision 

tree classification (J48) obtained an accuracy of 85.2381%, as indicated in Figure 

6.8. 

 

Figure 6.8. Classifier performance 

According to these results, Decision Tree (J48) was finally chosen as the main 

machine learning algorithm due to its high accuracy value and low false-positive 

rate. The performance of the classification algorithm, Decision Tree J48, was 

evaluated using cross-validation with 10 folds. The main reason is that this setting 

has a lower variance, which is very important when the amount of data available is 

limited. In this case, the decision tree has outperformed the other machine learning 

algorithms. By gradually growing the training dataset size, the quality of accuracy 

increases, as illustrated in Figure 6.9.  
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Figure 6.9. Decision tree learning curve 

6.6.1 Testing on a Training Dataset 

This section presents the results on a training dataset for decision tree 

classification using cross-validation with 10 folds. The testing correctly classified 

179 data from a total of 210 instances with an accuracy of 85.2381%. The 

incorrectly classified instances were 14.7619 % (31 instances). These instances 

were incorrectly classified because of banner reaction inaccuracy and mismatch 

parsing on HTTP request load.  This is a false positive error - a false detection 

result that indicates a given legitimate user was identified as malicious bot. 	  

===	  Run	  information	  ===	  

Scheme:weka.classifiers.trees.J48	  -‐C	  0.25	  -‐M	  2	  
Relation:	  	  	  	  	  discriminate	  
Instances:	  	  	  	  210	  
Attributes:	  	  	  9	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  request	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  pow	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  freq	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  auth	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  heatmap	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  banner	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  screen	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  fp	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  class	  
Test	  mode:10-‐fold	  cross-‐validation	  
	  
===	  Classifier	  model	  (full	  training	  set)	  ===	  
J48	  pruned	  tree	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  
request	  <=	  0.1:	  0x7003	  (10.0)	  
request	  >	  0.1	  
|	  	  	  banner	  <=	  0.19:	  0x7001	  (128.0/28.0)	  
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|	  	  	  banner	  >	  0.19:	  0x7000	  (72.0)	  
	  
Number	  of	  Leaves	  	  :	  	   3	  
	  
Size	  of	  the	  tree	  :	  	   5	  
	  
	  
Time	  taken	  to	  build	  model:	  0.05	  seconds	  
	  
===	  Stratified	  cross-‐validation	  ===	  
===	  Summary	  ===	  
	  
Correctly	  Classified	  Instances	  	  	  	  	  	  	  	  	  179	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  85.2381	  %	  
Incorrectly	  Classified	  Instances	  	  	  	  	  	  	  	  31	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  14.7619	  %	  
Kappa	  statistic	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.7288	  
Mean	  absolute	  error	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.1438	  
Root	  mean	  squared	  error	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.2761	  
Relative	  absolute	  error	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  39.4958	  %	  
Root	  relative	  squared	  error	  	  	  	  	  	  	  	  	  	  	  	  	  64.8327	  %	  
Total	  Number	  of	  Instances	  	  	  	  	  	  	  	  	  	  	  	  	  	  210	  	  	  	  	  	  
	  
===	  Detailed	  Accuracy	  By	  Class	  ===	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  TP	   Rate	   	   	   FP	   Rate	   	   	   Precision	   	   	   Recall	   	   F-‐Measure	   	   	   ROC	   Area	  	  
Class	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.72	  	  	  	  	  	  0.027	  	  	  	  	  	  0.96	  	  	  	  	  	  0.72	  	  	  	  	  	  0.823	  	  	  	  	  	  0.842	  	  	  	  
0x7000	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.97	  	  	  	  	  	  0.255	  	  	  	  	  	  0.776	  	  	  	  	  0.97	  	  	  	  	  	  0.862	  	  	  	  	  	  0.842	  	  	  	  
0x7001	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  0	  	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  
0x7003	  
Weighted	  Avg.	  	  	  	  0.852	  	  	  	  	  0.134	  	  	  	  	  	  0.874	  	  	  	  	  0.852	  	  	  	  	  0.85	  	  	  	  	  	  	  0.85	  	  

6.6.2 Banner Reaction 

This section presents the results for classifying legitimate visitors by analysing 

their reaction to a banner. The primary focus is to demonstrate how the system is 

able to recognise such activities. Mouse movement data were saved into 100 

temporary variables that correspond to each section of the page and then mapped 

into 10 ARFF variables (see Appendix A – Banner Reaction). One banner 

advertisement puzzle was generated along with the training dataset. The training 

dataset and the participant test set can be found in Appending B – Banner Training 

Dataset. The screenshot for the advertisement page can be found in Appendix C – 

Advertisement Page. Finally, the test was conducted on Weka for the collected test 

data of participants (n=10), as listed below.  

===	  Run	  information	  ===	  
	  
Scheme:weka.classifiers.trees.J48	  -‐C	  0.25	  -‐M	  2	  
Relation:	  	  	  	  	  swing	  
Instances:	  	  	  	  123	  
Attributes:	  	  	  11	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy1	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy2	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy3	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy4	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy5	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy6	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy7	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy8	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy9	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  xy10	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  class	  
Test	  mode:10-‐fold	  cross-‐validation	  
	  
===	  Classifier	  model	  (full	  training	  set)	  ===	  
J48	  pruned	  tree	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
xy2	  <=	  33584	  
|	  	  	  xy2	  <=	  30382:	  false	  (12.0)	  
|	  	  	  xy2	  >	  30382:	  true	  (72.0/2.0)	  
xy2	  >	  33584:	  false	  (39.0)	  
	  
Number	  of	  Leaves	  	  :	  	   3	  
Size	  of	  the	  tree	  :	  	   5	  
	  
Time	  taken	  to	  build	  model:	  0.03	  seconds	  
===	  Stratified	  cross-‐validation	  ===	  
===	  Summary	  ===	  
	  
Correctly	  Classified	  Instances	  	  	  	  	  	  	  	  	  117	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  95.122	  	  %	  
Incorrectly	  Classified	  Instances	  	  	  	  	  	  	  	  	  6	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  4.878	  	  %	  
Kappa	  statistic	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.8996	  
Mean	  absolute	  error	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.0613	  
Root	  mean	  squared	  error	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.2189	  
Relative	  absolute	  error	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  12.4971	  %	  
Root	  relative	  squared	  error	  	  	  	  	  	  	  	  	  	  	  	  	  44.1853	  %	  
Total	  Number	  of	  Instances	  	  	  	  	  	  	  	  	  	  	  	  	  	  123	  	  	  	  	  	  
===	  Detailed	  Accuracy	  By	  Class	  ===	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  TP	  Rate	  	  	  FP	  Rate	  	  	  Precision	  	  	  Recall	  	  F-‐Measure	  	  	  ROC	  Area	  	  
Class	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.986	  	  	  	  	  0.094	  	  	  	  	  	  0.932	  	  	  	  	  0.986	  	  	  	  	  0.958	  	  	  	  	  	  0.926	  	  	  	  
true	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.906	  	  	  	  	  0.014	  	  	  	  	  	  0.98	  	  	  	  	  	  0.906	  	  	  	  	  0.941	  	  	  	  	  	  0.926	  	  	  	  
false	  
Weighted	  Avg.	  	  	  	  0.951	  	  	  	  	  0.06	  	  	  	  	  	  	  0.953	  	  	  	  	  0.951	  	  	  	  	  0.951	  	  	  	  	  	  0.926	  
	  
===	  Confusion	  Matrix	  ===	  
	  
	  	  a	  	  b	  	  	  <-‐-‐	  classified	  as	  
	  69	  	  1	  |	  	  a	  =	  true	  
	  	  5	  48	  |	  	  b	  =	  false	  

	  
===	  Re-‐evaluation	  on	  test	  set	  ===	  
	  
User	  supplied	  test	  set	  
Relation:	  	  	  	  	  swing	  
Instances:	  	  	  	  unknown	  (yet).	  Reading	  incrementally	  
Attributes:	  	  	  11	  
	  
===	  Predictions	  on	  test	  set	  ===	  
	  
inst#,	  	  	  	  actual,	  predicted,	  error,	  probability	  distribution	  
	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  2	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  3	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  4	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  5	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  6	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  7	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  8	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
	  	  	  	  	  9	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  
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	  	  	  	  10	  	  	  	  	  	  	  	  	  	  ?	  	  	  	  	  1:true	  	  	  	  	  	  +	  	  *0.972	  	  0.028	  

	  
The test dataset of the participants (n=10) was evaluated using the built-in decision 

tree algorithm. The system has to perform a binary classification, where the true 

value indicates a successful attempt on closing the banner. It was found that all the 

participants were able to respond correctly to the banner advertisement. The model 

reached an accuracy of 95.122% in detecting these responses. Figure 6.10 

illustrates the Receiver Operating Characteristic (ROC) plot for the training 

dataset. The result shows that the area under ROC = 0.9263 indicates a good value. 

 

Figure 6.10. Receiver operating characteristic for the training dataset 

6.6.3 Discriminating Traffic 

The following are the results for discriminating the traffic on a test dataset of the 

ten legitimate participants and simulation of six bot attacks. All of the 16 test cases 

were evaluated using observation input data as described in Chapter 5 for the 

experiment settings. The results of classifying the test dataset were highly 

accurate, and the model was able to correctly identify ten participants and six 

simulated bot attacks. In practice, the accuracy of the classification could be 

manually checked by comparing the website heatmap data generated by the 

participants and the data produced by the bots. The evaluation used the main 

Traffic Training Dataset – Appendix B - to discriminate the traffic, as listed below. 

===	  Predictions	  on	  test	  split	  ===	  
	  

inst#,	  	  	  	  actual,	  predicted,	  error,	  probability	  distribution	  
	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  2	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  3	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  4	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  5	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  6	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  7	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  8	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  	  9	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
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	  	  	  	  10	  	  	  	  	  	  	  	  	  	  ?	  	  	  1:0x7000	  	  	  	  	  	  +	  	  *1	  	  	  	  	  	  0	  	  	  	  	  	  0	  	  	  	  	  
	  	  	  	  11	  	  	  	  	  	  	  	  	  	  ?	  	  	  2:0x7001	  	  	  	  	  	  +	  	  	  0.219	  *0.781	  	  0	  	  	  	  	  
	  	  	  	  12	  	  	  	  	  	  	  	  	  	  ?	  	  	  2:0x7001	  	  	  	  	  	  +	  	  	  0.219	  *0.781	  	  0	  	  	  	  	  
	  	  	  	  13	  	  	  	  	  	  	  	  	  	  ?	  	  	  2:0x7001	  	  	  	  	  	  +	  	  	  0.219	  *0.781	  	  0	  	  	  	  	  
	  	  	  	  14	  	  	  	  	  	  	  	  	  	  ?	  	  	  2:0x7001	  	  	  	  	  	  +	  	  	  0.219	  *0.781	  	  0	  	  	  	  	  
	  	  	  	  15	  	  	  	  	  	  	  	  	  	  ?	  	  	  2:0x7001	  	  	  	  	  	  +	  	  	  0.219	  *0.781	  	  0	  	  	  	  	  
	  	  	  	  16	  	  	  	  	  	  	  	  	  	  ?	  	  	  2:0x7001	  	  	  	  	  	  +	  	  	  0.219	  *0.781	  	  0	  	  	  	  	  

The performance of the classification algorithm, Decision Tree J48, was evaluated 

using: 

• Training set, reached an accuracy of 86.6667%. 

• Cross-validation with 10 folds, reached an accuracy of 85.2381%. 

• Percentage split of 66%, reached an accuracy of 83.0986%. 

Figure 6.11 displays the generated tree using Weka Tree Visualizer. 

 

Figure 6.11. Tree view 

6.7 Visual Analytics Design 

This section presents the results for the prototype of the visual analytics design by 

using D3.js. A comparison with current state-of-the art visualisation is also given. 

6.7.1 Interactive Visualisation 

The main dashboard uses the Quadtree data structure. The structure is used to 

represent IP addresses in the visualisation. Each dot inside the graph represents the 

value of an incoming connection. Similar connections with similar activities can 

be identified and selected for further details on demand analysis. 

In practice, the classification result will be mapped accordingly into two separate 

canvas and represents current network traffic, as illustrated in Figure 6.12. The 

view can be calibrated to show differences over time. It aims to automatically 

classify between legitimate flash crowds against incoming bot traffic. The small, 
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8x8 or adjustable, quad represents a single client connection. Each quad contains a 

maximum of 32 bits in size, which is the IP address. 

 

Figure 6.12. Quadtree representation using d3.js 

A selection can be made using a rectangular selection. A further zooming will 

result into a Voronoi diagram. This is to simplify the visualisation and provide fair 

visualisation allocation, especially when flash crowds might occur in the network. 

The other reason is to group IP addresses according to their first octet. Another 

option such as blocking or exporting the IP address list is also given later. 

By using a Voronoi diagram, it enables interactive visualisation to be presented 

into multiple regions, as depicted in Figure 6.13. A selection of multiple regions is 

possible. Thus, it provides an analyst with filtering, searching and details on 

demand capability. The region label indicates the first octet of an IP address.  

	  

Figure 6.13. Voronoi diagram using d3.js 
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To understand the historical trend, the analyst may select another type – 

cumulative line chart - of presentation in time series format, as illustrated in Figure 

6.14. 

	  

Figure 6.14. Time series format using d3.js 

6.7.2 Large Dataset 

A further expansion from the Voronoi diagram will result into a heatmap graph. 

This is to show which activities are intense. It enables better understanding, 

reasoning and decision making from very large datasets. The analyst becomes 

aware of the current situation by examining this heatmap graph, as illustrated in 

Figure 6.15. The X-axis represents client connection, while the Y-axis represents 

timestamp. The top row of the heatmap indicates latest situation. The green colour 

indicates legitimate visitors, and the violet colour indicates bot traffic. Darker 

colours indicate intense requests made by the client. This enables the analyst to 

gain an insight and discover patterns from very large datasets. However, it is 

assumed that bots will have constant or continually request patterns. 



	  

	   	   76	  

 

Figure 6.15. Heatmap graph example using d3.js 

More information is given in Figure 6.16. Details on demand will provide more 

information regarding the hit rate and source of IP addresses. 

 

Figure 6.16. Latest hits 

6.7.3 Knowledge Discovery 

As illustrated in Figure 56, the visualisation enables the analyst to gain new 

knowledge to discover process states (reading, waiting, idle and sending) and to 

understand how they relate to the system health. The X-axis represents CPU 

usage, while the Y-axis represents memory usage. The size of the bubble indicates 

the total number of process instances currently running. The analyst can filter out 

any process group and make a particular selection, as illustrated in Figure 6.17.	  
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Figure 6.17. Process states visualisation using d3.js 

Under certain circumstances when the web server becomes unresponsive, the 

analyst can quickly understand why and which process is causing the problem. 

This technique enhances awareness, especially when multiple instances are 

running.  

 

Figure 6.18. Group selection using d3.js 

Furthermore, based on the selection, the analyst can explore the visualisation to 

obtain further information, as illustrated in Figure 6.18. The visualisation is 

presented in one single dashboard - this brings deeper exploration without 

changing the representation of the overall visualisation. 
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Figure 6.19. Further exploration 

As an alternative, the analyst may select another type of visualisation presentation 

in a time series format, as illustrated in Figure 6.19. This enables historical trend to 

be analysed and provides an understanding regarding the current system health. 

Therefore, the analyst can understand the impact of a certain process state more 

effectively. 

 

Figure 6.20. Time series format using d3.js 

Compared to the traditional Apache server-status information and Visual Status, 

as depicted in Figure 6.21 and Figure 6.22, the proposed visualisation system 

provides a better interactivity that enables an analyst to discover knowledge 

regarding to Apache process states and system health. 
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Figure 6.21. Apache process states 

 

Figure 6.22. Visual status [70] 

6.7.4 Information Overload 

As previously described, by using a heatmap graph, an analyst could gain an 

insight and discover patterns from very large datasets. Thus, decision making can 
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be made quickly to allow or block a certain connection. A further examination of 

the traffic is also possible, such as examining the pcap file or website heatmap 

data. This is to provide a measure of certainty that the current traffic belongs to a 

particular class. There might be several occasions behind the occurrences of such 

unwanted cases, for example incorrect classification results, corrupted dataset and 

advanced bot attacks that can perfectly mimic human behaviour, in which they can 

perfectly evade detection. 

Thus, the proposed visualisation system aims to turn information overload into 

opportunity by discovering adaptive bot attacks – understanding how future bots 

will attack the system and need to know what will be impacted by them - and to 

enhance usability study by using website heatmap data. This is to “detect the 

expected and discover the unexpected” [11, 12]. Furthermore, X-Map exploits 

banner features to combine security protection with the opportunity of company 

advertisements. It provides advertising support, which can lead revenues behind 

them. According to a study by Shi et al. and Treesinthuros, Flash crowds and 

visitor volumes are often associated with banner advertisement revenues [71, 72]. 

6.8 Discussion 

Reviewing the previous research questions as stated in Chapter 1: 

Question 1. Can we find a new solution to transparently classify bots presence 

against legitimate traffic? 

To answer research question #1, a banner advertisement was given to all the 

participants. In order to continue browsing the website, each participant must 

respond correctly to the banner advertisement. The results have shown that all the 

participants were able to respond correctly to the banner advertisement. The model 

reached an accuracy of 95.122% in detecting these responds. These results suggest 

that the reaction against banner advertisement could be used as a strong indicator 

of a human presence. However, there are several additional observation inputs that 

need to be considered in order to correctly classify traffic, e.g. the total of HTTP 

requests made and form submission frequency rate. Section 6.3.3 has presented 

these results, and the classification was highly accurate. 

An adaptive persistent bot might have randomly clicked on every area of the page 

by using a brute force mechanism. However, this technique could be effectively 
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identified by calculating the total number of mouse click events. Further studies 

are therefore recommended in order to identify this threshold limit. In future 

investigations, it might be possible to use different input devices, such as 

Touchpad and Leap Motion. Furthermore, the banner advertisement should be 

randomly generated with a different level of complexity in order to deter the 

presence of bots. 

Question 2. By using visual analytics, how can the result of classification be 

presented in a decision-oriented way?  

To answer research question #2, the design of the visual analytics system has 

been given. The purpose of this design is to provide an analyst with a user 

interface, from which decision making can be made efficiently. Given vast 

amounts of network traffic, the analyst could interactively select parts of the data 

to determine their destiny or visualise it in detail. The analyst could grasp more 

comprehensive details without being constrained by large data. This brings simple 

action without changing the representation of the overall visualisation. 

6.9 Summary 

In this chapter the evaluation of the research has been presented. The experiment 

and simulation approaches have been covered along with the discussion. The 

results and performance of the classification algorithm, using Decision Tree J48, 

have been discussed. The design of the visual analytics system has been given. 

Finally, the research questions have been answered in the discussion section.  

As it can be seen from the results in Section 6.2, the threshold values present 

positive results to signify abnormal behaviour. In addition, these values were used 

for augmenting the initial training dataset. The system has more data to analyse 

about the visitor behaviour and predict this against the training dataset. The results 

of the visitor behaviour tracking indicate a good page performance load, as 

indicated in Section 6.3. These results show that there is no significant 

performance difference compared to the pages without tracking enabled. The 

results of AJAX timing request, as described in Section 6.4, provide a better 

illustration of the entire tracking. As presented in Section 6.5, the average value of 

requests per second was 25.673. This value indicates significant positive 

correlation and still above the threshold value of maximum simultaneous requests 
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per second made by participants. The total requests of simultaneous connections 

were used to give a strong indicator of abnormal behaviour. Overall, the classifier 

performance obtained an accuracy of 85.2381%, as shown in Section 6.6. The 

decision tree (J48) algorithm was chosen due to its high accuracy value and low 

false-positive rate. The results for classifying banner reaction reached an accuracy 

of 95.122% with ROC = 0.9263. The results of classifying the test dataset were 

highly accurate, and the model was able to correctly identify the ten participants 

and six simulated bot attacks with an accuracy of 86.6667%. Finally, the visual 

analytics design was formulated in order to assist an analyst to discover bots 

presence.  

Along with these results, two comparisons between VATRIX and X-Map with 

other current approaches have been made as illustrated in Table 6.3 and Table 6.4 

below. Table 6.3 provides a comparison between existing solutions and X-Map.  

 Application 

Layer 

CAPTCHA Banner Browsing 

Behaviour 

 Be 
X-Map Yes No Yes Yes 

Kill-Bots Yes Yes No No 

Yu et al. No No No No 

Xie and Yu Yes No No Yes 

Oikonomou Yes No No Yes 

Table 6.3 X-Map Comparison Table 

X-Map gives flexible solution, which embraces the use of decision tree learning 

for classification and to make predictions based on visitor past observation. X-

Map attempts to gather all visitors browsing behaviour before making any 

predictive response. X-Map effectively emphasises on the method that can handle 

large datasets while reducing computation complexity. This enables X-Map to 

have many advantages over other systems, which lacks the use of banner reaction 

technique. While current approaches worked well at the application layer, 

however, the disadvantage of these approaches is that CAPTCHA is often needed. 

On the other hand X-Map offers a different solution in order to discriminate traffic 

by employing website heatmap and banner reaction. 
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Table 6.4 provides a comparison between existing solutions and VATRIX. 

VATRIX offers an effective solution for visual analytics interaction, which 

embraces the use of X-Map along with the Voronoi diagram and Quadtree data 

structure. 

 Method Visualisation Interaction 

VATRIX X-Map Voronoi 

diagram 

No 

Zhang et al. Density-workload Graph model No 

NetSecRadar IDS dependent Radial graph No 

VisTracer Anomaly detection Glyph Yes 

VACS Elastic Search Hierarchical 

clockmap 

Yes 

Yassem Network abstraction Hilbert curve No 

Shurkhovetskyy InfoVis Toolkit Multiple graphs Yes 

Mansmann et al. Dynamic event Modular graphs No 

Table 6.4 VATRIX Comparison Table 

VATRIX has advantages over other current approaches, which automatically 

classifies between legitimate flash crowds against incoming bot traffic. Current 

approaches are not specifically designed for bot attacks that are capable of 

mimicking genuine flash crowds. The disadvantage of the current approaches is 

that they are mainly built for detecting flood attacks and lacking the interactivity 

response in order to mitigate low and slow bandwidth attacks. Finally, the next 

chapter will review the major conclusion and future work of this thesis. 
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Chapter 7 Conclusions and Future Work 

This final chapter concludes this thesis by highlighting the main contributions and 

discussing directions for future research. 

7.1 Conclusion 

Internet services are continually subject to new threats. The presence of bot attacks 

has increased greatly. Although these attacks consume less bandwidth compared to 

volumetric attacks, application layer bot attacks are stealthier in nature, which 

often lead to a disruptive impact. As covered in Chapter 2, there have been several 

vulnerability cases that provide attackers with a high potential of extortion to bring 

HTTP servers down. Mitigating and differentiating these bot activities from flash 

crowds traffic remains an open challenge to date. In this dissertation, the bot attack 

problem has been investigated. In Chapter 3, the architecture of VATRIX has been 

presented. It provides an insight in how the system works. In order to successfully 

show the visualisation system, the user interface was also presented in detail. In 

Chapter 4, the method X-MAP has been discussed. It covers the solution for traffic 

classification. In Chapter 5, the experiment settings have been given. It covers the 

experimental simulation study consisting of two phases, the benchmark 

assessment and attack simulation using external tools. Finally, in Chapter 6, the 

evaluation has been presented along with the significant results produced from our 

research. A comparison with related work has been covered. 

The contributions of this thesis were presented in Chapter 3 and Chapter 4. They 

include two primary contributions. The first is the development of the visual 

analytics system, VATRIX, that can interactively respond and discover bot 

presence. The second is the scalable technique, X-MAP, that transparently 

separates legitimate traffic against bot traffic. These findings have shown the 

advantages of website heatmaps for predicting the presence of a human with the 

opportunity of usability study. It is demonstrated that by analysing how visitors 

respond to advertisements, better traffic classification with the opportunity of 

company advertisements can be provided. This condition can lead to beneficial 

revenues behind them. These techniques provide a measure of certainty, which is 

missing in the current methods.  
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7.2 Future Work 

A defence system relying on machine learning and artificial intelligence alone is 

not sufficient enough in defeating an adaptive adversary. In a world of persistent 

threats, this may leave an open door to other attacks. There are several future 

directions that can be pursued following this dissertation. 

1. Optimizing the data acquisition and storage process 

Collecting visitor behaviour on a website produces vast amounts of data. Ensuring 

data quality remains a challenging problem for almost every large organisation. 

Currently, the process of acquiring and storing visitor behaviour data is not 

optimised, both in terms of capacity and reliability. Incorrect or inconsistent data 

can significantly influence the result of classification. Regarding this issue, 

additional research work is required in order to optimise this process. Our 

evaluation shows that the current methods offer viable solutions despite the vast 

amounts of data they produce. Therefore, integration with a reliable storage will be 

the next focus. 

2. Single point of failure 

X-Map largely depends on the existence of a giant hash table produced by 

memcached. In this way, X-Map is able to handle asynchronous requests. It allows 

a client(s) to lookup single or multiple IP addresses. However, the issue of a single 

point of failure will need to be addressed as the amount of traffic increases. An 

automatic failover mechanism will need to be established in order to provide high 

availability. Future research work should look further into the issues regarding the 

single point of failure so that upon abnormal termination, key-value data can be 

safely collected and stored. 

3. Sonification 

The current visual analytics system is capable of discovering bot traffic. However, 

the future research work would consider expanding the use of sonification by 

turning information overload into a meaningful sound, in order to better assist an 

analyst. 
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Appendix A – Data Collection Scripts 

A.1 IP and TCP Header 

void	  print_ip_header(unsigned	  char*	  Buffer,	  int	  Size)	  
{	  
	  	  	  	  unsigned	  short	  iphdrlen;	  
	  	  	  	  	  	  	  	  	  	  
	  	  	  	  struct	  iphdr	  *iph	  =	  (struct	  iphdr	  *)Buffer;	  
	  	  	  	  iphdrlen	  =iph-‐>ihl*4;	  
	  	  	  	  	  	  
	  	  	  	  memset(&source,	  0,	  sizeof(source));	  
	  	  	  	  source.sin_addr.s_addr	  =	  iph-‐>saddr;	  
	  	  	  	  	  	  
	  	  	  	  memset(&dest,	  0,	  sizeof(dest));	  
	  	  	  	  dest.sin_addr.s_addr	  =	  iph-‐>daddr;	  
	  	  	  	  	  	  
	  	  	  	  fprintf(logfile,"	  	  	  |-‐Source	  IP	  	  	  	  	  	  	  	  :	  %s\n",inet_ntoa(source.sin_addr));	  
	  	  	  	  fprintf(logfile,"	  	  	  |-‐Destination	  IP	  	  	  :	  %s\n",inet_ntoa(dest.sin_addr));	  
}	  
	  	  
void	  print_tcp_packet(unsigned	  char*	  Buffer,	  int	  Size)	  
{	  
	  	  	  	  unsigned	  short	  iphdrlen;	  
	  	  	  	  	  	  
	  	  	  	  struct	  iphdr	  *iph	  =	  (struct	  iphdr	  *)Buffer;	  
	  	  	  	  iphdrlen	  =	  iph-‐>ihl*4;	  
	  	  	  	  	  	  
	  	  	  	  struct	  tcphdr	  *tcph=(struct	  tcphdr*)(Buffer	  +	  iphdrlen);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  print_ip_header(Buffer,Size);	  
	  	  	  	  	  	  	  	  	  	  
	  	  	  	  fprintf(logfile,"\n");	  
	  	  	  	  fprintf(logfile,"TCP	  Header\n");	  
	  	  	  	  fprintf(logfile,"	  	  	  |-‐Source	  Port	  	  	  	  	  	  :	  %u\n",ntohs(tcph-‐>source));	  
	  	  	  	  fprintf(logfile,"	  	  	  |-‐Destination	  Port	  :	  %u\n",ntohs(tcph-‐>dest));	  
	  	  	  	  	  
);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
A.2 Request Behaviour 

<?php	  $handle	  =	  fopen("counter.txt",	  "r");	  	  
if(!$handle)	  
{	  	  

echo	  "could	  not	  open	  the	  file"	  ;	  	  
}	  	  
else	  {	  $counter	  =	  (int	  )	  	  

fread($handle,20);	  	  
	  

fclose	  ($handle);	  	  
$counter++;	  	  
$handle	  =	  fopen("counter.txt",	  "w"	  );	  fwrite($handle,$counter)	  ;	  	  
fclose	  ($handle)	  ;	  }	  ?>	  

A.3 Simultaneous Request 

ip=$1	  
export	  ip	  
netstat	  -‐n	  |	  awk	  '{if	  ($4	  ==	  ENVIRON["ip"]":80")	  {if	  ($6	  ==	  
"ESTABLISHED"){print("-‐i	  "$5)	  }}}'	  
	  
netstat	  -‐plan	  |	  grep	  :80	  |	  wc	  -‐l	  
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A.4 Proof of Work 

	  <script	  type="text/javascript">	  
	  	  	  
	  $('body').onload(function(event)	  {	  
	  	  	  var	  msg	  =	  $.md5('testing');	  
	  	  	  $('#msg').text(msg);	  
	  });	  
	  	  
	  </script>	  

A.5 Form Submission Frequency 

foreach($_POST["name"]	  as	  $value)	  {	  	  
$var	  .=	  count($value);	  	  
}	  	  
echo	  $var;	  	  

$total	  =""	  
	  	  
if(isset($_POST['cb1'])){	  
//count	  it	  
$total	  =	  $total	  +	  1;	  
}	  
if(isset($_POST['cb2'])){	  
//	  add	  it	  to	  the	  total	  
$total	  =	  $total	  +	  1;	  
}	  

A.6 Authenticated Session 

require	  './includes/bootstrap.inc';	  
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);	  
if	  (!user_access('administer	  nodes'))	  {	  
drupal_access_denied();	  
	  	  exit(0);	  
} 

A.7 Website Heatmap 

<!DOCTYPE	  html>	  
<html	  lang="en">	  
...	  
<div	  id="heatmapArea"	  />	  
<script	  type="text/javascript"	  src="heatmap.js"></script>	  
<script	  type="text/javascript">	  
window.onload	  =	  function(){	  
	  	  
	  	  	  	  //	  heatmap	  configuration	  
	  	  	  	  var	  config	  =	  {	  
	  	  	  	  	  	  	  	  element:	  document.getElementById("heatmapArea"),	  
	  	  	  	  	  	  	  	  radius:	  30,	  
	  	  	  	  	  	  	  	  opacity:	  50	  
	  	  	  	  };	  
	  	  	  	  	  
	  	  	  	  //creates	  and	  initializes	  the	  heatmap	  
	  	  	  	  var	  heatmap	  =	  h337.create(config);	  
	  	  
	  	  	  	  //	  let's	  get	  some	  data	  
	  	  	  	  var	  data	  =	  {	  
	  	  	  	  	  	  	  	  max:	  20,	  
	  	  	  	  	  	  	  	  data:	  [	  
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	  	  	  	  	  	  	  	  	  	  	  	  {	  x:	  10,	  y:	  20,	  count:	  18	  },	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  x:	  25,	  y:	  25,	  count:	  14	  },	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  x:	  50,	  y:	  30,	  count:	  20	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  ...	  
	  	  	  	  	  	  	  	  ]	  
	  	  	  	  };	  
	  	  
	  	  	  	  heatmap.store.setDataSet(data);	  
};	  
</script>	  
</html>	  

A.8 Banner Reaction 

<head>	  
<script	  src="http://code.jquery.com/jquery-‐latest.js"></script>	  
</head>	  
<body>	  
	  
	  	  <h1>Swing	  Motion	  Experiment</h1>	  
	  	  <img	  src="ads.jpg">	  
	  	  <p	  id="msg"></p>	  
	  	  <p	  id="arff"></p>	  
	  
	   <script	  type="text/javascript">	  
	   	  	  
	   var	  i=0;	  
	  	  	  	  	  	  	  	  var	  x=0;	  
	  	  	  	  	  	  	  	  var	  y=0;	  
	  	  	  	  	  	  	  	  var	  sum	  =	  [];	  
	  
	   $('body').mousemove(function(event)	  {	  
	  	  	  	  	  	  	  	  	  	  x	  =	  event.pageX;	  
	  	  	  	  	  	  	  	  	  	  y	  =	  event.pageY;	  
	  
	   	  	  var	  msg	  =	  'mousemove()	  position	  .	  x	  :	  '	  +	  x	  +	  ',	  y	  :	  '	  +	  y	  +	  '	  
[counter]	  :	  '	  +	  i;	  
	   	  	  $('#msg').text(msg);	  
	  
	  	  	  	  	  	  	  	  	  	  sum[i]	  =	  x	  +	  ''	  +	  y;	  
	  
	  	  	  	  	  	  	  	  	  	  i++;	  
	  
	   });	  
	   	  	  
	   $('body').dblclick(function(event)	  {	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  var	  output	  =	  '';	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for(var	  j	  =	  sum.length	  -‐	  10;	  j	  <	  sum.length;	  j++)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  output	  =	  output	  +	  sum[j]	  +	  ',';	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  $('#arff').text(output+'?');	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  console.log(output+'?');	  
	  
	   	   i	  =	  0;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sum.length	  =	  0;	  
	   });	  
	   	  
	   </script>	  
</body>	  
</html>	  
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A.9 Screen Resolution 

<script	  
src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js"></script>	  
<script	  type="text/javascript">	  
width	  =	  $(window).width();	  
height	  =	  $(window).height();	  
</script>	  

A.10 Browser Fingerprint 

<script	  type="text/javascript"	  
src="http://www.blangdon.com/js/fingerprint.js"></script>	  
<script	  type="text/javascript">	  
var	  fingerprint	  =	  new	  Fingerprint().get();	  
document.getElementById("fingerprint").innerHTML	  =	  fingerprint;	  
</script>	  
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Appendix B – Training and Test Dataset (ARFF) 

B.1 Traffic Training Dataset  

@relation	  discriminate	  
	  
@attribute	  'request'	  	  	  numeric	  
@attribute	  'pow'	  	  	  	  	  	  	  numeric	  
@attribute	  'freq'	  	  	  	  	  	  numeric	  
@attribute	  'auth'	  	  	  	  	  	  numeric	  
@attribute	  'heatmap'	  	  	  numeric	  
@attribute	  'banner'	  	  	  	  numeric	  
@attribute	  'screen'	  	  	  	  numeric	  
@attribute	  'fp'	  	  	  	  	  	  	  	  numeric	  
@attribute	  'class'	  	  	  	  	  {0x7000,	  0x7001,	  0x7003}	  
	  
@data	  
0.86,0.15,0.78,0.11,0.11,0.27,0.28,0.16,0x7000	  
0.86,0.19,0.85,0.10,0.11,0.11,0.18,0.15,0x7000	  
0.84,0.18,0.77,0.10,0.11,0.13,0.18,0.10,0x7000	  
0.75,0.16,0.67,0.11,0.10,0.34,0.10,0.16,0x7000	  
0.86,0.14,0.87,0.10,0.10,0.32,0.22,0.19,0x7000	  
0.87,0.13,0.83,0.10,0.10,0.27,0.27,0.13,0x7000	  
0.78,0.14,0.73,0.11,0.10,0.25,0.12,0.19,0x7000	  
0.79,0.13,0.62,0.10,0.10,0.27,0.24,0.13,0x7000	  
0.81,0.10,0.67,0.10,0.11,0.26,0.17,0.19,0x7000	  
0.72,0.11,0.80,0.11,0.10,0.17,0.22,0.15,0x7000	  
0.73,0.10,0.76,0.11,0.11,0.19,0.27,0.19,0x7000	  
0.84,0.18,0.66,0.10,0.10,0.17,0.19,0.15,0x7000	  
0.75,0.19,0.86,0.11,0.10,0.38,0.11,0.18,0x7000	  
0.70,0.16,0.84,0.11,0.11,0.14,0.24,0.14,0x7000	  
0.81,0.14,0.74,0.10,0.10,0.35,0.16,0.17,0x7000	  
0.82,0.16,0.70,0.11,0.10,0.37,0.21,0.14,0x7000	  
0.73,0.14,0.83,0.10,0.10,0.28,0.13,0.17,0x7000	  
0.88,0.14,0.88,0.11,0.11,0.34,0.26,0.13,0x7000	  
0.79,0.12,0.78,0.10,0.10,0.25,0.11,0.19,0x7000	  
0.80,0.11,0.67,0.11,0.11,0.27,0.16,0.13,0x7000	  
0.71,0.19,0.87,0.10,0.10,0.18,0.28,0.19,0x7000	  
0.73,0.18,0.67,0.10,0.11,0.37,0.12,0.18,0x7000	  
0.84,0.16,0.87,0.11,0.10,0.35,0.17,0.11,0x7000	  
0.79,0.16,0.85,0.10,0.10,0.34,0.10,0.17,0x7000	  
0.70,0.14,0.75,0.11,0.11,0.32,0.22,0.10,0x7000	  
0.74,0.15,0.65,0.10,0.11,0.23,0.14,0.16,0x7000	  
0.85,0.13,0.78,0.11,0.10,0.21,0.26,0.19,0x7000	  
0.73,0.12,0.74,0.10,0.10,0.23,0.11,0.16,0x7000	  
0.77,0.13,0.64,0.11,0.10,0.14,0.16,0.19,0x7000	  
0.85,0.12,0.60,0.10,0.10,0.16,0.28,0.16,0x7000	  
0.76,0.10,0.80,0.10,0.11,0.37,0.13,0.19,0x7000	  
0.71,0.10,0.78,0.10,0.11,0.13,0.26,0.15,0x7000	  
0.82,0.18,0.68,0.11,0.10,0.34,0.18,0.18,0x7000	  
0.83,0.17,0.87,0.10,0.10,0.36,0.23,0.15,0x7000	  
0.74,0.15,0.77,0.11,0.10,0.34,0.15,0.18,0x7000	  
0.89,0.15,0.75,0.11,0.11,0.33,0.28,0.14,0x7000	  
0.80,0.13,0.65,0.10,0.10,0.24,0.20,0.10,0x7000	  
0.81,0.12,0.61,0.10,0.10,0.26,0.25,0.14,0x7000	  
0.72,0.13,0.81,0.11,0.10,0.24,0.17,0.10,0x7000	  
0.74,0.10,0.79,0.11,0.11,0.23,0.10,0.13,0x7000	  
0.78,0.11,0.69,0.10,0.11,0.14,0.15,0.19,0x7000	  
0.86,0.10,0.65,0.11,0.11,0.16,0.27,0.13,0x7000	  
0.70,0.18,0.78,0.10,0.10,0.14,0.12,0.19,0x7000	  
0.78,0.17,0.74,0.10,0.10,0.39,0.17,0.13,0x7000	  
0.89,0.18,0.64,0.11,0.10,0.37,0.29,0.19,0x7000	  
0.84,0.15,0.62,0.11,0.11,0.36,0.22,0.15,0x7000	  
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0.75,0.13,0.82,0.10,0.10,0.34,0.14,0.18,0x7000	  
0.76,0.15,0.78,0.11,0.11,0.36,0.19,0.12,0x7000	  
0.87,0.13,0.68,0.10,0.10,0.27,0.11,0.18,0x7000	  
0.82,0.13,0.66,0.11,0.11,0.26,0.24,0.14,0x7000	  
0.73,0.11,0.86,0.10,0.11,0.24,0.16,0.17,0x7000	  
0.74,0.10,0.75,0.11,0.11,0.26,0.21,0.14,0x7000	  
0.85,0.18,0.65,0.10,0.10,0.17,0.26,0.17,0x7000	  
0.87,0.18,0.63,0.10,0.10,0.16,0.19,0.13,0x7000	  
0.88,0.17,0.89,0.11,0.10,0.18,0.11,0.17,0x7000	  
0.79,0.15,0.79,0.11,0.11,0.16,0.16,0.13,0x7000	  
0.83,0.16,0.69,0.10,0.11,0.37,0.28,0.16,0x7000	  
0.71,0.15,0.65,0.11,0.11,0.39,0.13,0.13,0x7000	  
0.86,0.12,0.63,0.11,0.10,0.38,0.26,0.19,0x7000	  
0.77,0.13,0.83,0.10,0.10,0.36,0.18,0.12,0x7000	  
0.78,0.12,0.72,0.11,0.10,0.38,0.23,0.19,0x7000	  
0.89,0.10,0.62,0.11,0.11,0.29,0.15,0.12,0x7000	  
0.84,0.10,0.60,0.11,0.10,0.28,0.28,0.18,0x7000	  
0.75,0.18,0.80,0.10,0.10,0.26,0.20,0.11,0x7000	  
0.83,0.17,0.76,0.11,0.10,0.28,0.25,0.18,0x7000	  
0.87,0.18,0.66,0.10,0.10,0.19,0.10,0.11,0x7000	  
0.75,0.17,0.62,0.11,0.10,0.21,0.22,0.18,0x7000	  
0.86,0.15,0.75,0.11,0.11,0.12,0.27,0.11,0x7000	  
0.81,0.15,0.80,0.11,0.10,0.18,0.20,0.17,0x7000	  
0.82,0.14,0.69,0.10,0.11,0.20,0.25,0.11,0x7000	  
0.73,0.12,0.89,0.11,0.10,0.11,0.17,0.17,0x7000	  
0.84,0.13,0.79,0.10,0.11,0.39,0.29,0.10,0x7000	  
0.79,0.10,0.77,0.10,0.11,0.38,0.22,0.16,0x7000	  
0.70,0.18,0.67,0.11,0.10,0.29,0.14,0.12,0x7000	  
0.71,0.10,0.63,0.11,0.10,0.31,0.19,0.16,0x7000	  
0.82,0.18,0.83,0.10,0.10,0.29,0.11,0.12,0x7000	  
0.73,0.16,0.73,0.11,0.11,0.20,0.16,0.15,0x7000	  
0.84,0.17,0.86,0.10,0.11,0.18,0.28,0.11,0x7000	  
0.79,0.14,0.61,0.10,0.10,0.17,0.21,0.14,0x7000	  
0.70,0.12,0.74,0.11,0.11,0.15,0.13,0.10,0x7000	  
0.81,0.13,0.64,0.10,0.11,0.36,0.25,0.13,0x7000	  
0.82,0.12,0.60,0.10,0.11,0.38,0.10,0.10,0x7000	  
0.73,0.10,0.80,0.11,0.10,0.29,0.15,0.13,0x7000	  
0.84,0.11,0.70,0.10,0.10,0.27,0.27,0.19,0x7000	  
0.79,0.18,0.68,0.10,0.11,0.26,0.20,0.15,0x7000	  
0.70,0.19,0.88,0.11,0.10,0.24,0.12,0.18,0x7000	  
0.81,0.17,0.78,0.10,0.10,0.15,0.24,0.14,0x7000	  
0.82,0.16,0.67,0.11,0.10,0.17,0.29,0.18,0x7000	  
0.73,0.14,0.87,0.11,0.10,0.38,0.21,0.11,0x7000	  
0.74,0.16,0.83,0.10,0.10,0.10,0.26,0.18,0x7000	  
0.79,0.12,0.75,0.10,0.10,0.35,0.19,0.13,0x7000	  
0.70,0.13,0.65,0.11,0.10,0.33,0.11,0.16,0x7000	  
0.71,0.12,0.61,0.10,0.10,0.35,0.16,0.13,0x7000	  
0.82,0.10,0.81,0.11,0.11,0.26,0.28,0.16,0x7000	  
0.73,0.18,0.71,0.10,0.11,0.24,0.20,0.12,0x7000	  
0.74,0.10,0.60,0.10,0.11,0.19,0.25,0.16,0x7000	  
0.89,0.17,0.88,0.10,0.10,0.25,0.18,0.12,0x7000	  
0.76,0.16,0.70,0.10,0.10,0.38,0.22,0.15,0x7000	  
0.74,0.15,0.62,0.10,0.10,0.33,0.22,0.10,0x7000	  
0.82,0.14,0.88,0.11,0.10,0.35,0.27,0.14,0x7000	  
0.76,0.14,0.72,0.10,0.11,0.19,0.19,0.11,0x7001	  
0.87,0.12,0.62,0.11,0.11,0.10,0.11,0.18,0x7001	  
0.88,0.11,0.88,0.10,0.11,0.12,0.16,0.15,0x7001	  
0.79,0.12,0.71,0.11,0.10,0.13,0.28,0.10,0x7001	  
0.70,0.10,0.61,0.11,0.10,0.11,0.20,0.10,0x7001	  
0.85,0.17,0.66,0.11,0.11,0.10,0.13,0.16,0x7001	  
0.76,0.18,0.79,0.10,0.10,0.18,0.18,0.11,0x7001	  
0.77,0.17,0.75,0.11,0.11,0.13,0.10,0.15,0x7001	  
0.88,0.15,0.65,0.10,0.10,0.11,0.15,0.15,0x7001	  
0.89,0.14,0.61,0.11,0.10,0.13,0.20,0.19,0x7001	  
0.80,0.15,0.81,0.10,0.10,0.14,0.12,0.19,0x7001	  
0.82,0.12,0.79,0.11,0.11,0.10,0.25,0.13,0x7001	  



	  

	   	   xx	  

0.86,0.13,0.69,0.10,0.10,0.11,0.17,0.20,0x7001	  
0.74,0.12,0.88,0.11,0.11,0.13,0.22,0.17,0x7001	  
0.85,0.10,0.78,0.10,0.10,0.14,0.14,0.12,0x7001	  
0.80,0.10,0.76,0.10,0.11,0.10,0.27,0.18,0x7001	  
0.71,0.18,0.66,0.11,0.11,0.11,0.19,0.13,0x7001	  
0.72,0.17,0.62,0.11,0.11,0.13,0.24,0.10,0x7001	  
0.83,0.18,0.82,0.10,0.10,0.14,0.29,0.17,0x7001	  
0.74,0.16,0.72,0.11,0.10,0.12,0.21,0.17,0x7001	  
0.89,0.13,0.70,0.11,0.11,0.11,0.14,0.11,0x7001	  
0.80,0.14,0.60,0.10,0.10,0.19,0.26,0.18,0x7001	  
0.71,0.12,0.80,0.11,0.10,0.10,0.18,0.18,0x7001	  
0.72,0.11,0.69,0.10,0.10,0.12,0.23,0.10,0x7001	  
0.83,0.12,0.89,0.10,0.11,0.10,0.15,0.10,0x7001	  
0.74,0.10,0.79,0.11,0.11,0.11,0.20,0.17,0x7001	  
0.75,0.19,0.75,0.10,0.11,0.13,0.25,0.21,0x7001	  
0.80,0.18,0.67,0.10,0.11,0.18,0.25,0.18,0x7001	  
0.71,0.16,0.87,0.11,0.11,0.19,0.17,0.18,0x7001	  
0.72,0.15,0.83,0.10,0.11,0.11,0.22,0.10,0x7001	  
0.83,0.16,0.66,0.11,0.11,0.19,0.14,0.10,0x7001	  
0.87,0.14,0.86,0.10,0.10,0.10,0.19,0.17,0x7001	  
0.75,0.13,0.82,0.10,0.10,0.12,0.24,0.14,0x7001	  
0.86,0.14,0.72,0.11,0.10,0.13,0.16,0.21,0x7001	  
0.81,0.11,0.70,0.11,0.11,0.19,0.29,0.15,0x7001	  
0.72,0.19,0.60,0.10,0.10,0.10,0.21,0.10,0x7001	  
0.73,0.11,0.86,0.11,0.11,0.12,0.26,0.19,0x7001	  
0.84,0.19,0.69,0.10,0.10,0.10,0.18,0.14,0x7001	  
0.75,0.17,0.89,0.10,0.11,0.11,0.10,0.14,0x7001	  
0.70,0.17,0.64,0.10,0.11,0.10,0.23,0.20,0x7001	  
0.81,0.15,0.77,0.11,0.10,0.18,0.28,0.15,0x7001	  
0.72,0.13,0.67,0.10,0.10,0.19,0.20,0.15,0x7001	  
0.76,0.14,0.87,0.11,0.11,0.17,0.12,0.10,0x7001	  
0.87,0.12,0.77,0.10,0.10,0.18,0.24,0.10,0x7001	  
0.75,0.11,0.73,0.11,0.11,0.10,0.29,0.14,0x7001	  
0.79,0.12,0.63,0.10,0.10,0.18,0.14,0.21,0x7001	  
0.70,0.10,0.76,0.10,0.10,0.19,0.26,0.21,0x7001	  
0.72,0.17,0.81,0.10,0.11,0.15,0.19,0.15,0x7001	  
0.76,0.18,0.64,0.11,0.10,0.16,0.11,0.10,0x7001	  
0.84,0.17,0.60,0.10,0.10,0.18,0.16,0.19,0x7001	  
0.75,0.15,0.80,0.11,0.10,0.19,0.28,0.14,0x7001	  
0.79,0.16,0.70,0.10,0.11,0.17,0.13,0.14,0x7001	  
0.70,0.14,0.60,0.11,0.11,0.18,0.25,0.21,0x7001	  
0.72,0.14,0.88,0.10,0.10,0.14,0.18,0.15,0x7001	  
0.76,0.12,0.78,0.11,0.11,0.15,0.10,0.10,0x7001	  
0.84,0.11,0.74,0.10,0.10,0.17,0.15,0.19,0x7001	  
0.88,0.19,0.87,0.11,0.11,0.18,0.27,0.14,0x7001	  
0.79,0.10,0.77,0.10,0.10,0.16,0.19,0.14,0x7001	  
0.81,0.17,0.75,0.10,0.10,0.15,0.12,0.20,0x7001	  
0.85,0.18,0.65,0.11,0.11,0.13,0.17,0.15,0x7001	  
0.73,0.17,0.61,0.11,0.11,0.15,0.22,0.12,0x7001	  
0.84,0.15,0.81,0.10,0.11,0.16,0.14,0.19,0x7001	  
0.88,0.16,0.71,0.11,0.10,0.14,0.26,0.19,0x7001	  
0.76,0.15,0.60,0.10,0.10,0.19,0.11,0.11,0x7001	  
0.81,0.11,0.89,0.10,0.11,0.14,0.11,0.20,0x7001	  
0.82,0.13,0.78,0.11,0.11,0.16,0.16,0.12,0x7001	  
0.73,0.11,0.68,0.10,0.10,0.14,0.28,0.12,0x7001	  
0.74,0.10,0.64,0.10,0.11,0.19,0.13,0.16,0x7001	  
0.85,0.18,0.84,0.11,0.10,0.17,0.18,0.16,0x7001	  
0.80,0.18,0.82,0.11,0.11,0.16,0.11,0.17,0x7001	  
0.71,0.16,0.72,0.10,0.11,0.14,0.23,0.17,0x7001	  
0.72,0.15,0.68,0.11,0.11,0.16,0.28,0.21,0x7001	  
0.83,0.16,0.88,0.10,0.10,0.17,0.20,0.21,0x7001	  
0.78,0.13,0.86,0.11,0.10,0.16,0.13,0.15,0x7001	  
0.89,0.14,0.76,0.10,0.11,0.14,0.25,0.10,0x7001	  
0.77,0.13,0.65,0.11,0.11,0.16,0.10,0.19,0x7001	  
0.81,0.11,0.85,0.10,0.11,0.17,0.22,0.14,0x7001	  
0.72,0.19,0.75,0.11,0.10,0.15,0.27,0.14,0x7001	  
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0.74,0.19,0.73,0.11,0.11,0.14,0.27,0.15,0x7001	  
0.78,0.17,0.63,0.10,0.11,0.12,0.12,0.15,0x7001	  
0.86,0.16,0.89,0.10,0.11,0.17,0.17,0.19,0x7001	  
0.87,0.18,0.78,0.11,0.11,0.19,0.29,0.16,0x7001	  
0.78,0.16,0.68,0.10,0.11,0.17,0.14,0.11,0x7001	  
0.73,0.16,0.73,0.10,0.10,0.16,0.27,0.17,0x7001	  
0.84,0.14,0.86,0.11,0.11,0.17,0.19,0.17,0x7001	  
0.75,0.12,0.76,0.10,0.11,0.15,0.11,0.12,0x7001	  
0.76,0.11,0.72,0.10,0.11,0.17,0.16,0.16,0x7001	  
0.71,0.11,0.70,0.10,0.10,0.16,0.29,0.10,0x7001	  
0.82,0.19,0.60,0.11,0.10,0.17,0.21,0.10,0x7001	  
0.73,0.10,0.80,0.10,0.11,0.15,0.26,0.17,0x7001	  
0.74,0.19,0.76,0.11,0.11,0.17,0.18,0.14,0x7001	  
0.85,0.17,0.89,0.10,0.11,0.18,0.23,0.21,0x7001	  
0.73,0.16,0.85,0.10,0.11,0.10,0.28,0.18,0x7001	  
0.88,0.16,0.83,0.10,0.10,0.19,0.21,0.19,0x7001	  
0.82,0.13,0.67,0.11,0.11,0.13,0.20,0.10,0x7001	  
0.70,0.12,0.63,0.10,0.11,0.18,0.25,0.14,0x7001	  
0.74,0.13,0.83,0.11,0.10,0.16,0.17,0.14,0x7001	  
0.82,0.12,0.79,0.10,0.11,0.18,0.22,0.18,0x7001	  
0.86,0.10,0.69,0.11,0.10,0.19,0.27,0.18,0x7001	  
0.88,0.10,0.67,0.10,0.11,0.18,0.27,0.12,0x7001	  
0.1,0.0,0.1,0.1,0.1,0.0,0.0,0.1,0x7003	  
0.1,0.1,0.0,0.0,0.0,0.0,0.0,0.1,0x7003	  
0.1,0.0,0.0,0.1,0.0,0.1,0.1,0.1,0x7003	  
0.1,0.1,0.0,0.0,0.1,0.1,0.1,0.0,0x7003	  
0.0,0.0,0.0,0.1,0.1,0.0,0.1,0.0,0x7003	  
0.0,0.0,0.0,0.1,0.0,0.0,0.0,0.0,0x7003	  
0.1,0.0,0.0,0.1,0.0,0.1,0.1,0.1,0x7003	  
0.0,0.1,0.0,0.0,0.0,0.1,0.0,0.0,0x7003	  
0.1,0.0,0.1,0.1,0.0,0.0,0.0,0.1,0x7003	  
0.0,0.1,0.0,0.1,0.1,0.0,0.1,0.1,0x7003	  

B.2 Traffic Test Dataset 

@relation	  discriminate	  
	  
@attribute	  'request'	  	  	  numeric	  
@attribute	  'pow'	  	  	  	  	  	  	  numeric	  
@attribute	  'freq'	  	  	  	  	  	  numeric	  
@attribute	  'auth'	  	  	  	  	  	  numeric	  
@attribute	  'heatmap'	  	  	  numeric	  
@attribute	  'banner'	  	  	  	  numeric	  
@attribute	  'screen'	  	  	  	  numeric	  
@attribute	  'fp'	  	  	  	  	  	  	  	  numeric	  
@attribute	  'class'	  	  	  	  	  {0x7000,	  0x7001,	  0x7003}	  
	  
@data	  
0.38,0.43,0.12,0.40,0.50,0.51,0.40,0.48,?	  
0.21,0.58,0.11,0.47,0.54,0.68,0.44,0.40,?	  
0.13,0.49,0.13,0.43,0.53,0.64,0.57,0.49,?	  
0.12,0.53,0.15,0.52,0.52,0.60,0.57,0.45,?	  
0.11,0.57,0.17,0.48,0.51,0.56,0.50,0.41,?	  
0.17,0.50,0.13,0.46,0.56,0.58,0.52,0.43,?	  
0.37,0.41,0.11,0.53,0.54,0.64,0.48,0.44,?	  
0.36,0.45,0.13,0.49,0.53,0.60,0.48,0.43,?	  
0.12,0.58,0.19,0.47,0.51,0.62,0.43,0.45,?	  
0.32,0.49,0.17,0.54,0.69,0.61,0.46,0.46,?	  
0.81,0.13,0.69,0.11,0.10,0.17,0.16,0.20,?	  
0.87,0.16,0.85,0.11,0.11,0.16,0.11,0.14,?	  
0.89,0.17,0.87,0.11,0.10,0.15,0.24,0.13,?	  
0.82,0.10,0.73,0.11,0.11,0.14,0.19,0.19,?	  
0.82,0.11,0.61,0.10,0.11,0.13,0.22,0.10,?	  
0.84,0.15,0.63,0.10,0.10,0.19,0.22,0.16,?	  
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B.3 Banner Training Dataset 

@relation	  swing	  
	  
@attribute	  'xy1'	  	  	  numeric	  
@attribute	  'xy2'	  	  	  numeric	  
@attribute	  'xy3'	  	  	  numeric	  
@attribute	  'xy4'	  	  	  numeric	  
@attribute	  'xy5'	  	  	  numeric	  
@attribute	  'xy6'	  	  	  numeric	  
@attribute	  'xy7'	  	  	  numeric	  
@attribute	  'xy8'	  	  	  numeric	  
@attribute	  'xy9'	  	  	  numeric	  
@attribute	  'xy10'	  	  numeric	  
@attribute	  'class'	  {true,	  false}	  
	  
@data	  
	  
33166,33166,33066,33066,32966,32966,32967,32967,32867,32867,true	  
4232569,32369,32369,32269,32269,32169,32169,32169,31969,31969,true	  
4232071,32071,31971,31971,31771,31771,31671,31671,31571,31571,true	  
4233579,33579,33079,33079,32878,32878,32678,32678,32678,32678,true	  
4232878,32878,32778,32778,32678,32678,32278,32278,32078,32078,true	  
4231779,31779,31679,31679,31579,31579,31479,31479,31279,31279,true	  
4233584,33584,33384,33384,33284,33284,33184,33184,33084,33084,true	  
4232987,32987,32786,32786,32686,32686,32486,32486,32385,32385,true	  
4231684,31684,31784,31784,31884,31884,32084,32084,32084,32084,true	  
4231581,31581,31481,31481,31482,31482,31382,31382,31185,31185,true	  
4231472,31472,31473,31473,31475,31475,31476,31476,31377,31377,true	  
4233082,33082,33082,33082,32981,32981,32780,32780,32680,32680,true	  
4233077,33077,32977,32977,32976,32976,32775,32775,32575,32575,true	  
4233380,33380,33280,33280,33180,33180,33079,33079,32979,32979,true	  
4232889,32889,32789,32789,32788,32788,32687,32687,32686,32686,true	  
4232389,32389,32389,32389,32288,32288,32188,32188,32087,32087,true	  
4231790,31790,31488,31488,31087,31087,30785,30785,30784,30784,true	  
4231387,31387,31386,31386,31385,31385,31384,31384,31383,31383,true	  
4231782,31782,31681,31681,31581,31581,31580,31580,31479,31479,true	  
4230976,30976,30975,30975,31175,31175,31275,31275,31274,31274,true	  
4232277,32277,32276,32276,32075,32075,31974,31974,31973,31973,true	  
4233089,33089,33087,33087,33086,33086,33085,33085,33084,33084,true	  
4233480,33379,33379,33278,33278,33277,33277,33077,33077,32977,true	  
4232971,32971,32973,32973,32874,32874,32874,32874,32875,32875,true	  
4232682,32682,32681,32681,32581,32581,32581,32581,32481,32481,true	  
4232681,32681,32481,32481,32382,32382,32284,32284,31887,31887,true	  
4232584,32584,32583,32583,32483,32483,32383,32383,32183,32183,true	  
4232181,32181,32178,32178,32176,32176,32175,32175,32174,32174,true	  
4232479,32479,32478,32478,32477,32477,32376,32376,32375,32375,true	  
4232775,32775,32675,32675,32575,32575,32574,32574,32474,32474,true	  
4231485,31485,31385,31385,31285,31285,31184,31184,31184,31184,true	  
4231286,31286,31282,31282,31281,31281,31280,31280,31279,31279,true	  
4231480,31480,31479,31479,31477,31477,31376,31376,31375,31375,true	  
4231475,31475,31374,31374,31374,31374,31273,31273,31272,31272,true	  
4231572,31572,31671,31671,31770,31770,31870,31870,32070,32070,true	  
4232780,32780,32778,32778,32778,32778,32577,32577,32575,32575,true	  
4232391,32391,32491,32491,32490,32490,32690,32690,32689,32689,true	  
4233085,33085,33084,33084,33083,33083,33181,33181,33180,33180,true	  
4233177,33177,33077,33077,32977,32977,32876,32876,32875,32875,true	  
4231590,31590,31690,31690,31689,31689,31789,31789,31887,31887,true	  
4231486,31486,31783,31783,31882,31882,32082,32082,32081,32081,true	  
4231475,31475,31575,31575,31775,31775,31875,31875,31975,31975,true	  
4231674,31674,31773,31773,31873,31873,31972,31972,32072,32072,true	  
4231887,31887,31885,31885,31883,31883,31882,31882,31782,31782,true	  
4231775,31775,31576,31576,31376,31376,31377,31377,31278,31278,true	  
4231279,31279,31376,31376,31374,31374,31373,31373,31473,31473,true	  
4230968,30968,30970,30970,31070,31170,31270,31270,31370,31370,true	  
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4230485,30485,30585,30585,30685,30685,30784,30784,30883,30883,true	  
4230999,30999,31295,31295,31689,31689,32083,32083,32379,32379,true	  
4231892,31892,31990,31990,31989,31989,31987,31987,32086,32086,true	  
4232588,32588,32587,32587,32486,32486,32385,32385,32285,32285,true	  
4232688,32688,32585,32585,32582,32582,32481,32481,32380,32380,true	  
4232274,32274,32175,32175,32176,32176,32177,32177,32078,32078,true	  
4233182,33182,33081,33081,33080,33080,32980,32980,32879,32879,true	  
4231571,31571,31472,31472,31473,31473,31474,31474,31475,31475,true	  
4232576,32576,32474,32474,32373,32373,32272,32272,32171,32171,true	  
4231190,31390,31390,31390,31390,31389,31389,31388,31388,31487,true	  
4231095,31095,31195,31195,31394,31394,31592,31592,31691,31691,true	  
4232292,32691,32691,32790,32790,32789,32789,32788,32788,32488,true	  
4231781,31781,31981,31981,31980,31980,32080,32080,32380,32380,true	  
4230676,30777,30777,30877,30877,30978,30978,31178,31178,31278,true	  
4230975,31075,31075,31174,31174,31274,31274,31373,31373,31473,true	  
4232179,32179,32478,32478,32578,32578,32577,32577,32576,32576,true	  
4231577,31577,31677,31677,31777,31777,31877,31877,31977,31978,true	  
4231784,31784,31984,31984,31984,31984,32084,32084,32284,32284,true	  
4233375,33475,33475,33476,33376,33376,33277,33277,33177,33177,true	  
4230979,31279,31279,31579,31579,31880,31880,31980,31980,32080,true	  
4231667,31668,31668,31769,31769,31869,31869,31969,31970,32070,true	  
4231876,31976,31976,32076,32076,32076,32076,32077,32177,32277,true	  
4232068,32069,32069,32070,32070,32071,32071,32072,32072,32172,true	  
37868,37868,37768,37768,37569,37569,37369,37369,37270,37270,false	  
4235083,35083,34983,34983,34883,34883,34783,34783,34784,34784,false	  
4235477,35477,35376,35376,35276,35276,34876,34876,34376,34376,false	  
4241669,41669,40173,40173,38777,38777,37979,37979,37681,37681,false	  
4236188,36188,36187,36187,36287,36287,36387,36387,36286,36286,false	  
4236867,36867,36767,36767,36567,36567,36467,36467,36267,36267,false	  
4236591,36591,36291,36291,35990,35990,35690,35690,35590,35590,false	  
42366114,366114,366112,366112,366110,366110,364108,364108,362107,362107,false	  
4235786,35686,35686,35485,35485,35283,35283,35282,35282,35382,false	  
42330102,330102,327101,327101,325100,325100,32599,32599,32499,32499,false	  
42320101,320101,319101,319101,318100,318100,315100,315100,313100,313100,false	  
42318100,318100,315100,315100,314100,314100,313100,313100,311100,311100,false	  
42330100,330100,329100,329100,327100,327100,326100,326100,324100,324100,false	  
4229282,29282,29281,29281,29381,29381,29481,29481,29781,29781,false	  
4230382,30382,30282,30282,30081,30081,29580,29580,29279,29279,false	  
4230078,30078,30077,30077,29977,29977,29976,29976,29876,29876,false	  
42325115,325115,325114,325114,324113,324113,323112,323112,322112,322112,false	  
42323124,323124,322123,322123,321123,321123,321122,321122,320121,320121,false	  
42369147,369147,368147,368147,364145,364145,359142,359142,354141,354141,false	  
4235097,35097,35095,35095,35092,35092,35091,35091,35190,35190,false	  
4234656,34656,34657,34657,34757,34757,34657,34657,34557,34557,false	  
4233152,33152,33353,33353,33453,33453,33553,33553,33653,33653,false	  
4232753,32753,32653,32653,32453,32453,32353,32353,32252,32252,false	  
42358119,358119,358116,358116,357115,357115,356114,356114,355113,355113,false	  
42351130,351130,351129,351129,351128,351128,351125,351125,351124,351124,false	  
42319132,319132,319131,319131,320130,320130,321129,322129,322130,322130,false	  
42317135,317135,317134,317134,317131,317131,317128,317128,316126,316126,false	  
42302136,302136,302134,302134,303134,303134,304130,304130,305127,305127,false	  
42303123,303123,304120,304120,304118,304118,304117,304117,303117,303117,false	  
42288103,288100,288100,28899,28899,28898,28898,28896,28896,28795,false	  
4228585,28585,28583,28583,28582,28582,28580,28580,28477,28477,false	  
4224587,24587,24586,24586,24585,24585,24584,24584,24582,24582,false	  
4226291,26291,26390,26390,26590,26590,26690,26690,26889,26889,false	  
4226792,27187,27187,27285,27285,27284,27284,27283,27283,27383,false	  
4223798,23798,23999,23999,243101,243101,247102,247102,249102,249102,false	  
42235136,237136,237136,239137,239137,240137,240137,241137,241137,241137,false	  
4224151,24351,24351,24651,24651,24852,24852,24952,25052,25052,false	  
4228742,28742,28842,28842,28942,28942,29042,29042,29142,29142,false	  
42112120,112120,108118,108118,105116,105116,103116,103116,104116,105116,false	  
42224137,224137,210136,210136,190136,190136,177135,177135,176134,176134,false	  
4210186,10186,10084,10084,9783,9783,9681,9681,9581,9581,false	  
4217086,17086,17085,17085,17084,17084,17083,17083,17183,17383,false	  
42324143,324143,320143,320143,318143,318143,317143,317143,316143,316143,false	  
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42332181,332181,323180,323180,317180,317180,310179,310179,308178,308178,false	  
42199182,199182,194177,194177,192173,192173,192168,192168,192167,192167,false	  
4250174,42172,42172,32171,32171,27170,27170,28170,30170,31170,false	  
42335254,335254,334251,334251,327249,327249,313245,313245,307242,307242,false	  
42186203,181199,181199,177197,177197,176195,176195,175195,175195,174195,false	  
42166251,166251,165250,165250,163248,163248,162247,162247,161246,161246,false	  
4263252,63252,61245,61245,61241,61241,61239,61239,60239,60239,false	  
42193111,193111,167100,167100,15592,15592,14786,14786,14483,14483,false	  
42330124,330124,324123,324123,321123,321123,317121,317121,311119,311119,false	  
42312188,312188,314181,314181,314173,314173,314167,314167,314164,314164,false	  

B.4 Banner Test Dataset 

@relation	  swing	  
	  
@attribute	  'xy1'	  	  	  numeric	  
@attribute	  'xy2'	  	  	  numeric	  
@attribute	  'xy3'	  	  	  numeric	  
@attribute	  'xy4'	  	  	  numeric	  
@attribute	  'xy5'	  	  	  numeric	  
@attribute	  'xy6'	  	  	  numeric	  
@attribute	  'xy7'	  	  	  numeric	  
@attribute	  'xy8'	  	  	  numeric	  
@attribute	  'xy9'	  	  	  numeric	  
@attribute	  'xy10'	  	  numeric	  
@attribute	  'class'	  {true,	  false}	  
	  
@data	  
	  
31481,31481,31381,31381,31281,31281,31183,31183,31084,31084,?	  
31676,31676,32077,32077,32278,32278,32279,32279,32079,32079,?	  
32779,32779,32579,32579,32479,32479,32379,32379,32279,32279,?	  
32779,32779,32579,32579,32479,32479,32379,32379,32279,32279,?	  
32476,32476,32176,32176,31876,31876,31776,31776,31677,31677,?	  
32083,32083,32082,32082,32081,32081,32080,32080,32078,32078,?	  
31096,31096,31194,31194,31488,31488,31685,31685,31783,31783,?	  
33073,33073,32973,32973,32873,32873,32773,32773,32673,32673,?	  
31276,31276,31376,31376,31477,31477,31577,31577,31677,31677,?	  
33082,33082,32982,32982,32882,32882,32681,32681,32581,32581,?	  

B.5 Tree Visualizer for Traffic Training Dataset 
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Appendix C – Website Pages 

C.1 Landing Page 
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C.2 Product Detail Page 

 
 
C.3 Login Page 
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C.4 Category Page 
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C.5 Advertisement Page 
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Appendix D – Attack Simulation CLI 

D.1 Slowloris 

$	  ./slowloris.pl	  -‐dns	  $url	  -‐port	  80	  -‐timeout	  90	  -‐num	  500	  -‐tcpto	  5	  –httpready	  

D.2 Slowhttptest 

$	  ./slowhttptest	  -‐c	  1000	  -‐X	  -‐g	  -‐o	  slow_read_stats	  -‐r	  1000	  -‐w	  1	  -‐y	  2	  -‐n	  5	  -‐z	  32	  

-‐k	  3	  -‐u	  $url	  -‐p	  3	  -‐l	  300	  

D.3 R-u-d-y 

$	  ./r-‐u-‐dead-‐yet.py	  $url	  

[parameters]	  

URL:	  http://www.soundbooze.com/path-‐to-‐post-‐url.php	  

number_of_connections:	  500	  

attack_parameter:	  login	  

proxy_addr:	  ""	  

proxy_port:	  0	  

D.4 THC SSL DOS 

$	  ./thc-‐ssl-‐dos	  $ip	  $port 

D.5 ApacheKiller 

$	  ./killapache.pl	  $url	  $numforks 

D.6 PhantomJS 

var	  page	  =	  require('webpage').create();	  
	  
page.onConsoleMessage	  =	  function(msg)	  {	  
	  	  console.log('page	  message:	  '	  +	  msg);	  
};	  

	  
page.open("http://soundbooze.com",	  function(status)	  {	  
	  	  if	  (status	  !==	  "success")	  {	  
	  	  	  	  console.error("error	  loading	  test	  page	  "	  +	  testHtml);	  
	  	  	  	  phantom.exit();	  
	  	  }	  
	  	  var	  i	  =	  0;	  
	  	  var	  interval	  =	  setInterval(function()	  {	  
	  	  	  	  if	  (i	  ===	  10)	  {	  
	  	  	  	  	  	  clearInterval(interval);	  
	  	  	  	  	  	  phantom.exit();	  
	  	  	  	  }	  
	  	  	  	  var	  x,	  y;	  
	  	  	  	  x	  =	  y	  =	  i	  *	  10;	  
	  	  	  	  console.log('sending	  mousemove	  event	  to	  '	  +	  x	  +	  ',	  '	  +	  y);	  
	  	  	  	  page.sendEvent('mousemove',	  i	  *	  10,	  i	  *	  10);	  
	  	  	  	  page.sendEvent('click',	  100,100);	  
	  	  	  	  i++;	  
	  	  },	  500);	  

});	  
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D.7 Slowloris Output	  

Welcome	  to	  Slowloris	  -‐	  the	  low	  bandwidth,	  yet	  greedy	  and	  poisonous	  HTTP	  client	  
Multithreading	  enabled.	  
Connecting	  to	  soundbooze.com:80	  every	  90	  seconds	  with	  500	  sockets:	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Building	  sockets.	  
	   	   Sending	  data.	  
Current	  stats:	   Slowloris	  has	  now	  sent	  1193	  packets	  successfully.	  
This	  thread	  now	  sleeping	  for	  90	  seconds...	  
	  
	   	   Sending	  data.	  
Current	  stats:	   Slowloris	  has	  now	  sent	  1219	  packets	  successfully.	  

This	  thread	  now	  sleeping	  for	  90	  seconds...	  

D.8 Slowhttptest Output	  

Using:	  
test	  type:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  SLOW	  READ	  
number	  of	  connections:	  	  	  	  	  	  	  	  	  	  	  	  1000	  
URL:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  http://www.soundbooze.com/	  
verb:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  GET	  
receive	  window	  range:	  	  	  	  	  	  	  	  	  	  	  	  	  1	  -‐	  2	  
pipeline	  factor:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  3	  
read	  rate	  from	  receive	  buffer:	  	  	  	  32	  bytes	  /	  5	  sec	  
connections	  per	  seconds:	  	  	  	  	  	  	  	  	  	  1000	  
probe	  connection	  timeout:	  	  	  	  	  	  	  	  	  3	  seconds	  
test	  duration:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  300	  seconds	  
Tue	  Apr	  	  8	  01:34:47	  2014:slow	  HTTP	  test	  status	  on	  0th	  second:	  
initializing:	  	  	  	  	  	  	  	  0	  
pending:	  	  	  	  	  	  	  	  	  	  	  	  	  1	  
connected:	  	  	  	  	  	  	  	  	  	  	  0	  
error:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  
closed:	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  
service	  available:	  	  	  YES	  
Tue	  Apr	  	  8	  01:34:48	  2014:slow	  HTTP	  test	  status	  on	  30th	  second:	  
initializing:	  	  	  	  	  	  	  	  0	  
pending:	  	  	  	  	  	  	  	  	  	  	  	  	  8	  
connected:	  	  	  	  	  	  	  	  	  	  	  857	  
error:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  
closed:	  	  	  	  	  	  	  	  	  	  	  	  	  	  135	  
service	  available:	  	  	  YES	  
Tue	  Apr	  	  8	  01:34:53	  2014:slow	  HTTP	  test	  status	  on	  5th	  second:	  
initializing:	  	  	  	  	  	  	  	  0	  
pending:	  	  	  	  	  	  	  	  	  	  	  	  	  237	  
connected:	  	  	  	  	  	  	  	  	  	  	  617	  
error:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  
closed:	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  
service	  available:	  	  	  NO	  
Tue	  Apr	  	  8	  01:34:53	  2014:slow	  HTTP	  test	  status	  on	  35th	  second:	  
initializing:	  	  	  	  	  	  	  	  0	  
pending:	  	  	  	  	  	  	  	  	  	  	  	  	  8	  
connected:	  	  	  	  	  	  	  	  	  	  	  857	  
error:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  
closed:	  	  	  	  	  	  	  	  	  	  	  	  	  	  135	  
service	  available:	  	  	  NO	  
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D.9 PhantomJS Output	  

sending	  mousemove	  event	  to	  0,	  0	  
page	  message:	  	  
sending	  mousemove	  event	  to	  10,	  10	  
page	  message:	  	  
sending	  mousemove	  event	  to	  20,	  20	  
page	  message:	  	  
sending	  mousemove	  event	  to	  30,	  30	  
page	  message:	  	  
sending	  mousemove	  event	  to	  40,	  40	  
page	  message:	  	  
sending	  mousemove	  event	  to	  50,	  50	  
page	  message:	  	  
sending	  mousemove	  event	  to	  60,	  60	  
page	  message:	  	  
sending	  mousemove	  event	  to	  70,	  70	  
page	  message:	  	  
sending	  mousemove	  event	  to	  80,	  80	  
page	  message:	  	  
sending	  mousemove	  event	  to	  90,	  90	  
page	  message:	  	  
sending	  mouseclick	  event	  at	  90,	  90	  
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D.10 THC SSL DOS Output	  

Handshakes	  0	  [0.00	  h/s],	  1	  Conn,	  0	  Err	  
Handshakes	  0	  [0.00	  h/s],	  3	  Conn,	  0	  Err	  
Handshakes	  8	  [7.71	  h/s],	  9	  Conn,	  0	  Err	  
Handshakes	  33	  [26.02	  h/s],	  15	  Conn,	  0	  Err	  
Handshakes	  69	  [35.78	  h/s],	  20	  Conn,	  0	  Err	  
Handshakes	  123	  [54.53	  h/s],	  26	  Conn,	  0	  Err	  
Handshakes	  176	  [49.37	  h/s],	  30	  Conn,	  0	  Err	  
Handshakes	  205	  [31.41	  h/s],	  30	  Conn,	  0	  Err	  
Handshakes	  258	  [52.97	  h/s],	  35	  Conn,	  0	  Err	  
Handshakes	  329	  [70.33	  h/s],	  40	  Conn,	  0	  Err	  
Handshakes	  408	  [79.60	  h/s],	  45	  Conn,	  0	  Err	  
Handshakes	  500	  [92.21	  h/s],	  51	  Conn,	  0	  Err	  
Handshakes	  612	  [112.06	  h/s],	  56	  Conn,	  0	  Err	  
Handshakes	  746	  [132.82	  h/s],	  61	  Conn,	  0	  Err	  
Handshakes	  877	  [131.44	  h/s],	  66	  Conn,	  0	  Err	  
Handshakes	  1013	  [136.66	  h/s],	  70	  Conn,	  0	  Err	  
Handshakes	  1148	  [134.85	  h/s],	  70	  Conn,	  0	  Err	  
Handshakes	  1280	  [132.08	  h/s],	  73	  Conn,	  0	  Err	  
Handshakes	  1423	  [142.14	  h/s],	  73	  Conn,	  0	  Err	  
Handshakes	  1565	  [142.07	  h/s],	  77	  Conn,	  0	  Err	  
Handshakes	  1686	  [121.74	  h/s],	  82	  Conn,	  0	  Err	  
Handshakes	  1820	  [133.09	  h/s],	  84	  Conn,	  0	  Err	  
Handshakes	  1948	  [128.68	  h/s],	  86	  Conn,	  0	  Err	  

D.11 ApacheKiller Output 

host	  seems	  vuln	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  
ATTACKING	  soundbooze.com	  [using	  50	  forks]	  
:pPpPpppPpPPppPpppPp	  

D.12 R-u-d-y Output 

[!]	  Using	  configuration	  file	  
[!]	  Attacking:	  http://www.soundbooze.com/	  
[!]	  With	  parameter:	  search	  

	  
	  

	  
	  
	  
	  
	  
	  



	  

	   	   xxxiii	  

D.13 Apache Benchmark Output	  

musicalware:~	  root#	  ab	  -‐n	  1000	  -‐c	  64	  http://www.soundbooze.com/	  
	  
This	  is	  ApacheBench,	  Version	  2.3	  <$Revision:	  655654	  $>	  
Copyright	  1996	  Adam	  Twiss,	  Zeus	  Technology	  Ltd,	  http://www.zeustech.net/	  
Licensed	  to	  The	  Apache	  Software	  Foundation,	  http://www.apache.org/	  
	  
Benchmarking	  www.soundbooze.com	  (be	  patient)	  
Completed	  100	  requests	  
Completed	  200	  requests	  
Completed	  300	  requests	  
Completed	  400	  requests	  
Completed	  500	  requests	  
Completed	  600	  requests	  
Completed	  700	  requests	  
Completed	  800	  requests	  
Completed	  900	  requests	  
Completed	  1000	  requests	  
Finished	  1000	  requests	  

	  
Server	  Software:	  	  	  	  	  	  	  	  Apache	  
Server	  Hostname:	  	  	  	  	  	  	  	  www.soundbooze.com	  
Server	  Port:	  	  	  	  	  	  	  	  	  	  	  	  80	  
	  
Document	  Path:	  	  	  	  	  	  	  	  	  	  /	  
Document	  Length:	  	  	  	  	  	  	  	  0	  bytes	  
	  
Concurrency	  Level:	  	  	  	  	  	  64	  
Time	  taken	  for	  tests:	  	  	  61.007	  seconds	  
Complete	  requests:	  	  	  	  	  	  1000	  
Failed	  requests:	  	  	  	  	  	  	  	  0	  
Write	  errors:	  	  	  	  	  	  	  	  	  	  	  0	  
Non-‐2xx	  responses:	  	  	  	  	  	  1000	  
Total	  transferred:	  	  	  	  	  	  222000	  bytes	  
HTML	  transferred:	  	  	  	  	  	  	  0	  bytes	  
Requests	  per	  second:	  	  	  	  16.39	  [#/sec]	  (mean)	  
Time	  per	  request:	  	  	  	  	  	  	  3904.428	  [ms]	  (mean)	  
Time	  per	  request:	  	  	  	  	  	  	  61.007	  [ms]	  (mean,	  across	  all	  concurrent	  requests)	  
Transfer	  rate:	  	  	  	  	  	  	  	  	  	  3.55	  [Kbytes/sec]	  received	  
	  
Connection	  Times	  (ms)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  min	  	  mean[+/-‐sd]	  median	  	  	  max	  
Connect:	  	  	  	  	  	  150	  	  160	  	  64.3	  	  	  	  153	  	  	  	  1343	  
Processing:	  	  	  243	  3686	  2406.4	  	  	  3958	  	  	  	  8798	  
Waiting:	  	  	  	  	  	  243	  3683	  2407.7	  	  	  3958	  	  	  	  8798	  
Total:	  	  	  	  	  	  	  	  394	  3846	  2407.9	  	  	  4115	  	  	  	  8951	  
	  
Percentage	  of	  the	  requests	  served	  within	  a	  certain	  time	  (ms)	  
	  	  50%	  	  	  4115	  
	  	  66%	  	  	  5454	  
	  	  75%	  	  	  6183	  
	  	  80%	  	  	  6434	  
	  	  90%	  	  	  6928	  
	  	  95%	  	  	  7215	  
	  	  98%	  	  	  7518	  
	  	  99%	  	  	  8023	  
	  100%	  	  	  8951	  (longest	  request)	  

	  
	  


