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ABSTRACT 

The most successful antimicrobial agents in clinical use are of microbial origin and of 

these the greatest variety has been found in the genus Streptomyces. However, the 

resistance of the pathogenic microbes to the commonly used antibiotics is increasing as a 

result of the wide-spread and long-term use of these antibiotics. Therefore, understanding 

the strategies that bacteria use to become resistant is of crucial need. Streptomycetes are 

Gram positive bacteria, commonly found in soil and are known antibiotic-producers.  

The focus of this thesis was to underpin the mechanism of resistance to penicillin G in 

isolated strains of streptomycetes that exhibit elevated resistance to penicillin G and to 

characterise these organisms. Moreover, to investigate the interaction between penicillin 

G and PBPs in Streptomyces strains and investigate the relationship between growth rate 

and penicillin G resistance in Streptomyces in vitro. Ninety six Streptomycetes were 

isolated and characterized. Morphological examination and the16s rRNA sequences of 

these strains indicated that strains belong to the species Streptomyces.  The MICs and 

MBCs for penicillin G for the isolated Streptomyces strains were measured by plate 

culture. Some strains showed growth up to 400 µg/ml with penicillin G, which indicate 

that the strains were highly resistant against penicillin G. Some strains were unable to 

grow at penicillin concentrations above 200µg/ml.  Also, The MICs of penicillin G for 

isolated Streptomyces strains were measured using a novel OxoPlates® system in 96-well 

culture format employing Mueller-Hinton broth culture. The MICs of all strains ranged 

from 1-100 µg /ml. Results indicate that the sensitivity of Streptomyces strains of 

penicillin G is not directly related to β-lactamase production in the panel of isolates 

examined. There was no correlation between the MICs of penicillin G and the growth 

rate in these isolates. Likewise, there was no association between the position of beta-

lactamase producing and non-beta-lactamase producing strains on the phylogenetic tree 
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and their beta-lactamase activity. Beta-lactamase producing and non-producing strains 

refers to the same ancestral origin clade. Additionally, the comparative analysis of 16S 

rRNA gene sequence and phylogenetic relationship of strain (W43) revealed that the 

isolate clustered with (W76) Streptomyces lividans strain YLA0. 

Bocillin (a penicillin binding protein stain) staining in β-lactamase producing strains 

showed staining throughout the mycelia whereas in non β-lactamase producing strains 

staining only occurred in certain parts of the mycelia. Bocillin also revealed that in 

spores PBPs were located on both poles of the spores.   

Streptomyces coelicolor has the ability to grow at high concentrations of penicillin G up 

to 640 µg/ml in continuous culture. It also has the capacity to grow at very low amounts 

of dissolved oxygen in continuous culture. Significantly, there was a correlation between 

the growth rate of S. coelicolor and the resistant to penicillin G.  S. Coelicolor was more 

sensitive to penicillin G at a high dilution rate. 

 Furthermore, our strategy of using the Bug-Lab for monitoring the progress of S. 

Coelicolor 1147 in continuous culture, even at low concentrations of cells in real time 

was successful.  
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Chapter One 

Literature review 

1. Streptomycetes Biology and Life cycle  

1.1 Characteristics of Streptomycetes  

Streptomycetes are the most global among soil bacteria (Hodgson 2000) 

Streptomyces are Gram-positive bacteria, with a high (70%) guanine-plus-cytosine 

content in their DNA (Stackebrandt and Goebel 1994). Streptomyces species are known 

to contain a linear chromosome and complex morphological differentiation. They 

undergo filamentous growth similar to fungi and are strictly aerobic and spore forming, 

widely distributed in soil, water and colonise plants and play an important role in 

mineralization processes in nature. Streptomyces constitute 50% of the total population of 

soil actinomycetes, with a complex life cycle (Flardh and Buttner 2009). Most 

Streptomyces  are distinguished for their distinct earthy odour which results from 

production of metabolite, geosmin (Madigan and Martinko 2005). Streptomyces’s 

colonies are usually slow-growing, and they develop an aerial mycelium that may appear 

granular, powdery or smooth, and they produce a wide variety of pigments responsible 

for the colour of the vegetative and aerial mycelia (Flardh and Buttner 2009, Ambarwati 

et al. 2012). Streptomyces are most widely known for their capacity to synthesize and 

produce several antimicrobial substances such as; antibiotics, examples of which include 

streptomycin, erythromycin, tetracycline and chloramphenicol (Kieser et al. 2000),  and 

β-lactam molecules such as cephamycin and clavulanic acid  (Ward and Hodgson 1993). 

They can also produce antifungal agents including amphotericin B, together with anti-

cancer compounds such as migrastatin which is used as an inhibitor of tumor cell 

migration (Nakae et al. 2000). 
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1.2 The life cycle of Streptomyces 

Streptomyces have a complex life cycle and are unique among bacteria in that, their 

colonies   are similar to multicellular organisms. The life cycle of the streptomycetes 

starts once a particular spore encounters conditions favourable for growth, it germinates 

in response to unidentified signals, which act to generate the influx of water, resulting in 

an increase in size and reduced phase brightness and produces one or more long 

filaments Figure 1.1 (Ensign 1979).  These filaments grow and branch to forming a 

vegetative mycelium. Then, the vegetative growth leads to formation of a mycelium 

consisting of a complicated network of aerial hyphae (Hardisson et al. 1978). These 

aerial hyphae undergo septation and develop into separate pre-spore sections, and 

metamorphose into chains of grey-pigmented spores, which will separate and start a new 

life cycle. Differentiation is an important process as it marks the onset of secondary 

metabolism including antibiotics which are secreted from the vegetative mycelium 

during the generation of aerial hyphae (McGregor 1954, Chater 1993). Production of 

pigments and other secondary metabolites is often associated with the beginning of 

differentiation ( Bentley et al. 2002). 
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Figure 1-1. The life cycle of Streptomyces coelicolor, begin when a single spore 

germinates a vegetative mycelium, which develop into aerial hyphae. These aerial 

hyphae undergo into spores, which will separate and start a new cycle (adapted from 

www.streptomyces.openwetware.org). 

1.3 Streptomyces coelicolor A3 (2) 

Streptomyces coelicolor is the most studied member among the genus Streptomyces and 

the best model organism for most genetics, physiological, biochemical and metabolism 

studies of streptomycetes (Hopwood 1999). Streptomyces coelicolor likes other members 

of the genus Streptomyces; is filamentous, aerobic and Gram-positive bacterium despite 

the presence of lactate dehydrogenase gene, has a high genomic G-C content and 

undergoes a complex life cycle of morphological differentiation on solid medium 

(Borodina et al. 2005). 

Streptomyces coelicolor has one long linear chromosome contains 8,667,507 base pairs, 

which containing the largest number of genes (7,825 predicted genes) so far discovered 

in a bacterium and also has two plasmids; one of them is linear and the other is circular 

http://www.streptomyces.openwetware.org/
http://www.google.co.uk/url?sa=i&source=images&cd=&cad=rja&docid=lAiT6YtxoQIskM&tbnid=vQLg9asCZFqTrM:&ved=0CAgQjRwwAA&url=http://openwetware.org/wiki/Streptomyces:Other_Bits/An_Introduction_to_Streptomyces&ei=HXG3Ud-fBMeOOOqRgfgJ&psig=AFQjCNGdmmq3PtAH8J5Bb5A1vp9RlZs_Yg&ust=1371062941105596
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(Bentley,  et al. 2002). The linear chromosome has three regions, the core and two 

different length arms, almost half of the chromosome was found to be in the core region 

which carried essential genes necessary for the survival of this bacterium such as cell 

division, transcription, translation and DNA replication. The arms of linear chromosome 

contains genes coded the non-essential functions such as secondary metabolites 

production like the production of antibiotics ( Bentley, et al. 2002). Four chemically 

distinct known antibiotics produced by Streptomyces coelicolor;  two are pigmented, 

undecylprodigiosin (red) and actinorhodin (blue) and the other two are methylenomycin 

and calcium-dependent antibiotic (Wright and Hopwood 1976, Feitelson and Hopwood 

1983, Kieser and Foundation 2000). 

1.3.1 Actinorhodin (ACT) 

Actinorhodin is a pigmented polyketide antibiotic produced by Streptomyces coelicolor 

and its red at acidic pH and blue at alkaline pH (Brian et al. 1996, Bystrykh et al. 1996). 

ACT is made by a type II polyketide synthase-based pathway involving a 22-genecluster 

(Okamoto et al. 2009). It is mainly intracellular actinorhodin and when its exported from 

the bacterial cell well converted to ץ-actinorhodin, which is responsible for the blue 

colour of the culture medium (Bystrykh et al. 1996). According to Wright and Hopwood 

(1976) the excretion of actinorhodin appears to occur exclusively at pH values above 6.7. 

Whereas, Bystrykhetal. (1996), establish that the excreted pigment is not actinorhodin 

but its lactone derivative, g-actinorhodin (Wright and Hopwood 1976, Bystrykh et al. 

1996). Coisne et al (1999) published that the production of actinorhodin appears mainly 

during the stationary phase in the batch fermentation in the liquid culture (Coisne et al. 

1999), however, actinorhodin production was growth-associated according to 

Ozerginulgen and Mavituna (1993) (Ozerginulgen and Mavituna 1993). Also it has been 

published that the production of actinorhodin was growth associated on solid medium 
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(Shahab et al. 1994). Numerous studies have attempted to explain the effects of growth 

rate and nutrient feed rate on the production of actinorhodin. The production of 

actinorhodin in Streptomyces coelicolor A3 (2) was quite unaffected to the carbon source 

concentration, however, it was sensitive to the depletion of nitrogen or phosphate. Or by 

a decline in the growth rate Wright and Hopwood (1976) reported that actinorhodin was 

mainly effective against Gram-positive bacteria at high concentration; for instance they 

found that the minimum inhibitory concentration of this antibiotic against 

Staphylococcus aureus was 25-30 µg/ml. 

1.3.2 Undecylprodigiosin (RED) 

Undecylprodigiosin is a red hydrophobic tripyrroles  (Mo et al. 2008), belongs to large 

family of pigmented oligopyrrole antibiotics called prodiginines, produced by several 

actinomycetes and other eubacteria including Streptomyces coelicolor and Streptomyces 

longispororuber (Wasserman et al. 1969, Williamson et al. 2006). Prodiginines produced 

intracellularly by most bacterial producers because they are cell wall-associated 

antibiotic due to their highly hydrophobic characteristics, which mad by fatty acid 

synthase-like pathway involving a 22-gene cluster (Kobayashi and Ichikawa 1989, Mo et 

al. 2008). It has a medical potential as immune-suppressants and anti-tumour in addition 

to antimicrobial activities (Williamson et al. 2006). Also undecylprodigiosin suggested 

as a novel anti breast cancer drug in 2007 (Ho et al. 2007). 

1.3.3 Calcium-dependent antibiotic (CDA) 

The calcium-dependent antibiotic is a non-ribosomal lipopeptide, made by a route 

involving non ribosomal peptide synthases and specified by a 48-gene cluster produced 

by Streptomyces coelicolor (Hojati et al. 2002, Kim et al. 2004). CDA act to inhibit the 

growth of bacterial cells in the presence of calcium ions by making holes in their 

membranes (Kempter et al. 1997). 
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1.3.4 Methylenomycin 

Methylenomycin is acidic cyclopentanone compound produced by Streptomyces 

coelicolor and Streptomyces violaceus (Wright and Hopwood 1976). It has anti-microbial 

effective against a broad range of Gram-positive and some Gram-negative bacteria in 

specific against Proteus species (Corre and Challis 2005). Methylenomycin is the only 

streptomycetes antibiotic encoded by genes carried on a linear plasmid of 350 kb called 

SCP1 (Aguilar and Hopwood 1982, Chater and Kinashi 2007). Methylenomycin is 

produced coinciding with the transition from the exponential to stationary phase in the 

defined medium (Hobbs et al. 1992).  It was found that Streptomyces species produce 

two forms of methylenomycin (Challis and Chater 2001). One is methylenomycin A, 

which is an epoxycyclopentenone made by a pathway encoded by 11 genes located on 

the SCP1 (O'Rourke et al. 2009). 

1.4 Morphological differentiation in Streptomyces coelicolor 

There are two main classes of regulatory genes, identified throughout genetic studies of 

mutants, included in morphological differentiation in S. coelicolor (Chater 1972). The 

first gene of these is bld  (bald) genes, which are essential for formation of the aerial 

hyphae and the colonies of this mutant have a shiny and bald appearance, and the others 

is the whi (White) genes, which are necessary for the formation of spores in the aerial 

mycelium hyphae. Whi mutants produce aerial hyphae but are not able to form the grey 

spore-associated pigment and therefore have a White colony phenotype. S. coelicolor 

produces a grey polyketide pigmented colour of the spores during sporulation (Davis and 

Chater 1990). The whiE gene group of Streptomyces coelicolor is expressed just before 

sporulation in the aerial mycelium, leading to production of the grey spore pigment (Yu 

and Hopwood 1995).  The whiE gene cluster contains eight genes including a minimal type 

II PKS (Davis and Chater 1990).  
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1.5 Genes specifically required for formation of aerial hyphe 

The genetic characterization of mutants of S. coelicolor blocked at the vegetative 

mycelium stage called bald (bld) mutants, which fail to produce the fuzzy aerial 

mycelium.  Some bld mutants of S. coelicolor such as bldA, bldB, bldC, bldg and bldH 

are unable to make pigmented antibiotics (actinorhodin and undecylprodigiosin) in 

addition to their morphological block. 

1.6 Genes specifically required for sporulation 

The development of the aerial hyphae into spores can be blocked at different stages by 

mutating genes. Mutations in genes involved in morphogenesis alter colony appearance 

for instance modify in the synthesis of the grey polyketide spore pigment leading to form 

white spores instead of grey spores of Streptomyces coelicolor, this called White (whi) 

mutants. Several whi mutants have been isolated which form sporulation-defective aerial 

hyphae including; whiA, whiB, whiD, whiE, whiG, whiH, whiI, whiJ, whiL, whiM, whiO, 

sigF, ssgA, ssgB, and ssgR  (Chater 1972, Ryding et al. 1999, McCormick and Flardh 

2012). Such whi mutants may be early or late, early mutants failing to achieve full 

sporulation septation (whiA, whiB, whiG, whiH, whiI, whiJ, and ssgB) 

whereas sigF,  ssgA,  ssgR, and whiD are late genes (Chater 2001). The biosynthetic 

genes for a polyketide pigment in spores are establish in the whiE gene cluster, and the 

expression of this cluster depends on the regulatory whi genes (Kelemen et al. 1998). 

whiE  is a complex locus which encodes the enzymes that synthesize the spore pigment 

itself (Chater 1972, McVittie 1974). Mutations in whiA, whiB, and whiG  mutants are 

completely block development at early stages and prevent sporulation septation 

(McVittie 1974). whiH mutants are pale grey and produce some sporulation septa. ssgA 

mutants produced aerial hyphae but failed to sporulate and ssgB mutant showed defective 

in the early stage of sporulation septation (Keijser et al. 2003). whiI mutant produce 
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some sporulation septa, and it is completely White (Ryding et al. 1998). whiJ mutant 

produce low numbers of pale grey normal spore chains (Kelemen et al. 1998). whiD 

mutant can make sporulation septa but form spores that highly irregular in size and shape 

which are extremely variable in spore cell wall deposition (McVittie 1974). 

1.7 Antibiotics produced by Streptomyces 

Streptomyces alone contributes more than half of the naturally occurring secondary 

metabolites discovered up to date (Berdy 2005). The most important antibiotics produced 

by Streptomyces are streptomycin (S. griseus) (Distler et al. 1987), neomycin (S. fradiae) 

(Dulmage 1953), chloramphenicol (S. venezuelae) (Akagawa et al. 1975), fosfomycin 

(S.fradiae) (Woodyer et al. 2006),  tetracycline  (S. rimosus and S.aureofaciens) (Nelson 

et al. 2001), puromycin (S.alboniger) (Sankaran and Pogell 1975), lincomycin (S. 

lincolnensis) (Peschke et al. 1995). There are several secondary metabolites produced by 

Streptomyces coelicolor, the model species, that have antibacterial activity such as; 

undecylprodigiosin (red pigmented) and actinorhodin (Act) (blue pigmented), 

methylenomycin and calcium-dependent antibiotic (CDA) (Kieser and Foundation 2000). 

In addition to the antimicrobial activities, undecylprodigiosin is suggested as a novel 

anticancer treatment of  breast cancer (Ho et al. 2007). Recently, it has been published 

that Warkmycin antibiotic produced by Streptomyces species strain Acta 2930 (Helaly et 

al. 2013).  

1.8 Streptomyces are a potential source of novel antibiotics 

The need for new antibiotics, is so urgent to fight pathogens that have developed 

resistance to common antibiotics, where a large numbers of bacteria are resistant to most 

if not all useful antibiotics.  There is a broad resource and processes that can be taken to 

discover useful antibiotics and to search for the mechanism of the resistance to these 

antibiotics.  In a screening for potential sources for a new antibacterial activity, including 
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antibiotic, an actinomycetes in particular those from the genus Streptomyces, are very 

useful source. Streptomyces are a unique source of new natural products such as 

antibiotics. They are responsible for the production of about half of the discovered 

bioactive secondary metabolites, mainly antibiotics, it produces antibiotics against Gram-

positive and Gram- negative bacteria. Streptomyces genome sequencing showed that each 

strain contains genes that encode the enzymes to synthesize 20 or more potential 

secondary metabolites (Ohnishi et al. 2008). It has identified that Streptomyces flora of 

Jordan is a potential source of antibiotics active against antibiotic-resistant Gram-

negative bacteria (Saadoun and Gharaibeh 2002). Recently, it has selected Streptomyces 

as broad-spectrum antagonists against soil borne pathogens from arid areas in Egypt 

(Köberl et al. 2013). 

1.9 Antibiotics 

Antibiotics are defined as natural antimicrobial agents produced by microorganisms and 

used to kill or inhibit the growth of other organisms. There are three main classes of 

antibiotics, natural (unmodified from a producing organism), semi-synthetic which are 

prepared by chemical modification of natural antibiotics and purely synthetic antibiotics 

that are produced by chemical synthesis (Lancini et al. 1995). Antibiotics are secondary 

metabolites mainly produced by soil bacteria and fungi in nature. This gives the microbe 

an advantage by killing off competing microbes, when they are competing for food and 

water and other limited resources in a particular habitat (Williams et al. 1989, Angell et 

al. 2006). Usually antibiotics are produced during the late growth phase of microbial 

culture and they do not have any significant essential role in the growth of producing 

organisms.  The mechanisms by which the bacteria are resistant to their own antibiotics 

are unknown so far (D'Costa et al. 2006). Antibiotics are classified as bacteriostatic or 

bactericidal. Bacteriostatic antibiotics inhibit the growth of bacteria, but do not kill them 
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and most bacterial cells resume growth after elimination of the antibiotic. Bactericidal 

antibiotics kill bacteria (Pankey and Sabath 2004).  

Antibiotic resistance may be an inherent or acquired. Inherent resistance appears in some 

bacteria that naturally resistant to some antibiotics due to their physiological 

characteristics. Acquired resistance occurs when a sensitive bacterium develops 

resistance to an antibiotic. There are two major mechanisms by which bacteria can 

become resistant to antibiotics; spontaneous mutation in the bacterial gene that helps the 

bacterium survive and acquisition of a resistance gene from a bacterium that is already 

resistant or from a combination of  these two mechanisms (Hawkey 1998). Although, a 

massive progress has been made to understanding the biosynthesis, mechanisms and the 

mode of actions of these antibiotics, the question of why bacteria produce antibiotics has 

not been settled yet. 

1.10 Common enzymatic aspect of antibiotic resistance in bacteria 

Since the discovery and consequent widespread use of antibiotics, resistance to these 

antibiotics has been observed, which predictably arises with the use of these compounds. 

Bacteria develop resistance to specific antibiotics by a variety of mechanisms, and some 

bacteria have developed specific mechanisms to a different drug.  Although the mode of 

resistance may vary among bacterial species, resistance is generated by some 

mechanisms (Figure 1.2) including; (1) efflux pumps, which are high-affinity reverse 

transport systems located in the membrane that transfer the antibiotic out of the cell for 

instance the mechanism of resistance to tetracycline; (2) Alteration and modification of 

the antibiotic target when a specific enzyme inactivates the antibiotic for example, 

alteration of  PBP the binding target site of penicillin in  penicillin-resistant bacteria; (3) 

Reduced permeability or uptake of the bacteria due to modifications of the cell surface 

that limit interactions with the antibiotics or reduce the number of entry channels (Wright 
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2005); (4) drug  inactivation or modification via the synthesis of modifying enzymes that 

selectively target and destroy the activity of antibiotics for example, the penicillinases 

(beta-lactamase enzymes) that cleave the beta lactam ring of the penicillin  molecule. 

 

 

 

 

 

 

 

 

 

 

Figure 1-2.Common mechanisms of antibiotic resistance (adapted from (McGraw. 

2002)). 

1.11 Beta-lactam antibiotics 

β-Lactam antibiotics are a broad class of antibiotics that widely used, grouped together 

based upon a shared structural of β -lactam ring, which is formed of 3 C and 1 N atom in 

their molecular structures. including penicillin, cephalosporins, monobactams and 

carbapenems (Holten and Onusko 2000). Penicillin is a group of antibiotics isolated from 

Penicillium fungi. They include penicillin, procaine penicillin, benzathine penicillin, and 

penicillin V. Penicillin antibiotics are the first drugs that were effective against many 

serious diseases such as infections caused by staphylococci and streptococci. All 

penicillins are β-lactam antibiotics and are used in the treatment of bacterial infections 

caused by susceptible, usually Gram-positive, organisms. Although, several types of 

 

Decreased 

permeability of cell  

Cell well 

Antibiotic 

Alteration 

of target site 

Efflux pump (Active 

transport out of cell) 

Enzyme 

inactivation 

Antibiotic 



  

13 
 

bacteria are now resistant to penicillin, penicillin is still useful against some other 

bacteria and widely used. 

1.12 β-Lactam antibiotics and their role in resistance as inhibitors of cell wall 

synthesis 

Beta-lactam antibiotics are bactericidal antibiotics except against Enterococcus species 

(Hollenbeck and Rice 2012). Bacteria often develop resistance to β-lactam antibiotics by 

many ways such as; (1) the production of β-lactamase enzymes, which is the most 

common mechanism of resistance in bacteria.  β-lactamases react with β-lactam 

antibiotics to form an acyl-enzyme complex that is rapidly hydrolysed to yield a free 

enzyme and hydrolysed antibiotic.  In some penicillin-resistant bacteria, β-lactamases 

enzyme deactivates penicillin by breaking a bond in the β-lactam ring of penicillin to 

deactivate the molecule as revealed in Figure 1.3. Therefore, β-lactam antibiotics are 

often given with β-lactamase inhibitors such as  clavulanic acid which have the ability to 

bind irreversibly to β-lactamases and, thereby, inhibit their action (Bryan 1984). 

 

 

 

 

 

 

 

 

Figure 1-3. β-lactamase enzymes cleave the β-lactam ring of penicillin G to penicilloic 

acid and inactivate the antibiotic (adapted from (McGraw. 2002) ). 
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Or (2) when the antibiotic fails to bind to an altered penicillin binding protein (PBP) as 

presented in Figure 1.4. The β-lactam antibiotics are structural analogs of the D-alanyl-

D-alanine end of the peptidoglycan strand and binding to the transpeptidase to prevent it 

from reforming the peptide cross-links between the rows and layers of peptidoglycan 

monomers in the cell wall (Van Bambeke et al. 2004).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4. β-lactamase enzymes failed to bind to altered PBPs and deactivate the 

antibioticAdapted from (David and Spach 2014). 
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 1.13 Beta-lactamases and their role in resistance 

β-Lactamase are enzyme produced by some bacteria that provide resistance to β-lactam 

antibiotics like penicillins and cephamycins, they are  produced by both Gram-positive 

and Gram-negative bacteria (Massova and Mobashery 1998). The main function of β-

lactamases is inactivating β-lactam antibiotics by hydrolysing the β-lactam ring, that is 

why  β -lactamases are the main causes of β-lactam resistance in many pathogenic 

bacteria (Richmond and Sykes. 1973). Also, β-lactamase enzymes are produced by non-

pathogenic bacteria for instance Streptomyces species. Most of the Streptomyces species 

produce  β-lactamases constitutively (Ogawara 1975). Beta-lactamases are classified by 

two different schemes: according to structural homology (Ambler's Classification) or 

hydrlytic properties (Bush's and Jacoby's classification). According to the Ambler's 

classification (Ambler 1980), there are 4 groups of beta-lactamases:Group A: which 

regroups penicillinases (which hydrolyze generally only penicillins and sometimes early-

generation cephalosporins), extended-spectrum beta-lactamases (ESBL) which hydrolyze 

late-generation cephalosporins (such as CTX-M-type) and class A carbapenemases which 

hydrolyze penicillins, cephalosporins and carbapenems (KPC for Klebsiella penumoniae 

carbapenemase belongs to this group). These enzymes are inhibited or partially inhibited 

by class A inhibitors such as Clavulanate or tazobactam. Group C: AmpC or 

cephalosporinases which exhibits a greater hydrolysis for cephalosporins in comparison 

to benzylpenicillin. Among representative enzymes, you can found CMY-family AmpC. 

Group D: Oxacillinase regroups enzyme able to hydrolyze cloxacillin or oxacillin. It’s a 

wide group of beta-lactamase and some of them can hydrolyse carbapenem such as e.g. 

OXA-48 or OXA-23. The last group group B or metallo-beta-lactamase (MBL) differs 

from the three others by the fact that they possess in the active site metallic ions whereas 

group A, C and D are serine-active enzymes. This group exhibits a broad-spectrum 
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hydrolysis including all beta-lactams except aztreonam and these enzymes are not 

inhibited by clavulanate/tazobactam. β-Lactamases are not essential bacterial proteins in 

themselves, but are supposed to have developed from the essential PBPs in some β -

lactam-producing bacteria such as Streptomyces or related bacteria, because these 

bacteria have to have some self-protective strategies against β -lactam antibiotics 

(Urbach and et al 2008). In Streptomyces sp class A β-lactamases are mainly detected in 

their enzyme activity, over two to five times more classes B and C β-lactamase genes are 

identified at the whole genomic level (Ogawara 2016). These genes can consequently be 

transferred to pathogenic bacteria. 

 1.14 Structure of peptidoglycan in Gram-positive bacteria 

The bacterial cell wall synthesis pathway is one of the most important pathways in 

bacteria and it is a very important target for antibiotics. Since mammalian cells do not 

synthesize peptidoglycan, this class of antibacterial selectively targets bacteria with no 

toxic effects toward mammalian cells. Gram-positive bacteria have a thick peptidoglycan 

(PGN) layer (20 to 80 nanometers) and forms around 90% of the dry weight of Gram-

positive bacteria and only 10% of Gram-negative bacteria. Peptidoglycan is a 

polymer layer, consisting of sugar and amino acid that forms a mesh-like layer outside 

the plasma membrane of most bacteria forming the cell wall. The sugar component built 

from alternating units of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) 

as shown in Figure 5. The alternating sugars are connected by a β-(1, 4) -glycosidic bond. 

A peptide chain consists of three to five amino acids are attached to the N-acetylmuramic 

acid, each chain containing L-alanine, D-glutamine, L-lysine, and D-alanine with a 5-

glycine  interbridge between tetrapeptides in the case of Staphylococcus aureus (Ryan 

and Ray 2004). The strong  3-dimensional structure builds up from cross-linking between 

amino acids in different linear amino sugar chains with the help of the enzyme 
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transpeptidase (Ryan and Ray 2004). The main functions of peptidoglycan are to 

maintain the shape of the cell wall, provides strength and rigidity, and to counteract the 

osmotic pressure of the cytoplasm and also involved in binary fission during bacterial 

cell reproduction (Nanninga 1998). Peptidoglycan is a well-known target for almost all 

clinically useful antibiotics that inhibit bacterial cell-wall synthesis. The bacteria lysis 

when the peptidoglycan is compromised for example, penicillin inhibits the cross-linking 

of the pentapeptide chains (transpeptidation) by blocking the Insertion of the inter-

peptide bridge and significantly weakens the cell wall and finally the bacteria submit to 

osmotic pressure, resulting in cell death as shown in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

Figure 1-5. Diagrammatic representation of peptidoglycan structure in Gram-positive 

bacteria (Staphylococcus aureus) illustrate the sugar component (NAG and NAM), 

amino acid chains, the inter-peptide bridges that join amino acid side chains together and 

the sites of action of the antibiotic penicillin adapted from 

(http://www.microbiologybook.org/fox/sa-pep.jpg). 
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  1.15 Peptidoglycan synthesis in Gram-positive bacteria 

Peptidoglycan biosynthesis involves multi-stage of enzymatic activities; stage one; starts 

when the amino acid glutamine gives an amino group to sugar fructose 6-phosphate. This 

alters fructose 6-phosphate into glucosamine-6-phosphate. Then the amino group on the 

glucosamine-6-phosphate attach to an acetyl group transferred from acetyl CoA creating 

N-acetyl-glucosamine-6-phosphate, which change to N-acetyl-glucosamine-1-phosphate 

by  isomerisation (White 2007). The N-acetyl-glucosamine-1-phosphate attacks the 

pyrimidine nucleotide uridine triphosphate (UTP). UDP-N-acetylglucosamine (2,4) is 

creating by replacing an inorganic pyrophosphate by the monophosphate. After that, 

some of the UDP-N-acetylglucosamine (UDP-NAG) is exchanged to UDP-NAM (UDP-

N-acetylmuramic acid) by the addition of a lactyl group to the glucosamine. 

Stage two; at this stage the peptidoglycan monomers are ongoing to synthesize in 

the cytoplasmic membrane. The UDP-NAM is modified by the addition of a 

pentapeptide chain to form a NAM penta. Then, the NAM penta is attached to a lipid 

carrier called bactoprenol (C55-isoprenyl pyrophosphate) to forming a PP-NAM penta 

(White 2007).  At this time the UDP donate a phosphate group to the bactoprenol carrier 

when the NAM attaches, which then becomes uridine monophosphate (UMP).  This 

phosphorylation process is crucial for authorizing the transfer of the carrier across the 

membrane. 

 Next,  a UDP-NAG sugar is transport and attached to  form   NAG-NAM-pentapeptide 

unit, which has the ability to  transport across the membrane by the bactoprenol carrier 

and attached to the growing peptidoglycan chain (White 2007). Tranglycosylation, in this 

reaction  will attach the hydroxyl group of the NAG to the NAM in the glycan, and move 

the lipid-PP from the glycan chain by trans-glycosylase enzyme (White 2007). As the 

new peptidoglycan monomers are inserted, transpeptidase enzymes  
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(also known as penicillin-binding proteins) reform the peptide cross-links between the 

rows and layers of peptidoglycan making the cell wall strong (MT et al. 2012). 

Lipoteichoic acid (LTA) is a main component of the cell wall of Gram-positive bacteria, 

connect the peptidoglycan layer to the plasma membrane and give the outside of the 

bacterium a negative charge. 

1.16 Penicillin binding proteins (PBPs) 

PBPs are a group of proteins that are distinguished by their similarity for and binding of 

penicillin. They are found in the cytoplasmic membrane. Usually there are many PBPs in 

each organism. There are two types of PBPs, high-molecular-weight (HMW), that shape 

the crosslinks between neighbouring peptide side chains and low-molecular-weight  

(LMW), that have carboxypeptidase and transpeptidase activities (Basu et al. 1992).  

Most β–lactam antibiotics bind to PBPs, which are essential for bacterial cell wall 

biosynthesis, it is necessary to growth, cell division and maintaining the cellular structure 

in bacteria, inhibition of PBPs leads to cell death. PBPs in bacteria catalyze many 

reactions example of which are D-alanine carboxypeptidase, peptidoglycan 

transpeptidase, and peptidoglycan endopeptidase (Ghuysen 1991) . PBPs have a 

penicillin-insensitive transglycosylase N-terminal domain, that form the  linear glycan 

strands and a penicillin-sensitive transpeptidase C terminal  domain  that  cross-link the 

peptide subunits and the serine at the active site is conserved in all members of the PBP 

family (Basu et al. 1992). PBPs and β-lactam antibiotics are similar in their chemical 

structure to the modular pieces that form the peptidoglycan (Nguyen-Disteche et al. 

1982). The β-lactam amide bond is ruptured when PBPs bind to penicillin to form a 

covalent bond with the catalytic serine residue at the PBPs active site and inactivates the 

enzyme.   In Streptomyces, LMW PBPs have carboxypeptidase and transpeptidase 

activity that cleave the terminal D-Ala from petapeptide chains (Hao and Kendrick, 
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1998). The high molecular weight PBPs are subdivided into two groups, the bifunctional 

class A high-molecular-weight PBPs possess both transpeptidase and transglycosylase 

activity, which polymerizes the glycan strands during cell wall synthesis, while class B 

HMW PBP’s are monofunctional transpeptidases ( Popham & Setlow, 1994). Both Class 

A and Class B HMW perform transpeptidase activities, catalyzing the cross-linking of 

glycan strands (Ghuysen, 1991). While some of HMW PBPs are redundant, others are 

indispensable. In contrast; the vast majority of LMW PBPs are dispensable for growth 

(Pogliano et al., 1997; Liao and Hancock, 1995; Yanouri et al., 1993).  Inhibition of high 

molecular weight PBPs by beta-lactam antibiotics result in cessation of bacterial growth. 

This implies that the role played by these proteins is vital for the cell’s viability 

(Pechenov et al., 2003). Inhibition of some PBPs by β-lactam antibiotics leads to 

irregularities in bacterial cell wall structure such as elongation and lesions, making the 

cell wall weak and   lysis occurring as consequence of internal osmotic pressure leading 

to cell death (Strominger & Tipper, 1965) 

It has been demonstrated that, there is a relationship between some PBPs and the growth 

phase of Streptomyces species (Nakazawa et al. 1981). Previously, it has been shown that 

β–lactam antibiotics inhibit transpeptidation and prevent germination of spores in 

Streptomyces sp. strain R61 (Dusart et al. 1977). Many PBPs of protoplast and sporoplast 

membranes of Streptomyces griseus strains have been identified, but there were  no 

correlations made with any specific function (Baraba´s et al. 1988). Moreover, it has 

showed that the disruption of pcbR gene decreases the resistance to β-lactam antibiotics 

to less than two fold. The role of PBPs in Streptomyces remains to be determined 

(Baraba´s et al. 1988).  Because Streptomyces has changeable cell morphology during 

differentiation, several PBPs are likely to be required during the life cycle.  
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1.17 Penicillin binding proteins in S. coelicolor 

 
 Bioinformatics analysis using the S .coelicolor database DB showed that all penicillin 

binding proteins of S. coelicolor can be classified according to their function to 

 Bifunctional (transpeptidase/tansglycosylase). This includes, SCO2897, 

SCO3580, SCO3901 and SCO5039. 

 Transpeptidase (with conserved domains of unknown function, present in other 

PBP’s).  This include, SCO1878, SCO3156, SCO3771, SCO3847, SCO4013, 

SCO5031 

 Transpeptidase (with no conserved domains present in other PBP’s) SCO3157 

 Dimerization domain containing PBP’s SCO2608 and SCO2090. 

 Peptidase SCO3408 and SCO4439 

  S.coelicolor has greatest number of penicillin binding proteins. This has been suggested 

to be attributed to the complex life cycle of S.coelicolor. 

PBPs share a common dd-peptidase activity, whether a DD-transpeptidase, a DD-

carboxypeptidase or aDD-endopeptidase activity (Goffin & Ghuysen, 1998).   The crystal 

structures of Streptomyces have not determined yet. However, the crystal structures of 

Escherichia coli PBP5 has been determined (Davies et al., 2001). 

The PB domain is associated with a β-strand rich C-terminal domain that ends with an 

associated membrane amphipathic helix. The PB domain lacks the N-terminal helix and a 

small loop extends on the top of the active site (green in Figure 1.6.).  
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Figure 1-6. Structures of type-5 PBPs (Escherichia coli PBP5). Overall view of the 

structure of Escherichia coli PBP5.The catalytic serine of the PB/DD-peptidase domain is 

shown as a red sphere. On the top active sites, the β-hairpin protuberance is coloured in 

green. 

1.18 Resistance to β-Lactam antibiotics in Streptomyces 

There are many ways Streptomyces spp can develop resistance to β-lactam antibiotics 

including (1) production of β-lactamase enzyme which inactivates the antibiotics by 

hydrolyses  β-lactam ring. (2) Or by interfering with cell wall synthesis by binding to 

PBPs. Streptomyces have a diverse number of PBPs that can be expressed at different 

phases of bacterial growth (Sauvage et al. 2008).  PBPs are membrane-bound enzymes 

that conduct the final step of bacterial cell wall biosynthesis (transpeptidation) and they 

are the target for β-lactam antibiotics. Interestingly, there are fewer PBPs in β-lactam-

producing  Streptomyces strains than in β-lactam non-producing strains (Nakazawah 

1981).  

Many Streptomyces species produce β-lactams antibiotics examples of which are 

penicillin and cephalosporin and they are resistant to moderate to high levels of penicillin  
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(Ogawara 1981). Moreover, in comparison with PBPs of other Gram-negative and Gram-

positive bacteria, these species frequently possess PBPs with low affinities for penicillin, 

and these PBPs are thought to contribute more to their intrinsic resistance than to β-

lactamases (Ogawara 1981). It has also been isolate cephamycin C and clavulanic acid   

from Streptomyces clavuligerus (Reading and Cole 1977). Resistance in β-lactam 

producers species is also supposed to involve low-affinity PBPs (Ogawara and Horikawa 

1980, Nakazawa et al. 1981).  

Furthermore, there is a complicated relationship between antibiotic production and 

resistance in Streptomyces. It has been found that some strains of Streptomyces have 

genes that are responsible for resistance to the antibiotics that they produce. Examples 

include vancomycin and streptomycin and these resistance genes can be easily exchanged 

between streptomycetes and have the ability to transfer from Streptomyces sp to other 

bacterial genera (D'Costa et al. 2006, Wright 2007). In addition, it has also been reported 

that the production and resistance of same antibiotics in Streptomyces coelicolor are 

controlled by genes on plasmids SCP1 (Kirby et al. 1975). Interestingly, although the 

Streptomyces coelicolor genome does not contain genes encoding vancomycin the 

genome does have vancomycin resistance genes (Hong et al. 2004). This indicates that 

antibiotic genes can move freely amongst different species.   

1.19 Relationship between β-Lactam Biosynthetic Gene, β-Lactamase and PBP 

  

 Some Streptomyces species, are β-lactam-producing bacteria, and as such they have to 

have some self-resistanance mechanism. The β-lactam biosynthetic gene clusters include 

genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are 

involved in self-resistance.  

The relationship between β-lactamases and the β-lactam biosynthetic gene cluster, 
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are located in the terminal region of the cephamycin biosynthetic gene cluster and are 

located within the clavulanic acid biosynthetic gene cluster in S. clavuligerus and S. 

cattleya. These two clusters are positioned close to one another and are not positioned 

close to the β-lactam biosynthetic genes (Ogawara 2014).   Therefore, it is suggested 

strongly that class A β-lactamases and β-lactam biosynthesis are closely related with each 

other. However, it remains to be clarified whether these β-lactamases are involved in the 

self-resistance in the Streptomyces species. Both sides of the clavulanic acid gene cluster 

are occupied by PBPs (SCLAV_4180 and SCLAV_4198), indicating that these PBPs 

behave together with clavulanic acid/cephamycin gene cluster and are involved in the 

self-resistance of S. clavuligerus.   The organizations of the clavulanic acid gene clusters 

of three Streptomyces species, S. clavuligerus, S. flavogirseus, and S. viridis are   similar 

to each other. However, the relationship between β-lactam biosynthesis, β-lactamases, 

and PBPs remains to be clarified (Coque, et al.1993, Brakhage, et al 2005). 

1.20 Measuring antibiotic resistance in Streptomyces sp 

The remarkably slow growth rates of Streptomyces sp (the doubling time of most 

Streptomyces strains range from 1.45 to 5 hours compare to the doubling time of most 

wild-type E.coli strains that range between 20 to 30 minutes) and long incubation times 

needed to analyze antibiotic resistance in Streptomyces sp represent major problems in 

evaluation of the effectiveness of the antibiotics against the bacterium.  Investigate 

antibiotic resistance microorganisms are carried out usually by determining the minimum 

bacteriostatic concentrations (MICs) and minimum bactericidal concentrations (MBCs) 

of possible antibiotic candidates. There are many techniques used to determine the MICs 

and MBCs such as broth or agar diffusion methods, disk elution and the OxoPlate®. The 

OxoPlate® is a useful novel technique in the characterization of antibacterial 

compounds. Each well of the plate carries two different fluorescent dyes, the first dye is 
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an oxygen-sensitive indicator dye and the other is a reference dye.  The intensity of the 

fluorescence is relative to the quantity of dissolved oxygen in the medium. Growth of 

bacterial cells is measured indirectly by the regular reduction of oxygen. The OxoPlate® 

is a useful method to determine MIC values directly from the oxygen-depletion curves, 

and able to discriminate bactericidal from bacteriostatic compounds. Oxygen levels of 

cultures treated with bactericidal compounds drop initially and then increase after the 

cells have died. In contrast, oxygen levels remaine low when cultures are treated with 

bacteriostatic compounds as presented in Figure 1.7  (Hutter and John 2004). 
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Figure 1-7. Graph shows how to discriminate bactericidal form bacteriostatic 

compounds using OxoPlate®.(Hutter and John 2004). 
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1.21 Difficulties in growing Streptomyces in continuous culture 

Streptomycetes are filamentous soil bacteria that are used in industry for the production 

of anti-microbial compounds mainly antibiotics. Streptomyces species tend to form cell 

pellets and biofilms during growth in the liquid culture. The pellets are formed of 

heterogeneous mycelium (different ages at different nutritional and growth stages), 

which makes  control of  the culture almost impossible (Doull and Vining 1989). 

Numerous methods to prevent and aid this problem have been published, for example 

some researchers used stirring rate of 3000 rpm with a glass blade stirrer (Roth and 

Noack 1982).  others used some glass beads or a high concentration of starch to the 

culture (Doull and Vining 1989), whereas Hobbs et al. (1989) added polyanions like agar 

or junlon at low concentrations to the fermentation medium  to prevent the development 

of flocs (Hobbs et al. 1989). Furthermore, a method to analyse and sort mycelial pellets 

using a Complex Object Parametric Analyser and Sorter (COPAS) are other strategies 

that have been used (Petrus et al. 2014).  

Furthermore, each of these approaches have different effects on the culture for instance 

the use of a stirrer rate of 3000 rpm with a glass blade stirrer could lead to extensive cell 

damage and lysis, and the addition of polyanions to the medium may have an effect on 

cultures and the antibiotics.   
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1.22 Project aims and objectives 

Antibiotic resistance is a developing problem and is a challenge to human medicine. 

Infections caused by resistant bacteria usually fail to respond to standard antibiotic 

treatment, resulting in prolonged illness and greater risk of death.   Little is known about 

the mechanism of resistance of pathogenic bacteria such as Corynebacterium  

diphtheriae and mycobacterial species that cause tuberculosis and leprosy to β- lactam 

antibiotics. This in part is due to the difficulties with working with such dangerous 

organisms in a laboratory setting.  

Recently, it has been established that pamamycins, which are antibiotics isolated from 

Streptomyces sp have potent anti-mycobacterial activity, against Mycobacterium   

tuberculosis, Mycobacterium bovis and Mycobacterium   smegmatis (Lefevre 2004). 

Furthermore, Streptomyces species are closely related genetically to these organisms and 

present themselves as a good safe model to work with and to investigate the mechanisms 

of action of β-lactam antibiotics and modes of resistance to these antibiotics.  

The aims of this study were to identify the mechanisms that underpin the resistance of 

Streptomyces species to β-lactam antibiotics (penicillin G). This was including an 

investigation into the mode of cell death caused by these antibiotics. The effect of 

continuous exposure of Streptomyces coelicolor to penicillin G was examined. 

The objectives of this study are: 

(1) Isolated strains of streptomycetes from soil that exhibit elevated resistance to 

penicillin G and characterise the organisms. These strains examined for their mode of 

resistance to penicillin G. Part of this work was aimed to identify β -lactamase producing 

strains. 
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 (2) Establish a novel staining technique to examine the interaction between penicillin G 

and Streptomyces species using a panel of stains including: (A) BOCILLIN FL, a non-

radioactive fluorescent derivative of penicillin V, which is a fluorescent β-lactam; (B) 

Cell Mask™ a deep red plasma membrane stain and (C) DAPI (4',6-diamidino-2-

phenylindole) a fluorescent stain that binds strongly to DNA. 

(3) This study was designed to investigate the relationship between antibiotic exposure 

and resistanance to penicillin G in Streptomyces coelicolor. 

 (4) Study the effect of growth rate on antibiotic resistance in S. coelicolor using 

continuous culture. 
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Chapter Two 

Materials and methods 

2. Sample collection and isolation of actinomycetes 

2.1 Soil samples 

 Soil samples were collected from different parts of Liverpool, UK. Samples were 

collected from various depth of the earth surface, ranging from layers just beneath the 

upper surface to 6 centimeters depth. They were collected in the sterile plastic. Seven soil 

samples were collected.  

2.2 Isolation of pure culture of actinomycetes 

Ninety six strains were isolated and obtained as pure culture by using standard 

microbiological method. From each soil sample, 1 gm of the soil was suspended in 100 

ml sterile water and incubated in water bath at 46ºC overnight, then serial dilutions were 

made up to 10
-6

. Each time the contents were vortexed to form a uniform suspension. For 

isolation of actinomycetes an aliquot of 0.1 ml of each dilution was spread evenly over 

the surface of starch-casein- agar (SCA) plates (g/l: starch 1.0; casein 0.4; potassium 

nitrate 0.5; dipotassium hydrogen phosphate 0.2; magnesium sulphate 0.1; calcium 

carbonate 0.1; agar 15; pH 7.2). Plates were incubated at 28ºC and monitored for 7-14 

days. The colonies were carefully counted by visual observation.  Actinomycetes 

colonies were purified using a streak plate technique on cultivation medium. The purified 

actinomycetes were preserved on Manito-Soy Agar (MS) medium (g/l:  mannitol 20; soy 

20; agar 20) and incubated at 30ºC for 14 days.   
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2.3 Maintenance of bacteria  

Maintenance of isolated strains throughout this work was achieved for short term on MS 

agar medium plates, and for long terms were achieved on cryobank tubes 

(CRYOBANK™, Copan Innovation) and were stored in a freezer at -80°C. Cryobank 

tubes are tubes contain a medium for suspending the bacterial culture and 25 color-coded 

ceramic beads. The suspending medium comprises tryptone soy broth supplemented with 

glycerol and sucrose. Streptomyces coelicolor1147 was maintained on MS agar after 

growth for 7-14 days at 30°C and cryobank tubes at -80°C. Nutrient agar was used for 

the maintenance of E. coli after growth for 24 hours at 37°C. 

2.3.1 Streptomyces coelicolor A3 (2) and mutants 

 Streptomyces coelicolor A3 (2) strain 1147 “Wild type” was maintained as a frozen 

suspension at -20˚C. Cryobank™ (Mast Group Ltd) and four mutants (δ2897. δ3580, 

δ3901 and δ5039) were obtained from a previous PhD study in this laboratory 

(McCulloch, 2005), where mutants were created by PCR directed gene deletion. The 

mutants were maintained as a frozen suspension at -20˚C. Cryobank™ (Mast Group Ltd). 

2.4 DNA extraction 

DNA was extracted using the E.Z.N.A. ® Bacterial DNA Protocol- Spin Protocol 

(Omega-bio-tek) according to the manufacturer procedure, some colonies were cultured 

in 100 ml modified yeast extract/ malt extract (YEME) medium (4 g/l yeast extract 

(Sigma), 10 g/l malt extract (Oxoid) and 4 g/l D- (+)-glucose (Oxoid)) for 2-3 days in a 

shaking incubator at 30° C, 1 ml of the culture was centrifuged and the pellet was re-

suspend using100 µL of Tris-EDTA buffer (TE Buffer). Lysozyme (10 mg/ml) was 

added and incubating at 37°C for 15 minutes.  Glass beads were used to complete 

disruption and lyse the cells. BTL Buffer (100 µL) and Proteinase K Solution (20 µL) 
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were added and Incubated at 55°C in a shaking water bath for 2 hours. Then, RNase A (5 

µL) was added and the sample incubated at room temperature for 5 mins. The sample 

was then centrifuged at 14.000 rpm for 1 min.   BDL Buffer (220 µL) was added and 

incubated at 65°C for 10 minutes before adding 220 µL ethanol (96-100%). The sample 

was then transferred to the HiBind® DNA mini column and centrifuged at 10,000 rpm 

for 1 minute before 500 µL of HB Buffer was Adding and centrifuge at 10,000 rpm for 1 

minute. The column was washed using 700 µL DNA wash buffer.  To elute the DNA 30 

µL preheated elution buffer (65°C) was added to the HiBind® DNA mini column and 

incubated for 3 to 5 minutes at room temperature and centrifuged at 10,000 rpm for 1 

minute.  The DNA was then stored at -20°C. 

2.4.1 Polymerase Chain Reaction amplifications (PCR) of DNA 

2.4.1. 1   PCR amplification of DNA for sequencing and species identification 

 

The PCR was performed in a 50 µl reaction mixture containing 45 µl Master Mix, 2 µl of 

Dimethyl sulfoxide (DMSO), 0.5 µl F-primer (27 F), (5'-

GAGTTTGATCCTGGCTCAG-3'), specific for bacteria and 0.5 µl universal reverse 

oligonucleotide primer, R-primer (1492R), (5'-GGTTACCTTGTTACGACTT-3'), 1 µl 

sterile distillate water and 1.0 µl DNA target were transferred in PCR tubes. The DNA 

templates were subjected to 35 cycles consisting of denaturing at 95°C, for 1 minute, 

annealing at 52°C, for 1 minute and elongation at 72°C, for 2 minutes. 

2.4.1. 2  PCR amplification of DNA for sequencing and phylogenetic tree  

Ten isolated strains that have high MICs from; five beta-lactamase producing 

Streptomyces; (W21), (W51), (W55) (W76) and (W60); and five from non-beta-

lactamase producing Streptomyces; (W32), (W39), (W96), (W79) and (W75); as well as 

the fragmented strain (W43) were also amplified with nested primer 907R (5′-
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CCGTCAATTCMTTTRAGTTT-3′) to get almost completed 16s rRNA gen and to 

conduct phylogenetic tree. 

2.5 The PCR product purification 

The PCR product purification was accomplished using a QIAquick PCR purification kit 

protocol, according to the manufacturer’s instructions. Buffer PB (75 ul) was added to 15 

µl PCR product and mixed.  To bind DNA, the sample was applied to the QIAquick 

column and centrifuged for 60s before adding 750 µl of PE buffer to the QIAquick 

column to wash it and this was then centrifuged for 30–60 s. To elute DNA, 30 µl elution 

Buffer EB (10 mM Tris·Cl, pH 8.5) was added to the centre of the QIAquick membrane 

and the column was centrifuged for 2 min. The DNA extracted was purified on agarose 

gel electrophoresis. 

2.6 DNA purity was verified by agarose gel electrophoresis 

PCR products (5.0 µl) were run at 100 Volts/cm on 1% w/v agarose gel for 60 minutes. 

In the first well was added 5.0 µl of DNA Hyper ladder buffer. The Tris-acetate-EDTA 

50x (TAE) at pH 8.5 was used ((242g of Tris base, 57.1 ml of glacial acetic acid, 100 ml 

of 0.5M EDTA at pH 8 (88 ml distil water, 18.6g of 0.5M EDTA and increase the 

volume to 100 ml), 750 ml distil water)) in 1L. 

2.7 Scanning Electron Microscopy (SEM) 

Morphology and spore surface ornamentation of streptomyces were examined by 

scanning electron microscopy. The samples were grown on MS agar for 14 days at 30°C. 

Cells were fixed using glutaraldehyde (EM grade 2.5%) overnight at 4°C, then washed 

with serial dilution of ethanol (30%, 50%, 70%, 90% and 100) for 1 min at each 

concentration. The samples were immersed in 100 % acetone before dehydrating by 
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critical point drying at 35°C at a pressure of 1,200 psi. The samples were coated by gold 

Sputter Coater Unit (EMITECH K550) before viewing in the SEM (FEI Inspect). 

2.8 Determination of minimum inhibitory concentration (MIC) and minimum 

bactericidal concentration (MBC) of penicillin G to Streptomyces strains 

The MIC and MBC of penicillin G for isolated Streptomyces strains were measured by 

two techniques, plate culture in solid medium and OxoPlates® in liquid medium. 

In plate culture each strain was grown in MS medium for 14 days and then streaked onto 

SC plates containing various amounts of penicillin G. The concentrations of penicillin G 

(Sigma Co.) were 25, 50, 100, 200 and 400 µg/ml. Each plate was incubated at 30°C for 

14 days. MICs were obtained from the results of plates without colonies, when full 

growth was observed on plates without penicillin G. 

Moreover, The MICs and MBCs were determined using a novel technique called the 

OxoPlate® (PreSens, Regensburg, Germany) which is a 96 well plate assay; each well of 

the plate carrying two different fluorescent dyes; an oxygen-sensitive as guide dye and a 

reference dye, and the oxygen signal was monitored on-line giving an indication of the 

cell's metabolic activity. Essentially, this method provides high throughput, real-time, on-

line measurements of oxygen uptake by cultures. Using a 96-well plate, The OxoPlate® 

system has been used in this study to determine the minimum inhibitory concentrations 

(MICs) for antibiotic and also to monitor the bacteria growth rate. The FLUOstar 

OPTIMA (BMG LABTECH) microplate reader was set to time resolved fluorescence 

(TRF) mode with Filter pair 1 (544/650 nm) used to detect fluorescence of the indicator 

dye. The second filter pair (544/590 nm) measures fluorescence of the reference dye. 

Fresh spores were harvested from 14 days old plate cultures.  Sterile Muller Hinton (MH) 

medium (5ml) was poured on the surface of the culture and spores were removed off by 
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gentle agitation with a sterile cotton swab. Then the spore stock was diluted and brought 

to 10
8
 CFU/ml, which corresponded to an optical density 1 at 420 nm.  The spore 

suspension was used to inoculate 50 ml of MH broth.  

 180 µl of overnight culture was added into each well and 10 µl of penicillin G at 

different concentration. The plate was covered with a gas permeable adhesive seal 

(Thermo Scientific) and incubated in a FluoStar Optima plate reader (BMG) at 30 °C for 

72 hour. Positive control wells were loaded with MH broth with bacteria added without 

antibiotic and negative control wells were loaded with just medium.  Each strain was 

assayed in triplicate. 

2. 8. 1 Calculation of oxygen concentration  

The referenced signal IR was calculated from these two intensities. 

I R =  
I indicator

I reference
 

Where I indicator be a symbol of fluorescence intensity dependent on the concentration 

of oxygen in the sample, while I reference be a symbol of fluorescence intensity 

independent on the concentration of oxygen in the sample,  

The oxygen concentration PO2 as [%] air saturation is calculated for each measurement 

point using the following equation   
















 1/1*100

100

00

K

K

I

K

R

     

Where K0  is a constant calculated by taking the average of the signals of IR  of at least 

three  wells filled with oxygen-free water (cal 0), while K100 is a constant calculated by 

taking the average of the signals of IR  of at least three wells filled with air-saturated 

water (cal  100). 

Cal 0 is prepared by dissolving Gram of sodium sulphite in 100 ml water, while Cal 100 

was prepared by shaking 100 ml of water in a suitable vessel for two minutes to ensure 

that water is air-saturated. 
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2.8.2 Determination of Bacterial Growth rate 

 Growth rates were determined as described by Stitt et al. 2002 using the rate of oxygen 

uptake as the indices of growth. A typical set of data is shown below. 

Values of PO2 from the Oxoplate® were converted into a natural log (Ln) and then 

presented on the y axis versus time on the x axis. The doubling time could be determined 

from Ln (2) divided by the exponential slope (µ).   

td = 


2Ln
    

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Graph represent how the growth rate of organisms was calculated using the 

OxoPlate® system. 
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  2.9 Screening for β-lactamase activity 

Streptomyces strains were grown on a rotary shaking incubator (180 rpm) in 150-ml 

flasks containing 50 ml of YEME medium for 72 hours at 30°C. After appropriate times 

of cultivation, 100 ul aliquots were taken out to determined β-lactamase activity using 

nitrocefin disks (Sigma). E coil was used as a positive control as a β-lactamase producing 

bacteria and water was used as negative control. 

Nitrocefin is a chromogenic cephalosporin which changes from yellow to read when the 

amide bond in beta-lactam ring is hydrolyzed by beta-lactamase. Nitrocefin disks test are 

good, rapid, indicators of ß-lactamase production.  However, are less useful to determine 

the type of ß-lactamase.  

  2.10 BOCILLIN FL   

BOCILLIN FL, fluorescent penicillin, as a labeling reagent for the detection and study of 

all penicillin-binding proteins (PBPs) (BOCILLIN FL, Molecular Probes) but did not 

determine the type of PBP that bind to.   It is green fluorescent. Fluorescent BOCILLIN 

was reconstituted in distilled water at a final concentration of 100µg/ml.  For solid 

cultures, spores were mixed with 5µl of the BOCILLIN stain. Samples were kept in the 

dark at room temperature for 5 min then rinsed with water to remove the excess dye.  It 

fluoresces at 511 nm upon excitation at 504 nm (Molecular Probes, Inc.).   
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2.11 Chemostat culture experiments 

 2.11.1 Preparation of inoculum of Streptomyces coelicolor 1147  

In all chemostat culture experiments, a spore inoculum of Streptomyces coelicolor strain 

1147 were used and prepared as follows: Streptomyces coelicolor 1147 was cultivated on 

10 plates of MS agar medium for 14 days at 30°C. After full growth and spore formation, 

5 ml of sterile distilled water was added to each petri dish and the growth was scraped 

gently by sterile cotton tip swab sticks to release the spores into the water which were 

then collected in a sterile bottle.  

2.11.2 Chemostat culture conditions 

Chemostat cultures were run in a 3L fermenter (Applikon Biotechnology®), constructed 

from a jacketed pyrex glass vessel with a working volume of 2.8 L with stainless steel 

lid. The stainless steel lid had several ports usually used for inoculation and feeding, 

sampling, agitation, aeration, condenser, pH adjustment and antifoam, pH sensor probe, 

dissolve of oxygen probe, and outlet medium tube. Moreover, four of 250 ml bottles 

were connected to the fermenter via long tubes and used as supplies of antifoam, 

inoculum spores, NaoH (1.5 mM) and HCL (1.5 mM). A photograph of 3L fermenter is 

shown in Figure 2. Applikon chemostat is monitored by an ez-Controller unit, which are 

linked to a PC workstation loaded with expert software that enables data acquisition and 

analysis (Applikon Biotechnology®). Chemostat is organized to be operated with Bug 

Lab's optical density reading system with bug Lab Sensor and FerMac 368 gas analyser 

((FerMac 368).  

2.11.2.1 Temperature: The temperature of the vessel was kept constant at 30ºC by using 

cold fingers connectors for water to and from reactor, and the heating jacket around the 

vessel.  
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2.11.2.2 Aeration: The vessel was aerated by passing sterilised air through stainless steel 

tube with L shape with small holes on it to distribute the air consistently. The tube was 

immersed into the medium near the bottom of the jar. The incoming air was filtered by 

air filter with 0.2 µm pore size (scientific laboratory supplies).  

2.11.2.3 Agitation: a top driven motor with two blades were used to mix the medium 

throughout the fermentation period and one blade was used on the top of the medium in 

order to break down foams.  

2.11.2.4 Sampling: samples were gained from the vessel by a long stainless steel tube 

dipped in the medium close to the bottom of the vessel. This tube was connected via a 

small tube to a stainless steel adapter to a sterile universal tube. 

2.11.2.5 Condensation: a small stainless steel condenser was set into the lid aiming to 

avoid the evaporation of water from the medium. An air filter of 0.2 µm pore size was 

connected to the outer side of the condenser via a small tube for the exhaust gas.  

2.11.3 Inoculation and fermentation  

The four fermenter cultures prepared by inoculate 5% (v/v) f spores inoculum of 

Streptomyces coelicolor 1147 using Watson-Marlow peristaltic pump to 2 L of modified 

glucose limited YEME medium (4 g/l yeast extract (Sigma), 10 g/l malt extract (Sigma) 

and 2.0 g / l D- (+)-glucose (Sigma)), The 2L YEME medium was autoclaved at 121
o
C 

for 15 minutes. Anti-foam was sterilized separately in 250 ml bottles. The temperature 

was controlled at 30
o
C. The chemostat was operated with agitation of 1000 rpm to 

prevent the formation of pellets and an aeration of 2.2 L/min. The pH of the medium was 

initially adjusted to7.2 and then controlled and kept consistent by connecting two 150 ml 

bottles of alkaline (NaOH, 1.5 mM) and acidic (HCl, 1.5 nM) supplier to fermenter by a 

long plastic tube and were introduced using a peristaltic pump when necessary.  Foam 

control was achieved by using autoclaved antifoam (1g of silicon, 1000 ml water) stored 
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in 250 ml bottles connected to the fermenter. The uniform was introduced into the 

fermenter by a peristaltic pump when necessary.  

The rate of medium flow into the vessel is related to its volume, and is defined by the 

dilution rate (D) and it calculated from the equation; 

µ = D = 
v

f
                                            

Where D = dilution rate; f = flow rate (L.h
-1

); v = fermenter volume (L);  

µ = growth rate (h
-1

) 

Each fermenter runs at different dilution rate (D) 0.04, 0.06, 0.08 and 0.1 h
-1

.  

Dilution rate was constants by using Watson-Marlow peristaltic pump.  Different 

concentration of penicillin G sodium salt (Sigma) was filtered using whatman 0.2 µm 

pore size filter (scientific laboratory supplies) and introduced to the medium bottle via 

0.2 µm pore size filter (scientific laboratory supplies).   Every day, a sample of 30 ml was 

taken for the analyses of growth, glucose consumption, under light microscope and 

fluorescent microscope, subculture on MS and nutrient agar.   
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Figure 2-2. Photograph of 3 L bioreactor. Description: 1-Vessel, 2- Jacket, 3- Bug Lab 

for optical density reading, 4- Sampling bottle, 5- Dissolve of oxygen probe, 6- PH 

indicator sensor, 7-medium outlet tube, 8- Anti growth back, 9- Feeding tube,10- Stirrer 

Motor, 11- Peristaltic pump for antifoam feeding, 12- Antifoam reservoir, 13- Medium 

reservoir, 14- Medium out reservoir, 15- Peristaltic pump for medium feeding, 16- 

Condenser, 17- Air inlet.   
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2.11.4 Analytical methods 

2.11.4.1 Dry mass determination 

The growth of Streptomyces coelicolor 1147 was measured as the dry weight of cells. 10 

ml of the culture was centrifuged at 15000 rpm for 5 min. The pellet was washed three 

times with distilled water and dried at 85 °C for 7 days before determining the mass of 

the pellet.  In some cases, the procedure was continued until a constant mass was 

obtained. 

2.11.4.2 Gas analysis 

The amount of oxygen uptake and carbon dioxide production in the outlet gas from the 

fermenter were measured using the FerMac 368 gas analyser (FerMac 368).  

2.11.4.3 Determination of glucose concentration  

Glucose is determined after enzymatic oxidation in the presence of glucose oxidase. The 

hydrogen peroxide formed reacts, under catalysis of peroxidase, with phenol and 4-

aminophenazone to form a red - violet quinoneimine dye as indicator. 

Samples of Streptomyces coelicolor culture were filtered through Whatman GF/C filter 

paper to remove the cells and other solid components that can affect the concentration of 

the glucose, and then the glucose concentration of the medium was measured using 

commercial kits for glucose (Randox GL2623). According to manufacturer’s procedure 

for each sample, 1000 µl of reagent was added to three cuvette tubes (scientific 

laboratory supplies), and 10 µl water was added to first tube in order to act as blank, and 

10 µl standard reagent was added to second tube, this was used as standard concentration, 

and finally 10 µl of sample was added to last cuvette tube. Then the tubes incubated at 

37°C for 10 min before the concentrations were measured against the blank at 

wavelength of 500 nm. 

  The concentration of glucose was calculated using a standard equation as follows;  

Concentration of glucose = standard concentration x A sample (glucose) / A standard 

(glucose) g/l. 
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Chapter Three 

Results 

3.1 Isolation and morphological characteristics of actinomycetes 

3.1.1 Growth of Streptomyces sp on Solid Media 

A total of ninety six isolates of actinomycetes were isolated and purified from seven soil 

samples collected from different places in Liverpool, UK. The growth of the isolates was 

tested on various media, solid (MS, YEME, MHA and SC) and liquid media (MHB and 

YEME); the strains grew well on all of the defined and synthetic media tested. The strain 

showed maximum growth when cultivated at a temperature of 30°C for 14 days. 

Typically, most of the colonies were elevated, self-limiting, and covered with white and 

grey aerial mycelia and in some strain spores could be seen in MS medium. Diffused 

melanin pigments were sometimes observed. Culture characteristics of strains were 

derived on the basis of observations made after 14 days of incubation on MS media as 

shown in Figure 3.1. According to the cultural characteristics, all isolates exhibited a 

range of colony colours (dark grey, grey, dark brown, brownish, whitish and yellowish). 

The microscopic examination of the colony of the isolates revealed that aerial mycelia 

were morphologically branched with a grey and White surface appearance and some 

strains formed spores. The mycelia growth as well as development of spore chains was 

studied under a light microscope as presented in Table 3.1. The formation of the spores 

and aerial mycelia give a colony of Streptomyces its characteristic fuzzy, powdery 

appearance. Moreover, some strains produced secondary metabolites such as W2, W5, 

W7, W9, W10, W15, W44, W51, W52, W61, W63 and W81 as displayed in Figure 3.1. 
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Figure 3-1. Morphology of colonies of the isolated Streptomyces strains grows on MS 

agar for 14 days at 30°C.  In most cases the colonies are covered with white or with grey 

aerial mycelia.  Cultivation medium is coloured with different diffusible pigments. Scale 

bar 2.50 mm.  
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The presence of spores was confirmed using an impression amount taken from the 

surface of the colony under a light microscope (Normaski optics) as illustrate in Table 

3.1.  All strains formed spores excluding eight strains (W11, W29, W46, W62, W80, 

W81, W89 and W93). The aerial hyphae of these strains appears to be wrinkled and lack 

any visible signs of speculation. 

 

Strains 

name 

Aerial 

mycelium 

Substrate 

mycelium 

 Spores Diffusible 

pigment  

W1  Yellow-White  Grey +  Grey 

W2 White Grey-White +   Grey-White 

W3 Dark Grey Grey + Whitish-Grey 

W4 White Dark brown + Grey 

W5 White- Grey Grey +   Grey-White 

W6 White Grey +   Grey-White 

W7 White- Grey Grey + light Grey  

W8 White Grey + red 

W9 White- Grey Grey +   Grey-White 

W10 Grey Grey +   Grey-White 

W11 Yellow Grey Bold Creamish 

W12 White- Grey Grey + Light Grey  

W13 Grey-White Grey +   Grey-White 

W14 White Grey +   Grey-White 

W15 Grey-White Grey + Light Grey  

W16 White Grey +   Grey-White 



  

51 
 

Strains 

name 

Aerial 

mycelium 

Substrate 

mycelium 

 Spores Diffusible 

pigment  

W17 Grey-White Grey +   Grey-White 

W18 Grey-White Grey + Light brown 

W19 Grey-White Grey + Light Grey  

W20 White Grey + Dark Grey  

W21 White Grey + Dark Grey  

W22 Grey-White Grey + Dark Grey  

W23 Grey-White Grey + Dark Grey  

W24 White Grey + Dark Grey  

W25 Grey-White Grey +   Grey-White 

W26 Grey-White Grey +   Grey-White 

W27 Grey-White Grey + Dark Grey  

W28 Grey-White Grey + Dark Grey  

W29 yellow Grey Bold Creamish 

W30 White-Grey Grey +   Grey-White 

W31 Grey-White Grey +   Grey-White 

W32 White Grey +   Grey-White 

W33 White Grey +   Grey-White 

W34 Grey-White Grey +   Grey-White 

W35 White Grey +   Grey-White 

W36 White Grey + Dark Grey  

W37 White Grey + Dark Grey  

W38 Grey-White Grey + Dark Grey  
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Strains 

name 

Aerial 

mycelium 

Substrate 

mycelium 

 Spores Diffusible 

pigment  

W39 White Grey + Dark Grey  

W40 White Grey + Dark Grey  

W41 Dark Grey Grey + Dark Grey  

W42 Dark Grey Grey + Dark Grey  

W43 Dark Grey Grey + Dark Grey  

W44 White Grey + Dark Grey  

W45 Grey-White Grey + Dark Grey  

W46 Yellow Grey Bold Creamish 

W47 Yellow Grey + Dark Grey  

W48 White Grey + Dark Grey  

W49 White Grey + Dark Grey  

W50 White Grey + Dark Grey  

W51 Grey-White Grey + Dark Grey  

W52 yellow Grey + Dark Grey  

W53 Grey-White Grey + Dark Grey  

W54 Grey-White Grey + Dark Grey  

W55 White Grey + Dark Grey  

W56 White Grey + Dark Grey  

W57 White Grey + Dark Grey  

W58 White Grey + Dark Grey  

W59 Grey-White Grey + Dark Grey  

W60 Grey-White Grey + Dark Grey  
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Strains 

name 

Aerial 

mycelium 

Substrate 

mycelium 

 Spores Diffusible 

pigment  

W61 Yellow Grey + Dark Grey  

W62 Grey Grey Bold Dark Grey  

W63 Dark Grey Grey + Dark Grey  

W64 Grey Grey + Dark Grey  

W65 Dark Grey Grey + Dark Grey  

W66 Grey-White Grey + Dark Grey  

W67 Grey Grey + Dark Grey  

W68 Dark Grey Grey + Dark Grey  

W69 Grey Grey + Dark Grey  

W70 Dark Grey Grey + Dark Grey  

W71 Grey-White Grey + Dark Grey  

W72 Grey Grey + Dark Grey  

W73 Grey-White Light Grey + Dark Grey  

W74 White Light Grey + Dark Grey  

W75  White Light Grey + Dark Grey  

W76 Grey-White Light Grey + Dark Grey  

W77 Dark Grey Grey + Dark Grey  

W78 Dark Grey Grey + Dark Grey  

W79 Grey Grey + Dark Grey  

W80 Yellow Grey Bold Dark Grey  

W81 Yellow Yellow Bold Dark Grey  

W82 Grey Grey + Dark Grey  
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Strains 

name 

Aerial 

mycelium 

Substrate 

mycelium 

 Spores Diffusible 

pigment  

W83 Grey-White Grey + Dark Grey  

W84 Grey Grey + Dark Grey  

W85 Grey-White Light Grey + Red 

W86 Grey-White Light Grey + Dark Grey  

W87 Grey-White Light Grey + Dark Grey  

W88 Grey-White Grey + Dark Grey  

W89 Yellow Grey Bold  Creamish 

W90 Grey-White Grey + Dark Grey  

W91 White Ivory + Grey 

W92 Grey- White Red + Red 

W93 yellow yellow Bold Creamish-Yellow 

W94 Grey-White Light Grey + Grey 

W95 Grey-White Grey +  Grey 

W96 Dark Grey Red + Red 

 

              Table 3.1. Cultural characteristics of isolated Streptomyces grow on MS agar. 
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3.1.2 Growth of Streptomyces in Liquid Media 

It is well known that Liquid-grown Streptomyces cultures are characterized by mycelial 

pellets that are heterogeneous in size. The morphology of mycelia of Streptomyces 

strains was examined under a light microscope at 1000 X magnification from 72 hours 

age, culture on YEME broth example for each presented in Figure 3.2. None of the 

cultures produced spores in these conditions. Growth resulted in pelleting in all of these 

strains except strain W43, which was fragmented in this condition as appeared in Figure 

3.3. This was confirmed using fluorescent microscope, the strain was stained with cyto9 

stain, and electron microscope, the strain was incubated in YEME for 72h before viewing 

under electron microscope as shown in Figure 3.3.  

In the solid medium (YEME), coverslip technique was used to test the fragments of 

mycelium of W43 strain. W43 was streaked on the edge around the coverslip and 

incubated for 7 days at 30 °C.  
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Figure 3-2. Morphology of aerial mycelia of isolated Streptomyces strains W1, W6, W8, 

W16, W32 and W34 at 1000 X under a light microscope using Normaski optics.   
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Figure 3-3. Morphology of aerial mycelia of the isolated Streptomyces strain W43, (A): 

Under light microscope on liquid YEME medium. (B): Stained with cyto 9 under a 

fluorescent microscope on liquid YEME medium. (C): Under electronic microscope on 

MS agar. (D): Under a light microscope using the coverslip technique on YEME agar 

medium. 
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3.2 Identification of the actinomycetes 

Ninety six of the isolates were identified using their 16S rRNA sequence. The results 

obtained from the direct sequencing of purified PCR products showed that all the 

actinomycetes belong to the genus Streptomyces. Performing of PCR reactions using 

primer pair 27F/1492R of DNA from the 96 soils isolates produced a single ~1500 bp 

band in all tested isolates as illustrated in Figure 3.4. The sequence of the 16S rRNA 

gene of each isolate was analyzed using Basic Local Alignment Search Tool (BLAST) 

(Altschul etal 1990) on the NCBI website: http://www.ncbi.nlm.nih.gov/BLAST/. The 

BLAST analysis of 16S rRNA gene sequences of the isolates strains presented 

alignments of these sequences with state 16S rRNA genes in the gene bank. The highest 

similarities found for each strain with different species of the genus Streptomyces are 

summarized in Table 3.2. 

16S rRNA-based analysis resulted in the classification of the isolates into three 

categories. A total of 35 of 96 isolates (36.45%) possessed a 16S rRNA sequence with 

≥97% similarity to that of a previously characterized Streptomyces species. A total of 45 

of the 96 strains (46.87%) possessed a 16S rRNA sequence with ≥90% similarity to 

Streptomyces species.  A total of 16 of 96 (16.66%) had a 16S rRNA sequence with 

<90% similarity to Streptomyces species.  
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Figure 3-4. Agarose gel electrophoresis of PCR products from amplification of DNA 

isolated from 96 Streptomyces species with the primer pairs 27F/1492R.  The symbols in 

PCR lanes represent M: hyper leader; 1-96 indicated genomic DNA from W1-W96 

respectively.   

 

 

 

M   1   2   3   4   5   6      7   8  9  10  11  12  13 14  15 16  17  18 19  20 21 22 23 24 

M   25 26  27 28 29 30  31  32 33 34  35 36 37 38 39 40 41  42 43 44  45  46 47 48 

M   49  50 51 52  53  54 55 56 57 58 59  60  61  62  63 64 65 66 67 68 69 70 71 72 

M    73 74  75 76 77  78  79  80  81 82  83  84  85  86 87 88 89  90 91 92  93 94 95 96 
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Strains Similar to  % 

W1 Streptomyces  albidoflavus strain BB5 96 

W2 Streptomyces olivochromogenes strain GG34   98 

W3 Streptomyces griseorubens strain HBUM174527 93 

W4 Streptomyces spiroverticillatus strain CB3Z4 96 

W5 Streptomyces olivochromogenes strain CB1Z3 99 

W6 Streptomyces albidoflavus strain BB5 98 

W7 Streptomyces atrovirens strain 100 95 

W8 Streptomyces olivochromogenes 97 

W9 Streptomyces rishiriensis strain TSR41 97 

W10 Streptomyces aureus strain 1H2 95 

W11 Streptomyces prasinopilosus strain NRRL B-2711 75 

W12 Streptomyces ambofaciens strain F3 72 

W13 Streptomyces tricolor strain HBUM174995 83 

W14 Streptomyces daghestanicus strain 7-5 97 

W15 Streptomyces griseorubens strain 12-6 96 

W16 Streptomyces somaliensis strain 5-8 97 

W17 Streptomyces yanii strain GHI1 98 

W18 Streptomyces atratus strain DST73 97 

W19 Uncultured Streptomyces sp. clone 15661 96 

W20 Streptomyces flavofungini strain BB1 98 

W21 Streptomyces coelicoflavus strain BB6 93 

W22 Streptomyces pluricolorescens strain Nr_42 78 

W23 Streptomyces parvulus strain CFA-9 97 

W24 Streptomyces filamentosus strain Act50 83 
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Strains Similar to  % 

W25 Streptomyces griseorubens strain MMH 9 96 

W26 Streptomyces griseorubens strain S6-SC3 95 

W27 Streptomyces marokkonensis strain 174443 97 

W28 Streptomyces yanii strain GHI1 98 

W29 Streptomyces yokosukanensis strain 3g3 96 

W30 Streptomyces griseorubens strain S6-SC3 96 

W31 Streptomyces sp. MJM10631 96 

W32 Streptomyces sp. 1_C7_48 94 

W33 Streptomyces vinaceusdrappus strain D704 94 

W34 Streptomyces sp. 764G2 99 

W35 Streptomyces sp. LK1332.2 97 

W36 Streptomyces lienomycini strain 173762 74 

W37 Streptomyces lavendulae subsp. lavendulae strain DSM40713 99 

W38 Streptomyces sp. S6n14 68 

W39 Streptomyces marokkonensis strain 174443 97 

W40 Streptomyces rishiriensis strain LuP30 90 

W41 Streptomyces coelescens strain BS31 82 

W42 Streptomyces rubrogriseus strain 173513 96 

W43 Streptomyces violaceoruber strain BUCBT-23 98 

W44 Streptomyces sp. PsTaAH89 97 

W45 Streptomyces atratus strain 173748 98 

W46 Streptomyces lienomycini strain 173894 97 

W47 Streptomyces tricolor strain ICN14 93 

W48 Streptomyces bungoensis 71 
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W49 Streptomyces natalensis strain 20-4 91 

W50 Streptomyces sp. 764G2   99 

W51 Streptomyces laceyi gene 99 

W52 Streptomyces griseoaurantiacus strain HQ-1-53 71 

W53 Streptomyces pluricolorescens strain Nr_42 79 

W54 Streptomyces sp. 764G2 99 

W55 Streptomyces tricolor strain HBUM82677 92 

W56 Streptomyces tricolor strain HBUM82677 86 

W57 Streptomyces coelescens strain OAct533 87 

W58 Streptomyces marokkonensis strain 174443 97 

W59 Streptomyces rubrogriseus strain 173513 96 

W60 Streptomyces jietaisiensis strain FXJ46 96 

W61 Streptomyces rishiriensis strain 5W3 96 

W62 Streptomyces violaceoruber strain Z12-1 97 

W63 Streptomyces flavogriseus strain MD12-638-1-A 70 

W64 Streptomyces parvulus strain S2-SC26 96 

W65 Streptomyces prunicolor strain AHS1 96 

W66 Streptomyces violaceoruber strain Z12-1 96 

W67 Streptomyces prunicolor strain AHS1 97 

W68 Streptomyces griseoaurantiacus strain NBRC 15440 96 

W69 Streptomyces sp. G11 96 

W70 Streptomyces sp. FXJ7.076 97 

W71 Streptomyces rubrogriseus strain 173513 97 

W72 Streptomyces parvulus strain PFS10 95 

W73 Streptomyces coelescens strain BS31 96 
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W74 Streptomyces lividans strain Gs-2 93 

W75 Streptomyces coelescens strain BS31 95 

W76 Streptomyces sp. CBH04 98 

W77 Streptomyces violaceoruber strain NEAE-99 96 

W78 Streptomyces tricolor strain ICN14 96 

W79 Streptomyces coelescens 94 

W80 Streptomyces griseoaurantiacus strain NBRC 15440 97 

W81 Streptomyces yanii strain GHI1 90 

W82 Streptomyces atratus strain 174498 96 

W83 Streptomyces sp. SOK7/16-05 99 

W84 Streptomyces caesius 97 

W85 Streptomyces coelescens strain OAct533 96 

W86 Streptomyces coelescens strain OAct533 98 

W87 Streptomyces coelescens strain BS31 87 

W88 Streptomyces sp. CNRD05 98 

W89 Streptomyces griseoaurantiacus strain BQAB-05d 95 

W90 Streptomyces tricolor strain ICN14 97 

W91 Streptomyces sp. 1_C7_48 97 

W92 Streptomyces laceyi gene 96 

W93 Streptomyces spiralis strain S6SS1 96 

W94 Streptomyces tricolor strain ICN14 96 

W95 Streptomyces lividans 96 

W96 Uncultured Streptomyces sp. clone 15661 96 

Table 3.2. The highest similarity of each isolates strains (W1-W96) with different 

Streptomyces species. 
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3.3. The minimal inhibitory concentration (MIC) and the minimum bactericidal 

concentration (MBC) of penicillin G for isolated Streptomyces strains 

The MICs of penicillin G for isolated Streptomyces strains were measured by two 

techniques, plate culture and OxoPlate®. In plate culture each strain streaked onto SC 

plate containing various amounts of penicillin G. The concentrations of penicillin G 

(Sigma Co.) were (0, 25, 50, 100, 200 and 400 µg/ml). Each plate was incubated at 30°C 

for 14 days.  The MICs were obtained from the results of plates without colonies, when 

full growth was observed on plates without penicillin as indicate in Table 3.3. Some 

strains showed growth in all the concentrations of penicillin G (0, 25, 50, 100, 200 and 

400 µg/ml) which indicate that the strains were highly resistant against penicillin G.  

Some strains were un-able to grow at penicillin G concentration above 200 µg/ml.  

Also, the MICs of penicillin G for Streptomyces strains were measured using OxoPlates® 

system. The MICs and MBCs were determined directly from the oxygen-depletion 

curves. Oxygen levels of cultures treated with bactericidal compounds dropped initially 

and then increased after the cells had died. In contrast, oxygen levels remained low when 

cultures were treated with bacteriostatic compounds as demonstrated in Figure 3.5. The 

MICs and MBCs of penicillin G for the isolated strains of Streptomyces were 

summarised in Table 3.4. The minimum inhibitory concentrations of all strains ranged 

from 1- 100 µg/ml.  
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Table 3-3. The MICs of penicillin G for isolated Streptomyces strains (W1-W96) from 

plate dilution culture. The strains were grown in SC medium for 14 days. 

Strains MICs  (µg/ml) Strains MICs  (µg/ml) 

W1 100 W49 50 

W2 200 W50 400 

W3 25 W51 > 400 

W 4 200 W52 50 

W5 25 W53 100 

W6 200 W54 100 

W7 50 W55 > 400 

W8 25 W56 400 

W9 25 W57 25 

W10 200 W58 200 

W11 100 W59 25 

W12 25 W60 > 400 

W13 50 W61 200 

W14 25 W62 25 

W15 < 25 W63 25 

W16 400 W64 200 

W17 25 W65 200 

W18 100 W66 25 

W19 200 W67 25 

W20 200 W68 50 

W21 > 400 W69 200 

W22 50 W70 100 

W23 100 W71 100 

W24 100 W72 25 

W25 200 W73 < 25 

W26 100 W74 400 

W27 < 25 W75 200 

W28 < 25 W76 > 400 

W29 100 W77 100 

W30 400 W78 25 

W31 200 W79 200 

W32 > 400 W80 200 

W33 50 W81 100 

W34 200 W82 > 400 

W35 25 W83 50 

W36 200 W84 50 

W37 25 W85 50 

W38 100 W86 25 

W39 400 W87 400 

W40 50 W88 25 

W41 50 W89 < 25 

W42 50 W90 50 

W43 100 W91 50 

W44 25 W92 < 25 

W45 25 W93 200 

W46 25 W94 50 

W47 50 W95 50 

W48 50 W96 100 
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Table 3-4. The MICs and MBCs of penicillin G for isolated Streptomyces strains (W1-

W96) from OxoPlate® system. The strains grown in MHB medium for 48h. 

 

Strains MICs   

(µg/ml) 

MBCs 

(µg/ml) 

Strains MICs  

(µg/ml) 

MBCs  

( µg/ml) 

W1 10 80 W49 5 40 

W2 40 160 W50 50 400 

W3 5 20 W51 80 320 

W 4 10 40 W52 10 20 

W5 5 20 W53 20 40 

W6 40 160 W54 5 40 

W7 10 160 W55 80 160 

W8 5 20 W56 50 400 

W9 5 40 W57 5 160 

W10 40 160 W58 40 80 

W11 10 40 W59 5 80 

W12 5 20 W60 100 400 

W13 10 40 W61 5 10 

W14 5 20 W62 5 10 

W15 4 32 W63 5 40 

W16 50 400 W64 10 160 

W17 5 10 W65 10 320 

W18 5 20 W66 5 160 

W19 64 128 W67 5 160 

W20 40 160 W68 10 320 

W21 80 160 W69 40 460 

W22 10 80 W70 20 80 

W23 32 64 W71 20 160 

W24 20 40 W72 5 80 

W25 40 80 W73 4 8 

W26 10 320 W74 50 200 

W27 1 2 W75 40 80 

W28 4 8 W76 80 160 

W29 20 80 W77 20 80 

W30 50 200 W78 5 80 

W31 40 80 W79 40 160 

W32 80 640 W80 40 160 

W33 10 20 W81 5 160 

W34 40 80 W82 20 160 

W35 5 80 W83 10 40 

W36 20 80 W84 10 40 

W37 5 40 W85 10 80 

W38 20 80 W86 5 20 

W39 50 400 W87 40 320 

W40 10 80 W88 5 160 

W41 5 40 W89 2 16 

W42 5 20 W90 10 80 

W43 10 20 W91 5 160 

W44 5 80 W92 8 32 

W45 5 20 W93 40 160 

W46 5 160 W94 10 80 

W47 5 80 W95 5 40 

W48 5 40 W96 20 320 
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3.4. β-lactamase activity of isolated Streptomyces strains 

β-lactamase activity was determined using nitrocefin disk (Sigma).  51% of isolated 

strains do not produce β-lactamase, and of the isolated strains 49 % of produced β-

lactamase activity as demonstrated by a colour change of yellow to red as shown in 

Figure 3.5. There was no correlation between the production of β-lactamase and the 

MICs of these isolated strains.  For instance, although strain W32 does not produce β-

lactamase, it has high MIC and MBC and strain W8 has lower MIC and MBC yet it 

exhibits β-lactamase activity.  The plot of the MICs and MBCs of β-lactamase producing 

strains were shown in Figure 3.6 and the MICs and MBCs of non-β-lactamase producing 

strains presented in Figure 3.7. 

 

 

 

 

 

 

 

 

Figure 3-5. Monitoring of β-lactamase activity of E coil by nitrocefin disk, the colour 

change of yellow to red in the present of β-lactamase. 
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Figure 3-6. Graph shows the MICs and MBCs of β-lactamase producing Streptomyces 

strains. MICs and MBCs plot in different y-axis. 
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Figure 3-7. Graph shows the MICs and MBCs of Non-β-lactamase producing    

Streptomyces strains. MICs and MBCs plot in different y-axis. 
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T test was performed to test if this variation between beta lactamase producing and non-

beta lactamase producing strains is significantly different from each other. The P value 

(P=0.00334) was < 0.05   which means they are specifically different. 

To sum up these results, the isolation and morphological characteristics of Streptomyces 

presented in this study indicate that ninety six isolates of actinomycetes were isolated 

from an environmental soil samples. The microscopic examination of the colony of the 

isolates revealed that aerial mycelia were morphologically branched with grey and white 

surface and some strains formed spores.  The identification of the actinomycetes by the 

16S rRNA sequencing of purified PCR products showed that all the actinomycetes 

isolates belong to the genus Streptomyces. The minimal inhibitory concentration (MIC) 

and the minimum bactericidal concentration (MBC) of penicillin G for isolated 

Streptomyces strains were varied in their MICs and MBCs to penicillin G. The MICs 

were different when they were cultured in liquid and on solid media. In MH broth 

medium the minimum inhibitory concentrations of all strains ranged from 1-100 µg/ml. 

Furthermore, the result indicates that there is no correlation between the MICs of 

penicillin G and the growth rates in the isolated strain and the sensitivity of isolated 

Streptomyces strains to penicillin G is not directly related to β-lactamase production. 
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3.5  16S rRNA gene and phylogenetic analysis 

After PCR amplification from 11 isolated strains; five beta-lactamase producing 

Streptomyces; (W21) Streptomyces olivochromogenes strain NBRC 3178, (W51) 

Streptomyces griseoaurantiacus strain A17, (W55) Streptomyces albidoflavus strain JP 

(W76) Streptomyces lividans strain YLA0 and  (W60) Streptomyces limosus strain 

Act64,and five non-beta-lactamase producing Streptomyces; (W32) Streptomyces sp. 

1_C7_48, (W39) Streptomyces atratus strain PY-1, (W96) Streptomyces coeruleofuscus, 

(W79) Streptomyces sp. HB243 and (W75) Streptomyces aureus strain Fist3. One 

fragmented strain (W43) Streptomyces violaceoruber BUCBT-23, the partial 16S rRNA 

genes of the 11 strains were sequenced, and the sequences were aligned using 

the CLUSTALW multiple alignment program.  

To determine the phylogenetic relationship between beta-lactamase producing and non-

beta-lactamase producing Streptomyces, and the position and phylogenetic relationship 

between strain W43 Streptomyces violaceoruber BUCBT-23 and its closest relatives S. 

colicoler, 16S rRNA gene sequence of the isolated strains were aligned using the 

CLUSTAL W software program (Larkin et al. 2007). The aligned sequences were 

manually checked for Ns and adjusted using Finch TV Sequence Alignment Editor, 

version 1.5 (Geospiza Inc., Seattle, WA, USA) before constructing the phylogenetic tree. 

Phylogenetic tree were conducted in MEGA6 (Rzhetsky and Nei 1992) method of 

MEGA software  (Tamura et al. 2013).  The tree was constructed using the neighbour-

joining method (Saitou and Nei 1987). Mycobacterium tuberculosis was used as an out-

group. The topology of the phylogenetic tree was evaluated by using the bootstrap 

resampling method of  Felsenstein (1985) with 1000 replicates (Felsenstein 1985).      

The phylogenetic relationship between beta-lactamase producing strains and non-beta-

lactamase producing strains showed that there was no association between the position of 
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the strains on the phylogenetic tree and their beta-lactamase activity. Beta-lactamase 

producing and non-producing strains refers to the same ancestral origin clade as 

displayed in figure 3.8.  A phylogenetic tree was constructed based on 16S rRNA gene 

sequences to show the comparative relationship between (W43) Streptomyces 

violaceoruber BUCBT-23 and other related Streptomyces sp. The comparative analysis of 

16S rRNA gene sequence and phylogenetic relationship of strain (W43) revealed that the 

isolate formed a separate phyletic line and clustered with (W76) Streptomyces lividans 

strain YLA0, while other related species i.e. Streptomyces coelicolor  formed a separate 

subclade.  

Growth rates of isolated strains were determined using the rate of oxygen uptake from 

the Oxoplate® as shown in Table 3.5. The correlation between the growth rates of the 

isolated strains and their MICs were studied. There was no significant correlation 

between the growth rates and the MICs of isolated strains as shown in Figure 3.9. 
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Figure 3-8. The phylogenetic tree of isolated Streptomyces based on partial nucleotide 

sequences of   16S rRNA showing the phylogenetic relationship between beta-lactamase 

producing Streptomyces (W21) Streptomyces olivochromogenes strain NBRC 3178, 

(W51) Streptomyces griseoaurantiacus strain A17, (W55) Streptomyces albidoflavus 

strain JP (W76) Streptomyces lividans strain YLA0, (W60) Streptomyces limosus strain 

Act64 and Non-beta-lactamase producing Streptomyces; (W32) Streptomyces sp. 

1_C7_48, (W39) Streptomyces atratus strain PY-1, (W96) Streptomyces coeruleofuscus, 

(W79) Streptomyces sp. HB243, and (W75) Streptomyces aureus strain Fist3. Also, 

showing the position and phylogenetic relationship between strain (W43) Streptomyces 

violaceoruber BUCBT-23 and related members of the genus Streptomyces. The tree was 

constructed using the neighbour-joining method with MEGA 6.0 proGram 

(www.megasoftware.net). The Bootstrap values presented as percentages of 1000 

replications.  Mycobacterium tuberculosis was used as out-group. 
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Table 3-5.  Growth rates of isolated Streptomyces strains (W1-W96)  

obtained from the rate of oxygen uptake from the Oxoplate®. 

Strains Dt (h) Strains Dt (h) 

W1 5 W49 6 

W2 8 W50 1 

W3 1 W51 1 

W 4 4 W52 3.5 

W5 4.5 W53 4.5 

W6 4.5 W54 4.5 

W7 1 W55 6 

W8 4.5 W56 2 

W9 4 W57 5.5 

W10 5 W58 6.5 

W11 3.5 W59 2 

W12 16 W60 2.5 

W13 4.5 W61 1 

W14 13 W62 1.5 

W15 3 W63 1 

W16 5 W64 7 

W17 13 W65 7 

W18 10 W66 7.5 

W19 6 W67 7 

W20 16 W68 6.5 

W21 3 W69 7 

W22 4.5 W70 1.25 

W23 1 W71 1 

W24 1.5 W72 1.25 

W25 1.25 W73 14 

W26 2.5 W74 14 

W27 4.5 W75 3.5 

W28 4.5 W76 1 

W29 4.5 W77 1 

W30 3.5 W78 1 

W31 2 W79 2.5 

W32 5 W80 7.5 

W33 3.5 W81 1 

W34 4.5 W82 4 

W35 3.5 W83 4.25 

W36 3 W84 1 

W37 6 W85 1.25 

W38 6 W86 2.6 

W39 5 W87 4 

W40 1 W88 4.5 

W41 1 W89 3 

W42 1.25 W90 2.5 

W43 1 W91 2 

W44 1 W92 4 

W45 2.5 W93 1 

W46 4.5 W94 3 

W47 1 W95 2 

W48 6.5 W96 5.5 
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Figure 3-9. The correlation between the growth rates and the MICs of isolated 

Streptomyces strains. 
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In conclusions, the result indicates that there is no correlation between the MICs of 

penicillin G and the growth rates in the isolated strain. Moreover, there was no 

association between the position of the strains on the phylogenetic tree and their beta-

lactamase activity. Beta-lactamase and non- lactamase producing strains refers to the 

same ancestral origin. The comparative analysis of 16S rRNA gene sequence and 

phylogenetic relationship of strain (W43) revealed that the isolate formed a separate 

phyletic line and clustered with (W76) Streptomyces lividans strain YLA0. 
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3.6. Investigate the interaction between penicillin G and PBPs in isolated 

Streptomyces strains 

To investigate the interaction between penicillin G and PBPs in isolated Streptomyces 

strains, selectively producing and non-producing β-lactamase strains were lined on 

YEME media around coverslips and incubated at 30 °C for 24-48 h. PBPs were 

visualising using Bocillin fluorescent stain (green) and live cell membrane was stained 

with Cell Mask™ stain (red) and DAPI stain was used as nucleotide stain (blue). Bocillin 

fluorescent stain in β-lactamase producing Streptomyces strains (W1, W8, and W16) was 

detected in all aerial mycelium as shown in Figure 3.10, whereas in non β-lactamase 

producing strains (W6, W34, W36) was located in certain parts on the cell membrane of 

Streptomyces (Figure 3.11). 
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Figure 3-10. Localisation of PBPs in β-lactamase producing Streptomyces (W1, W8 and 

W16), PEN FL (Bocillin stain (green)), cell mask stain (red), DAPI stain (blue) and 

merge are a combined of the three stains. PBPs are located all over the mycelium. Scale 

barn is 10 µm. µm 
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Figure 3.11. Localisation of PBPs in non β-lactamase producing Streptomyces (W6, 

W32 and W34), PEN FL Bocillin fluorescent stain (green), cell mask stain (red), DAPI 

stain (blue) and merge is a combined of the three stains. PBPs are located in small parts 

of mycelium. Scale barn is 10 µm.  
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In order to establish the type of PBP, four knockout mutant’s defective in the class A 

high molecular weight penicillin binding proteins were stained with Bocilin and 

visualized under a fluorescent microscope (SCO2897, SCO3580, SCO3901 and 

SCO5039) as illustrated in Figure 3.12. The four PBPs mutants are stained with Bocillin 

under a fluorescent microscope, which indicated that they are not PBP that was detected 

in isolated strains. 

Examined if this PBP are remaining in sporulation, pressure a mounted coverslip of 

spores of each; β-lactamase producing Streptomyces strain (W6) and non β-lactamase 

producing Streptomyces strain (W1) were used to stain with Bocillin fluoresced stain as 

shown in Figure 3.13.  PBPs were stained in both strains and located on the poles of the 

spores.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12. Localisation of PBPs mutants (SCO2897, SCO3580, SCO3901 and 

SCO5039) under fluorescent microscope. PEN FL Bocillin stain (green), cell mask stain 

(red), DAPI stain (blue) and merge is a combined of the three stains. None of them are 

PBP was detected in isolated strains. Scale barn is 10 µm.  
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Figure 3-13. Images of β-lactamase producing Streptomyces (W6) and non β-lactamase 

producing Streptomyces (W1) spores stained with Bocillin fluorescent stain under 

fluorescent microscope.  PBPs were stained in both strains and located at the poles of the 

spores.    
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In conclusion the interaction between penicillin G and PBPs in isolated Streptomyces 

species showed a variation between β-lactamase producing and non β-lactamase 

producing strains. The Bocillin staining in β-lactamase producing strains showed staining 

throughout the mycelia, whereas in non β-lactamase producing strains staining detected 

in only certain parts of the mycelia. PBPs were located at poles of the spores in both β-

lactamase producing and non β-lactamase producing strains.  
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Chapter Four 

4. Continuous culture (Fermentation) studies of S. coelicolor 1147 

4.1 Fermentation Conditions  

The study undertaken was focused on Streptomyces sp because of their economic 

importance as antibiotic producers. Although the advantages of continuous culture in the 

study of bacterial product formation have been known for many years, no studies on the 

effects of a wide range of antibiotics on S. coelicolor 1147 have been reported. 

To quantify the effect of growth rate of S. coelicolor 1147 on resistance to β-lactam 

antibiotics (penicillin G), Streptomyces coelicolor 1147 was grown in chemostat cultures 

at various dilution rates, and also in batch culture. 

There are two main factors impacting on the productivity of batch growth and antibiotic 

production by Streptomyces species; one is the nature of the inoculum used and the other 

is permitting the growth as dispersed filaments (Hobbs et al. 1989). In all experiments, a 

spore inoculum was used and in order to obtain a dispersed growth, the chemostat was 

operated with agitation of 1000 rpm to prevent the formation of pellets and two Rushton 

impellers were used to mix the medium throughout the fermentation period. The quality 

and quantity of the nutritional elements used in the medium usually influence the 

growths of bacteria. In this work, a complex YEME medium was used for Streptomyces 

coelicolor (Kieser et al. 2000) . The pH of this medium was initially set to 7.2. During 

the fermentation process, the temperature was kept constant at 30
○
C which is the optimal 

for growth of this bacterium. As an aerobic bacterium, Streptomyces coelicolor needs a 

sufficient supply of oxygen during fermentations, sterile air was introduced into the 

medium via a stainless steel tube with small holes on it to distribute the air consistently. 

Prevent building-up of Streptomyces growth on the walls of outlet tube of the medium 
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and preventing blockages of the outlet tube, a stainless U shape tube was designed to 

solve this problem as shown in Figure 4-1. Foam was controlled automatically by sterile 

antifoam silicone 414 (Rhodorsil® Antifoam 414) using an automatic foam control 

system.   

Reliable biomass measurements are critical for efficient monitoring of fermentation 

processes.  It allows the determination   of   cultural   variables   such   as   the specific 

cell growth and substrate consumption rates (Elmer and Gaden 1959 ). The   most   

common   methods   to   determine biomass concentration are either chemical (e.g. DNA 

or RNA assays) or physical (e.g.  Spectrophotometric determinations).  

 Monitoring of filamentous organism growth by spectrophotometry is generally 

considered not viable because of the noisy output signal due to the filamentous nature of 

the cells. Near infra-red spectroscopy (NIRS) is usually employed for the measurement 

of analytes and biomass in single celled fermentations (Tiwari et al. 2013).   

Several measuring methods have been investigated  for on-line measurement of biomass 

such as the  on-line  monitoring  biomass  concentration  in  mycelial  fed-batch  

cultivations  of  Streptomyces  clavuligerus  with  an  in-situ  capacitance  probe  fitted  to  

an industrial  pilot-plant  tank (Neves et al. 2001) .   

 In this study, we used a new non-invasive optical sensor (BugEye® 100) for the real 

time monitoring of biomass of Streptomyces coelicolor. A non-invasive optical sensor 

and a monitor are part of the BugEye® 100. The sensor contains a group of lasers 

emitting at 850 nm and detectors manufactured to detect the light reflected from the cells 

in the vessel at multiple laser-detector distances    (Debreczeny and Davies 2012). 

The monitor controls the lasers, reads the signals from the detectors, and analyses the 

signals that are generated by each of the laser-detector pairs. The result is then presented 
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to the user. Real-time display and calibration of the Bug Lab units into dry weight is 

completed through the Bug Free software.  

The study shows an optical device that can be used to monitor the progress of a 

filamentous fermentation that is prone to pollution. In our hands the use of the Bug Lab 

has proved useful to monitor the progress of a filamentous fermentation and it is reliable, 

sensitive to low concentrations of cells and highly reliable  (Nakouti and Hobbs 2015). 

4.2 Culture Purity and Stability  

Every 24 h the culture was checked microscopically  for infection and a sample of the 

culture fluid was plated onto MS agar and nutrient agar. There was no indication of 

infection in all fermentations. At the end of each fermentation the DNA sequencing  was 

performed to confirm the purity of the culture. 

 

 

 

 

 

 

 

 

 

 

Figure 4-1. Chemostat vessel exhibited a stainless U shape tube as indicated by arrows. 
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4.3 Batch culture of Streptomyces coelicolor 1147  

Batch experiment was performed to investigate patterns of growth of Streptomyces 

coelicolor 1147 in the liquid complex medium over 48 hours. The growth (dry weight) 

and glucose consumption by Streptomyces coelicolor 1147 are shown in Figure 4-2. 

There was no significant increase in the biomass concentrations of Streptomyces 

coelicolor 1147 cells during the first 9 hours (lag phase) as a result of the adaptation of 

Streptomyces coelicolor 1147 cells to the new environment and also, in which 

germination of the spores takes place. Glucose started to be consumed slightly 

throughout this phase. The log phase began where biomass levels increased rapidly over 

the period 9–23 h until it reached its maximum of 39.89 units at 23 h (2.99 g dry weight/ 

L at 23 h) of incubation (Figure 4.2 and 4.3). This was accompanied by the decline of 

dissolved oxygen and oxygen off gas evolution as well as the increase of CO2 production 

(Figure 4.2). During the active growth phase, the glucose concentration dropped from 2 

to 1.5 g/L. Moreover, there was a second biomass accumulation phase was evident (22–

23h). This might be due to the switching of the organism to another source of carbon, 

which in this case could be the maltose from malt extract.  CO2 concentrations reached 

its maximum at 16 h of fermentation. 
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 . 

 

Figure 4-2. Fermentation profile of S. coelicolor 1147 growing in modified YEME 

medium. This includes changes in dissolved oxygen and bug Lab biomass, oxygen 

evolution and CO2 production   measurements during growth over 48 h. 

 

 

 

 

 

 

 

 

 

Figure 4-3. Growth of S. coelicolor 1147 (dry weight) and glucose consumption in batch 

culture over 48h.   

0

2

4

6

8

10

12

14

16

18

20

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49

C
O

2
/ 

O
2

 

B
u

gl
ab

 u
n

it
s 

/ 
d

o
2

 %
 

Time (h) 

buglab units do2 CO2 O2

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50

B
io

m
as

s 
(g

/L
) 

an
d

 G
lu

co
se

(g
/L

) 

Time  (h) 



  

90 
 

 The consumption of glucose was 1.5g at 2.99 g of the biomass, the yield defined as the 

biomass divided on the consumption of glucose, therefore the yield equal to 1.99, which 

indicate that the bacteria switched to another source of carbon. 

 

Figure 4-4. Fluorescent microscopy pictures of S.coelicolor1147 growing in modified 

YEME medium in batch culture over 48 hours. The mycelia were stained with the 

fluorescent dye BacLight™, which stains all cells green, and stain those with 

compromised membranes red.  
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Throughout the early days of incubation, specifically on the second day of inoculation 

the colour of the medium changed slightly red as a result of production of 

undecylprodigiosin as shown in Figure 4.5.  

 

 

 

 

 

 

 

 

Figure 4-5. Image of Streptomyces coelicolor 1147 grown in a 3L chemostat culture 

using a complex YEME medium at 48 hours of the inoculation, the colour of the medium 

changed red as a result of production of undecylprodigiosin.  
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The specific growth rate of Streptomyces coelicolor 1147 grown in batch culture using 

YEME medium and 5% (v/v) of spore inoculum was calculated using MS Excel from the 

bug Lab unit’s value as shown in Figure 4. 6. The growth rate of Streptomyces coelicolor 

1147 was equal to 0.1825 h
-1 

and the doubling time is 3. 79 h. 

 

 

Figure 4-6. Graph represents the growth rate of Streptomyces coelicolor 1147 grown in a 

complex medium in batch culture. 
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Sample from batch culture was sub-culture on MS medium and incubated at 30°C for 

seven days, an appropriate time to sporulation and the spores were removed and counted 

as mentioned previously in the material and method. Then the suspension of the spores 

on YEME mediumwas used to measure the MIC of S. coelicolor 1147.  The minimum 

inhibitory concentration for S. coelicolor 1147 strain was carried out using Oxoplate in 

96 well plate as illustrated in Figure 4.7. The MIC of S. coelicolor 1147 was 40 µg/ml 

and the MBC was 320 µg/ml. 

 

Figure 4-7. Oxygen consumption of S. coelicolor 1147 grown in YEME medium after 

treatment with different concentrations of penicillin G as indicated in the key. Values 

obtained are the mean of triplicate samples.  
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4.4 Growth of S. coelicolor 1147 in continuous culture 

 Continuous culture was utilized to investigate whether there is any relationship between 

the growth rate and β-lactam antibiotic resistance in Streptomyces. Continuous exposure 

of S. coelicolor 1147 to sub bactericidal concentrations of penicillin G was applied using 

a chemostat. The response of the organism to the antibiotic under a number of 

concentrations ranging from 80 to 640 µg/ml was investigated.  On this basis S. 

coelicolor 1147 was grown in four continuous cultures under different growth rates 0.04 

h
-1

, 0.06 h
-1

, 0.08 h
-1

 and 0.10 h
-1

 over a period of 16 - 21 days.  Penicillin G was pumped 

into vessel culture after 4 days (the time that cultures reached steady state) via the 

medium feed reservoir. Samples were taken every 24 hours for the following 

determinations: viability, colony morphology, purity and to measure the MIC. O2 

depletions and CO2 were measured online.  

Dilution rate is simply defined as the volumetric flow rate of nutrient supplied to the 

chemostat divided by the volume of the culture (unit: time
-1

). In general, raising the 

dilution rate will raise the growth of the cells. On the other hand, the dilution rate has to 

be controlled linked to the specific growth rate to avoid wash-out of the cells. The 

dilution rates were set up to be less than the specific growth rate of S. coelicolor 1147 

measured from the previous batch culture 0.1825 h
-1,

 because the specific growth rate 

equals the dilution rate at steady state when, the flow rate, temperature, pH, the number 

of cells in the vessel all remain constant.  
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4.4.1 Dilution rate 0.04 h
-1

 

The feed rate was adjusted to 0.04 h
-1

 at the doubling time of 17.325 h: over 29.09 

generations.  After 24 hours of inoculation the feeding without penicillin G was applied 

at this dilution rate.  The colour of the medium changed slightly red as a result of 

production of undecylprodigiosin. At each recognised steady state that was set at around 

96 h, penicillin G was pumped to the feed reservoir at different concentration ranging 

from 40 to 640 µg/ml at regulated hours 96, 168, 264 and 336 respectively. The result 

obtained from this fermentation (Figure 4.8) showed that S. coelicolor 1147 has the 

ability to adapt to increasing concentration of β-lactam antibiotic (penicillin G). There 

were no changes in morphology of the colonies and the MIC with the increasing 

concentrations of penicillin G up to 160 µg/ml.  The biomass levels increased over the 

period 168-216 h, where the concentration of penicillin G pumped into the medium was 

80 µg/ml, this was accompanied by the decrease of dissolved oxygen and the increase of 

CO2 production. After that the biomass level and CO2 production decreased and 

dissolved oxygen increased.  

 At the concentration 160 µg/ml, there was some decrease in dissolved oxygen and 

increase of CO2 production, the biomass was slightly changed at the concentration of 320 

µg/ml.  Moreover, the organism lost the ability to form spores at this concentration at the 

generation time of 19.39 as presented in Figure 4.9, the ability to form spores return after 

4 subcultures on MS medium Figure 4.9 C.  However, S. coelicolor 1147 did not lose the 

ability to form an aerial mycelium and this was confirmed using SEM as shown in Figure 

4.10.  At the concentration 640 µg/ml there was rapidly decreasing in dissolved oxygen 

and biomass level accompanied by the increase of CO2 production. 
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Figure 4-8.  Fermentation profile of  S. coelicolor 1147 grown in  a complex  YEME 

medium in continuous culture feeding with different concentrations of penicillin G over 

504 hours at dilution rat 0.04 h
-1

. This includes changes in dissolved oxygen and bug Lab 

measurements and production of CO2 during growth. Blue arrows indicated the time 

when penicillin G was added.  The concentration of penicillin G ranging from 40 to 640 

µg/ml respectively. 
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Figure 4-9. Growth of S. coelicolor 1147 on MS media (A): after seven days of 

incubation without antibiotic. (B) After incubation with increasing concentration of 

penicillin G up to 320 µg/ml in continues culture at dilution rate 0.04 h
-1

 and at 

generation time 19.39. Red colour indicates undecylprodigiosin   production. (C): after 4 

subculture on MS agar without antibiotic present and each subculture was incubated for 7 

days. 
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Figure 4-10. Cryo electron microscope image showing the spore morphology of S. 

coelicolor 1147 grown on MS medium without antibiotics at 30°C for 7 days; (A) 

Incubation without antibiotic, (B) After incubation with increasing concentration of 

penicillin G up to 320 µg/ml in continuous culture at dilution rate 0.04 h
-1

a and 

generation time 19.39.  
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The effect of increasing concentration of penicillin G  on the viability of the cells was 

examined  using LIVE/DEAD
®

 BacLight
™

 fluorescent stain and viewed under 

fluorescent microscope as presented in Figure 4.11.  Live parts with complete cell 

membrane fluoresce green and membrane-compromised parts fluoresce red. The β-

lactam antibiotic (penicillin G) affects not only the tips of mycelium as indicated by 

arrows in Figure 4.11. Moreover, S. coelicolor 1147 was able to grow at high 

concentration of penicillin G up to 640 µg/ml.  

Furthermore, the result obtained from Oxoplate indicates that, the MIC of S. coelicolor 

1147 increased from 40 µg/ml to 160 µg/ml after inoculation with different concentration 

of penicillin G up to 640 µg/ml as shown in Figure 4.12. 
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Figure 4-11.  Images of Streptomyces coelicolor 1147 grown in a 3L chemostat culture 

using a complex medium and 5% (v/v) of spore inoculum with different concentrations 

of penicillin G as indicated in each panel (0, 40, 80, 160, 320 and 640 µg/ml) at dilution 

rate 0.04 h
-1

. Samples stained with LIVE/DEAD
®

 BacLight
™

 fluorescent stain. Live parts 

with whole cell membrane fluoresce green and membrane-compromised parts fluoresce 

red. 
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Figure 4-12. Oxygen consumption of S. coelicolor 1147 grown in YEME medium after 

treatment with different concentrations of penicillin G as indicated in the key. Values 

obtained are the mean of triplicate. 
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4.4.2Dilution rate 0.06 h
-1

 

 In this fermentation the feed rate was adjusted to 0.06 h
-1

 and the doubling time was 

11.55 h over a generation time of 35.3.  The colour of the medium has not changed at this 

dilution rate.  As mentioned before at the recognised steady, penicillin G was pumped to 

the feed reservoir at different concentration ranging from 80 to 460 µg/ml at regulated  at 

96, 168, 264 and 336  hours respectively. The result obtained from this fermentation 

(Figure 4.13) indicated that there were no changes in morphology of the colonies and the 

MIC with the increasing penicillin G up to 160 µg/ml. However, during this period the 

biomass level rapidly decreased, which was accompanied by a slight decrease of 

dissolved oxygen and increase of CO2 production. At the concentrations 320 µg/ml and 

460 µg/ml, there was a change of the morphology of the colonies as well as the MICs.  

Similar to the result obtained from a previous fermentation (dilution rate 0.04 h
-1

), the 

bacterium failed to form spores, but it was also able to form aerial mycelium at 

generation time 29. 09 as exhibited in Figure 4.14.  The capacity to procedure spore 

resumed after 4 times of sub culturing the organism on MS medium and incubated at 30 

°C for seven days, which indicate that the change was a phenotypic change not mutating.  

Also, it lost the ability to produce the red pigments on MS medium.  

 

 

 

 

 

 



  

103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Fermentation profile of   S. coelicolor 1147 grown in modified YEME 

medium in continuous culture feed with different concentrations of penicillin G over 408 

hours at dilution rat 0.06 h
-1

. This includes changes in dissolved oxygen and bug Lab 

units and production of Co2 during growth. Blue arrows indicated the time when 

penicillin G was added.  The concentration of penicillin G ranging from 80 to 640 µg/ml 

respectively. 
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Figure 4-14. Cryo electron microscope images showing the spore morphology of S. 

coelicolor 1147 grown in MS medium without antibiotics at 30 °C after 7 days; (A) 

Incubation without antibiotic, (B) After incubation with increasing concentration of 

penicillin G up to 320 µg/ml at generation time 29. 09 (C) After incubation with 

increasing concentration of penicillin G up to 640 µg/ml at generation time 35.32.  S. 

coelicolor 1147 grown in a 3L chemostat using a complex medium at dilution rate 0.06 h
-

1
.  
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The viability of the cells was examined  using LIVE/DEAD
®
 BacLight

™
 fluorescent 

stain and viewed under a fluorescent microscope (Figure 4.15).  Live parts with complete 

cell membrane fluoresce green and membrane-compromised parts fluoresce red.  The 

result showed that the organism has the ability to grow at high concentration of penicillin 

G up-to 640 µg/ml at this dilution rate (0.06 h
-1

).  

Additionally, the MIC of S. coelicolor 1147 increased (Figure 4.16) at this dilution rate 

also (0.06 h
-1

), however, it increased just one fold (80 µg/ml) compared to the lowest 

dilution rate in this study which increased two fold (160 µg/ml).  The MBC was same in 

both dilution rates (640 µg/ml).  
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Figure 4-15. Images of Streptomyces coelicolor 1147 grown in a 3L chemostat culture 

using a complex medium and 5% (v/v) of spore inoculum with different concentrations 

of penicillin G as indicated in each panel (0, 80, 160,320 and 640 µg/ml) at dilution rate 

0.06 h
-1   

over 408 h. Samples stained with LIVE/DEAD
®
 Backlight

™
 fluorescent stain. 

Live parts with whole cell membrane fluoresce green and membrane-compromised parts 

fluoresce red. 
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Figure 4-16. Oxygen consumption of S. coelicolor 1147 grown in YEME medium 

treatment with different concentrations of penicillin G up to 640 µg/ml. Values obtained 

are the mean of triplicate samples. The penicillin G concentration is indicated in the key. 
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4.4.3 Dilution rate 0.08 h
-1

 

Fermentation profile of S. coelicolor 1147 at this dilution rate 0.08 h
-1

 and doubling time 

8.66 hours over 52. 65 generation presented in Figure 4.17.  The biomass  level and 

dissolved oxygen declined rapidly when the organism feeding with the different 

concentration of penicillin G  up to  640 µg/ml. Interesting, dissolved oxygen dropped to 

less than 2%  and S. coelicolor 1147 was able to grow at this condition. Also, there was a 

change in the spore morphology produced by S. coelicolor 1147 treated with increasing 

concentration of penicillin G up to 460 µg/ml at this dilution rate, the wild type strain 

produced long spore chains, spore surfaces are coated with a proteinaceous fibrous 

sheath, whereas, treated    S. coelicolor 1147 exhibited short aerial hyphae with few 

irregular spores without coating with a proteinaceous fibrous sheath (Figure 4.18). 

The viability of the cells was examined  using LIVE/DEAD
®
 BacLight

™
 fluorescent 

stain and viewed under a fluorescent microscope (Figure 4.19).  Live parts with complete 

cell membrane fluoresce green and membrane-compromised parts fluoresce red.  The 

result showed that the organism has the ability to grow at high concentration of penicillin 

G up to 640 µg/ml and with very low amount of dissolved oxygen. Furthermore, the MIC 

of S. coelicolor 1147 at this dilution rate (0.08 h
-1

) was unchangeable and equal to the 

MIC of wild type strain  (Figure 4.20), however,  there was an increase in the MBC (640 

µg/ml) which indicate that the organism became less sensitive to penicillin G.  
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Figure 4-17. Fermentation profile of   S. coelicolor 1147grown in modified YEME 

medium in continuous culture feeding with different concentrations of penicillin G over 

456 hours at dilution rat 0.08 h
-1

. This includes changes in dissolved oxygen and bug Lab 

biomass and production of Co2 during growth. Blue arrows indicated the time when 

penicillin G was added.  The concentration of penicillin G ranging from 80 to 640 µg/ml 

respectively. 
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Figure 4-18. Cryo electron microscope images showing the spore morphology of S. 

coelicolor 1147grown in MS medium without antibiotics at 30 °C after 7 days; (A) 

Incubation without antibiotic, (B) After incubation with increasing concentration of 

penicillin G up to 320 µg/ml in a 3L chemostat using a complex medium at dilution rate 

0.08 h
-1

 and at generation time 42.26.   
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Figure 4-19: Images of Streptomyces coelicolor 1147 grown in a 3L chemostat culture 

using a complex medium and 5% (v/v) spore’s inoculum with different concentrations of 

penicillin G as indicated in each panel (0, 80, 160, 320 and 640 µg/ml) at dilution rate 

0.08h
-1 

over 456 h. Samples stained with LIVE/DEAD
®
 BacLight

™
 fluorescent stain and 

viewed using fluorescence microscopy. Live parts with whole cell membrane fluoresce 

green and membrane-compromised parts fluoresce red. 
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Figure 4-20. Oxygen consumption of S. coelicolor 1147 grown in modified YEME 

media in continues culture at dilution rate 0.08 h
-1

,  treatment with different 

concentrations of penicillin G up to 640 µg/ml. Values obtained are the mean of triplicate 

samples. The penicillin G concentration is indicated in the key. 
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4.4.4. Dilution rate 0.1 h
-1

 

Fermentation result of S. coelicolor 1147 grown in continues culture feeding with 

different concentrations of penicillin G over 55 generating at dilution rat 0.1 h
-1

 and 

doubling time of 6. 93 h  
 
illustrated in Figure 4-21. Overall, there was a dramatic 

increase of the biomass and CO2 production complemented with the decrease of 

dissolved oxygen. The CO2 production reaches its maximum at 336h and the dissolved 

oxygen decreased to less than 2% at 216 h. 

The cell viability was assessed using LIVE/DEAD
®
 BacLight

™
 fluorescent stain and 

observed under a fluorescent microscope (Figure 4-22).   As mentioned previously in the 

fermentation (0.08 h
-1

) the organism has the talent to grow at high concentration of 

penicillin G up to 640 µg/ml and also with very low amount of dissolved oxygen.  

Besides, there was no change of spore morphology under SEM. The MIC of S. coelicolor 

1147 at this dilution rate (0.1 h
-1

) was unchangeable and equal to the MIC of wild type 

strain (Figure 4-23), however, there was an increase in the MBC (640 µg/ml) which 

indicate that the organism became less sensitive to penicillin G.  
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Figure 4-21. Fermentation profile of S. coelicolor 1147 grown in modified YEME 

medium in continues culture feeding with different concentrations of penicillin G over 

384 hours at dilution rat 0.1 h
-1

. This includes changes in dissolved oxygen and bug Lab 

biomass measurements and production of Co2 during growth. Blue arrows indicated the 

time when penicillin G was added.  The concentration of penicillin G ranging from 80 to 

640 µg/ml respectively. 
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Figure 4-22. Images of Streptomyces coelicolor 1147 grown in a 3L chemostat culture 

using a complex medium and 5% (v/v) spore’s inoculum with different concentrations of 

penicillin G as indicated in each panal  ( 0, 80, 160, 320 and 640 µg/ml) at dilution rate 

0.1h
-1 

over 384h. Samples stained with LIVE/DEAD
®
 BacLight

™
 fluorescent stain. Live 

parts with whole cell membrane fluoresce green and membrane-compromised parts 

fluoresce red. 
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Figure 4-23.  Oxygen consumption of S. coelicolor 1147 grown in modified YEME 

medium treated with different concentrations of penicillin G up to 640 µg/ml. Values 

obtained are the mean of triplicate samples. The penicillin G concentration is indicated in 

the key. 
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The effects of different concentration of penicillin G on the biomass during the four 

different dilution rate fermentations are shown on Figure 4.24. There was a decrease in 

the biomass when the four fermentations were fed with 80 µg/ml. the biomass was 

diverge with the other concentrations of penicillin G.   

 

 

 

 

 

 

 

Figure 4-24. The effect of different concentration of penicillin G (80, 160, 320 and 640 

µg/ml)   on the biomass in continues fermentation at different dilution rates. 
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The results obtained from three fermentations (0.04, 0.06 and 0.08 h
-1

) signify that there 

is a correlation between the growth rates of S. coelicolor 1147 and the resistant to 

penicillin G, as illustrated in Figure 4.25. Additionally, the result indicated that the cells 

became more resistant to penicillin G as the length of exposure to penicillin G and the 

concentration was increased.  

 

Figure 4-25. Correlation between the growth rate of S. coelicolor 1147 and the resistance 

to penicillin G.  S. coelicolor 1147 grown in modified YEME medium in continues 

culture at different dilution rates (0.04, 0.06 and 0. 08 h
-1

) with different concentrations of 

penicillin G. 
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Chapter Five 

5. DISCUSSION 

5.1 Isolation and morphological characteristics of Streptomyces 

Streptomyces are soil bacteria responsible for producing over half of the world’s 

naturally produced antibiotics. Our results show that different species of Streptomyces 

were isolated from environmental soil samples. The morphological study of these strains 

in liquid and solid media showed that they were Gram–positive, slow-growing, aerobic, 

and contain both aerial and substrate mycelia with a variety of colours, which indicates 

that they belong to the Streptomyces genus.   Previous studies of morphology of strains of 

Streptomyces showed similar branching patterns as seen in the results of this study  

(Tresner et al. 1967). Some strains have exhibited the pigment formation; few of them 

have shown the formation of melanin. The identification of strains regard to the partial 

16S rRNA gene sequence of the isolated strains showed that some strains had high 

homology (>96%) with the various Streptomyces species recorded in the GenBank 

database. The lack of high similarity of the other strains to other streptomycetes.sp is 

probably related to the well-recognized divergence in Actinomycetes between whole 

genome DNA–DNA homologies and similarity to 16S rRNA  (Ward and Goodfellow 

2004). Or It might be they are a novel strains and they need more investigation studies.  

16S rRNA gene sequences are not always sufficient to discriminate between closely 

related species (Girard et al. 2013). It has been established that the 16S rRNA gene may 

be not appropriate for S. coelicolor 1147 because S. coelicolor 1147A3 has many 16S 

rRNA genes in the genome (Bentley, 2002), and the measured transcripts of 16S rRNA is 

the amount of all homologs; and also the transcript abundance of 16S rRNA is usually 

much higher than that of the target genes   (Vandesompele et al. 2002), which makes it 

difficult to subtract the baseline value accurately during data analysis.  

The isolates varied in their MICs and MBCs to penicillin G. The MICs were different 

when they were cultured in liquid and on solid media.  The deference of the MICs might 

be due to   the composition of the culture medium and the incubation time. The growth of 

these organisms on solid media could also be considered as a biofilm. It is well known 

that biofilms are more resistant to antimicrobials than their planktonic counterparts 
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(Lamber, 2002) Also, the  cultivation on solid media and liquid media might lead to 

production of different secondary metabolites (Robinson et al. 2001). 

Minimum inhibitory concentration of penicillin G for Streptomyces strains in liquid 

medium were conducted using the OxoPlate
®
 technique, all strains have an MIC in the 

range between 1-100 µg/ml. This was within the range of MICs of penicillin G for some 

other streptomycetes (Ogawara 1975).  

Streptomyces species are one of the largest groups of organisms in soil and produce a 

great many antibiotics, including penicillins and cephalosporins  (Nagarajan 1972).  In 

the present study, we classified the isolated strains according to the production of β - 

lactamases, and their relation to resistance to penicillin G.  β–lactamase enzyme activity 

of the isolated strains was tested using a nitrocefin based assay, the β-lactamases 

essentially hydrolyse the endocyclic amide bond of the β-lactam ring, resulting in 

inactive antibiotics. 

 51 % of the isolated strains do not produce active β-lactamase enzymes. On the other 

hand 48 % were β-lactamase producer’s strains. This is a little surprising, since β -

lactamases in many Gram-positive bacteria are known to be inducible not constitutive.   

The high percentage of β-lactamase producer’s strains might be due to selection in the 

natural environment, where penicillin and cephalosporin may be produced by fungi and 

Streptomyces. However, our results indicate that the sensitivity of Streptomyces strains to 

penicillin G is not directly related to β-lactamase production.  

 5.2 16S rRNA gene and phylogenetic analysis 

There was no association between the position of the strains on the phylogenetic tree and 

their beta-lactamase activity. Beta-lactamase and non-beta-lactamase producing strains 

raises to the same ancestral origin. 16S rRNA gene sequence and phylogenetic 

relationship of strain (W43) Streptomyces violaceoruber BUCBT-23 and related 

members of the genus Streptomyces, revealed that the strain was clustered with (W76) 

Streptomyces lividans strain YLA0. 16S rRNA gene sequences are a powerful tools to 

infer inter- and intragenic relationships, but are too short to be useful in inferring the 

phylogenetic relationships between closely related organisms and among strains 

belonging to a species because of the evolutionary conservation of 16S rRNA 

(Stackebrandt et al. 1997). 
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5.3 Visualization of penicillin binding proteins of Streptomyces 

β-Lactam antibiotics are bactericidal antibiotics and act by inhibiting the synthesis of the 

peptidoglycan layer of bacterial cell walls.  It is generally considered that penicillin   

interferes with cell wall biosynthesis, causes a mechanically weakened cell wall to be 

generated resulting in cell death and lysis. The effect of penicillin in the cell wall of 

Streptomyces strains was determined on each of; beta lactamase producing Streptomyces 

sp., non-beta lactamase producing Streptomyces sp. and mutants defective in class A 

HMW PBPs. The bifunctional class A HMW PBPs act as both transpeptidases and 

transglycosylases (Ghuysen 1991).  

PBPs are usually identified by tagging bacterial membrane preparations  with
3
H-, 

14
C-, 

or
125

I-labeled penicillin G and then separating the proteins by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and imaging the gels using X-ray films  

(Preston et al. 1990).  In this study, we used a rapid and non-radioactive technique using 

BOCILLIN FL, using a commercially available fluorescent penicillin, as a labelling 

reagent (Molecular Probes, Inc., Eugene, Oreg.). The BOCILLIN FL-labelled PBPs were 

then viewed in vivo under a fluorescent microscope. 

 We examined the PBPs of vegetative mycelium as well as those of the spores. Our result 

showed that Bocillin fluorescent stain in β-lactamase producing strains were stained all 

aerial mycelium, whereas in the non β-lactamase producing strains they were located in 

only some parts of the cell membrane of Streptomyces.  The difference of the distribution 

of PBPs in beta lactamase producer strains and non-beta lactamase producer strains 

might be because in β-lactamase producing strains the Bocillin fluorescent stain both beta 

lactamase enzymes and PBPs.  

 In Gram-negative bacteria, β-lactamases are periplasmic and act in combination with 

altered outer membrane permeability  (Nikaido and Normark 1987). In Gram-positive 

bacteria, they are exocellular, although they are probably associated with the cell wall 

through electrostatic interactions (Sara and Sleytr 1987). The PBP was presented in the 

early log phase of the life cycle as well as in the spores. Interestingly, the location of PBP 

in both β-lactamase producer strains and in non β-lactamase producer strains was at the 

poles of the spores. 
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Our results suggest that PBP present in early stage of the life cycle of these strains may 

be reflecting certain stages of the life cycle. The appearance of the PBP in the spore may 

be associated with the sporulation process. In bacterial strains like Bacillus subtilis and 

some Streptomyces strains, PBP patterns are dependent on the stage of the growth cycle  

(Buchanan and Sowell 1983). 

S. coelicolor 1147 actively grows by cell wall extension at hyphal tips. One of the 

essential proteins involved in hyphal tip growth is DivIVA  (Flardh 2003).  Similar to E 

coli, fluorescence microscopy showed that the PBP is recruited to the division site in 

isolated Streptomyces strains. The high-molecular-weight PBP 2B is one of the few 

division proteins, which catalyse the final stages of peptidoglycan synthesis (Ghuysen 

1991  ). PBP 2B seems to be specific for the formation of septal peptidoglycan because; 

in E. coli at least, pbpB mutations prevent septation but not continued synthesis of the 

cylindrical part of the cell wall  (Spratt 1977, Pogliano et al. 1997).  

Bocillin stained the four mutants (δ2897), (δ3580), (δ5039) and mutant (δ3901), which 

indicated that none of them is the PBP was presented in vegetative mycelium and the 

spores.  

It  has been shown that Bacillus subtilis has more than one class A PBP, and many PBPs 

of the same class within a species often display redundant function (McPherson et al. 

2001).  According to its complex life cycle   S. coelicolor has been shown to have highest 

number of penicillin binding proteins.   

5.4 Fermentations studies of Streptomyces coelicolor 1147 

Streptomyces coelicolor 1147 is a filamentous bacterium displaying a complicated range 

of morphologies when grown in liquid culture. This study was designed to investigate the 

relationship between antibiotic exposure and resistance to penicillin G in Streptomyces 

coelicolor. Our results reported in chapter four showed the successful use of continuous 

culture  to study the  effect of prolonged exposure of Streptomyces coelicolor 1147 to the 

antibiotic penicillin G and the correlation between the growth rate and resistant to the β-

lactam antibiotic .  

The quantification of small cell amounts of filamentous microorganisms such 

as Streptomyces coelicolor, is methodologically limited (Hopwood 2006). Optical 
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density is usually used to determine bacterial density, nonetheless it is limited to 

unicellular microorganisms (Dalgaard et al. 1994). Commonly, evaluation of growth of 

filamentous microorganisms is determined by dry-weight (Mallette 1969). However, it 

remains a challenge to quantify small cell amounts of Streptomyces under laboratory 

conditions. A recent study showed the utility of methylene blue to visualize small 

differences in the amount of S. coelicolor 1147 mycelium growing in minimal medium 

(Fischer et al. 2012). Measuring the growth of Streptomyces and other filamentous 

microorganisms by methylene blue adsorption-desorption (Fischer and Sawers 2013)   

Some quantifying methods have been  studied for on-line measurement of  biomass in 

filamentous microorganism like the  on-line  monitoring of biomass  concentration  in  

mycelial  fed-batch  cultivations  of Streptomyces  clavuligerus  with  an  in-situ  

capacitance  probe  fitted  to  an industrial  pilot-plant  tank  (Neves et al. 2001) this 

technology is very expensive and does not lend itself to everyday research.   In this study, 

we used a new non-invasive optical sensor (Bug Eye® 100, Debreczeny 2012) for the 

real time monitoring of biomass of Streptomyces coelicolor. The study shows an optical 

device that can be used successfully to monitor the progress of a filamentous 

microorganism in fermentation even at low concentrations of cells.  

Our method for growing cells in a dispersed state is relatively simple and gentle. It is    

probable that the uses of spore inoculate and at the same time the agitation of 1000 rpm 

with two Rushton impellers avoids the formation of pellets. Microscopic observation 

indicated that these filaments were spread out and there was no evidence of lysed cells.   

A batch experiment was conducted to examine outlines of growth of Streptomyces 

coelicolor 1147 in YEME medium. The study revealed that there is no significant 

increase in the biomass concentration of Streptomyces coelicolor 1147cells during the lag 

phase. This is might be as a result of the adaptation of Streptomyces coelicolor 1147cells 

to the new medium and also, it is the time for spores to germinate. The biomass levels 

increased rapidly during the log phase and was complemented by the decline of dissolved 

oxygen and the increase of CO2 production (Figure 4.2).  There was a second biomass 

accumulation phase evident, and   the level of glucose did not decline to zero during the 

active phase. The amount of glucose consumed by the organism was 1.5 g/L, yet biomass 

levels reached 2. 99 g/L, suggesting that glucose was not the only carbon source being 

utilized (Figure 4.3). 
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Since the medium used contains nitrogenous compounds and maltose (YEME), this 

might be due to the switching of the organism to other sources of carbon, which in this 

case could be the maltose from malt extract and also it is possible that organism used 

amino acids rather than glucose. This was in agreements with previous studies on 

actinomycetes, where amino acids often function as the primary carbon source even 

when simple sugars are present, and also it has proven that glucose is not always the 

preferred carbon source (Karandikar et al. 1997, Hoskisson et al. 2003). In 

Amycolatopsis mediterranei specific amino acids were found to function as the unique 

carbon source (Bapat et al. 2006).  

The production of undecylprodigiosin is present during the early days of incubation and 

the colour of the medium changed slightly red as a result of the production. The 

production of undecylprodigiosin and actinorhodin by Streptomyces coelicolor 1147 is 

considerably affected by the growth rate (Kang et al. 1998). The growth rate of 

Streptomyces coelicolor 1147 in batch culture was 0.1825 h
-1 

and the doubling time is 3. 

79 h. 

Continuous fermentations were performed to investigate the relationship between growth 

rate and resistance to penicillin G in Streptomyces coelicolor 1147 using four dilution 

rates. The result obtained from the four dilution rates of this study (Figure 4.25) showed 

that S. coelicolor 1147 has the ability to adapt to increasing concentrations of β-lactam 

antibiotic up to 640 µg/ml. The effect of different concentration of penicillin G on the 

biomass during the four different dilution rates indicated that a decrease in the biomass 

when the four fermentations were fed with 80 µg/ml. There was no change in the 

morphology of colonies and the MICs with the increasing concentrations of penicillin G 

up to 160 µg/ml in all dilution rates.  The data indicated that the cells became more 

resistant to the antibiotic as the length of exposure to penicillin G and the concentration 

was increased.  

 At dilution rates 0.04 h
-1 

and 0.06 h
-1

  (generation time 19.39 and 29. 09, respectively) 

the organism lost the ability to form spores at concentration of 320 µg/ml of penicillin G.  

On the other hand, it did not lose the ability to form aerial mycelium and the ability to 

form spores returned after 4 subcultures on MS medium Figure 4-10. The possible 

explanation for the return of the ability to form spores when sub-cultured without 

antibiotic is that the loss of the ability to form spores is associated with the exposure to 



  

125 
 

the antibiotic. This return to the sporulating phenotype on subculture certainly suggests 

that the loss of sporulation was not due to a mutation. 

 FtsZ mutants in S. coelicolor were able to produce aerial hyphae, but failed to convert 

aerial hyphae into chains of spores (McCormick et al. 1994). 

At dilution rate 0.08 h
-1

 and generation time 42.26 the organism did not lose the ability to 

form spores, but images taken from the  electron microscopy revealed irregular spores 

and a difference in spore size was also seen between wild type and cultures treated with 

penicillin G.   

Viability investigations were carried out using the fluorescent bacterial viability stain 

BacLight
™

. Images showed that cells have the ability to grow at high concentration of the 

antibiotic in all dilution rates and the effect of antibiotic was observed not just at the 

hyphal tips even with high concentration of penicillin G. 

Hyphal extension in Streptomyces coelicolor 1147A3 (2) was shown to occur by addition 

of newly synthesized wall material in an apical extension zone(GRAY et al. 1990). The 

images taken in this study would suggest that wall growth was not limited to tip regions 

and that these tips are not the primary site of action of penicillin G. 

The dissolved oxygen concentration was initially set at 100% saturation in all 

fermentations. However, when biomass concentration increased, the dissolved oxygen 

concentration dropped to 60% saturation at the lowest two dilution rates in this study 

0.04 and 0.06 h
-1

. Furthermore, at the highest two dilution rate of this study the dissolved 

oxygen concentration dropped to less than 2% saturation. S. coelicolor 1147is able to 

survive in the absence of oxygen for long periods of time (van Keulen et al. 2007).  This 

current study would suggest that S. coelicolor can actually grow at low oxygen tensions. 

Streptomyces coelicolor 1147 is an aerobic bacterium that needs a sufficient supply of 

oxygen during fermentation. A shake flask usually has sufficient volume of air for 

growth by using a shaking incubator to generate turbulence inside the flasks in order to 

increase the dissolved oxygen concentration; however, it is the concentration of the 

dissolved oxygen in the fermentation medium that matters (Donovan et al. 1995).Thus in 

the experiments carried out in the chemostat, sterile air was introduced into the medium 

to increase the rate of delivery of oxygen to the organism.  
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 The result obtained from the growth at dilution rates
  

0.04, 0.06 and0.08 h
-1

  indicates 

that  there is  a correlation between the growth rate of S. coelicolor 1147 and the 

resistance to penicillin G. Additionally, if the similarity in the culture conditions such as 

pH, temperature, inoculum, agitation and aeration in all fermentations is taken into 

consideration, under the conditions used, it can be concluded that the environmental 

conditions are not the reason for the change observed in the MICs and MBCs in 

Streptomyces coelicolor. 
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Chapter six 

6.1 Conclusions and Future Work  

The overall aim of this work was to investigate the mechanisms that underpin the 

resistance of Streptomyces species to β-lactam antibiotics. Our investigations were 

performed using three different techniques; Oxoplate, fluorescent microscope and 

continuous culture. In view of the results obtained in this work, the following 

conclusions can be drawn:  

1. Isolation and morphological characteristics of Streptomyces. The results 

presented in this study indicate that ninety six isolates of actinomycetes were 

isolated from an environmental soil samples. The microscopic examination of the 

colony of the isolates revealed that aerial mycelia were morphologically 

branched with grey and white surface and some strains formed spores. 

2. Identification of the actinomycetes. The results obtained from the partial 16S 

rRNA sequencing of purified PCR products showed that all the actinomycetes 

isolates belong to the genus Streptomyces.  

3. Determine the minimal inhibitory concentration (MIC) and the minimum 

bactericidal concentration (MBC) of penicillin G for isolated Streptomyces 

strains. The isolates were varied in their MICs and MBCs to penicillin G. The 

MICs were different when they were cultured in liquid and on solid media.                                         

In MH broth medium the minimum inhibitory concentrations of all strains ranged 

from 1 - 100 µg/ml.  

4. Study the association between the growth rates and resistant in Streptomyces 

sp.  Our result indicates that there is no correlation between the MICs of 

penicillin G and the growth rates in the isolated strain. 

5. Identified β-lactamase production in the isolated Streptomyces strains and 

there relation to the MICs.  51 % of the isolated strains do not produce active 

β-lactamase enzymes. The sensitivity of isolated Streptomyces strains to 

penicillin G is  not directly related to β-lactamase production. 
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6. The phylogenetic relationship between beta-lactamase producing and non-

beta-lactamase producing strains.  There was no association between the 

position of the strains on the phylogenetic tree and their beta-lactamase activity. 

Beta-lactamase and non- lactamase producing strains refers to the same ancestral 

origin. The comparative analysis of 16S rRNA gene sequence and phylogenetic 

relationship of strain (W43) revealed that the isolate formed a separate phyletic 

line and clustered with (W76) Streptomyces lividans strain YLA0. 

7. Investigate the interaction between penicillin G and PBPs in isolated Streptomyces 

species. Bocillin staining in β-lactamase producing strains showed staining throughout 

the mycelia. Non β-lactamase producing strains revealed staining in only certain parts of 

the mycelia. PBPs were located at poles of the spores.  

8. The use of Bug-Lab for monitoring the growth of a filamentous microorganism in 

continues culture. It can be said that, our strategy of using the Bug-Lab for monitoring 

the progress of S. coelicolor 1147 in fermentation even at low concentrations of cells in 

real time was successful.  

9. Streptomyces coelicolor 1147 has the ability to grow at high concentration of 

penicillin G.  Viability investigations were carried out using the fluorescent bacterial 

viability stain BacLight
™

. The images showed that cells have the ability to grow at high 

concentration of the antibiotic and the effect of antibiotic was observed not just at the 

hyphal tips even with high concentration of penicillin G. 

10. Investigate the relationship between growth rate and penicillin G resistance in 

Streptomyces in vitro. There was a correlation between the growth rates of S. coelicolor 

1147 grown in modified YEME media in continues culture with the resistant to 

penicillin G. S. Coelicolor 1147 was more sensitive to penicillin G at high dilution rate.  

On the other hand, the findings of this project highlight our lack of understanding of the 

mechanism of resistance to antibiotics and therefore provide the following suggestions 

for the future work. 
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6.2 Further work 

1. One of the findings of this study is that Bocillin fluorescent bind to PBPs in the cell 

membrane of Streptomyces and also stain the pole of the spores. We have eliminated 

some of high molecular weight of PBPs.  Future research should concentrate on 

identifying the type of PBP that bind to Bocillin in Streptomyces and their functional in 

resistant.  

2. One of the results obtained in this thesis indicate that the sensitivity of isolated 

Streptomyces strains of penicillin G is not directly related to β-lactamase production. 

Therefore, further experimental investigations are needed to elucidate the expression and 

the function of the β-lactamase genes in Streptomyces sp. This would help us to find β-

lactamase enzymes that bind to the cell membrane and its role in cell wall metabolism of 

Streptomyces. The use of analytical methods such as DNA microarrays would be useful 

in this study.  

3. One of the findings of this study is that Streptomyces coelicolor 1147can grow at low 

concentration of oxygen when grown in continuous culture at different dilution rates 

under the conditions used in this study. Streptomyces sp are considered to be strict 

aerobes, yet this study does not support this. Further work on the physiology of these 

bacteria at low oxygen tensions is required.  
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