

Using Visual Analytics to Discover Bot Traffic

Ignatius Hananto Herlambang

A thesis submitted in partial fulfilment of the

requirements of Liverpool John Moores University

for the degree of Master of Philosophy

January 2015

	

	 i	

Acknowledgements

First and foremost, I would like to thank my supervisors, Professor Qi Shi and Dr.

Bo Zhou, who have given me the support and guidance throughout this research

project.

Finally, I would like to express a special and graceful thank to my family which

this thesis is dedicated to.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 ii	

Abstract

With the advance of technology, the Internet has become a medium tool used for

many malicious activities. The presence of bot traffic has increased greatly that

causes significant problems for businesses and organisations, such as spam bots,

scraper bots, distributed denial of service bots and adaptive bots that aim to exploit

the vulnerabilities of a website.	 Discriminating bot traffic against legitimate flash

crowds remains an open challenge to date.

In order to address the above issues and enhance security awareness, this thesis

proposes an interactive visual analytics system for discovering bot traffic. The

system provides an interactive visualisation, with details on demand capabilities,

which enables knowledge discovery from very large datasets. It enables an analyst

to understand comprehensive details without being constrained by large datasets.

The system has a dashboard view to represent legitimate and bot traffic by

adopting Quadtree data structure and Voronoi diagrams. The main contribution of

this thesis is a novel visual analytics system that is capable of discovering bot

traffic.

This research conducted a literature review in order to gain systematic

understanding of the research area. Furthermore, the research was conducted by

utilising experiment and simulation approaches. The experiment was conducted by

capturing website traffic, identifying browser fingerprints, simulating bot attacks

and analysing mouse dynamics, such as movements and events, of participants.

Data were captured as the participants performed a list of tasks, such as responding

to the banner. The data collection is transparent to the participants and only

requires JavaScript to be activated on the client side. This study involved 10

participants who are familiar with the Internet. To analyse the data, Weka 3.6.10

was used to perform classification based on a training dataset. The test dataset of

all participants was evaluated using a built-in decision tree algorithm. The results

of classifying the test dataset were promising, and the model was able to identify

ten participants and six simulated bot attacks with an accuracy of 86.67%. Finally,

the visual analytics design was formulated in order to assist an analyst to discover

bot presence.

Keywords: visual analytics, application-layer, bot traffic.

	

	 iii	

Table of Contents

ACKNOWLEDGEMENTS	 I	

ABSTRACT	 II	

ACRONYMS	 VI	

LIST	 OF	 FIGURES	 VII	

LIST	 OF	 TABLES	 VIII	

CHAPTER	 1	 INTRODUCTION	 1	
1.1	 BACKGROUND	 1	
1.2	 RESEARCH	 CHALLENGES	 AND	 QUESTIONS	 2	
1.3	 RESEARCH	 METHODOLOGY	 3	
1.4	 RESEARCH	 AIMS,	 OBJECTIVES	 AND	 NOVELTIES	 4	
1.4.1	 AIMS	 4	
1.4.2	 OBJECTIVES	 4	
1.4.3	 NOVELTIES	 4	
1.5	 RESEARCH	 SCOPE	 5	
1.6	 PROJECT	 RESULTS	 5	
1.7	 THESIS	 OUTLINE	 6	

CHAPTER	 2	 LITERATURE	 REVIEW	 7	
2.1	 VISUAL	 ANALYTICS	 7	
2.2	 MALICIOUS	 BOTS	 9	
2.3	 WEBSITE	 HEATMAP	 11	
2.4	 BROWSER	 FINGPERINT	 12	
2.5	 BANNER	 ADVERTISEMENT	 13	
2.6	 PROOF-‐OF-‐WORK	 SYSTEM	 14	
2.7	 DISCRIMINATING	 BOTS	 AGAINST	 LEGITIMATE	 FLASH	 CROWDS	 TRAFFIC	 15	
2.8	 VISUAL	 ANALYTICS	 APPLICATIONS	 16	
2.9	 SUMMARY	 18	

CHAPTER	 3	 VATRIX	 20	
3.1	 INTRODUCTION	 20	
3.2	 QUADTREE	 DATA	 STRUCTURE	 22	
3.3	 VORONOI	 DIAGRAM	 22	
3.4	 GENERATING	 VORONOI	 DIAGRAM	 24	
3.5	 PRIORITY	 QUEUING	 METHOD	 25	
3.6	 VATRIX	 INTERACTIVE	 USER	 INTERFACE	 26	
3.6.1	 DETAILS	 ON	 DEMAND	 29	
3.6.2	 WEIGHT	 SCORE	 30	
3.6.3	 EXTENDED	 VIEW	 31	
3.7	 VATRIX	 RESPONSE	 33	
3.7.1	 APACHE	 WEB	 SERVER	 33	
3.7.2	 PROCESS	 MAPPING	 34	
3.8	 SUMMARY	 36	

CHAPTER	 4	 X-‐MAP	 38	
4.1	 CLASSIFICATION	 38	

	

	 iv	

4.2	 DECISION	 TREE	 LEARNING	 39	
4.3	 PROPOSED	 ALGORITHM	 X-‐MAP	 43	
4.4	 PROPOSED	 ALGORITHM	 FOR	 MACHINE	 IDENTIFICATION	 46	
4.5	 PROPOSED	 ALGORITHM	 FOR	 HEATMAP	 TRACKER	 47	
4.6	 PROPOSED	 TECHNIQUE	 FOR	 BANNER	 REACTION	 49	
4.7	 SUMMARY	 50	

CHAPTER	 5	 EXPERIMENT	 SETTINGS	 51	
5.1	 INTRODUCTION	 51	
5.2	 EXPERIMENT	 METHOD	 51	
5.2.1	 TEST	 ENVIRONMENT	 52	
5.2.2	 PARTICIPANTS	 53	
5.2.3	 ATTACK	 SIMULATION	 53	
5.3	 DATA	 COLLECTION	 54	
5.3.1	 IP	 AND	 TCP	 HEADER	 55	
5.3.2	 HTTP	 HEADER	 AND	 REQUEST	 BEHAVIOUR	 55	
5.3.3	 PROOF-‐OF-‐WORK	 55	
5.3.4	 FORM	 SUBMISSION	 FREQUENCY	 56	
3.3.5	 AUTHENTICATED	 SESSION	 56	
5.3.6	 WEBSITE	 HEATMAP	 56	
5.3.7	 BANNER	 REACTION	 56	
5.3.8	 SCREEN	 RESOLUTION	 57	
5.3.9	 BROWSER	 FINGERPRINT	 57	
5.4	 DATA	 PRE-‐PROCESSING	 57	
5.5	 DATA	 ANALYSIS	 58	
5.6	 TRAINING	 DATASET	 58	
5.6.1	 DEPENDENT	 AND	 INDEPENDENT	 VARIABLE	 59	
5.6.2	 DATA	 CLEANING	 59	
5.7	 VISUAL	 ANALYTICS	 REQUIREMENTS	 59	
5.8	 LIMITATIONS	 59	
5.9	 SUMMARY	 60	

CHAPTER	 6	 EVALUATION	 61	
6.1	 INTRODUCTION	 61	
6.2	 HTTP	 REQUESTS	 62	
6.2.1	 LANDING	 PAGE	 62	
6.2.2	 PRODUCT	 DETAIL	 PAGE	 63	
6.2.3	 CATEGORY	 PAGE	 63	
6.2.3	 LOGIN	 PAGE	 64	
6.3	 OVERALL	 PERFORMANCE	 SCORE	 64	
6.4	 AJAX	 REQUEST	 TIMING	 65	
6.5	 SIMULTANEOUS	 REQUESTS	 66	
6.5.1	 ATTACK	 SIMULATION	 67	
6.6	 CLASSIFIER	 PERFORMANCE	 68	
6.6.1	 TESTING	 ON	 A	 TRAINING	 DATASET	 69	
6.6.2	 BANNER	 REACTION	 70	
6.6.3	 DISCRIMINATING	 TRAFFIC	 72	
6.7	 VISUAL	 ANALYTICS	 DESIGN	 73	
6.7.1	 INTERACTIVE	 VISUALISATION	 73	
6.7.2	 LARGE	 DATASET	 75	
6.7.3	 KNOWLEDGE	 DISCOVERY	 76	
6.7.4	 INFORMATION	 OVERLOAD	 79	
6.8	 DISCUSSION	 80	

	

	 v	

6.9	 SUMMARY	 81	

CHAPTER	 7	 CONCLUSIONS	 AND	 FUTURE	 WORK	 84	
7.1	 CONCLUSION	 84	
7.2	 FUTURE	 WORK	 85	

REFERENCES	 IX	

APPENDIX	 A	 –	 DATA	 COLLECTION	 SCRIPTS	 XIV	

APPENDIX	 B	 –	 TRAINING	 AND	 TEST	 DATASET	 (ARFF)	 XVIII	

APPENDIX	 C	 –	 WEBSITE	 PAGES	 XXV	

APPENDIX	 D	 –	 ATTACK	 SIMULATION	 CLI	 XXIX	
	

	

	 vi	

Acronyms

ARFF Attribute-Relation File Format

AJAX Asynchronous JavaScript and XML

CAPTCHA Completely Automated Public Turing test to tell Computers and
Humans Apart

CLI Command Line Interface

CPU Central Processing Unit

NAT Network Address Translation

DDOS Distributed Denial of Service

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

I/O Input Output

IP Internet Protocol

OSN Online Social Network

OTP One Time Password

ROC Receiver Operating Characteristic

SNMP Simple Network Management Protocol

SSL Secure Socket Layer

TCP Transmission Control Protocol

VPS Virtual Private Sever

	

	

	 vii	

List of Figures

Figure	 1.1.	 Research	 Methodology	 ___	 3	
Figure	 2.1.	 Visual	 analytics	 integration	 [11]	 __	 8	
Figure	 2.2.	 Visual	 analytics	 process	 [12]	 ___	 9	
Figure	 2.3	 Application	 layer	 attacks	 [2]	 ___	 10	
Figure	 2.4.	 Distribution	 of	 attacks	 [17]	 __	 11	
Figure	 2.5.	 Website	 heatmap	 [18]	 __	 12	
Figure	 2.6.	 Browser	 fingerprint	 [23]	 ___	 13	
Figure	 2.7.	 Banner	 advertisement	 [25]	 __	 14	
Figure	 2.8.	 Challenge-‐response	 [33]	 __	 15	
Figure	 3.1.	 VATRIX	 architecture	 __	 21	
Figure	 3.2.	 An	 example	 of	 Quadtree	 representation	 ___	 22	
Figure	 3.3.	 A	 typical	 Voronoi	 diagram	 ___	 23	
Figure	 3.4.	 Construct	 Voronoi	 __	 24	
Figure	 3.5.	 Constructing	 Voronoi	 diagram	 __	 24	
Figure	 3.6.	 Priority	 queue	 ___	 26	
Figure	 3.7.	 An	 example	 of	 conventional	 network	 traffic	 visualisation	 _________________________________	 27	
Figure	 3.8.	 Vatrix	 interface	 ___	 27	
Figure	 3.9.	 Bot	 selection	 __	 28	
Figure	 3.10.	 Flash	 crowds	 activities	 __	 28	
Figure	 3.11.	 Heatmap	 view	 rendered	 with	 d3.js	 ___	 29	
Figure	 3.12.	 Heatmap	 View	 ___	 30	
Figure	 3.13.	 Weight	 score	 selection	 __	 31	
Figure	 3.14.	 Website	 heatmap	 using	 plugin	 [59]	 __	 31	
Figure	 3.15.	 Calendar	 view	 ___	 32	
Figure	 3.16.	 Histogram	 view	 ___	 32	
Figure	 3.17.	 Generating	 View	 ___	 32	
Figure	 3.18.	 Apache	 server-‐status	 __	 34	
Figure	 3.19.	 Apache	 scoreboard	 key	 ___	 35	
Figure	 3.20.	 MxN	 matrix	 __	 35	
Figure	 3.21.	 Process	 state	 visualisation	 using	 nvd3.js	 [65]	 ___	 36	
Figure	 4.1	 X-‐Map	 Architecture	 ___	 38	
Figure	 4.2.	 Observe	 Visitor	 __	 41	
Figure	 4.3.	 Prediction	 model	 __	 41	
Figure	 4.4.	 A	 possible	 training	 dataset	 ___	 42	
Figure	 4.5.	 A	 possible	 classifier	 ___	 42	
Figure	 4.6.	 Classifying	 bot	 __	 43	
Figure	 4.7.	 Attribute	 set	 ___	 44	
Figure	 4.8.	 Traffic	 classification	 __	 45	
Figure	 4.9.	 System	 Flowchart	 ___	 45	
Figure	 4.10.	 Machine	 identification	 __	 46	
Figure	 4.11	 Machine	 identification	 flowchart	 ___	 47	
Figure	 4.12.	 Matrix	 model	 of	 heatmap	 ___	 48	
Figure	 4.13.	 Heatmap	 tracker	 __	 49	
Figure	 4.14	 Heatmap	 tracker	 flowchart	 ___	 49	
Figure	 6.1.	 Landing	 page	 ___	 62	
Figure	 6.2.	 Product	 detail	 page	 ___	 63	
Figure	 6.3.	 Category	 page	 __	 64	
Figure	 6.4.	 Login	 page	 __	 64	
Figure	 6.5.	 Overall	 performance	 score	 ___	 65	
Figure	 6.6.	 AJAX	 request	 timing	 __	 65	
Figure	 6.7.	 Attack	 simulation	 ___	 67	
Figure	 6.8.	 Classifier	 performance	 ___	 68	
Figure	 6.9.	 Decision	 tree	 learning	 curve	 ___	 69	
Figure	 6.10.	 Receiver	 operating	 characteristic	 for	 the	 training	 dataset	 _______________________________	 72	
Figure	 6.11.	 Tree	 view	 __	 73	

	

	 viii	

Figure	 6.12.	 Quadtree	 representation	 using	 d3.js	 ___	 74	
Figure	 6.13.	 Voronoi	 diagram	 using	 d3.js	 __	 74	
Figure	 6.14.	 Time	 series	 format	 using	 d3.js	 __	 75	
Figure	 6.15.	 Heatmap	 graph	 example	 using	 d3.js	 ___	 76	
Figure	 6.16.	 Latest	 hits	 __	 76	
Figure	 6.17.	 Process	 states	 visualisation	 using	 d3.js	 __	 77	
Figure	 6.18.	 Group	 selection	 using	 d3.js	 ___	 77	
Figure	 6.19.	 Further	 exploration	 ___	 78	
Figure	 6.20.	 Time	 series	 format	 using	 d3.js	 __	 78	
Figure	 6.21.	 Apache	 process	 states	 ___	 79	
Figure	 6.22.	 Visual	 status	 [70]	 __	 79	

List of Tables

Table	 4.1.	 Predictive	 Detection	 model	 ___	 40	
Table	 5.1.	 Participant	 characteristics	 __	 53	
Table	 5.2.	 Attack	 simulation	 tools	 __	 54	
Table	 5.3.	 Data	 collection	 ___	 55	
Table	 6.1.	 Apache	 benchmark	 results	 __	 66	
Table	 6.2.	 Participants	 requests	 /sec	 ___	 66	
Table	 6.3	 X-‐Map	 Comparison	 Table	 __	 82	
Table	 6.4	 VATRIX	 Comparison	 Table	 ___	 83	
	

	

	 	 1	

Chapter 1 Introduction

1.1 Background

Application layer attacks are on the rise, and the majority of them target the

Hypertext Transfer Protocol (HTTP). A recent study by Incapsula reported that bot

traffic has increased up to 61.5% of all website traffic, of which 30.5% is likely to

perform malicious activities [1]. Another study by Arbor Networks highlighted a

growing trend in the attack threat, impact and frequency [2]. Interestingly, the

Cloud Security Alliance listed Distributed Denial of Service (DDoS) as one of the

top notorious threats to the Internet	 [3]. Therefore, a defence system relying on

machine learning and artificial intelligence alone is insufficient in defeating

adaptive adversaries. In a world of persistent threats, there will always be an open

door to new attacks. Attacks that target zero-day vulnerabilities are unstoppable by

nature. Similarly, application layer HTTP DDoS attacks, scrapper bots and social

bots are relatively new types of attack. These attacks are difficult to mitigate

because they possess legitimate requests [13, 14]. They are able to perfectly mimic

legitimate human behaviour in order to evade detection [6, 7]. However, their

sources of addresses are exposed because a complete Transmission Control

Protocol (TCP) handshake is required [15]. Although they consume less

bandwidths, orchestrated attacks can slow down or even disrupt a network, and

they can render the victim website inaccessible with very limited resources [13,

14]. In the presence of genuine flash crowds, a condition where a large number of

users are accessing the website simultaneously [34], victims may not even realise

that they have been targeted.

Orchestrated bot attacks produce vast amounts of data, and a command line

interaction is not an efficient way in responding to these threats. Normally,

filtering out the log file in a primitive way, such as line-by-line processing, can be

overwhelming. Even an automatically generated script could not provide a

measure of certainty in order to determine the final destiny of an incoming packet.

Automated blocking will result in a high rate of penalised access for legitimate

users. Therefore, actions need to be taken in an effective and efficient manner.

Visual analytics, in contrast, allows an insight for understanding complex data

with the visibility of attack patterns at multiple scales [44]. The end result

	

	 	 2	

enhances situational awareness for a better decision-making process [45]. Visual

analytics is a multidisciplinary field that exploits analytical reasoning techniques,

which support innovative visualisation in order to gain insight and reasoning from

large dataset [11].

1.2 Research Challenges and Questions

Discriminating bot traffic against legitimate flash crowds remains an open

challenge to date. The increasing rate of malicious bot attacks has attracted many

researches to address this challenge. One way of defence against bots is to use the

Completely Automated Public Turing test to tell Computers and Humans Apart

(CAPTCHA) [37], which enforces human responses to answer a given question

and to determine whether the user is a human. On the other hand, previous studies

by Yu, Shui et al. have demonstrated that by using statistic based techniques, bots

could generate attack traffic that poses similar behaviour to legitimate traffic [4].

Such manipulated traffic follows the patterns based on statistical distributions. The

result of this study has shown the difficulties of using statistic based methods to

distinguish legitimate traffic against bot generated traffic [4, 5]. In addition, Lee,

Myungjin et al. developed AjaxTracker that automatically imitates a human

interaction [6]. The tool provides automatic workload generation to test specific

web applications. Jin, Jing et al. developed an evasive web bot system based on

human behavioural patterns [7]. Their system provides a flexible and extensible

framework to ensure direct interactions with a web browser. It enables automatic

event generation aimed at the application user interface. Guo, Song et al. have

demonstrated that “it is almost impossible to detect mimicking attacks from

statistics if the number of active bots of a botnet is sufficient” [8]. These studies

have demonstrated that legitimate browsing behaviour can be perfectly imitated to

evade detection [4, 5, 6, 7, 8].

The studies presented so far provide evidence that bots are able to perfectly mimic

human behaviour. In order to address these challenges, the following two research

questions are raised for this research to answer:

Question 1. Can we find a new solution to classify bot presence against

legitimate traffic, without requiring too many user interventions?

	

	 	 3	

Question 2. By using visual analytics, how can the result of classification be

presented in a decision-oriented way? 	

	
1.3 Research Methodology

The research was conducted by utilising experiment and simulation approaches. A

number of participants were invited in the experiment. The experiment was

conducted by capturing website traffic, identifying browser fingerprints, simulating

bot attacks and analysing mouse dynamics, such as movements and events, of a

participant. A novel visual analytics system was proposed in order to discover bot

traffic and provide a measure of certainty for the decision making process.

	

Figure 1.1. Research Methodology

Figure 1.1 illustrates the activities of the research work. In the data acquisition

phase, participants’ data were collected transparently. The objective is to extract

certain characteristics of legitimate visitor and simulated bot attacks. Their

browsing behaviour data were captured. The implementation of the data

acquisition was written using C, PHP and JQuery.

The next phase is the pre-processing, which reads all the data obtained by the

previous phase and performs Attribute-Relation File Format (ARFF) conversion.

The objective of this phase is to segment and map every input into a probability

value. This is to enable the classification to process data.

These data were then normalised and analysed. An initial training dataset was

generated by comparing the activity patterns of the participants’ legitimate

behaviour against simulated bot attacks. To analyse the data, Weka 3.6.10 was

used to perform classification based on a training dataset. The chosen algorithm

	

	 	 4	

was J48 Decision Tree C4.5 algorithm [57]. Finally, the visualisation was rendered

by using D3.js, a comprehensive JavaScript library for data-driven visualisation.

1.4 Research Aims, Objectives and Novelties

1.4.1 Aims

The aim of this research is to investigate the effectiveness of visual analytics in

order to provide a defence mechanism and to discover bots traffic efficiently.

1.4.2 Objectives

The objectives of this research are summarised as follow:

• to collect the data from participants versus the simulated bot attacks in order

to obtain a threshold limit value,

• to develop an initial training dataset in order to best classify between

legitimate traffic and bots traffic,

• to build an initial model and evaluate the model using a decision tree

classifier algorithm,

• to formulate a visual analytics design that is capable of discovering

unexpected bots traffic.

1.4.3 Novelties

This research’s main contribution is a novel visual analytics system that is capable

of discovering bot traffic and providing a measure of certainty for the decision

making process. Overall the result of this research contributes to these following

novelties:

• VATRIX, a visual analytics system for discovering bots presence.

A custom algorithm is implemented for generating a voronoi diagram of

connected components, which takes a Quadtree data structure.

• X-Map, a standardised method for separating flash crowds from bots traffic.

An observation input model is developed based on a decision tree

algorithm, that analyses user interaction in the application-layer, such as

website heatmap data and banner reaction results.

The proposed methods aim to overcome low and slow bandwidth attacks that

exploit the vulnerability of an application layer. Several attempts have been made

	

	 	 5	

on the transport and network layers, but they are not specifically designed to

mitigate mimicking attacks that masquerade as flash crowds.

All these approaches were incorporated into a single system for interactive visual

analytics design in order to overcome the limitations of current approaches, which

are not specifically designed to mitigate mimicking attacks that exploit the

vulnerability of an application layer.

1.5 Research Scope

CAPTCHA and other automated Turing test methods are effective in restraining

the presence of bots [37]. However, an adaptive adversary can evade those

protections by hiring human labours to solve the test. This phenomenon has shown

that even the most sophisticated CAPTCHA technology will fail to guarantee

protection [9, 10]. As a result of this phenomenon, organised labour attacks are

outside the scope of this research. This research studies causal relationships of

legitimate participants and simulated bot attacks to be identified and analysed.

Finally, this research presents the prototype of our visual analytics design.

1.6 Project Results

Data were collected as the participants performed the set list of tasks and while the

simulated bot attacks were running. The threshold value for each website page was

measured according to all page requests, where the value will be used to indicate a

normal legitimate page request and preliminary comparison against simulated bot

attacks, as to be described in Section 6.2. The objective is to find the total number

of HTTP requests made for each page. A minimal threshold value was then set to

indicate the acceptance level of legitimate page requests. An initial training dataset

was built based on an observation input model in order to classify incoming

traffic.

This research was taken in a fully controlled and structured environment, which

will be discussed in Chapter 5. The following are the steps for this research

project:

1. Initial website capable of tracking visitor data.

2. Simulated bot attacks
3. Building the machine learning model

4. Constructing the Quadtree data structure

	

	 	 6	

5. Generating the Voronoi diagram
6. Evaluating the system

The results of classifying the test dataset were promising, and the model was able

to identify ten participants and six simulated bot attacks with an accuracy of

86.67%. Finally, the visual analytics design was formulated in order to assist an

analyst to discover bot presence. The main contribution of this thesis is a novel

visual analytics system that is capable of discovering bot traffic. Two methods

have been developed. The first is VATRIX, a visual analytics system for

discovering bots presence. The second one is X-Map, a standardised method for

separating flash crowds from bots traffic, which employs a classification technique

to make accurate detection based on visitors’ past observations.

The research presented in this thesis was also published in the following

conference:

• Herlambang, I. H., Shi, Q. and Zhou, B., Interactive Visual Analytics for

Discovering Bots Traffic, PGNet, The Annual Postgraduate Symposium on

the Convergence of Telecommunications, Networking and Broadcasting,

pp. 89-94, Liverpool, UK, June 2014.

1.7 Thesis Outline

The remaining chapters of this thesis are organised as follows. Chapter 2 discusses

the literature review in order to carry out a systematic understanding of the

research domain. Chapter 3 presents the proposed visual analytics system. Chapter

4 presents the classification method. Chapter 5 describes the research settings and

outlines the overall experiment of the simulation. Chapter 6 provides the evaluation

of the system. Finally, Chapter 7 concludes this thesis by highlighting the main

contributions and discussing directions for future research.

	

	 	 7	

Chapter 2 Literature Review

The presence of malicious bots has emerged as real threats to the Internet.

Previous studies have demonstrated that legitimate browsing behaviour can be

perfectly imitated to evade detection [4, 5, 6, 7, 8]. This research is focused on

discriminating bots traffic against legitimate traffic, which can be applied to

mitigate malicious bot attacks. The objectives presented in this thesis are suitable

for discovering bots traffic, including visualisation. One major problem with

application layer attacks is to transparently detect orchestrated bot attacks. The

challenges of visualisation are associated with large and complex data.

Using a classification algorithm to distinguish between legitimate traffic and bot

traffic has been an interesting research area. With the objective to automatically

learn to make accurate predictions based on visitor past observations, this research

used browser fingerprint, banner advertisement and other techniques to achieve its

goal.

The remaining sections of this chapter provide the background of the research and

describe an overview of current work in the area of visual analytics and malicious

bots. It discusses the use of a website heatmap, browser fingerprint, banner

advertisement and proof-of-work system in order to transparently discriminate

bots traffic against legitimate traffic, which is one major challenge in application

layer attacks. In addition, the application of visual analytics in the security domain

is presented.	

2.1 Visual Analytics

Visual analytics is a new emerging scientific field. In 2008, Keim et al. published

a book in which they described the definition of visual analytics, “Visual analytics

combines automated analysis techniques with interactive visualizations for an

effective understanding, reasoning and decision making on the basis of very large

and complex data sets” [11]. Visual analytics tackles the information overload

problem and aims to turn them into an opportunity [12]. The broad use of visual

analytics is to discover knowledge through visualisation and analytical reasoning.

	

	 	 8	

Figure 2.1. Visual analytics integration [11]

Relationship between visual analytics and scientific disciplines has been widely

investigated. Keim et al. described that Visual analytics has wide combinations of

interdisciplinary research fields, such as data mining, data management and

statistics [11]. The integration of these scientific disciplines, as illustrated in

Figure 2.1, provides a broader way of analytic reasoning. However, there are a

number of important differences between visual analytics and information

visualisation. Visual analytics aims to break the barriers of information

visualisation limitation by enhancing the knowledge discovery algorithms [11]. In

contrast to information visualisation, visual analytics employs the strengths of data

analysis algorithms to support interactive analysis tasks [11]. The application areas

of visual analytics are significantly different from those of information

visualisation, especially, in gaining insight by processing large amounts of data

[12].

The visual analytics process has different stages and transitions, which is more

extensible compared to conventional information visualisation. As illustrated in

Figure 2.2, these are to provide interactions and increase interoperability between

stages [12]. The end result will enable users to acquire new knowledge from vast

amounts of raw data.

	

	 	 9	

Figure 2.2. Visual analytics process [12]

The initial phase requires data sources integration before visualisation

representation [12]. Prerequisite steps need to be taken before going further for

applying automated data analysis. Initially, it will preprocess and transform the

data in order to gain insight for further analysis. [2]. The preprocessing tasks

consist of data cleaning, normalisation, grouping or data source integration [12].

Once the data has been processed and transformed, the next step can progress

further to either visualisation mapping or model building. The interactions with

automatic methods are characterised through parameter refinement and analysis

algorithms selection [12]. This step enables a user to evaluate the model by using

data mining techniques in order to verify preliminary results. Key characteristics of

this visual analytics process include being able to discover misleading results to

ensure a measure of certainty. However, this requires an advanced user to confirm

an initial hypothesis that is matched to the automated analysis to reveal hidden

results. Finally, the new knowledge can be discovered, by using automatic analysis

the interactions between visualisation and model can be performed by human

analyst to support their task“ [12].

2.2 Malicious Bots

An Internet bot, also identic with robot or bot, is automated software that performs

specific tasks. A website crawler, such as Googlebot, is an example of a bot.

However, this kind of bot is specific to website indexing tasks and can be regarded

as a non-malicious bot. In a world of persistent threats, there are many other

malicious bots that can be found on the Internet.

	

	 	 10	

The evolution of scrapper bots, social bots and distributed denial of service bots

has a significant impact resulting in financial and reputation consequences. These

malicious bots presence has emerged as real threats to the Internet. Large and

growing bot traffic has increased up to 61.5% of all website traffic according to a

study by Incapsula, which 30.5% of the traffic are likely to perform malicious

activities [1].

Figure 2.3 Application layer attacks [2]

Adaptive and persistent attacks have proven to evade detection and prevention

system, hardware devices, such as firewall and IPS, are insufficient and susceptible

to DDoS attacks [2]. Previous study, conducted by Moustis and Kotzanikolaou, has

reported that “more recent DDoS attacks targeting at the HTTP layer can be very

effective even with a small number of infected bots” [13]. Their study has

demonstrated that application layer attacks can be deployed with a very limited

resource, which only require a small size botnet to disrupt web servers. They

examined HTTP SYN-flooding DDoS attacks with a small number of bots by using

Slowloris [13]. A similar study, conducted by Zargar et al., has identified several

key difficulties in mitigating application layer attacks, because the new adaptive

application layer DDoS attacks require small number of bandwidth and target the

vulnerabilities of application layer protocol. [14]. Moreover, Durcekova et al.

investigated sophisticated attacks aimed at the application layer [15]. They

proposed two detection mechanisms for monitoring web traffic in order to discover

abnormal burst traffic.

	

	 	 11	

Interestingly, a study by Juniper Networks revealed that DDoS attacks could be

purchased with a little cost [16]. The new breed of slow and low application-layer

DDoS attacks can stay under a threshold limit of detection systems. A similar study

by Prolexic reported that the peak attack bandwidth in 2014 has increased 133%

compared to the previous year [17]. The new reflection and amplification attacks

are the most prevalent and disruptive compared to the traditional botnet infection

method, generating peak traffic of more than 200 Gbps and 53.5 Mpps, [17]. These

attacks constitute a real threat to industries. Figure 2.4. illustrates the distributions

of attacks targeting key industries, in which 49.80% of the attacks target the media

and entertainment industry. This provides insight into the motivation of attackers,

which is for press exploitation in order to effectively reach out and recruit others to

join their cause [17].

Figure 2.4. Distribution of attacks [17]

A relationship exists in showing the effectiveness of application layer attacks and

their impact on service availability. Together these studies provide important

insights into the disastrous results of application layer attacks that can be launched

effectively.

2.3 Website Heatmap

Recently, there are various cloud-based services that offer a website heatmap

solution. The open source JavaScript library that produces real-time website

heatmaps are also widely available [18]. A website heatmap provides an effective

tool in order to analyse visitor behaviour. The technique aims to produce a

graphical image that represents visitor interactions with each section of a certain

	

	 	 12	

page. These interactions, for instance, are mouse movement, click density, form

usability and scroll movement. An advance website heatmap enables usability

study for many mobile and table specific devices.

Figure 2.5. Website heatmap [18]

The flexibility of this technique allows data to be created from many different

types, such as mouse and keyboard tracking, to enhance usability and design

study. One of the limitations with this technique is that it requires JavaScript to be

enabled in the browser side, while some requires a HyperText Markup Language

(HTML) version 5 enabled browser. Recent Online Social Network (OSN),

however, demands significant usage of JavaScript.

A study by Huang and White discovered the correlation between mouse movement

and search results, which will be examined by a visitor [19]. Although the website

heatmap technique could predict high presence of a human, but currently it is not

widely applied for detecting bots presence. However, previous studies have

demonstrated that legitimate browsing behaviour can be perfectly imitated to

evade detection [4, 5, 6, 7, 8]. Currently, no empirical studies on the potential

benefits of website heatmaps have been conducted to detect the presence of bots.

2.4 Browser Fingperint

Tracking users can vary in techniques, such as generating browser cookies or using

browser fingerprints. Previous study by Eckersley has shown that web browser

attributes can be used to transparently fingerprint clients, even when browser

cookies are disabled by default [20]. The result indicated that browser

fingerprinting enables web browser identification without relying on User Agent

string headers. Browser fingerprinting provides a method to discriminate machines

	

	 	 13	

behind a single source address, such as Network Address Translation (NAT) and

proxy server.

Figure 2.6. Browser fingerprint [23]

The approach is based on research study that at least one in 286,777 browsers

shares the same fingerprint [20]. The demonstration estimates that under current

active session only one in 3,987,090 browsers will share the same fingerprint [23].

The browser fingerprinting technique allows browsing sessions to be linked

together. The finding suggests that browser fingerprint can be effectively used to

replace browser cookies in order to track visitor uniqueness [20]. A similar study,

conducted by Mulazzani et al., confirmed the reliability and efficiency of browser

fingerprinting in terms of bandwidth and computational overhead [21]. Moreover,

Mowery et al. study has shown that it is difficult to simulate or impersonate

browser fingerprint unique session that belongs to other user. [22].

However, browser attributes are constantly changing, due to plugin installation

and setting configuration. In making decisions based on dynamic attributes, it is

important to present to the analyst the results and impact of that uncertainty. This

is to ensure unique identification between clients.

2.5 Banner Advertisement

Website banner advertisement is becoming pervasive, and the ability to attract

customers has been adopted by online news websites, such as Forbes and

InformationWeek [24, 25]. The banner can be in a form of full page or only at a

small fraction of size. Typically, a banner resides in a floating area, while others

prefer an embedded banner in a single page. A banner has a closing or a skip link,

which forces a visitor to close them in order to continue browsing the website. A

proof-of-concept demonstration of this situation is taken from the

	

	 	 14	

InformationWeek website, as illustrated in Figure 2.7 below. This condition

requires the visitor to respond or wait in order to access the main news.

Figure 2.7. Banner advertisement [25]

So far, several studies have been conducted to investigate visitor behaviour

towards advertisement [26, 27]. Similarly, Kitts et al. proposed a method for click

fraud bot detection, by calculating mix adjusted traffic and bot signatures [28, 29].

However, no empirical studies of the potential benefits of user tracking

advertisement reaction have been conducted to provide a measure of certainty of a

human presence. Such methods would have a high possibility to replace

CAPTCHA in the future [29]. While the results are still uncertain, however, this

allows a combination of security protection with the opportunity of banner

advertisements, which can lead to beneficial revenue behind them.

2.6 Proof-of-work System

Kaiser and Feng defined the goal of a proof-of-work system, it aims to maximize

the amount of workload that adversaries must conduct and minimize the

legitimation process on the server side. [30]. Typically, a proof-of-work system

enforces clients in committing their computational resources. According to a study

conducted by Pandey and Rangan, it has been shown that this technique

effectively protects system resources against denial of service attacks [31]. In their

study, a variety of algorithms, Token Bucket and Fair Queue Algorithm, were used

to prevent brute force attacks. However, a previous study by Laurie and Clayton

argues that proof-of-work itself can be a better solution for e-mail spams [32].

	

	 	 15	

They examined the approach from both economic and security perspectives. Their

study indicated that an uncomplicated scheme for email challenge-response is not

a guaranteed solution to mitigate spams. Despite the wide usage of the proof-of-

work system for security purposes, however, determining how much processing

power and how much work are required in order to provide stability remains

uncertain. An active monitoring system, that supports visualisation, would be an

ideal solution in providing insight. Figure 2.8 illustrates challenge-response - a

part of the proof-of-work system.

Figure 2.8. Challenge-response [33]

In the application of user behaviour tracking, the proof-of-work system can be

combined with session tokens or One Time Password (OTP). This is to ensure

protection against brute force and replay attacks. A randomly generated JavaScript

code, containing the task to solve, can be securely delivered to the client by using

Secure Socket Layer (SSL). Hardening methods such as code obfuscation can also

be applied. However, the key challenge is to maintain integrity of each session in

order to ensure such accuracy.

2.7 Discriminating Bots against Legitimate Flash Crowds Traffic

The increasing rate of malicious bot attacks has attracted many researches to

address this challenge. One major difficulty in application layer attacks is to

distinguish bots from legitimate flash crowds traffic, “A flash crowd is a surge in

traffic to a particular Web site that causes the site to be virtually unreachable”

[34]. Several attempts have been made on the transport and network layers to

provide solutions. Yu et al. reported the effectiveness of their method by using

flow correlation coefficient [35]. The result of Thapngam et al.’s study reported

that linear discriminant analysis could approach the problem with a high rate of

accuracy [36]. However, these methods are not specifically designed to mitigate

	

	 	 16	

mimicking attacks that exploit the vulnerability of an application layer [4, 5, 6, 7,

8].

A number of studies on the application layer have been conducted in order to

discriminate bots against legitimate flash crowds traffic. Kandula et al. developed

Kill-Bots in order to guard web servers against DDoS attacks [37]. During intense

traffic spikes, Kill-Bots enforces clients to solve graphical tests before allowing

them access to the server. One major drawback of this approach is that the method

requires CAPTCHA puzzles to be solved.

Xie and Yu proposed their method based on user browsing behaviour [38, 39].

Their method applied a Hidden Semi-Markov Model to detect anomaly of a user

browsing behaviour. The browsing behaviour was observed by the request rate,

page viewing time and request sequence. The result presented in their study reveals

the effectiveness of defence against application layer DDoS attacks. However,

previous studies have demonstrated that legitimate browsing behaviour can be

perfectly imitated to evade detection [4, 5, 6, 7, 8].

Oikonomou and Mirkovic proposed their method by using human behaviour

modelling [40]. They investigated request dynamics of a human interaction in

order to learn request patterns. In addition, a deception approach, by embedding

invisible objects, was used to detect bots presence. However, their method cannot

effectively defence against flash crowds attacks. Yu et al. have demonstrated the

difficulties to detect mimicking attack, especially when the number of active bots

is massive [8].

2.8 Visual Analytics Applications

Visual analytics approach can significantly support the process of knowledge

discovery from very large and complex datasets. Considerable amounts of

literature have been published on the topic of visual analytics.

Zhang and Huang studied visual analytics model to detect DDoS flood attacks [41].

They proposed Density-Workload Model with three coefficients in order to

investigate the attacks and their impact level. Their study analyses the relationship

between system performance and attack density by using clustered visualisation. A

graph model, consisting of nodes and edges, was mainly used to represent the flood

attacks. The result has shown that the model produces high accuracy to measure

	

	 	 17	

different types of flood attacks. However, their method of visual analytics model

has a number of limitations. This model lacks the ability to identify bot attacks and

flash crowd attacks, which have different traffic patterns with flood attacks. An

interactive respond to handle flood attacks is missing in their study. In the absence

of intense traffic spikes, it is very difficult to identify low-bandwidth and slow

HTTP attacks with this technique. They limited issue with this method is that it

does not identify legitimate flash crowds traffic against flood attacks.

Zhao et al. developed NetSecRadar, a real-time visual analytics system to monitor

network security events [42]. A radial graph, composed of hosts and attack

correlation, was mainly used to aid monitoring Intrusion Detection System (IDS)

alerts. Their system supports filtering, animation and direct interaction with the

user. Preliminary result has shown the ability to illustrate attacks and visually

correlate the events. However, NetSecRadar is IDS dependent. The ability to

identify malicious bot attacks largely depends on the IDS database. Therefore, a

key feature to discriminate flash crowds against DDoS attacks is missing.

Fischer et al. developed VisTracer, a visual analytics tool to investigate routing

anomalies [43]. They introduced novel glyph-based and graph-based visual

representations. The interesting part of their study is the ability to distinguish

between legitimate routing changes and malicious activities from legitimate

addresses. However, the visualisation is only specifically designed to detect routing

anomalies on large traceroute datasets, which has not been applied to discriminate

malicious bots traffic.

Keim and Fischer developed VACS, a novel visual analytics suite for cyber security

[44]. The system allows visual exploration to identify suspicious host behaviour by

using Graph Viewer and Hierarchical ClockMap. Their study has demonstrated the

ability to identify and explain unusual activities in the network by using visual

analytics. The evidence presented in this study suggests that VACS is best used on a

large display to enhance situational awareness. However, no explanation is given

on how to detect unusual happenings inside the network.

Shurkhovetskyy et al. studied visual analytics for network security [45]. The study

investigated visualisation tools to assist network forensic analysts. They use a

combination of multiple interactive visualisations to provide a global and detailed

	

	 	 18	

view of network activities. However, the visualisation makes no attempt to

differentiate between various types of DDoS attacks. Another weakness is that the

detection method for suspicious events inside the network was not fully described.

Yassem presented a visual analytics approach to network security hygiene [46].

The research investigated visualisation methods and techniques to enhance

situational awareness. The visualisation implements a stacked bar chart,

hierarchical edge bundle and Hilbert curve into a single dashboard. However, it is

unclear how situational awareness can be enhanced from an analyst perspective.

The research fails to fully define what types of attacks were detected by the

visualisation. Another weakness is that the visualisation fails to provide user

interactions, which is an important feature for visual analytics.

Mansmann et al. presented a real-time visual analytics system for dynamic event

data streams [47]. A loosely coupled modular visual analytics system was

introduced. The extensible framework allows internal threats identification and

suspicious events investigation. The result has shown that “it can be used to

smoothly switch between historic events and the most recent events for monitoring

purposes and relate incoming data with historic events” [47]. The visualisation

system enables suspicious user behaviour tracking and recognises abnormal

patterns. Although this is the most comprehensive modular system of visual

analytics produced so far. However, there are limits to how far the idea of burst and

anomalous behaviour can be identified, which is missing in this framework. In this

study, no attempt was made to classify malicious bot attacks.

2.9 Summary

After conducting the above literature review, the following shows a summary of

the identified weaknesses with the existing work:

• Several attempts have been made on the transport and network layers, but

they are not specifically designed to mitigate mimicking attacks that exploit

the vulnerability of an application layer.

• Some existing solutions such as Kill-Bots offer effective protection but this

relies on CAPTCHA puzzles to be solved. This method only focuses on

preventing DDoS attacks that masquerade as flash crowds, which is not

suitable for low bandwidth attacks.

	

	 	 19	

• Most of the existing solutions still rely on the use of statistic-based methods

that can be perfectly imitated to evade detection.

• The existing solutions lack the ability to identify bot attacks and flash

crowd attacks, which have different traffic patterns with flood attacks.

• In the absence of intense traffic spikes, it is very difficult to identify low-

bandwidth and slow HTTP attacks with the existing solutions.

This chapter has outlined the literature review and explained the necessary

understanding of the visual analytics, malicious bots, website heatmap, browser

fingerprint, banner advertisement and proof-of-work system. It was found that

related studies have been conducted in the domains of visual analytics and

malicious bot attacks. Although these studies did not evaluate specific

classification methods for adaptive bot attacks, they provide valuable insight for

our research study. A combination of visual analytics and traffic discrimination

techniques could provide a measure of certainty and give a strong indicator of

human or bot presence, which is missing in the current proposed methods.

Therefore, the limitations of current approaches have motivated this research.

There are several studies on the effective use of CAPTCHA in order to

discriminate the presence of bots. However, existing studies have not dealt with the

use of banner advertisement to predict the presence of a legitimate visitor, based on

the response behaviour. The next chapter will describe our research methodology,

which was defined using experiment and simulation approaches for undertaking the

research to fill these gaps.

	

	 	 20	

Chapter 3 VATRIX

In the previous chapter, an overview of visual analytics and malicious bots attacks

has been introduced. In addition, the challenges of this research area have been

discussed. Furthermore, the applications of visual analytics and the technique used

in order to discriminate bot traffic have been identified. Recent work in the

domain of visual analytics and network security has presented techniques that

allow an analyst to monitor network security events, such as analysing the flow of

DDoS flood attacks. However, the prior work in network security visualisation

mostly applies graphs directly without the use of any classification technique.

On the other hand, visual analytics is an emerging scientific field with the ability

of interactive visualisation to provide collaboration among analysts. The approach

presented in this chapter aims to create an interactive visual analytics system,

VATRIX, that automatically discriminates bot traffic and provides a rich user

interface in a multiple dashboard view. VATRIX embraces the use of a Voronoi

diagram, Quadtree data structure and priority queuing technique in order to

provide a defence mechanism and to allow an analyst to gain insight from large

amounts of data. VATRIX also employs X-Map in order to classify incoming

traffic and discriminate them against bot traffic, which will be discussed in

Chapter 4, whilst also producing a system that observes visitor behaviour.

3.1 Introduction

This chapter presents the visualisation techniques employed in VATRIX - Visual

Analytics Through Responsive Interactive X-Map, which was mainly developed

during this research study. It covers the user interface, mapping specification and

architecture of the entire system. The aim of VATRIX is to provide a defence

mechanism, by using interactive visual analytics, with fair allocation across all the

visitors in the presence of attacks. By using advanced interaction the advantage is

that it does not increase the amount of representation complexity. Therefore,

action can be taken more effectively and efficiently. The next section will present

the VATRIX architecture. The architecture consists of two main parts and three

stages, the data acquisition and visualisation. Data acquisition was used to collect

computing and network resource usage data. On the other hand, visualisation

presents interactive graph to the end user in order to explore the large datasets.

	

	 	 21	

VATRIX is a web application using HTML5, JavaScript, mixed libraries and

several toolkits. To produce the visualisation D3.js was used.

Figure 3.1. VATRIX architecture

Stage 1, the data acquisition stage aims to gather all traffic entering the network. It

filters all incoming HTTP and HTTPS requests inside the network. It is expected

to handle over millions of packets per second. Several raw data are extracted to

provide details on demand in the visualisation stage, for instance IP address and

source port. In the application layer, visitor data, such as website heatmap,

browser fingerprint and other attributes are also extracted. This stage is constantly

comparing current profile with previous history profile to avoid duplication and

performance overhead.

Stage 2, the classification objective is to classify incoming network traffic,

especially HTTP and HTTPS requests. The classification is based on visitor

behaviour training data set. It analyses previous patterns to identify legitimate or

illegitimate behaviour and combining the results with details on demand

information to provide a measure of certainty. The result of this classification will

be visualised according to the final class.

Stage 3, the visualisation stage renders all the classification results. This stage

provides interaction to the analyst. Analyst is now able to discover bots presence.

Analyst can quickly block or route suspicious requests from the interface to divert

malicious bots activities, for example forwarding requests to puzzle server with a

banner challenge. All other legitimate requests will not be affected.

	

	 	 22	

3.2 Quadtree Data Structure

A data structure for visualization is of significant interest in representing elements

including points, areas and lines. A quadtree data structure is “a tree data

structure in which each internal node has exactly four children [68]. The node has

a similarity with a binary tree. The partitioning of this data structure suits well for

mapping multiple IP addresses, as illustrated in Figure 3.2. Each leaf node of the

data structure has four branches, which each region represents a partition of one

octet of a valid IP address.

Figure 3.2. An example of Quadtree representation

The data structure allows adding, deleting or replacing elements dynamically

according to practical situation. By using this data structure, the disadvantage of

redundant IP address mapping can be enhanced because current visualisation tools

are restricted to represent constraints of massive list of IP addresses. Thus, the

rendering for the Voronoi diagram can be grouped into four different regions

making the first octet of the IP address to be adjacent for each group.

3.3 Voronoi Diagram

Voronoi diagrams are considered to be the most useful technique in the area of

visualisation and computational geometry, “a Voronoi diagram is a way of

dividing space into a number of regions.” [69]. The definition of a Voronoi

diagram consists of a set of n distinct points, P = {P1, P2, P3 …, Pn} [69], where

the P set can be defined as the division of a region. The diagram can be presented

	

	 	 23	

as the division of a plane into multiple regions showing vertices and edges. A

connected line segments of the boundary regions are the voronoi edges and each

endpoints of the edges would represent voronoi vertices [78]. The application of

the diagram can be plotted to the bound cells for the points of a dataset to

represent all elements that will be visualised. This enables interactive visualisation

to be presented into multiple regions and manage in a more compact way. Figure

3.3 illustrates a typical Voronoi diagram also known as a point diagram.

	
Figure 3.3. A typical Voronoi diagram

The division of space for any point that lies in the region has a site that is nearest

to each other for rendering the final visualisation. This is to enable linking of

multiple points, such that all points in the region are closed to each other. Thus, it

supports grouping and filtering for a large dataset because a Voronoi diagram

provides a useful representation for generating a minimal number of elements

[69]. For all layers in the Voronoi diagram, the following requirements apply:

• The region contains at least one point to represent the first octet of the IP

address.

• The layer contains a finite number of points.

• The diagram is represented in a two dimensional grid.

• Each point that is closest to each other contains a unique value, which is

the first octet of the IP address. For instance, the same first octet of the IP

address that will be grouped together will be adjacent to each other.

	

	 	 24	

3.4 Generating Voronoi Diagram

Generally, constructing a Voronoi diagram is time-consuming, especially for a

large dataset with a huge number of pixels. In this section, a custom, fast and

efficient algorithm is implemented for generating a Voronoi diagram of connected

components, which takes a quadtree data structure, as illustrated in Figure 3.4. The

proposed algorithm for constructing the area of a Voronoi diagram is:

Figure 3.4. Construct Voronoi

To illustrate the above algorithm, the steps can be visualised as follows:

Figure 3.5. Constructing Voronoi diagram

procedure ConstructVoronoiArea
 1: v ← initialiseArea

 2: I ← parsePacketQueue
 3: for each incoming_packet of I do
 4: h ← parseHeader(I)
 5: Q ← quadtree_grow (h)
 6: if firstEntry == null then
 7: merge-data-points [h]
 8: group-into-clusters [h]
 9: calculate_timing
10: else
11: appendNewVertices(v)
12: appendNewCoordinates(v)
13: endif
14: end for
15: r = API_generateVoronoi(v, Q)
16: if r >= 1 then
17: API_drawDiagram(v, Q)

 18: endif	

	

	 	 25	

The Voronoi diagram takes a quadtree data structure, which is a group of four

different regions, for all IP address entries as computed by using a decision tree

algorithm to perform the classification task for making detection based upon past

observations. The chosen algorithm was J48 Decision Tree C4.5 algorithm. Then

the Voronoi diagram is calculated in an optimal time for every created layer.

Therefore, in the generated Voronoi diagram of all dataset the vertices are

presented, where a region label indicates the first octet of the IP address. By using

these vertices, multiple layers of Voronoi diagrams can be generated to provide

visualisation interaction. These layers are stored in main memory, which can be

used when required. In order to plot an IP address into the diagram, the initial step

is to obtain all octets from the quadtree data structure (set IP). To generate the first

order of the block in the diagram, it starts with first IP set and mapped each cell

found in the structure of X = {x1, x2, x3, x4}, where the order of the cell will follow

the structure of the quadtree data structure. For a given set of IP address, the

farthest-point divides the plane into several cells where the same point of the octet

will be adjacent to each other. For instance, an entry of IP address in class C

network will be adjacent and formed together into one single group of cell.

The role is to divide continuous space into mutually disjoint subspaces according

to the nearest rule. Therefore, a selection of multiple regions, containing multiple

layers, is possible by decomposing the space into regions around each point.

3.5 Priority Queuing Method

One of the most time-consuming aspects of analysing visitor behaviour is to

prioritise incoming traffic. The system must capture every behaviour and perform

classification. For instance, a huge amount of traffic may be taken before decision

can be made. In order to optimise the task, in this section, the priority queuing

method is presented to classify visitor behaviour. The method has a role to

prioritise incoming request patterns of a legitimate visitor by controlling the order

of activities. The queue is implemented in an abstract data type, which has

functionality for enqueuing and dequeuing operations. Figure 3.6 illustrates the

queuing and dequeuing process.

	

	 	 26	

Figure 3.6. Priority queue

The result of the priority queuing method enables traffic to be grouped in one

object and constructed in a prioritised way. Thus, classification can be performed

more effectively, especially for large datasets. There are several implementations

of First In First Out (FIFO) queues which have more advantage over fixed length

arrays, such as a singly or doubly linked list [73]. This enables new elements to be

added dynamically without any capacity constraint. To construct the priority

queue, it can be visualised as follows:

1. A buffer starts with an empty element.

2. An object is added into the queue.

3. The object will be processed to perform classification.

4. The object will be removed from the queue upon successful classification.

This shows how the queue buffer is managed to support classification. The data

structure of an object can be defined as follow:

typedef	 struct	 {	
	 	 	 	 int	 	 	 	 	 	 	 	 	 size;	 	 	 	
	 	 	 	 int	 	 	 	 	 	 	 	 	 first;	
	 	 	 	 int	 	 	 	 	 	 	 	 	 last;	 	 	
	 	 	 	 vType	 	 	 	 	 	 	 *elems;	 	 }	 QueueBuffer;	

3.6 VATRIX Interactive User Interface

Our research in visual analytics combines interactive information visualisation and

automated analysis techniques. This allows the development of an interactive user

interface and the ability to render large amounts of data. The purpose of the user

interface in VATRIX is to allow an analyst to interactively gain insight from large

amounts of data. The diagrams presented in this section use Voronoi diagrams, a

Quadtree data structure and priority queueing method in combination with d3.js

for the presentation.

In the absence of intense traffic spikes, it is very difficult to justify whether a

system is under attack. As network traffic produces vast amounts of data, using

	

	 	 27	

conventional visualisation tools alone, as illustrated in Figure 3.7, can be difficult

to grasp a good feel of the data, especially when trying to identify the class of the

traffic.

Figure 3.7. An example of conventional network traffic visualisation

The VATRIX visual analytics system provides a main dashboard view to represent

human, bots and unclassified traffic. This behaviour is rendered in a real-time

mode by the help of X-Map. It visually represents the current network traffic.

Therefore, the visualisation in VATRIX is presented as illustrated in Figure 3.8, so

that fast interactive responses can be made, such as blocking all bots traffic or

taking further investigation. Using this mechanism, it allows a high-level traffic

priority for legitimate users accessing the website. It can help to get further

insights into the structure of data and interactively explore each plot.

Figure 3.8. Vatrix interface

Given vast amounts of network traffic, an analyst could interactively select part of

the data to determine its destiny or visualise it in detail. The analyst could grasp

more comprehensive details without being constrained by large data.

The output of the current selection, as presented in Figure 3.9, can be exported in a

CSV or text format containing the source of addresses and observation data. This

brings a simple action without changing the representation of the overall

visualisation.

	

	 	 28	

Figure 3.9. Bot selection

From the current selection, there are other features that can be made, such as:

è Export to CSV
è Export to Text
è Block Traffic
è Redirect Traffic
è Run Custom Script
è Assign Class
è Expand Visualisation

Each of its pixels represents a single client connection. The colour of a pixel

represents the maximum value of activities; the dark colour of the pixel represents

a high peak of activities. The pixels are arranged so that connections are close to

each other; adjacent traffics are mapped to adjacent pixels. This gives fair

visualisation allocation when flash crowds might occur in a network. The flash

crowds activities shown in Figure 3.10 below illustrate all possible drawn pixels

when incoming network traffic is in high load. The diagram shows overcrowded

activities, which are intended to improve by using Quadtree and Voronoi

diagrams.

Figure 3.10. Flash crowds activities

	

	 	 29	

 The next section describes the details on demand feature. It gives an analyst

information details and control over an incoming network connection. The graph

is produced by using a heatmap diagram.

3.6.1 Details on Demand

Another feature that is supported by the user interface is details on demand

capability, which is the key for the visual analytics system. Details on demand can

show which activities are intense. The prototype interface follows a visual

analytics approach by using a two-dimensional representation of a graphical

heatmap. It aims to provide a better understanding to show the intensity requests

of the current situation.

As illustrated in Figure 3.11, pixels cycle their colours over their lifetime, and the

animation speed level depends on their activities. The pixel colour is used for

showing the intensity of an activity; a darker colour represents an active request.

Therefore, it is possible to see exactly how request loads are progressing according

to their pixel colours. Suppose an analyst wants to explore the data payload. He

could then select the interesting part of an unusual network traffic pattern;

represent it in pixels; explore the header with its payload for further checking.

This heatmap view acts as a complement for the VATRIX main dashboard view

and it represents an overall incoming connection coming to the network. It aims to

reduce the drawing complexity as illustrated in the previous Figure 3.10.

Figure 3.11. Heatmap view rendered with d3.js

The procedure starts by initialising the heatmap graph using the third party library,

D3.js [58]. It actively monitors incoming requests. Each connection will be

	

	 	 30	

rendered on a different pixel location according to its request load, which can be

differentiated by its colour. The following procedure is presented to generate the

heatmap view:

Figure 3.12. Heatmap View

The heatmap view is firstly initialised before any pixels are appended to the

diagram. For each incoming connection, it will be represented and drawn to the

heatmap element. Each new incoming connection will cycle through the graph

where the intensity of the request rate will determine the colour of its pixel. An

analyst can view further details of the connection regarding the probability score,

which will be presented in the next section. This enables an analyst to gain insight

regarding the current connection that traverse through the network.

3.6.2 Weight Score

The weight score is a collection of calculated values for each visitor data, where

the value ranges between 0 and 1. The score is generated based upon visitor

observation, which will be discussed in Section 5.3. An entry of each incoming

connection corresponding to a certain task can be interpreted as an activity score to

be classified and rendered by the system. The graph contains connection

information details, which are rendered by the previous Heatmap view. The graph,

which is produced by using d3.js, aims to complement the Heatmap view by

adding weight scores for all pixels. For instance, a high score on user interaction –

between 0 and 1 - represents a higher likelihood that the traffic belongs to human.

procedure GenerateHeatmapView
 1: H ← API_drawHeatmap()
 2: while(conn[] = grabIncomingRequest())
 3: for each conn of I do
 4: for x=1 to MAX_ROW
 5: for y=1 MAX_COL
 6: if conn.requestRate > HIGH then
 7: H.drawPixel(x, y, COLOR.DARK)
 8: else
 9: H.drawPixel(x, y, COLOR.LIGHT)
10: endif
11: end for
12: end for
13: end for

 14: end while	

	

	 	 31	

These techniques provide a measure of certainty and can assist an analyst to

emphasise that the current traffic belongs to a particular class. It determines the

intensity level of activities, for example the value of request load. On a mouse

hover event, the behaviour activities are presented with a activity weight score

graph, as illustrated in Figure 3.13. This type of representation can be extended

with a custom ordering of rows and columns, such as colour-based grouping. It

allows expanding and collapsing of pixels to allow deeper exploration.

Figure 3.13. Weight score selection

A further breakdown on visitor behaviour can be generated, as illustrated in Figure

3.14 below. By using external heatmap Javascript plugin [18], this provides the

current view of a visitor mouse interaction on a certain page.

Figure 3.14. Website heatmap using plugin [59]

3.6.3 Extended View

Additionally, a VATRIX calendar view provides summarized traffic activities for

each month, as illustrated in Figure 3.15. A lighter green colour indicates a high

human presence. As opposite, a darker colour indicates a higher bot presence. This

mixed colouring approach provides a better understanding of trend discovery for

large amounts of data.

	

	 	 32	

Figure 3.15. Calendar view

To explore the calendar view for further details, the system will render a histogram

view to provide a graphical representation of the data distribution for a single or

multiple date selection. Total requests are accumulated for each category. It

calculates the total hits made by each category - human, bot and unclassified, as

illustrated in Figure 3.16. For example, an analyst could select a specific date,

month or year to summarize the overall connections for each category, which will

be represented in a histogram view as shown below.

Figure 3.16. Histogram view

The histogram view is dynamically created according to the selected date range.

This is to enable an analyst to view the accumulated requests made for each

category. The following procedure is presented to generate the extended view:	

Figure 3.17. Generating View

procedure GenerateExtendedView
 1: xmap ← XMapClassify
 2: for each request_sequence of I do
 3: sum[] ← frequency(xmap)
 4: human ← sum[0]
 5: bot ← sum[1]
 6: unclassified ← sum[2]
 7: end for
 8: c = API_drawCalender()
 9: date = API_getDateRange(c)

 10: API_drawHistogram(date)	

	

	 	 33	

3.7 VATRIX Response

The data collection task of the system is generated by using an external Apache

module, mod_status module, which provides a way to monitor the internal

performance of an Apache web server. However, the original development of this

module does not support process states visualisation. It only renders the

connection information into a tabular field. Often, important details are difficult to

grasp by manually traversing the tabular field alone. VATRIX enhances this by

providing a response and to monitor these process states in order to render them

into a diagram. The following sub-sections will discuss about the Apache web

server with the process states and how the visualisation will be produced based on

a predefined matrix model.

3.7.1 Apache Web Server

Apache is an open source and cross-platform web server software system. It is an

industry leading web server that is widely used in production servers. As a fast and

secure web server software system, Apache supports multi-threading that can

handle millions requests at once [60]. It contains several compiled modules that

can be extended to any functionality. According to a survey conducted by

Netcraft, “nearly two thirds of all Internet domains use Apache” [61].

As highlighted by Li and Lu on performance optimization [62], the performance of

the web server can be tuned by adjusting some important parameters dynamically.

Their study examined system performance usage as the main measurement metrics

and a combination of control theory and system model. They proposed a multiple

input and output approach to model the web server. The result has indicated that

Apache can be well fit for performance optimization.

One of the primary advantages of Apache is that it enables requests logging for

information visualisation. All instances can be used to collect HTTP traffic at any

given period. As default, an Apache web server records all incoming HTTP

requests to a log file [63]. The format of the log file is highly configurable. During

client requests, Apache also records error and diagnostic information. Apache has

very comprehensive and flexible logging capabilities. It offers a wide range of

options for controlling the log format. It is also capable of writing log files into a

pipe of another process.

	

	 	 34	

The ability to visualise HTTP traffic has always been both important and difficult.

The main purpose is to detect traffic spikes, resource usage and attacks. In this

case, a visualisation system must be able to discover and represent incoming

requests in the network. Besides, it must be able to get more detailed information

on each flow. The research conducted by Xiaojun in a remote monitoring system,

presented a web-based centralised monitoring solution [64]. The study

demonstrated a tool to efficiently link utilisation in flow-based networks by

capturing and analysing control messages between servers. The result indicated

that the proposed monitoring platform is suitable for heterogeneous network

environment [64]. 	

3.7.2 Process Mapping

Normally, an application server, such as Apache, is executed as a background

process. It runs continuously for a long period of time. A process can increase or

decrease its CPU usage, memory usage, and thread process since the startup of the

application. Within this condition, a process thread may change its state, such as

accepting connection, reading request, busy, idle, sending reply, waiting or closing

connection. Figure 3.18 and 3.19 illustrate these states.

Figure 3.18. Apache server-status

These states provide an insight regarding the health of a process, a low traffic

spikes but with a full of connection reading would indicate that resource

exhaustion is happening, which may lead to a declined service.

	

	 	 35	

Figure 3.19. Apache scoreboard key

For a better understanding, it is useful to conceptualize these process states into a

MxN matrix. A row represents a client connection, while a column represents a

group of the web server instances. Each element in the matrix corresponds to a

sum value of process identifier states, which shows the intensity of the requests.

For example, the total of each state request for waiting connections (W) will be

calculated and mapped to the MxN matrix element, which is dependent on the

order of the incoming request. This concept enables better understanding of

relationships between a process thread and its state, making each element to be

listed in an efficient manner and represented in a very compact way. Periodically

updating the value in real time for a given element in the matrix provides a

possibility to estimate risk impact. Before any rendering is made, the value will be

held in the matrix model as illustrated in Figure 3.20. Furthermore, the output of

the rendering process will be shown as illustrated in Figure 3.21, which describes

the status of the process group. The specific elements of a matrix can be denoted

by a variable, in which a higher value will indicate a vast amount of requests.

Figure 3.20. MxN matrix

	

	 	 36	

Many different types of process state can be rendered as illustrated in Figure 3.21.

Filtering and grouping states is possible, and each plot can be adjusted effectively

to any circumstance. The visibility of each group can be determined according to

preference. This technique enhances awareness especially when many Apache

instances are running across multiple clusters. Flooding requests could be spotted

directly. An action can be taken quickly, and by selecting a given group state, an

analyst can determine the final destiny of these requests.

Figure 3.21. Process state visualisation using nvd3.js [65]

	
3.8 Summary

The evolution of scrapper bots, social bots and distributed denial of service bots

has become an important issue. In order to secure networks from bot attacks and to

discover incoming malicious bot activities, visual analytics may help to inform an

analyst to gain insight from large amounts of data. Visual analytics provides better

understanding, reasoning and decision making from very large and complex

datasets.

In order to enable an analyst to derive insights from large amounts of data, several

facilities are required. The first is a data structure to represent a large list of IP

addresses. We use a Quadtree data structure that enables structuring of the data,

which focuses on the data mapping that can be transformed and represented

visually. In addition, a priority queuing technique is necessary in order to manage

and process incoming traffic sequences. The second is a diagram that divides

space into a number of regions. For this, we employ a Voronoi diagram that

enables interactive visualisation to be presented into multiple regions and managed

	

	 	 37	

in a more compact way. The presentation included in a single dashboard with

multiple views enables automatic classification for legitimate and bot traffic.

Finally, in the absence of intense traffic spikes, locating the root cause of attacks is

the key in order to respond efficiently. VATRIX enhances this by providing a

response and to monitor web server process states in order to render them into a

diagram. Current visual analytics systems lack the ability to respond interactively

in the presence of attacks. Key features that need to be visualised, such as dynamic

process states, are missing. Therefore, VATRIX, in contrast, provides clarity to

allow ambiguous network traffic and dynamic process states to be clearly

understood. It aims to discover unexpected orchestrated bot attacks by providing

details on demand with the multiple views feature.

	

	 	 38	

Chapter 4 X-Map

New malicious bot approaches have led to an increasing rate of DDoS attacks [1,

2]. This increase has attracted many researches to address the problem. However,

one major difficulty in application layer attacks is to identify the presence of bots

against legitimate flash crowds traffic. X-Map approaches this by making

predictions based on visitor past observations, which uses the J48 Decision Tree

C4.5 algorithm as the main classification algorithm. The result of X-Map is used

for the visualisation purpose, as discussed in the previous chapter.

X-Map architecture allows client(s) to lookup single or multiple IP addresses and

receives result asynchronously. X-Map attempts to overcome scalability and

performance issues in large-scale network by implementing system caching with

large hash table. X-Map can be implemented into shared machine or dedicated

machine that are only built to be X-Map server.

Figure 4.1 X-Map Architecture

4.1 Classification

Classification is the task of identifying input objects based on a training dataset

containing past observations. The training dataset contains a set of supervised

trained classes, each of which consists a pair of input objects with their desired

class values. It holds a set of data records describing each attribute and class. The

goal is to learn a classification model from the data records to predict future

instances. The most commonly used classification algorithm is decision tree

learning [74]. As one of the well-known supervised machine learning algorithms,

the purpose is to make a classification based on a training dataset. The final result

might be in one of the given categories or classes. There are two separate results

associated with classification – binary classification and multiclass classification

	

	 	 39	

[75]. For binary classification only two classes are recognised for the output,

whereas for multiclass classification the final object result will fall into one of

several classes [75].

Decision tree learning has several advantages, such as easy interpretation, fast

fitting speed and low memory usage [76]. However, when using a decision tree

learning algorithm, it requires a compact and accurate training dataset to be able to

increate the accuracy of the classification result. One well-known issue with a

decision learning tree is when significant difference occurs between the training

dataset and target dataset, it results in a result inaccuracy and might prevent the

algorithm to work properly [75]. Therefore, to optimise the supervised learning

process, its steps are divided into two different phases, the training and testing

phases. The training phase will learn a model using a training dataset, and the

testing phase will test the model using unknown test data to assess the model

accuracy.

One example application of a classification task, in the security domain, is to

predict high-risk web traffic and discriminate them from low-risk web traffic. A

decision is needed on whether to reject or allow the traffic to pass into the

network. In the next following sections, X-Map will be presented along with the

proposed algorithms, which use multiclass classification to make accurate

predictions based on visitor past observations. Finally, the result will be discussed

in the evaluation chapter.

4.2 Decision Tree Learning

X-Map uses decision tree learning as the main machine learning algorithm for

classification. It aims to automatically learn to make accurate predictions based on

visitor past observations. X-Map attempts to predict a response or class Y from

observation inputs X1, X2, X3, …, Xn by efficiently growing a binary tree. By

using this technique, it emphasises on the method that can handle large datasets

while reducing the computation complexity.

Table 4.1 below represents a sample predictive model used by X-Map, which

maps observations based upon visitor behaviour in order to classify into the final

target value. For instance, a high probability score on Heatmap – between 0 and 1

- represents a higher likelihood that the traffic belongs to human. The data

	

	 	 40	

collection listed in the table is the features that will be extracted in the patterns of

visitor behaviour. By using a machine-learning technique and decision tree

classification model of visitor behaviour, it is possible to predict and classify a

visitor from the collected data.

Observation Input Probability Score
Heatmap 0.4
Banner reaction 0.3
Browser fingerprinting 0.2
Simultaneous request 0.1
Proof of work result 0.3
HTTP request behaviour 0.2
Authenticated session 0.6
Form submission frequency 0.4
Screen resolution 0.3
Header 0.6

Table 4.1. Predictive Detection model

This predictive model gives a valuable insight that can be generated based upon

expert knowledge. It is expected to have a high accuracy rate describing current or

previous visitor situations in order to determine the preference of classifier

outcomes. The model was able to identify ten participants and six simulated bot

attacks with an accuracy of 86.67%, which will be discussed in Section 6.6.3. The

procedure starts by parsing the IP address of every incoming request. It will then

observe visitor behaviour data based on the active session. A threshold calculation

is executed to check whether the visitor is under a normal threshold value, the

process to obtain all threshold values will be described in Section 6.2. The

following procedure is presented to observe a visitor:

	

	 	 41	

Figure 4.2. Observe Visitor

To illustrate the algorithm, the following scenario will attempt to depict a visitor

observation based upon visitor behaviour in order to classify into the final target

value.

Figure 4.3. Prediction model

Given a sample data as depicted in Figure 4.3 above, the process of visitor

observation is based on its IP address over several time steps until certain

conditions are satisfied. It is an iterative process. First the visitor has NULL values

for all observation probability scores. After the second step, only few observation

data can be gathered, which is still not sufficient enough to justify – if the process

stops, the classification, which uses the J48 Decision Tree C4.5 algorithm, will

render the visitor as unclassified.

According to the observation, the visitor requested a page under the normal

threshold limit and capable of generating sufficient user-interface interaction with

procedure ObserveVisitor
 1: ip ← parseIPAddress()
 2: for(i = 0; i < totalObservedData; i++)
 3: data[i] = VisitorData[ip, i];
 4: if(data[i] == null)
 5: continue
 6: else if
 7: for each data of d do
 8: if (data[d] > (threshold =
capturesThreshold))
 9: return bot
10: else
11: return normal
12: end if
13: end for
14: end if
15: end for
16: if (!data[0] && !data[1] && !data[2] &&
!data[4])
17: return unclassified
18: end if

	

	

	 	 42	

a proper heatmap and browser fingerprint value. In addition the visitor signifies a

legitimate authenticated session. Therefore, on the third step, X-Map is able to

identify the visitor as a valid human based on a training dataset presented in Figure

4.4 below.

	
Figure 4.4. A possible training dataset

A possible classification tree is given below in Figure 4.5. It represents a top-down

induction of the decision tree. First, it assigns the best decision attribute for the

next node. It then assigns a probability score as a decision attribute for the node.

For each highest score, create a new descendant of the node. It will sort training

examples to leaf nodes. Finally, if training examples are perfectly classified, then

stop, and otherwise iterate over new leaf nodes.

	
Figure 4.5. A possible classifier

Here are the assumptions used: each internal node tests one attribute of the

observation input; each branch from a node extracts one value for observation

input; finally, each leaf node makes a prediction where the accuracy rate will

depend on the tree size and the size of the training dataset.

	

	 	 43	

Since not all of the Internet bots will perform malicious tasks, therefore, in

addition to the previous diagram, if the final classification states that it is a bot

(0x7001), then the next decision will be to determine the malicious level. Figure

4.6 illustrates the concept.

Figure 4.6. Classifying bot

This classification process will also be iterated if the final classification result is

half human and half bot (0x7002). The iteration will rely on several metrics such

as the browser string header, source of address, proxy address and request load

intensity level. Therefore the decision can be made precisely, assuming that those

values remain intact.

4.3 Proposed Algorithm X-Map

The proposed algorithm attempts to discover relationship between the observation

input attributes and the target attributes. This algorithm is used for predicting the

value of a target attribute, e.g. to distinguish machines behind a single IP address

and to observe the behaviour of visitors based on their heatmap signatures. The

algorithm uses a general tree data structure and a populated training dataset for

classification. The unique idea of the algorithm is to combine key-value hashing

caching into the decision tree process. It enables faster processing without

requiring unnecessary redundant lookup. In particular, it can be adjust into map

reduce job to support faster processing for massive dataset.

As the classification tree is a supervised learning structure, the algorithm requires

different attributes for each field of the training dataset. These attributes are

denoted by the following V sets.

	

	 	 44	

Figure 4.7. Attribute set

An observation step consists of an n-dimensional vector (V1, V2…, Vn), where x

represents features being observed. The training data is a set of P = (P1, P2…, Pn)

[79]; which denotes an observation input as described in Section 5.3 (e.g., heatmap

and fingerprint). The observation input has a probability value from the uniform

distribution on the interval (0, 1]. For example, if P1 equals to HTTP Request

Behaviour, then a high value would indicate a strong abnormal request.

The following algorithm is proposed for growing the smallest possible tree in

order to classify a visitor.

procedure Initialize (I, V)
 1: T = API_g_tree_new_full (I, V)
 2: return (T)

procedure LearnFromDataset (I, V)
 1: n
 2: training-dataset [1 … n]
 3: split given training-dataset
 4: if best splitting metric <= threshold then
 5: for each training-subset of V do
 6: API_g_tree_grow (V)
 7: find best value
 8: R = API_g_tree_traverse (I)
 9: end for
10: endif
11: return R

procedure ClassifyTraffic (I, V)
 1: P LearnFromDataset (I, V)
 2: if result found then
 3: MapToHashtable (I, P)
 4: endif
 5: return

procedure ObserveBehavior (I, V)
 1: for each observation-input do
 2: (+thread) store visitor data behavior to
BigData
 3: end for

 4: return	

	

	 	 45	

Figure 4.8. Traffic classification

The tree complexity is measured by these following parameters: the attributes,

observation input and training dataset. It will determine the total number of nodes

and leaves, and tree depth. Therefore, it must be explicitly controlled by stopping

criteria, and otherwise, the tree growing phase will enter an infinite loop.

The tree data structure and operations, such as creation, traversal, and growing, are

handled by third-party libraries, which provide the external functions. The main

training dataset is divided into several subsets. Each subset will be checked against

a visitor’s behaviour, according to the data collection, to determine the best value.

It will start to grow the tree structure once it has been found. The process iterates

until all observations are done. Once the result has been obtained, it will be stored

into the hashtable. Figure 4.9 below illustrates the flowchart diagram.

	
Figure 4.9. System Flowchart

procedure MapToHashtable (I, P)
 1: connect to memcached server
 2: parse traffic classifier table
 3: store key-value pair (I, P)
 4: disconnect
 5: return

procedure Destroy (T)
 1: if T != NULL then
 2: API_g_tree_destroy(T)
 3: endif

 4: return	

	

	 	 46	

4.4 Proposed Algorithm for Machine Identification

Methods that use CAPTCHA such as [37] will not be able to provide puzzles to

their visitors when they are using a Command Line Interface (CLI) browser. X-

Map overcomes this by using machine identification that uses a browser

fingerprinting method. The approach is based on research study that at least one in

286,777 browsers shares the same fingerprint [20]. The demonstration estimates

that under current active sessions only one in 3,987,090 browsers will have the

same fingerprint [23]. This method is effective for identifying CLI, mobile and TV

browsers based on their screen resolutions via JavaScript AJAX posts. It provides

a method to distinguish machines behind a single IP address.

The following algorithm is proposed for identifying machines. It stores data in a

key-value pair of an IP address (I) and a browser fingerprint signature (B).

Figure 4.10. Machine identification

Initially the hashtable is created, it is produced by using third-party libraries. Each

visitor will be tracked by their unique browser fingerprint, which will be described

in Section 5.3.9 and Appendix A –Browser Fingerprint. The visitor IP address will

procedure InitHashTable ()
 1: H = g_hash_table_new ()
 2: for each table of H do
 3: H g_init_hash()
 4: H g_str_hash()
 5: end for
 6: return (H)

procedure ParseIPDataset (I, B)
 1: parse-dataset = |IPSet|
 2: B fingerprint_browser(I)
 3: for each parse-dataset of IP Set do
 4: g_map_element (H, IP Set)
 5: H g_hash_table_insert (I)
 6: H g_hash_table_insert (B)
 7: end for
 8: return

procedure LookupFP (I)
 1: if ip-dataset != NULL then
 2: H g_set_active_hash
 3: R g_hashtable_lookup(I)
 4: return R

 5: endif	

	

	 	 47	

be parsed and stored in the hashtable. Finally, the system is able to identify all

visitors fingerprint based on their IP address.

Figure 4.11 below illustrates the flowchart diagram. The key-value pair of IP

addresses is mapped into one hashtable, consisting of an IP address as the key and

a fingerprint signature as the value, which is created when the system runs for the

first time.	

	
Figure 4.11 Machine identification flowchart

4.5 Proposed Algorithm for Heatmap Tracker

Methods that use CAPTCHA such as the one in [37] requires active visitor

response and waste times. On the other hand, a website heatmap is very effective

at uncovering usability issues throughout the web to improve page design. This

solution combines security protection with the opportunity of usability study. It

provides a transparent method to detect the presence of human interaction.

Heatmap representation uses three-dimensional data. The two dimensions

represent x and y Cartesian coordinates, and the third dimension represents the

intensity of a data point, which is usually presented as a minimum or maximal

integer value. Thus, the heatmap model can be presented in the following matrix.

	

	 	 48	

Figure 4.12. Matrix model of heatmap

In the above example, the values of 2, 2, 15, 14, 12, 21, 16 and 24 represent the

sums of intensity levels for the mouse click event activities in the page region.

Every mouse activity is recorded for each page. The zero value indicates that there

is no activity within the region of the page. Each page is divided into four regions,

which will be used to record and observe visitor behaviour based on a matrix

model.

The following algorithm is proposed for identifying human presence based on

their heatmap dataset.

procedure ObserveHeatMap (I)
 1: parse-dataset = |IPSet|
 2: D map-data
 3: D matrix-conversion(D)
 4: if (D.value > 50)
 5: inform enough activities
 6: threshold = getThreshold
 7: else
 8: insufficient activities
 9: return
10: endif
11: for(i = 0; i < totalMatrixRow; i++)
12: for(j = 0; j < totalMatrixCol; j++)
13: if D.sum threshold then
14: inform insufficiency of dataset
15: return
16: endif
17: end for
18: end for
19: for each matrix-conversion of IP do
20: parse data map
21: CSV conversion
22: give each element a rating map
23: convert to (0,1] uniform distribution
interval
24: end for
25: J48.train(D)
26: P model.predictAll(D)
27: return P

	

	

	 	 49	

Figure 4.13. Heatmap tracker

In order to check the visitor activities, all regions inside the page are mapped into

a matrix model. The region is a <div> tag, which defines a division in an HTML

document with a unique identifier. The values are extracted by mapping all of

these elements together. The conversion process is used to calculate mouse

activities into a matrix model. If there are sufficient activities, it is assumed that

the visitor has a legitimate browsing behaviour. Figure 4.14 below illustrates the

flowchart diagram.

	
Figure 4.14 Heatmap tracker flowchart

4.6 Proposed Technique for Banner Reaction

X-Map exploits this feature to combine security protection with the opportunity of

company advertisements. It provides advertising support, which can lead revenue

behind them.

The proposed technique, which was developed during this research, uses active

and passive banner reaction observations. As opposed to Kill-Bots [37], under

periods of heavy load, which is detected by VATRIX, X-Map redirects visitors to

a different secure server and presents them with a page full of advertisements. X-

Map then analyses how the visitors close banners, and observes their interaction

heatmaps. A successful reaction will be granted with a valid website access. This

	

	 	 50	

condition is only applied to visitors who have not been classified by X-Map in

order to grant them services. Therefore, redirecting all visitors is not necessary.

Under passive observation, at a random time interval, X-Map presents visitors

with a small portion of advertisements. Successful reaction will be regarded as a

valid visitor. This technique is used along with other observation methods in order

to accurately classify human.

4.7 Summary

X-Map opens new opportunities for small and medium enterprises to combat

application layer HTTP DDoS attacks and spam bots. X-Map combines security

protection with the opportunity of usability study. X-Map also combines security

protection with the opportunity of company advertisements, which can lead

beneficial revenues behind them. Combined with other methods, X-Map provides

a transparent method to detect the presence of human interaction. To summarize,

in this chapter the problems with the existing solutions have been discussed. The

method of X-Map has been introduced. The proposed algorithms of X-Map have

been covered thoroughly. Finally, the next chapter will cover the experiment

settings of our work presented in this and previous chapters.

	

	 	 51	

Chapter 5 Experiment Settings

5.1 Introduction

The use of statistic-based techniques to mitigate bot attacks remains a debatable

subject. Therefore, the increasing rate of malicious bot attacks has motivated this

research to provide fair allocation across all the visitors in the presence of attacks.

The novel contributions, as outlined in Chapter 3 and Chapter 4, demonstrated

how legitimate and bots traffic can be discriminated. Chapter 3 focused on the

visual analytics system, which provides a monitoring mechanism in the presence

of attacks. The system provides a dashboard view to represent legitimate and bot

traffic by adopting a Quadtree data structure and Voronoi diagrams. Chapter 4

described the classification technique in order to support the visualisation process.

The classification technique, which uses the J48 Decision Tree C4.5 algorithm,

requires a training dataset – with current total size of 2010 instances - so that the

features can be extracted. In this instance, a sample of raw data contains a heatmap

value, banner respond, intensity requests and request behaviour. This process

resulted in the creation of the visualisation diagram.

In realising the aims and objective of this research, as presented in Chapter 1, this

chapter discusses the experiment settings, in which our research was conducted by

utilising experiment and simulation approaches. This research study was taken in a

fully controlled and structured environment. This is to enable the causal

relationships of legitimate participants (n=10) and simulated bot attacks to be

identified and analysed. Due to the limitation of time and no compensation

available to participants, only 10 participants with the age range from 28 to 35

were employed to represent legitimate visitors.

The remaining sections of this chapter describe the experiment method with the

test environment. It also provides the description about the participants. In

addition, the tools used for simulating the attacks are presented. Finally, the data to

be collected are also explained.

5.2 Experiment Method

The experiment was conducted by capturing website traffic, identifying browser

fingerprints, simulating bot attacks and analysing mouse dynamics such as

	

	 	 52	

movements and events of the participants. Data were captured as the participants

performed a list of tasks, such as responding to the banner. The data collection is

transparent to the participants and only requires JavaScript to be activated on the

client side. The 10 participants are familiar with the Internet. To analyse the data,

Weka 3.6.10 was used to perform classification based on a training dataset.

The experiment process can be outlined as follows:

1. Developing the initial website capable of tracking visitor data.

2. Inviting participants to visit the website.

3. Simulating bot attacks.

4. Collecting and evaluating the data.

5. Building a machine learning model.

6. Testing the accuracy of the machine learning model.

7. Performance evaluation.

8. Formulating visual analytics design.

All the legitimate participant behaviour data were captured. The characteristics of

the simulated bot attacks were analysed. These data were then collected and

evaluated using J48 classification for a decision tree. The initial training dataset

was generated by comparing the activity patterns of the participant legitimate

behaviour against simulated bot attacks. Finally, the proposed visual analytics

design was rendered.

5.2.1 Test Environment

The attack simulation and experiment were performed under a Virtual Private

Server (VPS) environment, running the Linux 64 Bit operating system with its

own static Internet Protocol (IP) address. The chosen Linux distribution was

CentOS 6.5 equipped with 2 GB of Random Access Memory (RAM) and 50 GB

of hard-disk space. A new instance of Apache 2.2.15 was deployed along with

PHP 5.3. The connection is capable of handling an unlimited bandwidth up to 100

Mbit traffic without forced throttling.

To demonstrate, a new dummy website imitating an online shop was implemented

by using an open-source e-commerce solution, PrestaShop 1.6.0 [48], and Leo

Sport Shoes Theme 1.0, a free responsive theme [49].

	

	 	 53	

5.2.2 Participants

The experiment was launched with the 10 participants to observe their browsing

behaviour, as listed in Table 5.1. Participants were invited to join by posting a

message on Online Social Network (OSN) asking for their contribution to visit the

dummy website. All of the participants are familiar with the Internet. Each

participant spent approximately 10 – 15 minutes with the experiment. The data

were collected transparently from four different pages over multiple sessions. Each

session generated data files with each ranging in size from 700 KB to 900 KB. For

all participants a unique browser fingerprint was generated as the page loads. This

is to ensure their unique identity when combined with their IP addresses.

Characteristics Amount
Sample size 10

Male 7
Female 3

Age (28 – 35) 10
Education (BSc – MSc) 10

Safari 7.0.2 4
Firefox 28 3
Chrome 33 3

Screen resolution 1280x800 10
IT background 6

Non-IT background 4

Table 5.1. Participant characteristics

5.2.3 Attack Simulation

To study the behaviour of malicious bot attacks, this research project used a list of

low-bandwidth attacking tools to represent the key characteristics of such attacks.

These tools pose serious threats especially if some of them are integrated into a

single command running on large botnets [13]. This attack simulation model is

meant to show the eventual real effects of bot attacks by using alternative

conditions. Table 5.2 summarizes the types of attacks used in this simulation.

Attack Tool Detail
slowloris Partial HTTP requests attack

slowhttptest Slow HTTP attack
r-u-d-y HTTP POST/GET flood

THC-SSL-DOS SSL renegotiation flood

	

	 	 54	

ApacheKiller Multiple byte ranges attack
PhantomJS Interface workload generator

Table 5.2. Attack simulation tools

Slowloris exploits HTTP vulnerabilities by sending partial HTTP requests. It has

the ability to perform an attack with minimal bandwidth. Slowloris aims to abuse

the server by keeping as many active connections as possible [50].

Slowhttptest provides low bandwidth application layer DoS attacks. It can perform

a slow attack that exploits the flaw of the TCP persist timer. It aims to send

legitimate HTTP requests and abuse the server by reading the response slowly

[51].

R-U-Dead-Yet is a HTTP DoS attack. It exploits the long form field submissions

vulnerability. It can automatically detect forms within given URL [52].

THC-SSL-DOS exploits the vulnerability of SSL renegotiation. It aims to trigger

thousands of renegotiations to overwhelm servers with multiple requests. This tool

can be launched via single TCP connection [53].

ApacheKiller exploits HTTP range header vulnerability by sending multiple

overlapping byte ranges. It works by stacking an HTTP header to the server with

multiple ranges request [54].

PhantomJS is a tool that can run a script to mimic human interaction on a given

URL. It is suitable for generating user interaction workloads to test and monitor

specific website [55].

5.3 Data Collection

Data collection was written using C, PHP and JQuery. It transparently collects

visitor data, as listed in Table 5.3. It aims to extract certain signature

characteristics in the patterns of visitor behaviour. By using a machine-learning

technique and decision tree classification model of visitor behaviour, it is possible

to predict and classify a visitor from the collected data, based on their weight

value. There are several steps to calculate the weights: 1) calculate initial score for

each observation, 2) sort the weight data, 3) Assign a weight value to each

observation within each corresponding group of visitor behaviour. Appendix A

provides a detailed account of the data collection script.

	

	 	 55	

Observation Input Implementation
IP and TCP header libpcap, C
HTTP header and request behaviour C, PHP
Proof of work PHP, JQuery
Form submission frequency PHP
Authenticated session PHP
Website heatmap PHP, JQuery
Banner reaction PHP, JQuery
Screen resolution JQuery
Browser fingerprint JQuery

Table 5.3. Data collection

5.3.1 IP and TCP Header

Data such as IP addresses and port numbers were extracted from IP and TCP

headers. These data were collected to provide information of a visitor’s originating

address. The implementation was written using C and libpcap. These data will not

be mapped since they are only used for visualisation and request checking

purposes. Therefore, the constant weight value will remain flat at 0.5. This value is

to ensure that the decision making process will not be made based on this data.

Therefore, this record will be ignored by the system.

5.3.2 HTTP Header and Request Behaviour

Data such as the HTTP method and content length used were extracted from

HTTP headers in order to provide details on demand visualisation. A counter was

implemented to calculate the number of simultaneous connections made. These

data were collected as a supplementary mechanism to discriminate between

legitimate visitors against bot attacks. The implementation was written using C

and PHP. If the value reaches a certain threshold limit, the weight value will be

greater than 0.6, a customised constant where a high value would indicate a

stronger abnormal request. The assumption is based on the fact that bots usually

generate abnormal HTTP requests.

5.3.3 Proof-of-work

Each visitor is provided with a task to compute a MD5 hash of a given randomised

string. The results of proof-of-work data were collected as a supplementary

mechanism to ensure unique identification of a visitor. The implementation was

	

	 	 56	

written using PHP and JQuery. If the timing indicates a low response and a wrong

answer was given, the weight value will be less than 0.2 where a low value would

indicate a failed response.

5.3.4 Form Submission Frequency

A counter was implemented to calculate HTTP POST requests. These data were

collected as a supplementary mechanism to discriminate between legitimate

visitors against bot attacks. The implementation was written using PHP. If the

value reaches a certain threshold limit, the weight value will be greater than 0.6,

where a high value indicates a stronger submission frequency.

3.3.5 Authenticated Session

Each visitor session was checked from the authenticated session variable. These

data were collected as a supplementary mechanism to discriminate between

legitimate visitors against bot attacks. The implementation was written using PHP.

If a visitor is successfully authenticated, the weight value will be greater than 0.6.

A high value indicates that the visitor is legitimate.

5.3.6 Website Heatmap

A website heatmap is a graphical image that represents visitor interactions with

each section of a certain page. These data were collected as a supplementary

mechanism to discriminate between legitimate visitors against bot attacks. The

implementation was written using PHP and JQuery. If a visitor is generating a

sufficient website heatmap data, the weight value will be greater than 0.6. High

value would indicate that the visitor is producing a sufficient quantity of

interaction.

5.3.7 Banner Reaction

The banner reaction data were captured on the client side, and the analysis was

conducted on the server side. These data were collected as a supplementary

mechanism to discriminate between legitimate visitors against bot attacks. The

implementation was written using PHP and JQuery. If a visitor responds to the

banner advertisement correctly, the weight value will be greater than 0.7. High

value would indicate that the visitor has a legitimate respond.

	

	 	 57	

5.3.8 Screen Resolution

Screen resolution or display resolution is “the number of distinct pixels in each

dimension that can be displayed” [77]. This data along with browser window

resolution was collected to ensure the integrity of a website heatmap. The

implementation was written using JQuery. If the value indicates normal screen

resolution, the weight value will be greater than 0.6. High value would indicate

legitimate screen resolution setting.

5.3.9 Browser Fingerprint

Browser fingerprinting is a technique to identify a web browser. These data were

collected as a supplementary mechanism to ensure unique identification of a

visitor. The implementation was written using the JQuery browser fingerprint

plugin. If the value is not NULL, the weight value will be greater than 0.6. This

value would indicate that the visitor is not producing a sufficient browser

fingerprint.

5.4 Data Pre-processing

Data pre-processing was implemented using PHP 5. It reads data generated by data

collection and performs Attribute-Relation File Format (ARFF) conversion. ARFF

“is an ASCII text file that describes a list of instances sharing a set of attributes”

[56]. “ARFF files have two distinct sections. The first section is the Header

information, which is followed by the Data information” [56]. Each of the

observation inputs was segmented and mapped into a probability value, as

previously described. The variable represents a weight value from the uniform

distribution on the interval of 0 and 1.

An example of the ARFF Header looks like the following:

@RELATION name

@ATTRIBUTE req NUMERIC
@ATTRIBUTE pow NUMERIC
@ATTRIBUTE freq NUMERIC
@ATTRIBUTE auth NUMERIC
@ATTRIBUTE class {A,B}

An example of the ARFF Data records look like the following:

0.4,0.6,0.4,0.4,A
0.6,0.4,0.2,0.2,B
0.2,0.3,0.3,0.2,B
0.5,0.6,0.1,0.4,A

	

	 	 58	

0.8,0.5,0.2,0.1,B
0.7,0.1,0.6,0.5,B
0.9,0.7,0.3,0.2,B
0.3,0.2,0.2,0.3,B
0.1,0.9,0.1,0.4,B

The subsequent columns for each row represents data collection as described in

Section 5.3, and finally the last column would represent the class, which the traffic

belongs to. The subsequent rows are the full training dataset records for the

machine learning model.

5.5 Data Analysis

Data analysis was performed in Weka 3.6.10 by utilising decision tree

classification - decision tree C4.5 algorithm using J48 classifier. The result will be

discussed in Chapter 6.

The performance of the classification algorithm, Decision Tree J48, was evaluated

using:

• Training set, “The classifier is evaluated on how well it predicts the class

of the instances it was trained on” [57].

• Cross-validation, “The classifier is evaluated by cross-validation, using

the number of folds that are entered in the Folds text field” [57].

• Percentage split, “The classifier is evaluated on how well it predicts a

certain percentage of the data which is held out for testing. The amount of

data held out depends on the value entered in the % field” [57].

5.6 Training Dataset

The banner puzzle training dataset was generated using Safari 7.0.2 by simulating

correct and incorrect scenarios. The main classification training dataset was

generated by comparing the activity patterns of the participants’ legitimate

behaviour against simulated bot attacks. Appendix B provides all the dataset. This

predictive model gives valuable insight that can be generated based upon expert

knowledge. It is supposed to have a high accuracy rate describing current or

previous visitor situations in order to determine the preference of classifier

outcomes.

	

	 	 59	

5.6.1 Dependent and Independent Variable

The result of the classification will be a dependent variable. This value relies upon

the observation inputs, as described in Section 5.3. The observation inputs, which

influence the value of the dependent variable, are independent variables.

5.6.2 Data Cleaning

The data cleaning process includes: (1) Removing unnecessary records that are not

related to the experiment, and (2) Checking inaccurate records from a test dataset.

This is to ensure the integrity and consistency of the test dataset format with the

main training dataset.

5.7 Visual Analytics Requirements

Monitoring network traffic involves huge amounts of data to be collected by

packet capture throughout the network.	 The	 packet capture is a mechanism to

collect raw traffic data from a network. Visualisation was produced using these

raw traffic data. The classification result was obtained using J48 Decision Tree.

The prototype of the visualisation was rendered using D3.js, “a JavaScript library

for manipulating documents based on data” [58].

In order to satisfy the requirements of visual analytics, the following conditions

must be met [11, 12]:

1. Interactive visualisation, the design should support interactive

visualisation.

2. Large datasets, the design should support in understanding, reasoning

and decision making from very large datasets.

3. Knowledge discovery, the design should be able to assist analysts in

order to gain new knowledge.

4. Information overload, the design should be able to turn information

overload into an opportunity.

The next chapter will provide a detailed account of the visual analytics method

used.

5.8 Limitations

Key issues in this experiment include generating flash crowds phenomenon. The

simulation in this research project is only designed to work effectively for client-

	

	 	 60	

server models. HTTP itself is a protocol that uses a client-server model. This

research project focuses on Internet Protocol version 4 (IPv4). Currently, there is

only one banner advertisement puzzle and largely depends on the screen resolution

setting. In practice, more banner puzzles could be generated on various screen

resolutions along with the training dataset. For the visual analytics design, it is

assumed that the analyst has a foundation understanding regarding network traffic

and web servers, especially with Apache. Currently, the experiment conducted in

this research was using only one instance of Apache. The HTTP methods that

were tested include GET and POST methods. Furthermore, the attack simulation

tools’ capabilities described in Section 5.2.3 are quite limited. The simulation

study lacks the tools for testing the system with adaptive persistent attacks.

5.9 Summary

This chapter has described the research methodology used in this study. The

experiment approach has been covered along with the test environment, participant

characteristics and attack simulation. A comprehensive explanation of the data

collection, data pre-processing, training dataset and data analysis was given. This

chapter has explained the processes necessary in preparing the data for analysis

using Weka. In addition, the research limitations have been discussed. Finally, the

next chapter will discuss the evaluation used in this research.

	

	 	 61	

Chapter 6 Evaluation

6.1 Introduction

In the previous chapter, the experiment settings have been discussed, which

detailed the features needed to be extracted in order to observe visitor behaviour.

The experiment was conducted by capturing raw data from website traffic,

identifying browser fingerprints, simulating bot attacks and analysing mouse

dynamics such as movements and events of the participants. Also in the previous

Chapter 4, it discussed the classification technique to discriminate between

legitimate against bot traffic in order to completely render the visualisation. The

result, which will be discussed in Section 6.6, uses the J48 Decision Tree C4.5

algorithm that requires a training dataset where the processing format was already

defined in Section 5.4.

This chapter describes a detailed account of the evaluation, in which the research

was conducted by utilising the experiment and simulation approaches described

earlier. The main purpose of the evaluation was to validate the system and to

demonstrate how the system is able to discriminate between legitimate visitors (10

participants) against simulated bot attacks. All the legitimate participants’

behaviour data were captured. The characteristics of the simulated bot attacks

were analysed. These data were then collected and evaluated using J48

classification for a decision tree. This is to enable the causal relationships between

legitimate participants and simulated bot attacks to be identified and analysed.

Finally, our visual analytics evaluation is presented along with the discussion. This

chapter aims to demonstrate the results that have been obtained.

To support the evaluation, the analysis results were obtained by using these

following tools:

1. Weka 3.6.10, “Weka is a collection of machine learning algorithms for

data mining tasks” [66].

2. YSlow 3.1.8, “YSlow analyzes web pages and suggests ways to improve

their performance based on a set of rules for high performance web

pages” [67].

	

	 	 62	

6.2 HTTP Requests

The experiments below were performed by loading landing, product detail,

category and login pages. The objective is to find the total number of HTTP

requests made for each page. The pages were hosted under a dummy website. The

results and threshold values used were generated by the YSlow 3.1.8 plugin for

Firefox 28 in order to signify abnormal behaviour. The results were obtained

manually by checking YSlow console outputs.

The following sections will show the results of HTTP requests from four different

pages of a dummy website. A probability metric then was built for the training

dataset according to these threshold values. Therefore, these threshold values

could be used as a preliminary comparison between participants and simulated bot

attacks. However, there can be several occasions when legitimate visitors might

reach beyond these threshold values, such as reloading a page many times or

opening multiple tabs in the browser within the same URL. Another possible

reason is when multiple visitors are behind a proxy server.

6.2.1 Landing Page

The diagram in Figure 6.1 illustrates the total number of HTTP requests made to

load the landing page. The screenshot for the landing page can be found in

Appendix C – Landing Page. Based on this result, a specific threshold value, 90 ≤

w ≤ 99, was adjusted to indicate a normal legitimate landing page request.

However this value will not be used as the main classification criterion, as there

are other metrics (listed in Section 5.3) to be used for final decision.

Figure 6.1. Landing page

	

	 	 63	

6.2.2 Product Detail Page

The diagram in Figure 6.2 illustrates the total number of HTTP requests made to

load the product detail page. The screenshot for the product detail page can be

found in Appendix C – Product Detail Page. Based on this result, a specific

threshold value, 87 ≤ x ≤ 96, was adjusted to indicate a normal legitimate product

detail page request. However this value will not be used as the main classification

criterion, as there are other metrics (listed in Section 5.3) to be used for final

decision.

Figure 6.2. Product detail page

6.2.3 Category Page

The diagram in Figure 6.3 illustrates the total number of HTTP requests made to

load the category page. The screenshot for the category page can be found in

Appendix C – Category Page. Based on this result, a specific threshold value, 87 ≤

y ≤ 96, was adjusted to indicate a normal legitimate category page request.

However this value will not be used as the main classification criterion, as there

are other metrics (listed in Section 5.3) to be used for final decision.

	

	 	 64	

Figure 6.3. Category page

6.2.3 Login Page

The diagram in Figure 6.4 illustrates the total number of HTTP requests made to

load the login page. The screenshot for the login page can be found in Appendix C

– Login Page. Based on this result, a specific threshold value, 72 ≤ z ≤ 81, was

adjusted to indicate a normal legitimate login page request. However this value

will not be used as the main classification criterion, as there are other metrics

(listed in Section 5.3) to be used for final decision.

Figure 6.4. Login page

6.3 Overall Performance Score

The overall performance score was obtained by running a YSlow test on each

page, both with and without mouse tracking installed. YSlow is a browser add-on

plugin that calculates the total HTTP requests made by the client. The score was

computed depending on the performance load of each page, which results into a

final grade, as illustrated in Figure 6.5. All pages were loaded individually while

	

	 	 65	

running the YSlow add-on to obtain the final score. A higher score indicates a

good grade of page performance. The results indicated a degradation of

performance when the mouse tracking feature is enabled. However, their

differences are very low.

Figure 6.5. Overall performance score

6.4 AJAX Request Timing

Figure 6.6 below illustrates the value of AJAX request timing made by

participants (n=10). These values were obtained by using data a collection script

defined in Appendix A – AJAX Request.

Figure 6.6. AJAX request timing

	

	 	 66	

6.5 Simultaneous Requests

In order to gain a certainty level of maximum simultaneous requests per second,

the server should appropriately handle Apache Benchmark (see Appendix D),

which was launched ten times to obtained an average value. The average value

represents a high number of successful responses received and minimum failed

requests.

Test	 #	
Test	 time	

(sec)	
Requests	

/sec	
Time	 per	

request	 (ms)	
Transfer	 rate	
(Kbytes/sec)	

1	 61	 16.39	 3904.428	 3.55	

2	 22	 44.73	 1430.965	 9.71	

3	 85	 11.69	 5473.194	 2.54	

4	 139	 7.15	 8949.181	 1.56	

5	 22	 44.32	 1443.975	 9.61	

6	 34	 29.13	 2196.904	 6.32	

7	 45	 21.86	 2927.084	 4.74	

8	 27	 36.51	 1752.786	 7.92	

9	 26	 38.34	 1669.335	 8.31	

10	 151	 6.61	 9692.308	 1.43	

AVERAGE	 61.2	 25.673	 3944.016	 5.569	

Table 6.1. Apache benchmark results

As presented in Table 6.1, the average value of requests per second was 25.673.

This value indicates significant positive correlation and still below the allowed

threshold value of maximum simultaneous requests per second made by

participants, which is 99 as described in Section 6.2.1.

Participant	 #	 Requests	 /sec	
1	 8	
2	 5	
3	 7	
4	 6	
5	 4	
6	 6	
7	 5	
8	 8	
9	 8	

10	 6	

Table 6.2. Participants requests /sec

	

	 	 67	

As presented in Table 6.2, it was found that, on average, legitimate participants

requested no more than 8 simultaneous connections per second. Therefore, a

preliminary training dataset was built according to these results.

6.5.1 Attack Simulation

In order to disrupt the web server, it was found that the attack simulation tools

were generating requests between 400 – 1000 of simultaneous connections from a

single connection. The following are the results for attack simulation as specified

in Appendix D. These values were obtained by using the netstat command in

Appendix A – Simultaneous Request.

Figure 6.7. Attack simulation

R-u-d-y was tested on the search page, while the other tools were tested on the

landing page. THC-SSL-DOS was tested on the secure connection on port 443. All

of these attacking tool sessions were not authenticated, because it is assumed that

the adversary does not have a valid credential. From all these attacking tools, only

PhantomJS was capable of generating user interface interaction, proof-of-work,

screen resolution and browser fingerprint data. However, PhantomJS failed to

respond correctly on the banner advertisement. By using slowhttptest alone, it can

be seen that the server stops responding after 6 seconds (see Appendix D –

Slowhttptest Output). Therefore, to automate the decision making process, the

visitor page requests will be checked to see whether it is beyond the normal

threshold limit. Then, if a visitor has a high rate of concurrent connections and is

	

	 	 68	

not capable of generating proof-of-work, it will be marked for the next decision

process. Additional checking of user interaction, screen resolution, browser

fingerprint data and banner reaction will also be performed. Finally if a visitor

signifies a workload of form submission frequency, based on this observation by

using J48 classification for a decision tree, the traffic will be classified as a bot.

6.6 Classifier Performance

This section presents the results of classifier performance using several supervised

machine learning algorithms. These results were produced using Weka on a

training dataset as described in Appendix B – Traffic Training Dataset. Decision

tree classification (J48) obtained an accuracy of 85.2381%, as indicated in Figure

6.8.

Figure 6.8. Classifier performance

According to these results, Decision Tree (J48) was finally chosen as the main

machine learning algorithm due to its high accuracy value and low false-positive

rate. The performance of the classification algorithm, Decision Tree J48, was

evaluated using cross-validation with 10 folds. The main reason is that this setting

has a lower variance, which is very important when the amount of data available is

limited. In this case, the decision tree has outperformed the other machine learning

algorithms. By gradually growing the training dataset size, the quality of accuracy

increases, as illustrated in Figure 6.9.

	

	 	 69	

Figure 6.9. Decision tree learning curve

6.6.1 Testing on a Training Dataset

This section presents the results on a training dataset for decision tree

classification using cross-validation with 10 folds. The testing correctly classified

179 data from a total of 210 instances with an accuracy of 85.2381%. The

incorrectly classified instances were 14.7619 % (31 instances). These instances

were incorrectly classified because of banner reaction inaccuracy and mismatch

parsing on HTTP request load. This is a false positive error - a false detection

result that indicates a given legitimate user was identified as malicious bot. 	

===	 Run	 information	 ===	

Scheme:weka.classifiers.trees.J48	 -‐C	 0.25	 -‐M	 2	
Relation:	 	 	 	 	 discriminate	
Instances:	 	 	 	 210	
Attributes:	 	 	 9	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 request	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 pow	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 freq	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 auth	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 heatmap	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 banner	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 screen	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 fp	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 class	
Test	 mode:10-‐fold	 cross-‐validation	
	
===	 Classifier	 model	 (full	 training	 set)	 ===	
J48	 pruned	 tree	
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
	
request	 <=	 0.1:	 0x7003	 (10.0)	
request	 >	 0.1	
|	 	 	 banner	 <=	 0.19:	 0x7001	 (128.0/28.0)	

	

	 	 70	

|	 	 	 banner	 >	 0.19:	 0x7000	 (72.0)	
	
Number	 of	 Leaves	 	 :	 	 3	
	
Size	 of	 the	 tree	 :	 	 5	
	
	
Time	 taken	 to	 build	 model:	 0.05	 seconds	
	
===	 Stratified	 cross-‐validation	 ===	
===	 Summary	 ===	
	
Correctly	 Classified	 Instances	 	 	 	 	 	 	 	 	 179	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 85.2381	 %	
Incorrectly	 Classified	 Instances	 	 	 	 	 	 	 	 31	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 14.7619	 %	
Kappa	 statistic	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.7288	
Mean	 absolute	 error	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.1438	
Root	 mean	 squared	 error	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.2761	
Relative	 absolute	 error	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 39.4958	 %	
Root	 relative	 squared	 error	 	 	 	 	 	 	 	 	 	 	 	 	 64.8327	 %	
Total	 Number	 of	 Instances	 	 	 	 	 	 	 	 	 	 	 	 	 	 210	 	 	 	 	 	
	
===	 Detailed	 Accuracy	 By	 Class	 ===	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 TP	 Rate	 	 	 FP	 Rate	 	 	 Precision	 	 	 Recall	 	 F-‐Measure	 	 	 ROC	 Area	 	
Class	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.72	 	 	 	 	 	 0.027	 	 	 	 	 	 0.96	 	 	 	 	 	 0.72	 	 	 	 	 	 0.823	 	 	 	 	 	 0.842	 	 	 	
0x7000	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.97	 	 	 	 	 	 0.255	 	 	 	 	 	 0.776	 	 	 	 	 0.97	 	 	 	 	 	 0.862	 	 	 	 	 	 0.842	 	 	 	
0x7001	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	
0x7003	
Weighted	 Avg.	 	 	 	 0.852	 	 	 	 	 0.134	 	 	 	 	 	 0.874	 	 	 	 	 0.852	 	 	 	 	 0.85	 	 	 	 	 	 	 0.85	 	

6.6.2 Banner Reaction

This section presents the results for classifying legitimate visitors by analysing

their reaction to a banner. The primary focus is to demonstrate how the system is

able to recognise such activities. Mouse movement data were saved into 100

temporary variables that correspond to each section of the page and then mapped

into 10 ARFF variables (see Appendix A – Banner Reaction). One banner

advertisement puzzle was generated along with the training dataset. The training

dataset and the participant test set can be found in Appending B – Banner Training

Dataset. The screenshot for the advertisement page can be found in Appendix C –

Advertisement Page. Finally, the test was conducted on Weka for the collected test

data of participants (n=10), as listed below.

===	 Run	 information	 ===	
	
Scheme:weka.classifiers.trees.J48	 -‐C	 0.25	 -‐M	 2	
Relation:	 	 	 	 	 swing	
Instances:	 	 	 	 123	
Attributes:	 	 	 11	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy1	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy2	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy3	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy4	

	

	 	 71	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy5	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy6	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy7	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy8	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy9	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 xy10	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 class	
Test	 mode:10-‐fold	 cross-‐validation	
	
===	 Classifier	 model	 (full	 training	 set)	 ===	
J48	 pruned	 tree	
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
xy2	 <=	 33584	
|	 	 	 xy2	 <=	 30382:	 false	 (12.0)	
|	 	 	 xy2	 >	 30382:	 true	 (72.0/2.0)	
xy2	 >	 33584:	 false	 (39.0)	
	
Number	 of	 Leaves	 	 :	 	 3	
Size	 of	 the	 tree	 :	 	 5	
	
Time	 taken	 to	 build	 model:	 0.03	 seconds	
===	 Stratified	 cross-‐validation	 ===	
===	 Summary	 ===	
	
Correctly	 Classified	 Instances	 	 	 	 	 	 	 	 	 117	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 95.122	 	 %	
Incorrectly	 Classified	 Instances	 	 	 	 	 	 	 	 	 6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 4.878	 	 %	
Kappa	 statistic	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.8996	
Mean	 absolute	 error	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.0613	
Root	 mean	 squared	 error	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.2189	
Relative	 absolute	 error	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 12.4971	 %	
Root	 relative	 squared	 error	 	 	 	 	 	 	 	 	 	 	 	 	 44.1853	 %	
Total	 Number	 of	 Instances	 	 	 	 	 	 	 	 	 	 	 	 	 	 123	 	 	 	 	 	
===	 Detailed	 Accuracy	 By	 Class	 ===	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 TP	 Rate	 	 	 FP	 Rate	 	 	 Precision	 	 	 Recall	 	 F-‐Measure	 	 	 ROC	 Area	 	
Class	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.986	 	 	 	 	 0.094	 	 	 	 	 	 0.932	 	 	 	 	 0.986	 	 	 	 	 0.958	 	 	 	 	 	 0.926	 	 	 	
true	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.906	 	 	 	 	 0.014	 	 	 	 	 	 0.98	 	 	 	 	 	 0.906	 	 	 	 	 0.941	 	 	 	 	 	 0.926	 	 	 	
false	
Weighted	 Avg.	 	 	 	 0.951	 	 	 	 	 0.06	 	 	 	 	 	 	 0.953	 	 	 	 	 0.951	 	 	 	 	 0.951	 	 	 	 	 	 0.926	
	
===	 Confusion	 Matrix	 ===	
	
	 	 a	 	 b	 	 	 <-‐-‐	 classified	 as	
	 69	 	 1	 |	 	 a	 =	 true	
	 	 5	 48	 |	 	 b	 =	 false	

	
===	 Re-‐evaluation	 on	 test	 set	 ===	
	
User	 supplied	 test	 set	
Relation:	 	 	 	 	 swing	
Instances:	 	 	 	 unknown	 (yet).	 Reading	 incrementally	
Attributes:	 	 	 11	
	
===	 Predictions	 on	 test	 set	 ===	
	
inst#,	 	 	 	 actual,	 predicted,	 error,	 probability	 distribution	
	 	 	 	 	 1	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 2	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 3	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 4	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 5	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 6	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 7	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 8	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	
	 	 	 	 	 9	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	

	

	 	 72	

	 	 	 	 10	 	 	 	 	 	 	 	 	 	 ?	 	 	 	 	 1:true	 	 	 	 	 	 +	 	 *0.972	 	 0.028	

	
The test dataset of the participants (n=10) was evaluated using the built-in decision

tree algorithm. The system has to perform a binary classification, where the true

value indicates a successful attempt on closing the banner. It was found that all the

participants were able to respond correctly to the banner advertisement. The model

reached an accuracy of 95.122% in detecting these responses. Figure 6.10

illustrates the Receiver Operating Characteristic (ROC) plot for the training

dataset. The result shows that the area under ROC = 0.9263 indicates a good value.

Figure 6.10. Receiver operating characteristic for the training dataset

6.6.3 Discriminating Traffic

The following are the results for discriminating the traffic on a test dataset of the

ten legitimate participants and simulation of six bot attacks. All of the 16 test cases

were evaluated using observation input data as described in Chapter 5 for the

experiment settings. The results of classifying the test dataset were highly

accurate, and the model was able to correctly identify ten participants and six

simulated bot attacks. In practice, the accuracy of the classification could be

manually checked by comparing the website heatmap data generated by the

participants and the data produced by the bots. The evaluation used the main

Traffic Training Dataset – Appendix B - to discriminate the traffic, as listed below.

===	 Predictions	 on	 test	 split	 ===	
	

inst#,	 	 	 	 actual,	 predicted,	 error,	 probability	 distribution	
	 	 	 	 	 1	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 2	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 3	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 4	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 5	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 6	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 7	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 8	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 	 9	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	

	

	 	 73	

	 	 	 	 10	 	 	 	 	 	 	 	 	 	 ?	 	 	 1:0x7000	 	 	 	 	 	 +	 	 *1	 	 	 	 	 	 0	 	 	 	 	 	 0	 	 	 	 	
	 	 	 	 11	 	 	 	 	 	 	 	 	 	 ?	 	 	 2:0x7001	 	 	 	 	 	 +	 	 	 0.219	 *0.781	 	 0	 	 	 	 	
	 	 	 	 12	 	 	 	 	 	 	 	 	 	 ?	 	 	 2:0x7001	 	 	 	 	 	 +	 	 	 0.219	 *0.781	 	 0	 	 	 	 	
	 	 	 	 13	 	 	 	 	 	 	 	 	 	 ?	 	 	 2:0x7001	 	 	 	 	 	 +	 	 	 0.219	 *0.781	 	 0	 	 	 	 	
	 	 	 	 14	 	 	 	 	 	 	 	 	 	 ?	 	 	 2:0x7001	 	 	 	 	 	 +	 	 	 0.219	 *0.781	 	 0	 	 	 	 	
	 	 	 	 15	 	 	 	 	 	 	 	 	 	 ?	 	 	 2:0x7001	 	 	 	 	 	 +	 	 	 0.219	 *0.781	 	 0	 	 	 	 	
	 	 	 	 16	 	 	 	 	 	 	 	 	 	 ?	 	 	 2:0x7001	 	 	 	 	 	 +	 	 	 0.219	 *0.781	 	 0	 	 	 	 	

The performance of the classification algorithm, Decision Tree J48, was evaluated

using:

• Training set, reached an accuracy of 86.6667%.

• Cross-validation with 10 folds, reached an accuracy of 85.2381%.

• Percentage split of 66%, reached an accuracy of 83.0986%.

Figure 6.11 displays the generated tree using Weka Tree Visualizer.

Figure 6.11. Tree view

6.7 Visual Analytics Design

This section presents the results for the prototype of the visual analytics design by

using D3.js. A comparison with current state-of-the art visualisation is also given.

6.7.1 Interactive Visualisation

The main dashboard uses the Quadtree data structure. The structure is used to

represent IP addresses in the visualisation. Each dot inside the graph represents the

value of an incoming connection. Similar connections with similar activities can

be identified and selected for further details on demand analysis.

In practice, the classification result will be mapped accordingly into two separate

canvas and represents current network traffic, as illustrated in Figure 6.12. The

view can be calibrated to show differences over time. It aims to automatically

classify between legitimate flash crowds against incoming bot traffic. The small,

	

	 	 74	

8x8 or adjustable, quad represents a single client connection. Each quad contains a

maximum of 32 bits in size, which is the IP address.

Figure 6.12. Quadtree representation using d3.js

A selection can be made using a rectangular selection. A further zooming will

result into a Voronoi diagram. This is to simplify the visualisation and provide fair

visualisation allocation, especially when flash crowds might occur in the network.

The other reason is to group IP addresses according to their first octet. Another

option such as blocking or exporting the IP address list is also given later.

By using a Voronoi diagram, it enables interactive visualisation to be presented

into multiple regions, as depicted in Figure 6.13. A selection of multiple regions is

possible. Thus, it provides an analyst with filtering, searching and details on

demand capability. The region label indicates the first octet of an IP address.

	

Figure 6.13. Voronoi diagram using d3.js

	

	 	 75	

To understand the historical trend, the analyst may select another type –

cumulative line chart - of presentation in time series format, as illustrated in Figure

6.14.

	

Figure 6.14. Time series format using d3.js

6.7.2 Large Dataset

A further expansion from the Voronoi diagram will result into a heatmap graph.

This is to show which activities are intense. It enables better understanding,

reasoning and decision making from very large datasets. The analyst becomes

aware of the current situation by examining this heatmap graph, as illustrated in

Figure 6.15. The X-axis represents client connection, while the Y-axis represents

timestamp. The top row of the heatmap indicates latest situation. The green colour

indicates legitimate visitors, and the violet colour indicates bot traffic. Darker

colours indicate intense requests made by the client. This enables the analyst to

gain an insight and discover patterns from very large datasets. However, it is

assumed that bots will have constant or continually request patterns.

	

	 	 76	

Figure 6.15. Heatmap graph example using d3.js

More information is given in Figure 6.16. Details on demand will provide more

information regarding the hit rate and source of IP addresses.

Figure 6.16. Latest hits

6.7.3 Knowledge Discovery

As illustrated in Figure 56, the visualisation enables the analyst to gain new

knowledge to discover process states (reading, waiting, idle and sending) and to

understand how they relate to the system health. The X-axis represents CPU

usage, while the Y-axis represents memory usage. The size of the bubble indicates

the total number of process instances currently running. The analyst can filter out

any process group and make a particular selection, as illustrated in Figure 6.17.	

	

	 	 77	

Figure 6.17. Process states visualisation using d3.js

Under certain circumstances when the web server becomes unresponsive, the

analyst can quickly understand why and which process is causing the problem.

This technique enhances awareness, especially when multiple instances are

running.

Figure 6.18. Group selection using d3.js

Furthermore, based on the selection, the analyst can explore the visualisation to

obtain further information, as illustrated in Figure 6.18. The visualisation is

presented in one single dashboard - this brings deeper exploration without

changing the representation of the overall visualisation.

	

	 	 78	

Figure 6.19. Further exploration

As an alternative, the analyst may select another type of visualisation presentation

in a time series format, as illustrated in Figure 6.19. This enables historical trend to

be analysed and provides an understanding regarding the current system health.

Therefore, the analyst can understand the impact of a certain process state more

effectively.

Figure 6.20. Time series format using d3.js

Compared to the traditional Apache server-status information and Visual Status,

as depicted in Figure 6.21 and Figure 6.22, the proposed visualisation system

provides a better interactivity that enables an analyst to discover knowledge

regarding to Apache process states and system health.

	

	 	 79	

Figure 6.21. Apache process states

Figure 6.22. Visual status [70]

6.7.4 Information Overload

As previously described, by using a heatmap graph, an analyst could gain an

insight and discover patterns from very large datasets. Thus, decision making can

	

	 	 80	

be made quickly to allow or block a certain connection. A further examination of

the traffic is also possible, such as examining the pcap file or website heatmap

data. This is to provide a measure of certainty that the current traffic belongs to a

particular class. There might be several occasions behind the occurrences of such

unwanted cases, for example incorrect classification results, corrupted dataset and

advanced bot attacks that can perfectly mimic human behaviour, in which they can

perfectly evade detection.

Thus, the proposed visualisation system aims to turn information overload into

opportunity by discovering adaptive bot attacks – understanding how future bots

will attack the system and need to know what will be impacted by them - and to

enhance usability study by using website heatmap data. This is to “detect the

expected and discover the unexpected” [11, 12]. Furthermore, X-Map exploits

banner features to combine security protection with the opportunity of company

advertisements. It provides advertising support, which can lead revenues behind

them. According to a study by Shi et al. and Treesinthuros, Flash crowds and

visitor volumes are often associated with banner advertisement revenues [71, 72].

6.8 Discussion

Reviewing the previous research questions as stated in Chapter 1:

Question 1. Can we find a new solution to transparently classify bots presence

against legitimate traffic?

To answer research question #1, a banner advertisement was given to all the

participants. In order to continue browsing the website, each participant must

respond correctly to the banner advertisement. The results have shown that all the

participants were able to respond correctly to the banner advertisement. The model

reached an accuracy of 95.122% in detecting these responds. These results suggest

that the reaction against banner advertisement could be used as a strong indicator

of a human presence. However, there are several additional observation inputs that

need to be considered in order to correctly classify traffic, e.g. the total of HTTP

requests made and form submission frequency rate. Section 6.3.3 has presented

these results, and the classification was highly accurate.

An adaptive persistent bot might have randomly clicked on every area of the page

by using a brute force mechanism. However, this technique could be effectively

	

	 	 81	

identified by calculating the total number of mouse click events. Further studies

are therefore recommended in order to identify this threshold limit. In future

investigations, it might be possible to use different input devices, such as

Touchpad and Leap Motion. Furthermore, the banner advertisement should be

randomly generated with a different level of complexity in order to deter the

presence of bots.

Question 2. By using visual analytics, how can the result of classification be

presented in a decision-oriented way?

To answer research question #2, the design of the visual analytics system has

been given. The purpose of this design is to provide an analyst with a user

interface, from which decision making can be made efficiently. Given vast

amounts of network traffic, the analyst could interactively select parts of the data

to determine their destiny or visualise it in detail. The analyst could grasp more

comprehensive details without being constrained by large data. This brings simple

action without changing the representation of the overall visualisation.

6.9 Summary

In this chapter the evaluation of the research has been presented. The experiment

and simulation approaches have been covered along with the discussion. The

results and performance of the classification algorithm, using Decision Tree J48,

have been discussed. The design of the visual analytics system has been given.

Finally, the research questions have been answered in the discussion section.

As it can be seen from the results in Section 6.2, the threshold values present

positive results to signify abnormal behaviour. In addition, these values were used

for augmenting the initial training dataset. The system has more data to analyse

about the visitor behaviour and predict this against the training dataset. The results

of the visitor behaviour tracking indicate a good page performance load, as

indicated in Section 6.3. These results show that there is no significant

performance difference compared to the pages without tracking enabled. The

results of AJAX timing request, as described in Section 6.4, provide a better

illustration of the entire tracking. As presented in Section 6.5, the average value of

requests per second was 25.673. This value indicates significant positive

correlation and still above the threshold value of maximum simultaneous requests

	

	 	 82	

per second made by participants. The total requests of simultaneous connections

were used to give a strong indicator of abnormal behaviour. Overall, the classifier

performance obtained an accuracy of 85.2381%, as shown in Section 6.6. The

decision tree (J48) algorithm was chosen due to its high accuracy value and low

false-positive rate. The results for classifying banner reaction reached an accuracy

of 95.122% with ROC = 0.9263. The results of classifying the test dataset were

highly accurate, and the model was able to correctly identify the ten participants

and six simulated bot attacks with an accuracy of 86.6667%. Finally, the visual

analytics design was formulated in order to assist an analyst to discover bots

presence.

Along with these results, two comparisons between VATRIX and X-Map with

other current approaches have been made as illustrated in Table 6.3 and Table 6.4

below. Table 6.3 provides a comparison between existing solutions and X-Map.

 Application

Layer

CAPTCHA Banner Browsing

Behaviour

 Be
X-Map Yes No Yes Yes

Kill-Bots Yes Yes No No

Yu et al. No No No No

Xie and Yu Yes No No Yes

Oikonomou Yes No No Yes

Table 6.3 X-Map Comparison Table

X-Map gives flexible solution, which embraces the use of decision tree learning

for classification and to make predictions based on visitor past observation. X-

Map attempts to gather all visitors browsing behaviour before making any

predictive response. X-Map effectively emphasises on the method that can handle

large datasets while reducing computation complexity. This enables X-Map to

have many advantages over other systems, which lacks the use of banner reaction

technique. While current approaches worked well at the application layer,

however, the disadvantage of these approaches is that CAPTCHA is often needed.

On the other hand X-Map offers a different solution in order to discriminate traffic

by employing website heatmap and banner reaction.

	

	 	 83	

Table 6.4 provides a comparison between existing solutions and VATRIX.

VATRIX offers an effective solution for visual analytics interaction, which

embraces the use of X-Map along with the Voronoi diagram and Quadtree data

structure.

 Method Visualisation Interaction

VATRIX X-Map Voronoi

diagram

No

Zhang et al. Density-workload Graph model No

NetSecRadar IDS dependent Radial graph No

VisTracer Anomaly detection Glyph Yes

VACS Elastic Search Hierarchical

clockmap

Yes

Yassem Network abstraction Hilbert curve No

Shurkhovetskyy InfoVis Toolkit Multiple graphs Yes

Mansmann et al. Dynamic event Modular graphs No

Table 6.4 VATRIX Comparison Table

VATRIX has advantages over other current approaches, which automatically

classifies between legitimate flash crowds against incoming bot traffic. Current

approaches are not specifically designed for bot attacks that are capable of

mimicking genuine flash crowds. The disadvantage of the current approaches is

that they are mainly built for detecting flood attacks and lacking the interactivity

response in order to mitigate low and slow bandwidth attacks. Finally, the next

chapter will review the major conclusion and future work of this thesis.

	

	

	 	 84	

Chapter 7 Conclusions and Future Work

This final chapter concludes this thesis by highlighting the main contributions and

discussing directions for future research.

7.1 Conclusion

Internet services are continually subject to new threats. The presence of bot attacks

has increased greatly. Although these attacks consume less bandwidth compared to

volumetric attacks, application layer bot attacks are stealthier in nature, which

often lead to a disruptive impact. As covered in Chapter 2, there have been several

vulnerability cases that provide attackers with a high potential of extortion to bring

HTTP servers down. Mitigating and differentiating these bot activities from flash

crowds traffic remains an open challenge to date. In this dissertation, the bot attack

problem has been investigated. In Chapter 3, the architecture of VATRIX has been

presented. It provides an insight in how the system works. In order to successfully

show the visualisation system, the user interface was also presented in detail. In

Chapter 4, the method X-MAP has been discussed. It covers the solution for traffic

classification. In Chapter 5, the experiment settings have been given. It covers the

experimental simulation study consisting of two phases, the benchmark

assessment and attack simulation using external tools. Finally, in Chapter 6, the

evaluation has been presented along with the significant results produced from our

research. A comparison with related work has been covered.

The contributions of this thesis were presented in Chapter 3 and Chapter 4. They

include two primary contributions. The first is the development of the visual

analytics system, VATRIX, that can interactively respond and discover bot

presence. The second is the scalable technique, X-MAP, that transparently

separates legitimate traffic against bot traffic. These findings have shown the

advantages of website heatmaps for predicting the presence of a human with the

opportunity of usability study. It is demonstrated that by analysing how visitors

respond to advertisements, better traffic classification with the opportunity of

company advertisements can be provided. This condition can lead to beneficial

revenues behind them. These techniques provide a measure of certainty, which is

missing in the current methods.

	

	 	 85	

7.2 Future Work

A defence system relying on machine learning and artificial intelligence alone is

not sufficient enough in defeating an adaptive adversary. In a world of persistent

threats, this may leave an open door to other attacks. There are several future

directions that can be pursued following this dissertation.

1. Optimizing the data acquisition and storage process

Collecting visitor behaviour on a website produces vast amounts of data. Ensuring

data quality remains a challenging problem for almost every large organisation.

Currently, the process of acquiring and storing visitor behaviour data is not

optimised, both in terms of capacity and reliability. Incorrect or inconsistent data

can significantly influence the result of classification. Regarding this issue,

additional research work is required in order to optimise this process. Our

evaluation shows that the current methods offer viable solutions despite the vast

amounts of data they produce. Therefore, integration with a reliable storage will be

the next focus.

2. Single point of failure

X-Map largely depends on the existence of a giant hash table produced by

memcached. In this way, X-Map is able to handle asynchronous requests. It allows

a client(s) to lookup single or multiple IP addresses. However, the issue of a single

point of failure will need to be addressed as the amount of traffic increases. An

automatic failover mechanism will need to be established in order to provide high

availability. Future research work should look further into the issues regarding the

single point of failure so that upon abnormal termination, key-value data can be

safely collected and stored.

3. Sonification

The current visual analytics system is capable of discovering bot traffic. However,

the future research work would consider expanding the use of sonification by

turning information overload into a meaningful sound, in order to better assist an

analyst.

	

	 	 ix	

References

[1] Incapsula Inc (2013), Bot Traffic Report 2013, Available at:
http://www.incapsula.com/blog/bot-traffic-report-2013.html. [Accessed 2nd
April, 2014]

[2] Arbor Networks (2012), The Growing Threat of Application-Layer DDoS
Attacks, Available at:
https://www.arbornetworks.com/component/docman/doc_download/467-the-
growing-threat-of-application-layer-ddos-attacks?itemid=442. [Accessed 2nd
April, 2014]

[3] Cloud Security Alliance (2013), The Notorious Nine: Cloud Computing Top
Threats in 2013, Available at: https://cloudsecurityalliance.org/download/the-
notorious-nine-cloud-computing-top-threats-in-2013/. [Accessed 2nd April,
2014]

[4] Yu, S., Zhau, G., Guo, S., Vasilakos, A., and Xiang, Y., Browsing behaviour
mimicking attacks on popular web sites for large botnets, IEEE Conference
on Computer Communications Workshops, pp. 947-951, 2011.

[5] Yu, S., Zhao, G., Guo, S. and Stojmenovic, I., Fool Me If You Can:
Mimicking Attacks and Anti-attacks in Cyberspace, IEEE Transactions on
Computers, Vol PP, No 99, pp. 1-13, 2013.

[6] Lee, M., Kompella, R. and Singh, S., AjaxTracker: Active Measurement
System for High-Fidelity Characterization of AJAX Applications, USENIX
Annual Technical Conference, pp. 1-12, 2010.

[7] Jin, J., Zheng, N., Mao, F., Koehl, A. and Wang, H., Evasive Bots
Masquerading as Human Beings on the Web, International Conference on
Dependable Systems and Networks, Vol 1, No 12, pp. 1-12, 2013.

[8] Yu, S., Zhao, G., Guo, S. and Stojmenovic, I., Can We Beat Legitimate Cyber
Behavior Mimicking Attacks from Botnets?, IEEE International Conference
on Computer Communications, pp. 3133-3137, 2012.

[9] Motoyama, M., Levchenko, K., Kanich, C. and McCoy, D., Re:CAPTCHA –
Understanding CAPTCHA-Solving Services in an Economic Context,
USENIX Conference on Security, pp. 28-38, 2010.

[10] Boshmaf, Y., Muslukhov, I., Beznosov, K. and Ripeanu, M., The Socialbot
Network: When Bots Socialize for Fame and Money, Proceedings of the 27th
Annual Computer Security, pp. 93-102, 2011.

[11] Keim, D., Andrienko, G., Fekete, J. and Gorg, C. (2008) Visual Analytics:
Definition, Process, and Challenges, Berlin: Springer-Verlag.

[12] Keim, D., Kohlhammer, J., Ellis, G. and Mansmann, F. (2010) Mastering the
Information Age Solving Problems with Visual Analytics, Bad Langensalza:
Eurographics.

[13] Moustis, D. and Kotzanikolaou, P., Evaluating security controls against
HTTP-based DDoS attacks, International Conference on Information,
Intelligence, Systems and Applications, pp. 1-6, 2013.

[14] Zargar, S., Joshi, J. and Tipper, D., A Survey of Defense Mechanisms Against
Distributed Denial of Service (DDoS) Flooding Attacks, IEEE
Communications Surveys and Tutorials, Vol 15, No 4, pp. 1-24, 2013.

[15] Durcekova, V., Schwartz, L. and Shahmehri, N., Sophisticated Denial of
Service Attacks Aimed at Application Layer, International Conference on
Electronics, pp. 55-60, 2012.

	

	 	 x	

[16] Juniper Networks (2013), Defending Against Application-Layer DDoS
Attacks, Available at:
http://www.juniper.net/us/en/local/pdf/whitepapers/2000550-en.pdf.
[Accessed 2nd April, 2014]

[17] Prolexic (2014), Prolexic Quarterly Global DDoS Attack Report, Available
at: http://www.prolexic.com/knowledge-center-ddos-attack-report-2014-
q1.html. [Accessed 2nd April, 2014]

[18] JS Heatmaps (2013), Create HTML5 Heatmaps with Canvas and JavaScript,
Available at: http://www.patrick-wied.at/static/heatmapjs/. [Accessed 2nd
April, 2014]

[19] Huang, J. and White, R., Improving Searcher Models Using Mouse Cursor
Activity, Proceedings of the 35th International ACM SIGIR, pp. 195-204,
2012.

[20] Eckersley, P., How Unique is Your Web Browser, Proceedings of the 10th
International Conference on Privacy Enhancing Technologies, pp. 1-18, 2010.

[21] Mulazzani, M., Reschl, P. and Huber, M., Fast and Reliable Browser
Identification with JavaScript Engine Fingerprinting, Web Security and
Privacy Conference, pp. 1-10, 2013.

[22] Mowery, K., Bogenreif, D., Yilek, S. and Shacham, H., Fingerprinting
Information in JavaScript Implementations, In Proceedings of W2SP, pp. 1-
11, 2011.

[23] Panopticlick (2013), How Unique and Trackable is Your Browser?, Available
at: http://panopticlick.eff.org. [Accessed 2nd April, 2014]

[24] Forbes (2014), Information for the World’s Business Leaders, Available at:
http://www.forbes.com. [Accessed 2nd April, 2014]

[25] InformationWeek (2014), News Connects The Business Technology
Community, Available at: http://www.informationweek.com. [Accessed 2nd
April, 2014]

[26] Verma, S., Impact of Repetitive and Contextual Advertisements on Consumer
Behavior: An exploratory Study, International Association of Computer
Science and Information Technology, pp. 221-225, 2009.

[27] Muda, M., Musa, R., Mohamed, R. and Hamzah, H., The Influence of
Perceived Celebrity Endorser Credibility on Urban Women’s Responses to
Skincare Product Advertisement, IEEE Colloquium on Humanities, Science
and Engineering, pp. 620-625, 2011.

[28] Kitts, B., Zhang, J., Roux, A. and Mills, R., Click Fraud Detection with Bot
Signatures, IEEE International Conference on Intelligence and Security
Informatics, pp. 146-150, 2013.

[29] Kitts, B., Zhang, J., Wu, G. and Mahato, R., Click Fraud Botnet Detection by
Calculating Mix Adjusted Traffic Value, IEEE International Conference on
Intelligence and Security Informatics, pp. 151-153, 2013.

[30] Kaiser, E. and Feng, W., Helping TicketMaster: Changing the Economics of
Ticket Robots with Geographic Proof-of-Work, IEEE Conference on
Computer Communications Workshops, pp. 1-6, 2010.

[31] Pandey, A. and Rangan, P., Mitigating Denial of Service Attack using Proof
of Work and Token Bucket Algorithm, Students Technology Symposium, pp.
43-47, 2011.

[32] Laurie, B. and Clayton, R., Proof-of-Work Proves Not to Work, In Proceeding
WEAS, pp. 1-9, 2004.

	

	 	 xi	

[33] Wikipedia (2013), Proof of Work System, Available at:
http://en.wikipedia.org/wiki/Proof-of-work_system. [Accessed 2nd April,
2014]

[34] Ari, I., Hong B., Miller, E., Brandt, S. and Long D., Managing Flash Crowds
on the Internet, International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems, pp. 246-249, 2003.

[35] Yu, S., Zhou, W., Guo, S., Xiang, Y. and Jia, W., Discriminating DDoS
Attacks from Flash Crowds Using Flow Correlation Coefficient, IEEE
Transactions on Parallel and Distributed Systems, Vol. 23, No. 6, pp. 1073-
1080, 2012.

[36] Thapngam, T., Yu, S. and Zhou, W., DDoS discrimination by Linear
Discriminant Analysis (LDA), International Conference on Networking and
Communications (ICNC), pp. 532-536, 2012.

[37] Kandula, S., Katabi, D., Jacob, M. and Berger, A., Botz-4-Sale: Surviving
Organized DDoS Attacks That Mimic Flash Crowds, Symposium on
Networked Systems Design & Implementation, pp. 287-300, 2005.

[38] Xie, Y. and Yu, S., A Large-Scale Hidden Semi-Markov Model for Anomaly
Detection on User Browsing Behaviors, IEEE/ACM Transactions on
Networking, Vol. 17, No. 1, pp. 54-65, 2009.

[39] Xie, Y. and Yu, S., Monitoring the Application-Layer DDoS Attacks for
Popular Websites, IEEE/ACM Transactions on Networking, Vol. 17, No. 1,
pp. 15-25, 2009.

[40] Oikonomou, G. and Mirkovic, J., Modeling Human Behavior for Defense
Against Flash-Crowd Attacks, IEEE International Conference on
Communications, pp. 1-6, 2009.

[41] Zhang, J. and Huang, M., Visual Analytics Model for Intrusion Detection in
Flood Attack, IEEE International Conference on Trust Security and Privacy in
Computing and Communications, pp. 277-284, 2013.

[42] Zhao, Y., Zhou, F. and Shi, R., NetSecRadar: A Real-Time Visualization
System for Network Security, IEEE Symposium on Visual Analytics Science
and Technology, pp. 281-282, 2012.

[43] Fischer, F., Fuchs, J. and Vervier, P., VisTracer: A Visual Analytics Tool to
Investigate Routing Anomalies in Traceroutes, International Symposium on
Visualization for Cyber Security, pp. 1-8, 2012.

[44] Fischer, F. and Keim, D., VACS: Visual Analytics Suite for Cyber Security,
VAST Challenge 2013, pp. 1-2, 2013.

[45] Shurkhovetskyy, G., Bahey, A. and Ghoniem, M., Visual Analytics for
Network Security, IEEE Symposium on Visual Analytics Science and
Technology, pp. 1-2, 2012.

[46] Yassem, T., A visual analytics approach to network security hygiene, System
and Network Engineering, pp. 1-16, 2013.

[47] Mansmann, F., Fischer, F. and Keim, D., Real-Time Visual Analytics for
Event Data Streams, Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pp. 801-806, 2012.

[48] PrestaShop (2014), Ecommerce Software to create your Online Store,
Available at: http://www.prestashop.com. [Accessed 2nd April, 2014]

[49] Leo Theme (2013), Leo Sport Shoes Free Prestashop Theme, Available at:
http://www.leotheme.com/prestashop/themes/216-leo-sportshoes.html.
[Accessed 2nd April, 2014]

	

	 	 xii	

[50] Slowloris (2011), Slowloris HTTP DoS, Available at:
http://ha.ckers.org/slowloris. [Accessed 2nd April, 2014]

[51] Slowhttptest – Google Code (2011), Application Layer DoS attack simulator,
Available at: http://code.google.com/p/slowhttptest. [Accessed 22nd February,
2014]

[52] R-u-dead-yet – Google Code (2011), HTTP POST Denial of Service tool,
Available at: http://code.google.com/p/r-u-dead-yet. [Accessed 22nd February,
2014]

[53] THC SSL DOS (2011), A tool to verify the performance of SSL, Available at:
http://www.thc.org/thc-ssl-dos. [Accessed 22nd February, 2014]

[54] Radware DDoSPedia (2011), Apache Killer Attacks, Available at:
http://security.radware.com/knowledge-center/DDoSPedia/Apache-Killer.
[Accessed 22nd February, 2014]

[55] PhantomJS (2014), Full web stack No Browser required, Available at:
http://phantomjs.org. [Accessed 22nd February, 2014]

[56] The University of Waikato (2008), Attribute-Relation File Format, Available
at: http://www.cs.waikato.ac.nz/ml/weka/arff.html. [Accessed 22nd February,
2014]

[57] Weka 3 Manual (2013), Data Mining with Open Source Machine Learning
Software in Java, Available at:
http://www.cs.waikato.ac.nz/ml/weka/documentation.html. [Accessed 22nd
February, 2014]

[58] D3.js (2013), Data-Driven Documents, Available at: http://d3js.org.
[Accessed 2nd April, 2014]

[59] Reinvigorate (2012), Drupal Plugins, Available at:
http://drupal.org/project/reinvigorate. [Accessed 2nd April, 2014]

[60] Laurie, B. and Peter, L. (2002) Apache: The Definitive Guide, 3rd. Ed.
Sebastopol: O’reilly.

[61] Netcraft (2014), March 2014 Web Server Survey, Available at:
http://news.netcraft.com/archives/2014/03/03/march-2014-web-server-
survey.html. [Accessed 2nd April, 2014]

[62] Li, J. and Lu, M., The Performance Optimization and Modeling Analysis
based on the Apache Web Server, International Control Conference, Vol 2,
No 1, pp. 1712-1716, 2013.

[63] Tantithamthavorn, C. and Rungsawang, A., Knowledge Discovery in Web
Traffic Log: A Case Study of Facebook usage in Kasetsart University,
International Joint Conference on Computer Science and Software
Engineering, Vol 3, No 9, pp. 247-252, 2012.

[64] Xiaojun, B., A Remote Monitoring System Based on Web and SNMP,
Industrial Control and Electronics Engineering, Vol 1, No 1, pp. 452-455,
2012.

[65] NVD3.js examples (2014), Scatter Chart, Available at:
http://nvd3.org/examples/scatter.html. [Accessed 2nd April, 2014]

[66] Weka The University of Waikato (2014), Data Mining with Open Source
Machine Learning Software in Java, Available at:
http://www.cs.waikato.ac.nz/ml/weka/. [Accessed 2nd April, 214]

[67] YSlow (2014), Yahoo YSlow for Safari, Available at:
http://developer.yahoo.com/yslow/. [Accessed 2nd April, 214]

[68] Wikipedia (2013), Quadtree, Available at:
http://en.wikipedia.org/wiki/Quadtree. [Accessed 2nd April, 2014]

	

	 	 xiii	

[69] Wikipedia (2013), Voronoi Diagram, Available at:
http://en.wikipedia.org/wiki/Voronoi. [Accessed 2nd April, 2014]

[70] Visual Status (2012), A tool to visualize Apache module mod_status output,
Available at: http://kyyhkynen.net/stuff/visualstatus/. [Accessed 2nd April,
2014]

[71] Shi, H., Tsai, J., Ho, W. and Lee, K., Autoregressive Integrated Moving
Average Model for Long-Term Prediction of Emergency Department Revenue
and Visitor Volume, International Conference on Machine Learning and
Cybernetics, Vol 3, No 1, pp. 979-982, 2011.

[72] Treesinthuros, W., An Empirical Study of E-commerce Marketing Success,
International Conference on ICT and Knowledge Engineering, Vol 1, No 10,
pp. 10-13, 2012.

[73] Wikipedia (2013), FIFO, Available at: http://en.wikipedia.org/wiki/fifo.
[Accessed 2nd May, 2014]

[74] Kurematsu, M. and Fujita, H., A Framework for Integrating a Decision Tree
Learning Algorithm and Cluster Analysis, IEEE International Conference on
Intelligent Software Methodologies, Tools and Techniques, pp. 225-228,
2013.

[75] Wikipedia (2013), Statistical Classification, Available at:
http://en.wikipedia.org/wiki/statistical_classification. [Accessed 2nd May,
2014]

[76] Iqbal, S., Shaheen, M. and Basit, F., A Machine Learning Based Method for
Optimal Journal Classification, International Conference for Internet
Technology and Secured Transactions, pp. 259-264, 2013.

[77] Wikipedia (2014), Display Resolution, Available at:
http://en.wikipedia.org/wiki/Display_resolution. [Accessed 2nd May, 2014]

[78] Voronoi Handout (2005), Computational Geomettry, Available at:
http://www.cs.tufts.edu/comp/163/notes05/voronoi_handout.pdf. [Accessed
2nd May, 2014]

[79] Wikipedia (2014), C4.5 Algorithm, Available at:
http://en.wikipedia.org/wiki/C4.5_algorithm. [Accessed 2nd May, 2014]

	

	 	 xiv	

Appendix A – Data Collection Scripts

A.1 IP and TCP Header

void	 print_ip_header(unsigned	 char*	 Buffer,	 int	 Size)	
{	
	 	 	 	 unsigned	 short	 iphdrlen;	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 struct	 iphdr	 *iph	 =	 (struct	 iphdr	 *)Buffer;	
	 	 	 	 iphdrlen	 =iph-‐>ihl*4;	
	 	 	 	 	 	
	 	 	 	 memset(&source,	 0,	 sizeof(source));	
	 	 	 	 source.sin_addr.s_addr	 =	 iph-‐>saddr;	
	 	 	 	 	 	
	 	 	 	 memset(&dest,	 0,	 sizeof(dest));	
	 	 	 	 dest.sin_addr.s_addr	 =	 iph-‐>daddr;	
	 	 	 	 	 	
	 	 	 	 fprintf(logfile,"	 	 	 |-‐Source	 IP	 	 	 	 	 	 	 	 :	 %s\n",inet_ntoa(source.sin_addr));	
	 	 	 	 fprintf(logfile,"	 	 	 |-‐Destination	 IP	 	 	 :	 %s\n",inet_ntoa(dest.sin_addr));	
}	
	 	
void	 print_tcp_packet(unsigned	 char*	 Buffer,	 int	 Size)	
{	
	 	 	 	 unsigned	 short	 iphdrlen;	
	 	 	 	 	 	
	 	 	 	 struct	 iphdr	 *iph	 =	 (struct	 iphdr	 *)Buffer;	
	 	 	 	 iphdrlen	 =	 iph-‐>ihl*4;	
	 	 	 	 	 	
	 	 	 	 struct	 tcphdr	 *tcph=(struct	 tcphdr*)(Buffer	 +	 iphdrlen);	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 print_ip_header(Buffer,Size);	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 fprintf(logfile,"\n");	
	 	 	 	 fprintf(logfile,"TCP	 Header\n");	
	 	 	 	 fprintf(logfile,"	 	 	 |-‐Source	 Port	 	 	 	 	 	 :	 %u\n",ntohs(tcph-‐>source));	
	 	 	 	 fprintf(logfile,"	 	 	 |-‐Destination	 Port	 :	 %u\n",ntohs(tcph-‐>dest));	
	 	 	 	 	
);	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
A.2 Request Behaviour

<?php	 $handle	 =	 fopen("counter.txt",	 "r");	 	
if(!$handle)	
{	 	

echo	 "could	 not	 open	 the	 file"	 ;	 	
}	 	
else	 {	 $counter	 =	 (int)	 	

fread($handle,20);	 	
	

fclose	 ($handle);	 	
$counter++;	 	
$handle	 =	 fopen("counter.txt",	 "w");	 fwrite($handle,$counter)	 ;	 	
fclose	 ($handle)	 ;	 }	 ?>	

A.3 Simultaneous Request

ip=$1	
export	 ip	
netstat	 -‐n	 |	 awk	 '{if	 ($4	 ==	 ENVIRON["ip"]":80")	 {if	 ($6	 ==	
"ESTABLISHED"){print("-‐i	 "$5)	 }}}'	
	
netstat	 -‐plan	 |	 grep	 :80	 |	 wc	 -‐l	

	

	 	 xv	

	
A.4 Proof of Work

	 <script	 type="text/javascript">	
	 	 	
	 $('body').onload(function(event)	 {	
	 	 	 var	 msg	 =	 $.md5('testing');	
	 	 	 $('#msg').text(msg);	
	 });	
	 	
	 </script>	

A.5 Form Submission Frequency

foreach($_POST["name"]	 as	 $value)	 {	 	
$var	 .=	 count($value);	 	
}	 	
echo	 $var;	 	

$total	 =""	
	 	
if(isset($_POST['cb1'])){	
//count	 it	
$total	 =	 $total	 +	 1;	
}	
if(isset($_POST['cb2'])){	
//	 add	 it	 to	 the	 total	
$total	 =	 $total	 +	 1;	
}	

A.6 Authenticated Session

require	 './includes/bootstrap.inc';	
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);	
if	 (!user_access('administer	 nodes'))	 {	
drupal_access_denied();	
	 	 exit(0);	
}

A.7 Website Heatmap

<!DOCTYPE	 html>	
<html	 lang="en">	
...	
<div	 id="heatmapArea"	 />	
<script	 type="text/javascript"	 src="heatmap.js"></script>	
<script	 type="text/javascript">	
window.onload	 =	 function(){	
	 	
	 	 	 	 //	 heatmap	 configuration	
	 	 	 	 var	 config	 =	 {	
	 	 	 	 	 	 	 	 element:	 document.getElementById("heatmapArea"),	
	 	 	 	 	 	 	 	 radius:	 30,	
	 	 	 	 	 	 	 	 opacity:	 50	
	 	 	 	 };	
	 	 	 	 	
	 	 	 	 //creates	 and	 initializes	 the	 heatmap	
	 	 	 	 var	 heatmap	 =	 h337.create(config);	
	 	
	 	 	 	 //	 let's	 get	 some	 data	
	 	 	 	 var	 data	 =	 {	
	 	 	 	 	 	 	 	 max:	 20,	
	 	 	 	 	 	 	 	 data:	 [

	

	 	 xvi	

	 	 	 	 	 	 	 	 	 	 	 	 {	 x:	 10,	 y:	 20,	 count:	 18	 },	
	 	 	 	 	 	 	 	 	 	 	 	 {	 x:	 25,	 y:	 25,	 count:	 14	 },	
	 	 	 	 	 	 	 	 	 	 	 	 {	 x:	 50,	 y:	 30,	 count:	 20	 }	
	 	 	 	 	 	 	 	 	 	 	 	 //	 ...	
]	
	 	 	 	 };	
	 	
	 	 	 	 heatmap.store.setDataSet(data);	
};	
</script>	
</html>	

A.8 Banner Reaction

<head>	
<script	 src="http://code.jquery.com/jquery-‐latest.js"></script>	
</head>	
<body>	
	
	 	 <h1>Swing	 Motion	 Experiment</h1>	
	 	 	
	 	 <p	 id="msg"></p>	
	 	 <p	 id="arff"></p>	
	
	 <script	 type="text/javascript">	
	 	 	
	 var	 i=0;	
	 	 	 	 	 	 	 	 var	 x=0;	
	 	 	 	 	 	 	 	 var	 y=0;	
	 	 	 	 	 	 	 	 var	 sum	 =	 [];	
	
	 $('body').mousemove(function(event)	 {	
	 	 	 	 	 	 	 	 	 	 x	 =	 event.pageX;	
	 	 	 	 	 	 	 	 	 	 y	 =	 event.pageY;	
	
	 	 	 var	 msg	 =	 'mousemove()	 position	 .	 x	 :	 '	 +	 x	 +	 ',	 y	 :	 '	 +	 y	 +	 '	
[counter]	 :	 '	 +	 i;	
	 	 	 $('#msg').text(msg);	
	
	 	 	 	 	 	 	 	 	 	 sum[i]	 =	 x	 +	 ''	 +	 y;	
	
	 	 	 	 	 	 	 	 	 	 i++;	
	
	 });	
	 	 	
	 $('body').dblclick(function(event)	 {	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 var	 output	 =	 '';	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 for(var	 j	 =	 sum.length	 -‐	 10;	 j	 <	 sum.length;	 j++)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 output	 =	 output	 +	 sum[j]	 +	 ',';	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 }	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 $('#arff').text(output+'?');	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 console.log(output+'?');	
	
	 	 i	 =	 0;	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sum.length	 =	 0;	
	 });	
	 	
	 </script>	
</body>	
</html>	

	

	 	 xvii	

A.9 Screen Resolution

<script	
src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js"></script>	
<script	 type="text/javascript">	
width	 =	 $(window).width();	
height	 =	 $(window).height();	
</script>	

A.10 Browser Fingerprint

<script	 type="text/javascript"	
src="http://www.blangdon.com/js/fingerprint.js"></script>	
<script	 type="text/javascript">	
var	 fingerprint	 =	 new	 Fingerprint().get();	
document.getElementById("fingerprint").innerHTML	 =	 fingerprint;	
</script>	

	

	 	 xviii	

Appendix B – Training and Test Dataset (ARFF)

B.1 Traffic Training Dataset

@relation	 discriminate	
	
@attribute	 'request'	 	 	 numeric	
@attribute	 'pow'	 	 	 	 	 	 	 numeric	
@attribute	 'freq'	 	 	 	 	 	 numeric	
@attribute	 'auth'	 	 	 	 	 	 numeric	
@attribute	 'heatmap'	 	 	 numeric	
@attribute	 'banner'	 	 	 	 numeric	
@attribute	 'screen'	 	 	 	 numeric	
@attribute	 'fp'	 	 	 	 	 	 	 	 numeric	
@attribute	 'class'	 	 	 	 	 {0x7000,	 0x7001,	 0x7003}	
	
@data	
0.86,0.15,0.78,0.11,0.11,0.27,0.28,0.16,0x7000	
0.86,0.19,0.85,0.10,0.11,0.11,0.18,0.15,0x7000	
0.84,0.18,0.77,0.10,0.11,0.13,0.18,0.10,0x7000	
0.75,0.16,0.67,0.11,0.10,0.34,0.10,0.16,0x7000	
0.86,0.14,0.87,0.10,0.10,0.32,0.22,0.19,0x7000	
0.87,0.13,0.83,0.10,0.10,0.27,0.27,0.13,0x7000	
0.78,0.14,0.73,0.11,0.10,0.25,0.12,0.19,0x7000	
0.79,0.13,0.62,0.10,0.10,0.27,0.24,0.13,0x7000	
0.81,0.10,0.67,0.10,0.11,0.26,0.17,0.19,0x7000	
0.72,0.11,0.80,0.11,0.10,0.17,0.22,0.15,0x7000	
0.73,0.10,0.76,0.11,0.11,0.19,0.27,0.19,0x7000	
0.84,0.18,0.66,0.10,0.10,0.17,0.19,0.15,0x7000	
0.75,0.19,0.86,0.11,0.10,0.38,0.11,0.18,0x7000	
0.70,0.16,0.84,0.11,0.11,0.14,0.24,0.14,0x7000	
0.81,0.14,0.74,0.10,0.10,0.35,0.16,0.17,0x7000	
0.82,0.16,0.70,0.11,0.10,0.37,0.21,0.14,0x7000	
0.73,0.14,0.83,0.10,0.10,0.28,0.13,0.17,0x7000	
0.88,0.14,0.88,0.11,0.11,0.34,0.26,0.13,0x7000	
0.79,0.12,0.78,0.10,0.10,0.25,0.11,0.19,0x7000	
0.80,0.11,0.67,0.11,0.11,0.27,0.16,0.13,0x7000	
0.71,0.19,0.87,0.10,0.10,0.18,0.28,0.19,0x7000	
0.73,0.18,0.67,0.10,0.11,0.37,0.12,0.18,0x7000	
0.84,0.16,0.87,0.11,0.10,0.35,0.17,0.11,0x7000	
0.79,0.16,0.85,0.10,0.10,0.34,0.10,0.17,0x7000	
0.70,0.14,0.75,0.11,0.11,0.32,0.22,0.10,0x7000	
0.74,0.15,0.65,0.10,0.11,0.23,0.14,0.16,0x7000	
0.85,0.13,0.78,0.11,0.10,0.21,0.26,0.19,0x7000	
0.73,0.12,0.74,0.10,0.10,0.23,0.11,0.16,0x7000	
0.77,0.13,0.64,0.11,0.10,0.14,0.16,0.19,0x7000	
0.85,0.12,0.60,0.10,0.10,0.16,0.28,0.16,0x7000	
0.76,0.10,0.80,0.10,0.11,0.37,0.13,0.19,0x7000	
0.71,0.10,0.78,0.10,0.11,0.13,0.26,0.15,0x7000	
0.82,0.18,0.68,0.11,0.10,0.34,0.18,0.18,0x7000	
0.83,0.17,0.87,0.10,0.10,0.36,0.23,0.15,0x7000	
0.74,0.15,0.77,0.11,0.10,0.34,0.15,0.18,0x7000	
0.89,0.15,0.75,0.11,0.11,0.33,0.28,0.14,0x7000	
0.80,0.13,0.65,0.10,0.10,0.24,0.20,0.10,0x7000	
0.81,0.12,0.61,0.10,0.10,0.26,0.25,0.14,0x7000	
0.72,0.13,0.81,0.11,0.10,0.24,0.17,0.10,0x7000	
0.74,0.10,0.79,0.11,0.11,0.23,0.10,0.13,0x7000	
0.78,0.11,0.69,0.10,0.11,0.14,0.15,0.19,0x7000	
0.86,0.10,0.65,0.11,0.11,0.16,0.27,0.13,0x7000	
0.70,0.18,0.78,0.10,0.10,0.14,0.12,0.19,0x7000	
0.78,0.17,0.74,0.10,0.10,0.39,0.17,0.13,0x7000	
0.89,0.18,0.64,0.11,0.10,0.37,0.29,0.19,0x7000	
0.84,0.15,0.62,0.11,0.11,0.36,0.22,0.15,0x7000	

	

	 	 xix	

0.75,0.13,0.82,0.10,0.10,0.34,0.14,0.18,0x7000	
0.76,0.15,0.78,0.11,0.11,0.36,0.19,0.12,0x7000	
0.87,0.13,0.68,0.10,0.10,0.27,0.11,0.18,0x7000	
0.82,0.13,0.66,0.11,0.11,0.26,0.24,0.14,0x7000	
0.73,0.11,0.86,0.10,0.11,0.24,0.16,0.17,0x7000	
0.74,0.10,0.75,0.11,0.11,0.26,0.21,0.14,0x7000	
0.85,0.18,0.65,0.10,0.10,0.17,0.26,0.17,0x7000	
0.87,0.18,0.63,0.10,0.10,0.16,0.19,0.13,0x7000	
0.88,0.17,0.89,0.11,0.10,0.18,0.11,0.17,0x7000	
0.79,0.15,0.79,0.11,0.11,0.16,0.16,0.13,0x7000	
0.83,0.16,0.69,0.10,0.11,0.37,0.28,0.16,0x7000	
0.71,0.15,0.65,0.11,0.11,0.39,0.13,0.13,0x7000	
0.86,0.12,0.63,0.11,0.10,0.38,0.26,0.19,0x7000	
0.77,0.13,0.83,0.10,0.10,0.36,0.18,0.12,0x7000	
0.78,0.12,0.72,0.11,0.10,0.38,0.23,0.19,0x7000	
0.89,0.10,0.62,0.11,0.11,0.29,0.15,0.12,0x7000	
0.84,0.10,0.60,0.11,0.10,0.28,0.28,0.18,0x7000	
0.75,0.18,0.80,0.10,0.10,0.26,0.20,0.11,0x7000	
0.83,0.17,0.76,0.11,0.10,0.28,0.25,0.18,0x7000	
0.87,0.18,0.66,0.10,0.10,0.19,0.10,0.11,0x7000	
0.75,0.17,0.62,0.11,0.10,0.21,0.22,0.18,0x7000	
0.86,0.15,0.75,0.11,0.11,0.12,0.27,0.11,0x7000	
0.81,0.15,0.80,0.11,0.10,0.18,0.20,0.17,0x7000	
0.82,0.14,0.69,0.10,0.11,0.20,0.25,0.11,0x7000	
0.73,0.12,0.89,0.11,0.10,0.11,0.17,0.17,0x7000	
0.84,0.13,0.79,0.10,0.11,0.39,0.29,0.10,0x7000	
0.79,0.10,0.77,0.10,0.11,0.38,0.22,0.16,0x7000	
0.70,0.18,0.67,0.11,0.10,0.29,0.14,0.12,0x7000	
0.71,0.10,0.63,0.11,0.10,0.31,0.19,0.16,0x7000	
0.82,0.18,0.83,0.10,0.10,0.29,0.11,0.12,0x7000	
0.73,0.16,0.73,0.11,0.11,0.20,0.16,0.15,0x7000	
0.84,0.17,0.86,0.10,0.11,0.18,0.28,0.11,0x7000	
0.79,0.14,0.61,0.10,0.10,0.17,0.21,0.14,0x7000	
0.70,0.12,0.74,0.11,0.11,0.15,0.13,0.10,0x7000	
0.81,0.13,0.64,0.10,0.11,0.36,0.25,0.13,0x7000	
0.82,0.12,0.60,0.10,0.11,0.38,0.10,0.10,0x7000	
0.73,0.10,0.80,0.11,0.10,0.29,0.15,0.13,0x7000	
0.84,0.11,0.70,0.10,0.10,0.27,0.27,0.19,0x7000	
0.79,0.18,0.68,0.10,0.11,0.26,0.20,0.15,0x7000	
0.70,0.19,0.88,0.11,0.10,0.24,0.12,0.18,0x7000	
0.81,0.17,0.78,0.10,0.10,0.15,0.24,0.14,0x7000	
0.82,0.16,0.67,0.11,0.10,0.17,0.29,0.18,0x7000	
0.73,0.14,0.87,0.11,0.10,0.38,0.21,0.11,0x7000	
0.74,0.16,0.83,0.10,0.10,0.10,0.26,0.18,0x7000	
0.79,0.12,0.75,0.10,0.10,0.35,0.19,0.13,0x7000	
0.70,0.13,0.65,0.11,0.10,0.33,0.11,0.16,0x7000	
0.71,0.12,0.61,0.10,0.10,0.35,0.16,0.13,0x7000	
0.82,0.10,0.81,0.11,0.11,0.26,0.28,0.16,0x7000	
0.73,0.18,0.71,0.10,0.11,0.24,0.20,0.12,0x7000	
0.74,0.10,0.60,0.10,0.11,0.19,0.25,0.16,0x7000	
0.89,0.17,0.88,0.10,0.10,0.25,0.18,0.12,0x7000	
0.76,0.16,0.70,0.10,0.10,0.38,0.22,0.15,0x7000	
0.74,0.15,0.62,0.10,0.10,0.33,0.22,0.10,0x7000	
0.82,0.14,0.88,0.11,0.10,0.35,0.27,0.14,0x7000	
0.76,0.14,0.72,0.10,0.11,0.19,0.19,0.11,0x7001	
0.87,0.12,0.62,0.11,0.11,0.10,0.11,0.18,0x7001	
0.88,0.11,0.88,0.10,0.11,0.12,0.16,0.15,0x7001	
0.79,0.12,0.71,0.11,0.10,0.13,0.28,0.10,0x7001	
0.70,0.10,0.61,0.11,0.10,0.11,0.20,0.10,0x7001	
0.85,0.17,0.66,0.11,0.11,0.10,0.13,0.16,0x7001	
0.76,0.18,0.79,0.10,0.10,0.18,0.18,0.11,0x7001	
0.77,0.17,0.75,0.11,0.11,0.13,0.10,0.15,0x7001	
0.88,0.15,0.65,0.10,0.10,0.11,0.15,0.15,0x7001	
0.89,0.14,0.61,0.11,0.10,0.13,0.20,0.19,0x7001	
0.80,0.15,0.81,0.10,0.10,0.14,0.12,0.19,0x7001	
0.82,0.12,0.79,0.11,0.11,0.10,0.25,0.13,0x7001	

	

	 	 xx	

0.86,0.13,0.69,0.10,0.10,0.11,0.17,0.20,0x7001	
0.74,0.12,0.88,0.11,0.11,0.13,0.22,0.17,0x7001	
0.85,0.10,0.78,0.10,0.10,0.14,0.14,0.12,0x7001	
0.80,0.10,0.76,0.10,0.11,0.10,0.27,0.18,0x7001	
0.71,0.18,0.66,0.11,0.11,0.11,0.19,0.13,0x7001	
0.72,0.17,0.62,0.11,0.11,0.13,0.24,0.10,0x7001	
0.83,0.18,0.82,0.10,0.10,0.14,0.29,0.17,0x7001	
0.74,0.16,0.72,0.11,0.10,0.12,0.21,0.17,0x7001	
0.89,0.13,0.70,0.11,0.11,0.11,0.14,0.11,0x7001	
0.80,0.14,0.60,0.10,0.10,0.19,0.26,0.18,0x7001	
0.71,0.12,0.80,0.11,0.10,0.10,0.18,0.18,0x7001	
0.72,0.11,0.69,0.10,0.10,0.12,0.23,0.10,0x7001	
0.83,0.12,0.89,0.10,0.11,0.10,0.15,0.10,0x7001	
0.74,0.10,0.79,0.11,0.11,0.11,0.20,0.17,0x7001	
0.75,0.19,0.75,0.10,0.11,0.13,0.25,0.21,0x7001	
0.80,0.18,0.67,0.10,0.11,0.18,0.25,0.18,0x7001	
0.71,0.16,0.87,0.11,0.11,0.19,0.17,0.18,0x7001	
0.72,0.15,0.83,0.10,0.11,0.11,0.22,0.10,0x7001	
0.83,0.16,0.66,0.11,0.11,0.19,0.14,0.10,0x7001	
0.87,0.14,0.86,0.10,0.10,0.10,0.19,0.17,0x7001	
0.75,0.13,0.82,0.10,0.10,0.12,0.24,0.14,0x7001	
0.86,0.14,0.72,0.11,0.10,0.13,0.16,0.21,0x7001	
0.81,0.11,0.70,0.11,0.11,0.19,0.29,0.15,0x7001	
0.72,0.19,0.60,0.10,0.10,0.10,0.21,0.10,0x7001	
0.73,0.11,0.86,0.11,0.11,0.12,0.26,0.19,0x7001	
0.84,0.19,0.69,0.10,0.10,0.10,0.18,0.14,0x7001	
0.75,0.17,0.89,0.10,0.11,0.11,0.10,0.14,0x7001	
0.70,0.17,0.64,0.10,0.11,0.10,0.23,0.20,0x7001	
0.81,0.15,0.77,0.11,0.10,0.18,0.28,0.15,0x7001	
0.72,0.13,0.67,0.10,0.10,0.19,0.20,0.15,0x7001	
0.76,0.14,0.87,0.11,0.11,0.17,0.12,0.10,0x7001	
0.87,0.12,0.77,0.10,0.10,0.18,0.24,0.10,0x7001	
0.75,0.11,0.73,0.11,0.11,0.10,0.29,0.14,0x7001	
0.79,0.12,0.63,0.10,0.10,0.18,0.14,0.21,0x7001	
0.70,0.10,0.76,0.10,0.10,0.19,0.26,0.21,0x7001	
0.72,0.17,0.81,0.10,0.11,0.15,0.19,0.15,0x7001	
0.76,0.18,0.64,0.11,0.10,0.16,0.11,0.10,0x7001	
0.84,0.17,0.60,0.10,0.10,0.18,0.16,0.19,0x7001	
0.75,0.15,0.80,0.11,0.10,0.19,0.28,0.14,0x7001	
0.79,0.16,0.70,0.10,0.11,0.17,0.13,0.14,0x7001	
0.70,0.14,0.60,0.11,0.11,0.18,0.25,0.21,0x7001	
0.72,0.14,0.88,0.10,0.10,0.14,0.18,0.15,0x7001	
0.76,0.12,0.78,0.11,0.11,0.15,0.10,0.10,0x7001	
0.84,0.11,0.74,0.10,0.10,0.17,0.15,0.19,0x7001	
0.88,0.19,0.87,0.11,0.11,0.18,0.27,0.14,0x7001	
0.79,0.10,0.77,0.10,0.10,0.16,0.19,0.14,0x7001	
0.81,0.17,0.75,0.10,0.10,0.15,0.12,0.20,0x7001	
0.85,0.18,0.65,0.11,0.11,0.13,0.17,0.15,0x7001	
0.73,0.17,0.61,0.11,0.11,0.15,0.22,0.12,0x7001	
0.84,0.15,0.81,0.10,0.11,0.16,0.14,0.19,0x7001	
0.88,0.16,0.71,0.11,0.10,0.14,0.26,0.19,0x7001	
0.76,0.15,0.60,0.10,0.10,0.19,0.11,0.11,0x7001	
0.81,0.11,0.89,0.10,0.11,0.14,0.11,0.20,0x7001	
0.82,0.13,0.78,0.11,0.11,0.16,0.16,0.12,0x7001	
0.73,0.11,0.68,0.10,0.10,0.14,0.28,0.12,0x7001	
0.74,0.10,0.64,0.10,0.11,0.19,0.13,0.16,0x7001	
0.85,0.18,0.84,0.11,0.10,0.17,0.18,0.16,0x7001	
0.80,0.18,0.82,0.11,0.11,0.16,0.11,0.17,0x7001	
0.71,0.16,0.72,0.10,0.11,0.14,0.23,0.17,0x7001	
0.72,0.15,0.68,0.11,0.11,0.16,0.28,0.21,0x7001	
0.83,0.16,0.88,0.10,0.10,0.17,0.20,0.21,0x7001	
0.78,0.13,0.86,0.11,0.10,0.16,0.13,0.15,0x7001	
0.89,0.14,0.76,0.10,0.11,0.14,0.25,0.10,0x7001	
0.77,0.13,0.65,0.11,0.11,0.16,0.10,0.19,0x7001	
0.81,0.11,0.85,0.10,0.11,0.17,0.22,0.14,0x7001	
0.72,0.19,0.75,0.11,0.10,0.15,0.27,0.14,0x7001	

	

	 	 xxi	

0.74,0.19,0.73,0.11,0.11,0.14,0.27,0.15,0x7001	
0.78,0.17,0.63,0.10,0.11,0.12,0.12,0.15,0x7001	
0.86,0.16,0.89,0.10,0.11,0.17,0.17,0.19,0x7001	
0.87,0.18,0.78,0.11,0.11,0.19,0.29,0.16,0x7001	
0.78,0.16,0.68,0.10,0.11,0.17,0.14,0.11,0x7001	
0.73,0.16,0.73,0.10,0.10,0.16,0.27,0.17,0x7001	
0.84,0.14,0.86,0.11,0.11,0.17,0.19,0.17,0x7001	
0.75,0.12,0.76,0.10,0.11,0.15,0.11,0.12,0x7001	
0.76,0.11,0.72,0.10,0.11,0.17,0.16,0.16,0x7001	
0.71,0.11,0.70,0.10,0.10,0.16,0.29,0.10,0x7001	
0.82,0.19,0.60,0.11,0.10,0.17,0.21,0.10,0x7001	
0.73,0.10,0.80,0.10,0.11,0.15,0.26,0.17,0x7001	
0.74,0.19,0.76,0.11,0.11,0.17,0.18,0.14,0x7001	
0.85,0.17,0.89,0.10,0.11,0.18,0.23,0.21,0x7001	
0.73,0.16,0.85,0.10,0.11,0.10,0.28,0.18,0x7001	
0.88,0.16,0.83,0.10,0.10,0.19,0.21,0.19,0x7001	
0.82,0.13,0.67,0.11,0.11,0.13,0.20,0.10,0x7001	
0.70,0.12,0.63,0.10,0.11,0.18,0.25,0.14,0x7001	
0.74,0.13,0.83,0.11,0.10,0.16,0.17,0.14,0x7001	
0.82,0.12,0.79,0.10,0.11,0.18,0.22,0.18,0x7001	
0.86,0.10,0.69,0.11,0.10,0.19,0.27,0.18,0x7001	
0.88,0.10,0.67,0.10,0.11,0.18,0.27,0.12,0x7001	
0.1,0.0,0.1,0.1,0.1,0.0,0.0,0.1,0x7003	
0.1,0.1,0.0,0.0,0.0,0.0,0.0,0.1,0x7003	
0.1,0.0,0.0,0.1,0.0,0.1,0.1,0.1,0x7003	
0.1,0.1,0.0,0.0,0.1,0.1,0.1,0.0,0x7003	
0.0,0.0,0.0,0.1,0.1,0.0,0.1,0.0,0x7003	
0.0,0.0,0.0,0.1,0.0,0.0,0.0,0.0,0x7003	
0.1,0.0,0.0,0.1,0.0,0.1,0.1,0.1,0x7003	
0.0,0.1,0.0,0.0,0.0,0.1,0.0,0.0,0x7003	
0.1,0.0,0.1,0.1,0.0,0.0,0.0,0.1,0x7003	
0.0,0.1,0.0,0.1,0.1,0.0,0.1,0.1,0x7003	

B.2 Traffic Test Dataset

@relation	 discriminate	
	
@attribute	 'request'	 	 	 numeric	
@attribute	 'pow'	 	 	 	 	 	 	 numeric	
@attribute	 'freq'	 	 	 	 	 	 numeric	
@attribute	 'auth'	 	 	 	 	 	 numeric	
@attribute	 'heatmap'	 	 	 numeric	
@attribute	 'banner'	 	 	 	 numeric	
@attribute	 'screen'	 	 	 	 numeric	
@attribute	 'fp'	 	 	 	 	 	 	 	 numeric	
@attribute	 'class'	 	 	 	 	 {0x7000,	 0x7001,	 0x7003}	
	
@data	
0.38,0.43,0.12,0.40,0.50,0.51,0.40,0.48,?	
0.21,0.58,0.11,0.47,0.54,0.68,0.44,0.40,?	
0.13,0.49,0.13,0.43,0.53,0.64,0.57,0.49,?	
0.12,0.53,0.15,0.52,0.52,0.60,0.57,0.45,?	
0.11,0.57,0.17,0.48,0.51,0.56,0.50,0.41,?	
0.17,0.50,0.13,0.46,0.56,0.58,0.52,0.43,?	
0.37,0.41,0.11,0.53,0.54,0.64,0.48,0.44,?	
0.36,0.45,0.13,0.49,0.53,0.60,0.48,0.43,?	
0.12,0.58,0.19,0.47,0.51,0.62,0.43,0.45,?	
0.32,0.49,0.17,0.54,0.69,0.61,0.46,0.46,?	
0.81,0.13,0.69,0.11,0.10,0.17,0.16,0.20,?	
0.87,0.16,0.85,0.11,0.11,0.16,0.11,0.14,?	
0.89,0.17,0.87,0.11,0.10,0.15,0.24,0.13,?	
0.82,0.10,0.73,0.11,0.11,0.14,0.19,0.19,?	
0.82,0.11,0.61,0.10,0.11,0.13,0.22,0.10,?	
0.84,0.15,0.63,0.10,0.10,0.19,0.22,0.16,?	

	

	 	 xxii	

B.3 Banner Training Dataset

@relation	 swing	
	
@attribute	 'xy1'	 	 	 numeric	
@attribute	 'xy2'	 	 	 numeric	
@attribute	 'xy3'	 	 	 numeric	
@attribute	 'xy4'	 	 	 numeric	
@attribute	 'xy5'	 	 	 numeric	
@attribute	 'xy6'	 	 	 numeric	
@attribute	 'xy7'	 	 	 numeric	
@attribute	 'xy8'	 	 	 numeric	
@attribute	 'xy9'	 	 	 numeric	
@attribute	 'xy10'	 	 numeric	
@attribute	 'class'	 {true,	 false}	
	
@data	
	
33166,33166,33066,33066,32966,32966,32967,32967,32867,32867,true	
4232569,32369,32369,32269,32269,32169,32169,32169,31969,31969,true	
4232071,32071,31971,31971,31771,31771,31671,31671,31571,31571,true	
4233579,33579,33079,33079,32878,32878,32678,32678,32678,32678,true	
4232878,32878,32778,32778,32678,32678,32278,32278,32078,32078,true	
4231779,31779,31679,31679,31579,31579,31479,31479,31279,31279,true	
4233584,33584,33384,33384,33284,33284,33184,33184,33084,33084,true	
4232987,32987,32786,32786,32686,32686,32486,32486,32385,32385,true	
4231684,31684,31784,31784,31884,31884,32084,32084,32084,32084,true	
4231581,31581,31481,31481,31482,31482,31382,31382,31185,31185,true	
4231472,31472,31473,31473,31475,31475,31476,31476,31377,31377,true	
4233082,33082,33082,33082,32981,32981,32780,32780,32680,32680,true	
4233077,33077,32977,32977,32976,32976,32775,32775,32575,32575,true	
4233380,33380,33280,33280,33180,33180,33079,33079,32979,32979,true	
4232889,32889,32789,32789,32788,32788,32687,32687,32686,32686,true	
4232389,32389,32389,32389,32288,32288,32188,32188,32087,32087,true	
4231790,31790,31488,31488,31087,31087,30785,30785,30784,30784,true	
4231387,31387,31386,31386,31385,31385,31384,31384,31383,31383,true	
4231782,31782,31681,31681,31581,31581,31580,31580,31479,31479,true	
4230976,30976,30975,30975,31175,31175,31275,31275,31274,31274,true	
4232277,32277,32276,32276,32075,32075,31974,31974,31973,31973,true	
4233089,33089,33087,33087,33086,33086,33085,33085,33084,33084,true	
4233480,33379,33379,33278,33278,33277,33277,33077,33077,32977,true	
4232971,32971,32973,32973,32874,32874,32874,32874,32875,32875,true	
4232682,32682,32681,32681,32581,32581,32581,32581,32481,32481,true	
4232681,32681,32481,32481,32382,32382,32284,32284,31887,31887,true	
4232584,32584,32583,32583,32483,32483,32383,32383,32183,32183,true	
4232181,32181,32178,32178,32176,32176,32175,32175,32174,32174,true	
4232479,32479,32478,32478,32477,32477,32376,32376,32375,32375,true	
4232775,32775,32675,32675,32575,32575,32574,32574,32474,32474,true	
4231485,31485,31385,31385,31285,31285,31184,31184,31184,31184,true	
4231286,31286,31282,31282,31281,31281,31280,31280,31279,31279,true	
4231480,31480,31479,31479,31477,31477,31376,31376,31375,31375,true	
4231475,31475,31374,31374,31374,31374,31273,31273,31272,31272,true	
4231572,31572,31671,31671,31770,31770,31870,31870,32070,32070,true	
4232780,32780,32778,32778,32778,32778,32577,32577,32575,32575,true	
4232391,32391,32491,32491,32490,32490,32690,32690,32689,32689,true	
4233085,33085,33084,33084,33083,33083,33181,33181,33180,33180,true	
4233177,33177,33077,33077,32977,32977,32876,32876,32875,32875,true	
4231590,31590,31690,31690,31689,31689,31789,31789,31887,31887,true	
4231486,31486,31783,31783,31882,31882,32082,32082,32081,32081,true	
4231475,31475,31575,31575,31775,31775,31875,31875,31975,31975,true	
4231674,31674,31773,31773,31873,31873,31972,31972,32072,32072,true	
4231887,31887,31885,31885,31883,31883,31882,31882,31782,31782,true	
4231775,31775,31576,31576,31376,31376,31377,31377,31278,31278,true	
4231279,31279,31376,31376,31374,31374,31373,31373,31473,31473,true	
4230968,30968,30970,30970,31070,31170,31270,31270,31370,31370,true	

	

	 	 xxiii	

4230485,30485,30585,30585,30685,30685,30784,30784,30883,30883,true	
4230999,30999,31295,31295,31689,31689,32083,32083,32379,32379,true	
4231892,31892,31990,31990,31989,31989,31987,31987,32086,32086,true	
4232588,32588,32587,32587,32486,32486,32385,32385,32285,32285,true	
4232688,32688,32585,32585,32582,32582,32481,32481,32380,32380,true	
4232274,32274,32175,32175,32176,32176,32177,32177,32078,32078,true	
4233182,33182,33081,33081,33080,33080,32980,32980,32879,32879,true	
4231571,31571,31472,31472,31473,31473,31474,31474,31475,31475,true	
4232576,32576,32474,32474,32373,32373,32272,32272,32171,32171,true	
4231190,31390,31390,31390,31390,31389,31389,31388,31388,31487,true	
4231095,31095,31195,31195,31394,31394,31592,31592,31691,31691,true	
4232292,32691,32691,32790,32790,32789,32789,32788,32788,32488,true	
4231781,31781,31981,31981,31980,31980,32080,32080,32380,32380,true	
4230676,30777,30777,30877,30877,30978,30978,31178,31178,31278,true	
4230975,31075,31075,31174,31174,31274,31274,31373,31373,31473,true	
4232179,32179,32478,32478,32578,32578,32577,32577,32576,32576,true	
4231577,31577,31677,31677,31777,31777,31877,31877,31977,31978,true	
4231784,31784,31984,31984,31984,31984,32084,32084,32284,32284,true	
4233375,33475,33475,33476,33376,33376,33277,33277,33177,33177,true	
4230979,31279,31279,31579,31579,31880,31880,31980,31980,32080,true	
4231667,31668,31668,31769,31769,31869,31869,31969,31970,32070,true	
4231876,31976,31976,32076,32076,32076,32076,32077,32177,32277,true	
4232068,32069,32069,32070,32070,32071,32071,32072,32072,32172,true	
37868,37868,37768,37768,37569,37569,37369,37369,37270,37270,false	
4235083,35083,34983,34983,34883,34883,34783,34783,34784,34784,false	
4235477,35477,35376,35376,35276,35276,34876,34876,34376,34376,false	
4241669,41669,40173,40173,38777,38777,37979,37979,37681,37681,false	
4236188,36188,36187,36187,36287,36287,36387,36387,36286,36286,false	
4236867,36867,36767,36767,36567,36567,36467,36467,36267,36267,false	
4236591,36591,36291,36291,35990,35990,35690,35690,35590,35590,false	
42366114,366114,366112,366112,366110,366110,364108,364108,362107,362107,false	
4235786,35686,35686,35485,35485,35283,35283,35282,35282,35382,false	
42330102,330102,327101,327101,325100,325100,32599,32599,32499,32499,false	
42320101,320101,319101,319101,318100,318100,315100,315100,313100,313100,false	
42318100,318100,315100,315100,314100,314100,313100,313100,311100,311100,false	
42330100,330100,329100,329100,327100,327100,326100,326100,324100,324100,false	
4229282,29282,29281,29281,29381,29381,29481,29481,29781,29781,false	
4230382,30382,30282,30282,30081,30081,29580,29580,29279,29279,false	
4230078,30078,30077,30077,29977,29977,29976,29976,29876,29876,false	
42325115,325115,325114,325114,324113,324113,323112,323112,322112,322112,false	
42323124,323124,322123,322123,321123,321123,321122,321122,320121,320121,false	
42369147,369147,368147,368147,364145,364145,359142,359142,354141,354141,false	
4235097,35097,35095,35095,35092,35092,35091,35091,35190,35190,false	
4234656,34656,34657,34657,34757,34757,34657,34657,34557,34557,false	
4233152,33152,33353,33353,33453,33453,33553,33553,33653,33653,false	
4232753,32753,32653,32653,32453,32453,32353,32353,32252,32252,false	
42358119,358119,358116,358116,357115,357115,356114,356114,355113,355113,false	
42351130,351130,351129,351129,351128,351128,351125,351125,351124,351124,false	
42319132,319132,319131,319131,320130,320130,321129,322129,322130,322130,false	
42317135,317135,317134,317134,317131,317131,317128,317128,316126,316126,false	
42302136,302136,302134,302134,303134,303134,304130,304130,305127,305127,false	
42303123,303123,304120,304120,304118,304118,304117,304117,303117,303117,false	
42288103,288100,288100,28899,28899,28898,28898,28896,28896,28795,false	
4228585,28585,28583,28583,28582,28582,28580,28580,28477,28477,false	
4224587,24587,24586,24586,24585,24585,24584,24584,24582,24582,false	
4226291,26291,26390,26390,26590,26590,26690,26690,26889,26889,false	
4226792,27187,27187,27285,27285,27284,27284,27283,27283,27383,false	
4223798,23798,23999,23999,243101,243101,247102,247102,249102,249102,false	
42235136,237136,237136,239137,239137,240137,240137,241137,241137,241137,false	
4224151,24351,24351,24651,24651,24852,24852,24952,25052,25052,false	
4228742,28742,28842,28842,28942,28942,29042,29042,29142,29142,false	
42112120,112120,108118,108118,105116,105116,103116,103116,104116,105116,false	
42224137,224137,210136,210136,190136,190136,177135,177135,176134,176134,false	
4210186,10186,10084,10084,9783,9783,9681,9681,9581,9581,false	
4217086,17086,17085,17085,17084,17084,17083,17083,17183,17383,false	
42324143,324143,320143,320143,318143,318143,317143,317143,316143,316143,false	

	

	 	 xxiv	

42332181,332181,323180,323180,317180,317180,310179,310179,308178,308178,false	
42199182,199182,194177,194177,192173,192173,192168,192168,192167,192167,false	
4250174,42172,42172,32171,32171,27170,27170,28170,30170,31170,false	
42335254,335254,334251,334251,327249,327249,313245,313245,307242,307242,false	
42186203,181199,181199,177197,177197,176195,176195,175195,175195,174195,false	
42166251,166251,165250,165250,163248,163248,162247,162247,161246,161246,false	
4263252,63252,61245,61245,61241,61241,61239,61239,60239,60239,false	
42193111,193111,167100,167100,15592,15592,14786,14786,14483,14483,false	
42330124,330124,324123,324123,321123,321123,317121,317121,311119,311119,false	
42312188,312188,314181,314181,314173,314173,314167,314167,314164,314164,false	

B.4 Banner Test Dataset

@relation	 swing	
	
@attribute	 'xy1'	 	 	 numeric	
@attribute	 'xy2'	 	 	 numeric	
@attribute	 'xy3'	 	 	 numeric	
@attribute	 'xy4'	 	 	 numeric	
@attribute	 'xy5'	 	 	 numeric	
@attribute	 'xy6'	 	 	 numeric	
@attribute	 'xy7'	 	 	 numeric	
@attribute	 'xy8'	 	 	 numeric	
@attribute	 'xy9'	 	 	 numeric	
@attribute	 'xy10'	 	 numeric	
@attribute	 'class'	 {true,	 false}	
	
@data	
	
31481,31481,31381,31381,31281,31281,31183,31183,31084,31084,?	
31676,31676,32077,32077,32278,32278,32279,32279,32079,32079,?	
32779,32779,32579,32579,32479,32479,32379,32379,32279,32279,?	
32779,32779,32579,32579,32479,32479,32379,32379,32279,32279,?	
32476,32476,32176,32176,31876,31876,31776,31776,31677,31677,?	
32083,32083,32082,32082,32081,32081,32080,32080,32078,32078,?	
31096,31096,31194,31194,31488,31488,31685,31685,31783,31783,?	
33073,33073,32973,32973,32873,32873,32773,32773,32673,32673,?	
31276,31276,31376,31376,31477,31477,31577,31577,31677,31677,?	
33082,33082,32982,32982,32882,32882,32681,32681,32581,32581,?	

B.5 Tree Visualizer for Traffic Training Dataset

	

	 	 xxv	

Appendix C – Website Pages

C.1 Landing Page

	

	 	 xxvi	

C.2 Product Detail Page

C.3 Login Page

	

	 	 xxvii	

C.4 Category Page

	

	 	 xxviii	

C.5 Advertisement Page

	

	

	

	

	

	

	

	

	

	

	

	 	 xxix	

Appendix D – Attack Simulation CLI

D.1 Slowloris

$./slowloris.pl	 -‐dns	 $url	 -‐port	 80	 -‐timeout	 90	 -‐num	 500	 -‐tcpto	 5	 –httpready	

D.2 Slowhttptest

$./slowhttptest	 -‐c	 1000	 -‐X	 -‐g	 -‐o	 slow_read_stats	 -‐r	 1000	 -‐w	 1	 -‐y	 2	 -‐n	 5	 -‐z	 32	

-‐k	 3	 -‐u	 $url	 -‐p	 3	 -‐l	 300	

D.3 R-u-d-y

$./r-‐u-‐dead-‐yet.py	 $url	

[parameters]	

URL:	 http://www.soundbooze.com/path-‐to-‐post-‐url.php	

number_of_connections:	 500	

attack_parameter:	 login	

proxy_addr:	 ""	

proxy_port:	 0	

D.4 THC SSL DOS

$./thc-‐ssl-‐dos	 $ip	 $port

D.5 ApacheKiller

$./killapache.pl	 $url	 $numforks

D.6 PhantomJS

var	 page	 =	 require('webpage').create();	
	
page.onConsoleMessage	 =	 function(msg)	 {	
	 	 console.log('page	 message:	 '	 +	 msg);	
};	

	
page.open("http://soundbooze.com",	 function(status)	 {	
	 	 if	 (status	 !==	 "success")	 {	
	 	 	 	 console.error("error	 loading	 test	 page	 "	 +	 testHtml);	
	 	 	 	 phantom.exit();	
	 	 }	
	 	 var	 i	 =	 0;	
	 	 var	 interval	 =	 setInterval(function()	 {	
	 	 	 	 if	 (i	 ===	 10)	 {	
	 	 	 	 	 	 clearInterval(interval);	
	 	 	 	 	 	 phantom.exit();	
	 	 	 	 }	
	 	 	 	 var	 x,	 y;	
	 	 	 	 x	 =	 y	 =	 i	 *	 10;	
	 	 	 	 console.log('sending	 mousemove	 event	 to	 '	 +	 x	 +	 ',	 '	 +	 y);	
	 	 	 	 page.sendEvent('mousemove',	 i	 *	 10,	 i	 *	 10);	
	 	 	 	 page.sendEvent('click',	 100,100);	
	 	 	 	 i++;	
	 	 },	 500);	

});	

	

	 	 xxx	

D.7 Slowloris Output	

Welcome	 to	 Slowloris	 -‐	 the	 low	 bandwidth,	 yet	 greedy	 and	 poisonous	 HTTP	 client	
Multithreading	 enabled.	
Connecting	 to	 soundbooze.com:80	 every	 90	 seconds	 with	 500	 sockets:	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Building	 sockets.	
	 	 Sending	 data.	
Current	 stats:	 Slowloris	 has	 now	 sent	 1193	 packets	 successfully.	
This	 thread	 now	 sleeping	 for	 90	 seconds...	
	
	 	 Sending	 data.	
Current	 stats:	 Slowloris	 has	 now	 sent	 1219	 packets	 successfully.	

This	 thread	 now	 sleeping	 for	 90	 seconds...	

D.8 Slowhttptest Output	

Using:	
test	 type:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 SLOW	 READ	
number	 of	 connections:	 	 	 	 	 	 	 	 	 	 	 	 1000	
URL:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 http://www.soundbooze.com/	
verb:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 GET	
receive	 window	 range:	 	 	 	 	 	 	 	 	 	 	 	 	 1	 -‐	 2	
pipeline	 factor:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 3	
read	 rate	 from	 receive	 buffer:	 	 	 	 32	 bytes	 /	 5	 sec	
connections	 per	 seconds:	 	 	 	 	 	 	 	 	 	 1000	
probe	 connection	 timeout:	 	 	 	 	 	 	 	 	 3	 seconds	
test	 duration:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 300	 seconds	
Tue	 Apr	 	 8	 01:34:47	 2014:slow	 HTTP	 test	 status	 on	 0th	 second:	
initializing:	 	 	 	 	 	 	 	 0	
pending:	 	 	 	 	 	 	 	 	 	 	 	 	 1	
connected:	 	 	 	 	 	 	 	 	 	 	 0	
error:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	
closed:	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	
service	 available:	 	 	 YES	
Tue	 Apr	 	 8	 01:34:48	 2014:slow	 HTTP	 test	 status	 on	 30th	 second:	
initializing:	 	 	 	 	 	 	 	 0	
pending:	 	 	 	 	 	 	 	 	 	 	 	 	 8	
connected:	 	 	 	 	 	 	 	 	 	 	 857	
error:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	
closed:	 	 	 	 	 	 	 	 	 	 	 	 	 	 135	
service	 available:	 	 	 YES	
Tue	 Apr	 	 8	 01:34:53	 2014:slow	 HTTP	 test	 status	 on	 5th	 second:	
initializing:	 	 	 	 	 	 	 	 0	
pending:	 	 	 	 	 	 	 	 	 	 	 	 	 237	
connected:	 	 	 	 	 	 	 	 	 	 	 617	
error:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	
closed:	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	
service	 available:	 	 	 NO	
Tue	 Apr	 	 8	 01:34:53	 2014:slow	 HTTP	 test	 status	 on	 35th	 second:	
initializing:	 	 	 	 	 	 	 	 0	
pending:	 	 	 	 	 	 	 	 	 	 	 	 	 8	
connected:	 	 	 	 	 	 	 	 	 	 	 857	
error:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	
closed:	 	 	 	 	 	 	 	 	 	 	 	 	 	 135	
service	 available:	 	 	 NO	

	

	

	 	 xxxi	

	

D.9 PhantomJS Output	

sending	 mousemove	 event	 to	 0,	 0	
page	 message:	 	
sending	 mousemove	 event	 to	 10,	 10	
page	 message:	 	
sending	 mousemove	 event	 to	 20,	 20	
page	 message:	 	
sending	 mousemove	 event	 to	 30,	 30	
page	 message:	 	
sending	 mousemove	 event	 to	 40,	 40	
page	 message:	 	
sending	 mousemove	 event	 to	 50,	 50	
page	 message:	 	
sending	 mousemove	 event	 to	 60,	 60	
page	 message:	 	
sending	 mousemove	 event	 to	 70,	 70	
page	 message:	 	
sending	 mousemove	 event	 to	 80,	 80	
page	 message:	 	
sending	 mousemove	 event	 to	 90,	 90	
page	 message:	 	
sending	 mouseclick	 event	 at	 90,	 90	
	
	
	

	

	 	 xxxii	

D.10 THC SSL DOS Output	

Handshakes	 0	 [0.00	 h/s],	 1	 Conn,	 0	 Err	
Handshakes	 0	 [0.00	 h/s],	 3	 Conn,	 0	 Err	
Handshakes	 8	 [7.71	 h/s],	 9	 Conn,	 0	 Err	
Handshakes	 33	 [26.02	 h/s],	 15	 Conn,	 0	 Err	
Handshakes	 69	 [35.78	 h/s],	 20	 Conn,	 0	 Err	
Handshakes	 123	 [54.53	 h/s],	 26	 Conn,	 0	 Err	
Handshakes	 176	 [49.37	 h/s],	 30	 Conn,	 0	 Err	
Handshakes	 205	 [31.41	 h/s],	 30	 Conn,	 0	 Err	
Handshakes	 258	 [52.97	 h/s],	 35	 Conn,	 0	 Err	
Handshakes	 329	 [70.33	 h/s],	 40	 Conn,	 0	 Err	
Handshakes	 408	 [79.60	 h/s],	 45	 Conn,	 0	 Err	
Handshakes	 500	 [92.21	 h/s],	 51	 Conn,	 0	 Err	
Handshakes	 612	 [112.06	 h/s],	 56	 Conn,	 0	 Err	
Handshakes	 746	 [132.82	 h/s],	 61	 Conn,	 0	 Err	
Handshakes	 877	 [131.44	 h/s],	 66	 Conn,	 0	 Err	
Handshakes	 1013	 [136.66	 h/s],	 70	 Conn,	 0	 Err	
Handshakes	 1148	 [134.85	 h/s],	 70	 Conn,	 0	 Err	
Handshakes	 1280	 [132.08	 h/s],	 73	 Conn,	 0	 Err	
Handshakes	 1423	 [142.14	 h/s],	 73	 Conn,	 0	 Err	
Handshakes	 1565	 [142.07	 h/s],	 77	 Conn,	 0	 Err	
Handshakes	 1686	 [121.74	 h/s],	 82	 Conn,	 0	 Err	
Handshakes	 1820	 [133.09	 h/s],	 84	 Conn,	 0	 Err	
Handshakes	 1948	 [128.68	 h/s],	 86	 Conn,	 0	 Err	

D.11 ApacheKiller Output

host	 seems	 vuln	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	
ATTACKING	 soundbooze.com	 [using	 50	 forks]	
:pPpPpppPpPPppPpppPp	

D.12 R-u-d-y Output

[!]	 Using	 configuration	 file	
[!]	 Attacking:	 http://www.soundbooze.com/	
[!]	 With	 parameter:	 search	

	
	

	
	
	
	
	
	

	

	 	 xxxiii	

D.13 Apache Benchmark Output	

musicalware:~	 root#	 ab	 -‐n	 1000	 -‐c	 64	 http://www.soundbooze.com/	
	
This	 is	 ApacheBench,	 Version	 2.3	 <$Revision:	 655654	 $>	
Copyright	 1996	 Adam	 Twiss,	 Zeus	 Technology	 Ltd,	 http://www.zeustech.net/	
Licensed	 to	 The	 Apache	 Software	 Foundation,	 http://www.apache.org/	
	
Benchmarking	 www.soundbooze.com	 (be	 patient)	
Completed	 100	 requests	
Completed	 200	 requests	
Completed	 300	 requests	
Completed	 400	 requests	
Completed	 500	 requests	
Completed	 600	 requests	
Completed	 700	 requests	
Completed	 800	 requests	
Completed	 900	 requests	
Completed	 1000	 requests	
Finished	 1000	 requests	

	
Server	 Software:	 	 	 	 	 	 	 	 Apache	
Server	 Hostname:	 	 	 	 	 	 	 	 www.soundbooze.com	
Server	 Port:	 	 	 	 	 	 	 	 	 	 	 	 80	
	
Document	 Path:	 	 	 	 	 	 	 	 	 	 /	
Document	 Length:	 	 	 	 	 	 	 	 0	 bytes	
	
Concurrency	 Level:	 	 	 	 	 	 64	
Time	 taken	 for	 tests:	 	 	 61.007	 seconds	
Complete	 requests:	 	 	 	 	 	 1000	
Failed	 requests:	 	 	 	 	 	 	 	 0	
Write	 errors:	 	 	 	 	 	 	 	 	 	 	 0	
Non-‐2xx	 responses:	 	 	 	 	 	 1000	
Total	 transferred:	 	 	 	 	 	 222000	 bytes	
HTML	 transferred:	 	 	 	 	 	 	 0	 bytes	
Requests	 per	 second:	 	 	 	 16.39	 [#/sec]	 (mean)	
Time	 per	 request:	 	 	 	 	 	 	 3904.428	 [ms]	 (mean)	
Time	 per	 request:	 	 	 	 	 	 	 61.007	 [ms]	 (mean,	 across	 all	 concurrent	 requests)	
Transfer	 rate:	 	 	 	 	 	 	 	 	 	 3.55	 [Kbytes/sec]	 received	
	
Connection	 Times	 (ms)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 min	 	 mean[+/-‐sd]	 median	 	 	 max	
Connect:	 	 	 	 	 	 150	 	 160	 	 64.3	 	 	 	 153	 	 	 	 1343	
Processing:	 	 	 243	 3686	 2406.4	 	 	 3958	 	 	 	 8798	
Waiting:	 	 	 	 	 	 243	 3683	 2407.7	 	 	 3958	 	 	 	 8798	
Total:	 	 	 	 	 	 	 	 394	 3846	 2407.9	 	 	 4115	 	 	 	 8951	
	
Percentage	 of	 the	 requests	 served	 within	 a	 certain	 time	 (ms)	
	 	 50%	 	 	 4115	
	 	 66%	 	 	 5454	
	 	 75%	 	 	 6183	
	 	 80%	 	 	 6434	
	 	 90%	 	 	 6928	
	 	 95%	 	 	 7215	
	 	 98%	 	 	 7518	
	 	 99%	 	 	 8023	
	 100%	 	 	 8951	 (longest	 request)	

	
	

